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Curvature fluctuations and the Lyapunov exponent at melting
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We calculate the maximal Lyapunov exponent in constant-energy molecular-dynamics simulations at the
melting transition for finite clusters of 6—13 particlgsodel rare-gas and metallic systems well as for bulk
rare-gas solids. For clusters, the Lyapunov exponent generally varies linearly with the total energy, but the
slope changes sharply at the melting transition. In the bulk system, melting corresponds to a jump in the
Lyapunov exponent, and this corresponds to a singularity in the variance of the curvature of the potential-
energy surface. In these systems there are two mechanisms of chaos—Ilocal instability and parametric insta-
bility. We calculate the contribution of the parametric instability toward the chaoticity of these systems using
a recently proposed formalism. The contribution of parametric instability is a continuous function of energy in
small clusters but not in the bulk where the melting corresponds to a decrease in this quantity. This implies that
the melting in small clusters does not lead to enhanced local instap8ity263-651X%97)11508-2

PACS numbes): 05.45:+b, 36.40—c, 64.60.My, 05.20-y

I. INTRODUCTION sis[4,5] use this information implicitly.
The simplest understanding of chaotic dynamics in such

In recent years the dynamics of finite condensed-mattefHamiltoniar) systems is the standard KAM pictufé].
systems, especially atomic and molecular clusters, has be&fhen the number of freedoms becomes lajifge 13 atoms,
extensively studied from a nonlinear dynamics perspectivéhe phase space is 78 dimensignidde picture of a phase
[1]. Various quantities of interest like Lyapunov exponents,space foliated by tori, with surrounding stochastic regidijs
Lyapunov spectra, distributions of finite-time Lyapunov ex-is not particularly relevant. However, the motion for specific
ponents, and the Kolmogorov entropy have been computeititial conditions remains nearly periodic, while for others
to see the evolution of chaoticity and ergodicity. Very gen-there can be a positive Lyapunov exponent. In particular the
eral considerations lead to the expectation that the LyapunoAM theorem underestimates the chaotic thresholds by sev-
exponents and the Kolmogorov entropy should increase witleral orders of magnitudgg] in high-dimensional systems as
energy. However, there are indications that different systemthe critical perturbation scales asexp—aN; which rapidly
can display a variety of behaviors, and details of how suclgoes to zero with increasiny; (degrees of freedomcon-
indices change and the different kinds of possifajealita- trary to the experience in numerical simulations beginning
tive as well as quantitatiyebehaviors—the various univer- with Fermi, Pasta, and Ulam’s famous regii. Also, at-
sality classes, so to speak—have not yet been completetpinment of chaoticity does not exhaust the interest in
characterized. dynamics—in particular the evolution of the dynamics near a

In the present work we calculate the largest Lyapunovthermodynamic phase transition is nontrivial. At energies
exponentA for small rare-gas and metal clust¢reodeled, corresponding to the phase-transition phenomenon, the ac-
respectively, by the Lennard-Jon@sl) and the many-body cessible phase space increases greatly, and correspondingly
Gupta [2] potentiald as well as for bulk rare-gas solid, A shows a signature of the transition. An alternate means of
namely 256 LJ atoms in a box with periodic boundary con-analysis is through decorrelation of the eigenvectors of the
ditions. In the range studied\ is generally linearly related instantaneous Jacobian along a trajecfdily The time scale
to energy(except at very low energigsbut shows a sharp for this process is greatly reduced by the presence of the
change in slope at an energy which can be related to theegions of negative curvatur@nstable modes which also
melting transition. increase at the melting phase-transition point.

We also compute an estimate farthrough a semiempir- Such ideas have been at the root of a variety of studies of
ical methodology provided by a recently proposed geometrithe Lyapunov exponent or related quantities. Posch and
cal theory of Hamiltonian chad$]. Under certain approxi- Hoover[9] calculated Lyapunov spectra of solid and liquid
mations this allows for the estimation of the relative LJ systems in two and three dimensions, and attempted to fit
contribution of stable modes of a Hamiltonian system towarca power law to this data, obtaining different exponents in the
chaotic behavior. The approximations inherent in the theongolid and liquid phases, although no definite significance
[3] are fulfilled in bulk systeméwhereN is large, but do not  could be ascribed to these. Berry and co-work&f exam-
appear entirely satisfactory in small clusters. This geometriined a variety of quantities including finite-time or local ap-
cal theory has as its input the curvature of the configuratioproximations to Kolmogorov entropy and Lyapunov spec-
space manifold and its fluctuation. These quantities and theirum in LJ and Morse clusters containing between three and
variation with temperature are themselves interesting bel3 particled 10]. These studies have been able to make con-
cause they yield a statistical quantification of the potentialtact between the features of the potential-energy surface and
energy surface. Recent approaches to the computation tfie variation of different dynamical indicators. Recently Sas-
Lyapunov exponents frorflocal) instantaneous mode analy- try [4] computed the maximal Lyapunov exponent as well as
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the entire Lyapunov spectra for a 32-atom Lennard-Jonepresented. This is followed by a summary and discussion in
fluid in the temperature range 50—-800 K. A power-law fit of Sec. IV.

A with temperature does not yield a single exponent but a

crossover(aroundT=1) between the exponert 1 at low Il. MELTING AND LYAPUNOV EXPONENT

temperature tg at high temperaturgd 1]. In a finite lattice IN CLUSTERS AND BULK

system, Butera and Caravfti2] simulated the coupled rotor . . .
Y a2] b As is by now well known[25], atomic clusters with as

system in two dimensions which has a Kosterlitz-Thoules ; o] 4 finite-si I f
(KT) transition at constant energy and observed that the sca ew as six or seven particles undergo a finite-size analog o
ing of A with the temperature changes at precisely the K _he bulk melting phase transition, which is marked by a jump

temperature. Recent simulations on ¥% model in two and in the Lindemann index and the onset of rapid isomerization.

three dimensions by Caiaet al.[13] showed the differences The quuidllike_ phase of_the small clusters is, however, unlike
between the KT transition and a true symmetry—breakingIhe bulk |IC1UId' In one |mporFant_ respect: due to_ the phase-
transition in three dimensions. The crossover in scaling of Space constraints, the atomic displacemett®pping pro-

with temperature or energy per particle, also observed ir?gsses)V are highly cgrrelated, giving ri_se toflspectra of
other lattice models where it had purely dynamical Sigmﬁ_smgle-partlcle potential-energy fluctuatiof6]. It has been

cance[14], was suggested to coincide with the crossoverc’bserVGd.that in metal clu'sters particles can occupy two
from slow to fast diffusion in the phase spddg, and was types of sites—of low and high energy, respectively, and the

labeled as the strong stochasticity thresh@&T). The gen- onset Qf the quuid_phase corresponds_ to _the anset of an
erality of the SST in nonlinear Hamiltonian systems is not'SOMmerization occuring through four-pa_rtu;le interchange be-
obvious, although it appears to persist even for large degreé een high- and low-energy sit¢87]. Similar features are

of freedom in the models studied. It was also found that SSI;l so.expect.ed for rare-gas cIuste.rs. This pecgliarl dyn.amics
occurs in lattice models with Lennard-Jones interactions in'2S interesting consequences which we examine in this sec-

two and three dimensiord5], the signature being a rapid lon. . . . .

relaxation of the specific heat and independenca @hn the We COUS'def clusters of up to 13 atoms interacting via the

initial conditions. Similar transitions have also been ob-L‘] potential

served in small rare-gas and metal clus{d®. A somewhat 6
0- )

. @

0_)12

> exg—2q(r;—ro)]

different interpretation of these results has also been pro- \/:462
posed[17]. i<]

In small rare-gas atomic clusters,has been calculated at o ) )
the melting transitior{ 18], which is a finite-size analog of Which is appropriate for rare-gas atoms; we work in reduced
the bulk melting transitiofi19]. Whereas\ changes discon- units wheno=e=1. In order to model metallic clusters, the
tinuously with energy for Lg; and Lks, for LJ; the slope  Many-body GuptdGu) potential[2]
changes discontinuously. At the energy of this change, indi-
cators of melting like Lindemann index or density of states V=(1/2U> (AE ex —p(ri;—ro)]
show characteristic signature, so it was proposed Ahat a j [
good indicator of melting transitiof18,20. Subsequent 12
work [21] has revealed that the behavior Afas a function _ ] ®)
of the energy is more complicated, and can be different de-
pending on the nature of the low-energy configuration that
the system starts from. More recently Dellago and Posclis commonly used. Here;; is the distance between the
[22] calculatedA, the Lyapunov spectra, and related quanti-atomsi andj, andr is the interatomic distance in the bulk
ties like the fraction of unstable modes for the melting tran-(fcc) crystal. The specific metallic cluster system we model
sition of certain modified LJ systems in two dimensions.corresponds notionally to Ni, for which we use parameters
They found that\ has a broad peak near the melting densitygiven in Ref.[25]: p=9/r,, q=3/r,, A=0.101035, and
and a steplike increase at the melting temperature, and fukd/Epux=0.855 05 E,y is the bulk cohesive energy of the
ther suggested that there is a change in the shape of tiaetal by which all energies are scale@Quantities likeA
Lyapunov spectra at the transition density. Critical phenomand Kolmogorov-Sinai entropy have been calculated for
ena which occur at higher temperatures in larger fragmentingmall rare-gas clusters and the relation of the potential-
clusters have also been studig2B], although the claimed energy surface to local dynamical behavior has been ana-
form for the (finite-time) Lyapunov exponent, namely, lyzed[10,28. In particular it is known that smooth saddles
A~(T—T,) *, with universal behavior fop, is question- cause a drop in local chaoticity indicatdd0].
able[13,24. Time is measured in units of{c®/ €)Y for LJ clusters

Our work in the present paper is focused on the study ofind (nr3/E,)Y? for Gupta clusters. Constant energy simu-
clusters and bulk at the melting transition, with particularlations are done using the Verlet algorithm with step size
emphasis on the Lyapunov exponent and the curvature fluAt=0.01 in these units, and the total energy is conserved to
tuations. In Sec. Il, we examine the behavior/of and in  0.01%. The total integration time varies betweeRAliDto
Sec. lll, the nature of the curvature fluctuations are analyze@x 10°At depending on the potential and the system size.
in order to make contact between theory and simulationsSimulations start at the global minimum of the structure, and
The methodology and theoretical background for the extracthen gradually move up in energy; at the highest tempera-
tion of A from curvature data is elaborated upon in Sec. llltures studied evaporation does not set in within the time
where our results for bulk as well as cluster systems are alsperiod of the computation. Temperature is defined in the



2510 VISHAL MEHRA AND RAMAKRISHNA RAMASWAMY 56
0.4 1.0
a) a)
0.3} + N= 288 s oCO 0.8 00
- « N=13 RO R,
o N=I1 gttt e e loe0te « 06 2°
< 02f * N fooe et . , o8 +
o N=6 - . a ,,vw°° < 04} . ¢ -
ot S 02f e o o @
0 .uu +¢‘ !‘7 o° 0
3.5 3.0 2.5 2.0 -5 1.0 -7 -6
€ £
1.0
12
. b) o o w b
0.8} N=13 . © ° o @ o k
N=' o ® v & g © e
N=6 . ° v 8 o 0°%
0.6f § v o®
< o ° g o o o .00 ° 3
° v . °© a o T gp ©
04f . . 4 Lo
&L vv R o °
0.2f P . °
° VVV n:F‘ 0 X
0 , >, . ; 7 6 5 -4 3 2
-0.85 -0.80 -0.75 -0.70 -0.65 -0.60

€

FIG. 2. (a) Lyapunov exponents for the bulk LJ system of 256
particles in a cubical box with periodic boundary conditions. Circles
refers toA, and squares to the estimategenerated using E@8),
with 7 defined in Eq(10). Pluses () denote values af calculated
using 7,=k¥% . (b) Mean curvaturek), and fluctuatiors for the
bulk LJ system as a function of enerdy.and o are measured in
usual manner, as proportional to the average kinetic energynits of frequency squared.
per particle, T=2(E,)/[kg(3N—6)], kg being the Boltz-
mann constant. demann index has reached its critical value 0.1. The slope in

At very low energies the dynamics is nonergodic; in par-the liquid phase is always smaller, indicating that the diffu-
ticular, for 13-particle clusters the nonergodicity can be persive modes have different chaotic properties, giving rise to
sistent up to rather high energies. The breathing mode idifferent energy dependence &fThe change in the slope of
LJ;; was recently studied in Ref29]. This mode is stable A(e€) can also be taken to be a characteristic signature of
(i.e., nondecayingup to an energye=0.150 per particle melting in small clusters. The slope of thdge) curves are
above the global minimum; the corresponding mode for LJgenerally smaller for the larger cluster; furthermore, the
7 survives only up to energy 0.042 above the minimum.sharpness of the discontinuitin slope is reduced as the
Stability here is tested by starting trajectories with an isotrocluster size increases.
pic stretching of the global minimum structure. In this non-  For the Gupta clusters, however, these trends Witare
ergodic region the system initialized with a small randomnot strongly marked, which is a consequence of the many-
distortion of the icosahedral structure has a very small posibody character of the Gu potential: even if a pair of particles
tive Lyapunov exponent, while, for larger distortions at theis not interacting directlybeing outside the potential cutff
same energyA can be much larger. As energy increases, thehe corresponding elements of the Hessian matrix need not
overall cluster distortions increase, and this mode becomesanish because of the many-body term. We find that the
markedly unstable. For large initial distortions from icosahe-slope changes distinctly at an energy corresponding to the
dral geometry of LJ3, a chaotic transition occurs at a lower top of the jump in the Lindemann curve.
energy and is manifested as the divergence of the microca- The third system we study is bulk, and FigaRshows
nonical specific hedtl6]. This energy depends on the equili- A(e) for the system of 256 LJ particles in a cubic box with
bration time, but tends to a nonzero value for large equili-periodic boundary conditions at the reduced density
bration times. Such transitions are not size specific, and have=0.93 and reduced melting temperature 1.15. Initial condi-
been seen for nonmagic clusters as well. tions for these simulations were as follows: the atoms were

Figure 1 shows the variation of(€) with the reduced initially at fcc lattice positions, with initial velocities taken
energy per particlee, for LJ and Gu clusters of vari- randomly from an appropriate Gaussian distribution. For
ous sizes. At higher energies(e) is linear but at a certain e€>—4.25 the crystal is unstable and soon melts. It is pos-
energy a sharp change in the slope is evident in all casesible for melting to occur for slightly lower energies if inte-
Precisely at this energy the conventional criterion of melt-gration is carried for longer times, but the time required to
ing applies, namely, the Lindemann index crosses the valumelt is not a monotonically decreasing function of energy.
0.1 (Lindemann indices for Gu clusters were studied inHereA(e) shows a jump which obviously can be ascribed to
Ref. [25]). In LJ;3, which has a large solid-liquid coexist- the increase in the disorder at melting. The data shown are
ence region between 2.6<e<—2.2, A changes slope at the Lyapunov exponent of the solid- or liquid-phase trajec-
e~ —2.6. In LJ, where the Lindemann index increases con-tory only, which are obtained by discarding the premelting
tinuously, the discontinuity in\ appears just after the Lin- portion of a trajectory that melts. Similar results for bulk

FIG. 1. (&) A as the function of reduced energy per particle for
LJ clusters withN=6, 7, 9, 11, and 13. Note that the list includes
both magic and nonmagic cluster) A for Gu clusters with
N=6, 7, and 13. The reduced energy scale is seEQy. [Eq. (2)].
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melting have also been reported in R¢f22] and[30]. opment of the geometric theory of cha@. Barnettet al.
While both the bulk and the cluster are disordered by{34] applied similar ideas to a calculation of the Lyapunov
melting (change in entropy at meltingd S/N=1.0 for the  exponent of a dilute gas.
LJss and 1.7 for the LJ crystdll9], and the specific heat of The geometric theory makes a diagonal approximation in
even a six-particle cluster shows a pgak in the cluster the sense that it uses information only about the trace of the
liguid phase is significantly smaller than the value obtainednstantaneous Hessian matrix, i.AY. When the equations
by extrapolating from the solid phase, in contrast wkh of motion are put in a differential-geometric form, this term
obtained in bulk liquid. This suggests that in the cluster lig-appears as the Ricci curvatufeurvature locally averaged
uid phase there are stabilizing influences on the dynamicever the directionsof the enlarged configuration manifold in
which are absent in the bulk liquid. We conjecture that thethe Eisenhart metrig3],
correlated hopping processes in cluste8,27] provide the

necessary mechanism. This is consistent with the observation ds?=—2V(q)dt’+a;dq'dg +dtdg" . ©)
made above that th&(e€) curve becomes smoother with the . . o )
cluster size. HereV(q) is the potential energy and the kinetic energy is

The observed Lyapunov phenomenon for the clusters i§=a;;q'q’. The relevance of potential curvature has been
not just an effect of the smeared-out bulk transition, i.e., anoted before35]. The Ricci curvature does not have this
manifestation of finite dynamical coexistence region in thesimple form in other metrics, but the essence of the assump-
clusters which vanishes in the bulk limit. The properties oftion is that all the directions in the phase space are equally
the coexistence regiofin particular its width depend sensi- curved after a coarse graining along a trajectory. The dy-
tively on the cluster geometry, e.g., the fact that the cluster imamical trajectories are the geodesics of this manifold. In
magic or not. But the trends in the Lyapunov exponent deabove models this appears to be the dominant mechanism for
pend on the size in a simple manner and are independent ohaos as there are no unstable mo@esresponding to the
the magic-nonmagic relation. negative eigenvalues of the instantaneous Hessian matrix or

The spectra of BI—7 positive Lyapunov exponents for regions of negative curvaturewhich are thelocal mecha-
the clusters vary smoothly with energy. For LJ clusters theynism of chaos.
are linear in the entire range with a slope that increases with If it is assumed that the curvature fluctuations have
energy, while in Gu clusters they acquire increasing curvaGaussian spectra up to a high-frequency cutoff, i.e., the dy-
ture. This is in contrast to the results of Dellago and Poschhamics generates a Gaussian random process for curvatures,
[22] for bulk melting in two dimensions, where the curvature then one can dispense with the necessity of following a tra-
of the spectra changes sign smoothly at certain dengites jectory and an estimate of the largest Lyapunov exponent,
constant temperaturelt remains a task to extract more use- A can be obtained via Monte Carlo sampling. This is the
ful information from the shape of the Lyapunov spectra.essence of the Gaussian approximafi®l within which ex-
However, the smoothness of the spectra at cluster meltingellent agreement is obtained betwegnand\. The pres-
implies that the relatiofif any) between thermodynamic and ence of additional unstable modes renormalizes the calcu-

dynamic entropies is nontrivial. lated exponent, although this is nontrivial to calculate.
Therefore the unrenormalized exponent gives an estimate of
Ill. CURVATURE FLUCTUATIONS the chaoticity caused by stable modes oftlye unstable

) ] ] _ modes also contribute to parametric instability by their pres-

In this section we apply the geometric theory of Hamil- ence inAV, but it is not their major effect on chaoticjtyThe
tonian chaos developed by Pettini and co-work@isin or-  theoretical basis of the diagonal approximation assumption is
der to interpret and rationalize the results of our numericathat the local fluctuation of the Ricci curvature detects devia-
simulations in terms of an underlyirignicroscopi¢ mecha-  tjon from isotropy(at a poin} because isotropic manifolds
nism. This theory, the salient features of which are summage necessarily of constant curvature by Schur’s the¢8m
rized below, is attractive because it attempts to unite features The crossover between the regimes of weak and strong
of the potential-energy surface with the dynamical propertieghaos in high-dimensional systems can be detected by exam-
of the system as encoded in the Lyapunov exponents. Onging the behavior of the mean curvatuke,as a function of
additional motivation in applying this theory to finite cluster ¢ energy density. In the integrable lirkiis independent of

systems is to determine the limits of applicability of the 9geN-energy[3]. Corresponding to a Hamiltonia of N particles
eral framework, which has mainly been applied to lattice\yiin an interactionv

models where the calculated Lyapunov exponents are found

to be in good agreement with empirical expondi4 3]. p?
I

H=2 Z-+V(), @

A. Geometric theory of chaos in high-dimensional systems :

It is well known that the classical dynamics on manifoldsthere are 81 equations of motion:
of constant negative curvature is chadid]. The dynamics

on a manifold with fluctuating positive curvature can also be d2a. N
chaotic[32]: this fluctuation, via the mechanism of paramet- i — (5)
ric instability, is responsible for creating chaos in systems dt? a4

such as the Fermi-Pasta-Ulgerand ¢* chains[7], and for a
driven one-dimensional oscillator studied in Rgf3]. These  The associated Jacobi equation for the second deviations is
studies have provided much of the motivation for the develthen
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d2J, 52V the presence of negative curvatures it may be more accurate
—+> Ji=0, (6)  to use a different time scal@],
dat2 T 99,9q9; !
k1/2
whereJ; are the components of the vector of second devia- T,=—". (12)
tions. After some approximatiori8], this can be converted o
to an equation fou=|J|, , ,
We find (see Sec. lll € that 7, is more accurate thanm
d2u P2V 3.3, 2 insofar as it provides_ a better numerical match With the au-
>+ 2 —— U= —2+Q(t)u:0, (7)  tocorrelation decay time scale for the systems studied here.
dt® T d0idq; | dt One additional minor point is that the effective number of

freedoms isN;=3N—6 rather than 8, since the six con-

v_vhmf:j 'S, mdeffe;:t, an e(géuaatlor? forlallmearf os_CIIIator \_N'th served quantitieglinear and angular momentagive rise to
time-dependent frequenaiQ. The solutions of this equation zero-frequency modes and thus do not contribute to the chao-

are unbounded for typica(t) and the Lyapunov exponent v, This does not change qualitative conclusi¢ingleed it
is just given by the rate of exponential growth of the enve-, st no}, and improves results in most cases.
lope of u [36]. Pettini and co-workerg3] showed that The application of the geometric theory to the systems
Q(t) is just the sectional curvaturvhich is the generaliza-  considered in Sec. Il is of interest for two reasons. First, this
tion of Gaussian curvature to many dimensjorsative 0 ormgalism has so far been mostly applied to lattice models,
the plane containing and dg/dt in the Eisenhart metric. \yhere parametric instability is the main source of chaos. It
The diagonal approximation consists in replaclagoy the  \yoyid be useful to determine the extent to which the formal-
simpler quantity ism works for off-lattice models with significant local insta-
) bility. Second, the partition of the chaoticity of the system
A_V: i ﬂ ®) into local and nonlocal components may help in clarifying
Nt N¢5 z?qiz ' the behavior of Lyapunov exponent at melting. In particular,
it would be interesting to know whether the overall instabil-
with N the number of degrees of freedom, whicl{33the ity of the system can be separated into these two compo-
Ricci curvature per degree of freedom, i.e., the sectional cuments, and, if so, whether they behave differently at phase
vature has been averaged over relative orientationsarfd  transitions.
the velocity vector. Under the further assumption that the The melting transition in finite systems appears to have a
curvature is Gaussian distributed with a médan({AV)/N; distinct signature—the Lyapunov exponent shows a knee,
and variances?=[((AV)?)—(AV)?]/N; and ares corre- Where the slope changes discontinuoy&g]. For bulk, the
lated, Pettini and co-workef8] derived an expression for an fraction of the unstable modes has a discontinuous jump at
estimate of the Lyapunov exponent melting. Therefore a rapid increase in local instability and
consequently, a jump in the Lyapunov exponent can be ex-

1 4k pected. Such a change may not be apparent in the contribu-
A= 2 = ETNE ©  tion of the parametric instability, and therefore in the situa-
tion of cluster melting where Lyapunov exponent does not
) 4k3 ) o V2113 increase, it is an open question whether the local instability
I=|o%r+| 57 +(0%7) : (100 increases or not.
wherer is a characteristic time implied by the smoothness of C. Results

the underlying manifold, i.e., the time interval below which

dynamics of curvatures cannot be regarded as a random pro- AS should be clear. from the. preceding discussion, appll-
cess cation of the geometric theory in order to make comparison

with the results of our numerical simulations involves a num-
ber of sensitive estimates and several approximations. Fol-
lowing the general procedure outlined in Sec. Il B above,
The main result of the geometric theory is an estimate ofve calculated the estimate [cf. Eq. (9)] for bulk (LJ) and

the Lyapunov exponend given in Eq.(9), for which it is  various LJ and Gu clusters in an energy range which encom-
necessary to obtain the mean curvatkrand the variance passes melting, from long trajectories of duration up to
o2. These quantities can be calculated along a typical traje2 X 10°At. The data fok, o and\ are shown in Figs. 2—6.
tory using Eq(8), and the assumption @correlated curva- The detailed comparisons of theory and simulations are pre-

B. Application of the geometric theory

ture fluctuations can be directly verified. sented separately for bulk and cluster systems below.
The determination of the time scale[see Eq.(10)] is
more tricky. One estimate which has been ug&d3,37 is 1. Bulk LJ system
Casetti and MaccHi37] have calculated the curvature for
”\/E bulk LJ in an exponentially large energy range in order to
S h L N (1) p y large energy rang _
2Vk(k+ o)+ 7o detect the crossover between weakly and strongly chaotic

regimes. Earlier calculations by LaViolette and Stillinger
This expression for here is actually that for, in Ref.[3]  [38] of the mean curvaturéwhich is proportional to the
[see the discussion following E¢45) therd. However, in  squared Einstein frequencghow thatk increases linearly in
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FIG. 3. (@) Mean curvaturek and (b) fluctuation o for LJy

clusters withN=6, 11, and 13 as functions of energy. Units are as

in Fig. 2.

the bulk LJ system with a jump of about 20% at melting.

This increase is a manifestation of the positive hig

h-

2513

Care was taken to ensure that computed averages are over
either the solid or liquid phase exclusivelyl'his behavior
may be contrasted with the cusp singularity found recently in
the XY model in three dimensions by Caiast al. [13],
which was interpreted as suggestive of a topological transi-
tion in the potential-energy surface.

The assumption ob-correlated curvature fluctuation can
be substantiated by examining the power spectra of curvature
fluctuations. Figure 7 shows that these are satisfied in the
bulk. However the observed correlation time does not agree
with 7 given in Eq.(11) (see Table)l We therefore use, to
calculate the relative contribution of unstable modes,
namely,

Sy

(A—=N)/A. (13
IndeedA(7,) is much better fit toA than A(7) (Fig. 2.

S\, can become slightly negative in the solid phéseply-

ing some correction due to correlationwhile in the liquid
phase, it can be as large as 0.35. Assignment of the differ-
enceA —\ to the effect of unstable modes is justified by the
following two observations. First\ does not increase at
melting (it actually fally, whereasA has significant jump
which can be accounted for by an increase in the fraction of
unstable modes. In addition, the agreementoénd A is
better at lower temperatures, namely, when the occurrence of
negative curvatures is infrequent.

frequency tail in the instantaneous normal spectrum in the

liquid phase. However, the slope in the liquid phase is

smaller than the solid phase by about 6%.
We find that the variance® has adiscontinuityat an
energye,,=—4.17. At energies well away from,,, o in-
creases linearly with energy but in a very narrow range preframework of the geometric theory breaks down for such
ceding e,,, roughly corresponding to the solid-liquid coex- systems and deviations from E(R) can be expected. The
istence regiong increases sharply. As the system melts observed correlation times do not agree with analytical esti-
falls by about 30%(The discontinuity inc has been con-
firmed by repeating the calculations with longer trajectories The mean curvature for specific LJ clusters has been com-
and finer energy mesh. Data in the coexistence region wenguted previously39,40, and, in contrast to bulk, decreases
computed from long trajectories of total timexA0°At.

0.45

a)

0.30

0151

v
v’ v
vvvvvvvvv‘7 vavv
v

o O
00‘:’ooo

oo°
of

™

=22

0.5
o4 P
0.3
0.2

0.1

b

14

2. Clusters

Owing to the finiteness of cluster systems, correlations do
not decay sufficiently rapidlj27]. As a consequence, curva-
ture fluctuations are far from being uncorrelated, and the

mates forr and r, (Table ).

uniformly with energy for all clusteréexcept LJ3); likewise

FIG. 4. The estimata for LJy clusters with
N=6, 11, and 13 as the function of energy.
Shown with circles are\. calculated withr de-
fined in Eq.(10); + are values of\ calculated

usingr,=k*% . Also, for comparision, we show
the corresponding values ol from Fig. 1
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FIG. 5. (a) Mean curvatureK) and(b) fluctuation () Guy, clusters withN=6, 7, and 13 as a function of energyando are scaled by

2
Epux/mrg.

for Gupta clusters. No trend is apparent either Koor its

smoothly with energy, in the coexistence regime near melt-

variation with energy, although there are some size effects iing there are large fluctuations which persist for very long

the case of Gupta clusters. The behavior of the variartds

averaging times. The liquid phase in J5Blso shows a non-

more complex. Although this quantity usually increasesmonotonic dependence of variance on energy.
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The net result of the persistence of correlations is that thgreatly enhanced value @& ,(~0.35). In the cluster, even
estimatesy for cluster systems do not agree with While  after melting, 5\, does not increase very much: it has a
N(7) is a rather good fit for LJ clusters, it is of doubtful smooth dependence on energy. A tentative conclusion that
validity becauser is far from the observed fluctuation time- can be drawn from these cases is that unstable modes have
scaler; (Table ). Using 7, in Eq. (9) givesN\/A~1.3-2.5 effective chaoticity only when the particles are free to ex-
for LJ clusters, although for the tightly bound Gupta clustersgcute large-scale motion.

this discrepancy is smallex/A~0.8—-1.2. If the coarse-grained curvature is everywhere positive, the
ratio o/k provides a crude measure of the ruggedness or
3. Discussion roughness of the underlying potential-energy surface. As it is

Our results indicate that unstable modes have suppressél?iis feature which causes nearby trajectories to diverge, it is

chaoticity in certain circumstances. In particular, in the solig/nteresting to study_the_ variation Of this index with energy, as
LJ system, wheréh,, is very small, the fraction of unstable this will give some indication of the nature of the region that
modes is, substanutial ~0.2), while a slightly higher is being dynamically probed on the potential-energy surface.

N ; LS S At low energieso/k is small, as expected, typical values
(~0.25-0.3) fraction of unstable modes in liquid gives a being ~0.2-0.4. At the highest energies reached, it is be-

tween 0.8 and 1.2 for various clusters with somewhat higher
values for LJ clusters and smallbk. In the bulk system, a
peako/k~0.8 is reached at the melting poititom the solid

TABLE I. Typical time scalegin reduced unitsassociated with
power spectra for various systems studied here.

System sa - - _ A phase, and then it remains nearly constant. The correspon-
dence of the maximal roughness with the melting point is
Gug solid 0.30 15 0.8 2.0 0.2 very suggestive. One can visualize destruction of the crystal
Liquid 018 04 07 11 07 lattice being driven by large-scale roughness of the potential.
Gu, solid 0.28 0.9 0.8 1.4 0.3
o IV. CONCLUSION

Liquid 0.18 0.36 0.7 0.9 0.8

. In this paper we have examined the behavior of the largest
LJg solid 0.55 1.6 2.5 10. 0.05

Lyapunov exponenA as a function of energy in finite clus-
Liquid 0.4 0.8 1.0 1.0 25 ters of 6—-13 rare-gas and metal atoms, and in bulk rare-gas
solids. These systems undergo a phase transition from a re-

LJ5 solid 0.5 14 17 2.5 0.1 gime wherein the dynamics is purely oscillatdigvolving
Liquid 0.3 06 1.0 1.0 0.3 individual particle vibrationsto a regime where the dynam-
_ ics is both oscillatory as well as diffusive.

Bulk solid 0.2 0.5 0.6 0.6 0.3 Diffusive dynamics is linked to the presence of delocal-

Liquid 0.2 0.6 0.4 0.4 0.8 ized unstable _moo!es in the bulkl]. In small clusters the
onset of the diffusion does not appear to enhance the chao-

aCalculated with Eq(10). ticity: the observed value of the Lyapunov exponent is

bCalculated with Eq(11). smaller compared to the value expected by a simple extrapo-

‘Obtained from approximate upper cutoff of the power spectrum. lation of the exponent from the low-energy regime, namely,
dinverse bandwidth of the power spectrapproximatg from the oscillatory dynamics or the “solid” phase. This
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suppression of chaos, which we attribute to the correlatetkers, the agreement is only qualitative. Curvature fluctuations
hopping dynamics, is strongest for smallest clusters but igor clusters are correlated, and this effectively reduces the
then progressively reduced. It is possible that, for particulaparametric instability in the dynamics. The spectral features
clusters, the enhancing and suppressing effects of the umwf the curvature fluctuations such as bandwidth are not well
stable modes can balance, and thée) curve is smooth accounted for by the geometric theory even for the bulk sys-
across the meltingin fact LJ;; shows no signature of melt- tem. At higher temperatures is lower thanA, which is
ing according to this measufd?2]). This conjecture can be attributed to the unstable modégegative curvatur@svhich
tested by studies of the larger clusters with calculations ofre ignored in the geometric theory. The contribution of the
the participation ratios of the unstable modes, which willunstable modes toward chaoticiiybtained by subtractiny
clarify their role in the chaoticity of a dynamical system.  from A and therefore only approximate small in the solid
One may intuitively expect that unstable modé£., phase, but can be as large as one-third in the liquid phase.
negative curvaturgscause the dynamics to be chaotic. As Since o and k do not show any singularity at melting for
noted by Dellago and Posch in their study of melting inclusters, the parametric contribution coming from the change
two-dimensional system$22], the fraction of unstable in topography of the potential-energy surface changes
modes, which is a rough measure of negative curvatures, hasnoothly. Therefore, the fractional chaoticity coming from
a similar dependence on the parameterd a¥hese unstable the unstable modesi\,, also seems to vary continuously
modes can, however, become important only when particlewith energy.
are capable of large-scale motidin a related context, it has In summary, our application of the geometric theory to
been seefi30] that A falls when a liquid is cooled through the dynamics of the melting transition for cluster and bulk
its glass-transition temperature, namely, as the unstableystems has provided a satisfactory qualitative understanding
modes becomes localiz¢d1].) of the underlying mechanisms in terms of the change in
Using the framework of a geometric theory of Hamil- roughness of the potential-energy surface, curvature fluctua-
tonian chaos, we computed an estimate for the Lyapunotions, and parametric instability. While agreement between
exponent from the curvature of the potential-energy surfacéheory and simulation is reasonable for the bulk system, for
and its fluctuation. We studied the variation of these quantithe case of finite clusters the situation is less satisfactory.
ties with the temperature of the system, and found that th&he main source of the discrepancy seems to lie in the fact
mean curvature is always a monotonic function of energy buthat, in cluster systems, correlations are temporally long
the variance has a simple energy dependence only fdived. This aspect must be incorporated within the present
smaller clusters. In the coexistence region of 13 particldramework of the geometric theorgee, e.g., Ref$33,36])
clusters—these are the cases in which the potential-energy order to achieve quantitative accuracy.
surface has a deep global minimum which is well separated
from the next lowest stru_cturee-—is non_monotonic. Th_e LJ ACKNOWLEDGMENTS
bulk system shows a singular behavior ferat melting,
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