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Power-law sensitivity to initial conditions within a logisticlike family of maps: Fractality and
nonextensivity
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Power-law sensitivity to initial conditions, characterizing the behavior of dynamical systems at their critical
points~where the standard Liapunov exponent vanishes!, is studied in connection with the family of nonlinear
one-dimensional logisticlike mapsxt11512auxtuz ~z.1; 0,a<2; t50,1,2,...!. The main ingredient of our
approach is the generalized deviation law limDx(0)→0@Dx(t)/Dx(0)#5@11(12q)lqt#

1/(12q) ~equal toel1t

for q51, and proportional, for larget, to t1/(12q) for qÞ1; qPR is the entropic index appearing in the
recently introduced nonextensive generalized statistics!. The relation between the parameterq and the fractal
dimension df of the onset-to-chaos attractor is revealed:q appears to monotonically decrease from 1
~Boltzmann-Gibbs, extensive, limit! to 2` when df varies from 1~nonfractal, ergodiclike, limit! to zero.
@S1063-651X~97!04907-6#

PACS number~s!: 05.45.1b, 05.20.2y, 05.90.1m
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I. INTRODUCTION

The standard thermostatistical formalism of Boltzma
and Gibbs~BG! constitutes one of the most successful pa
digms of theoretical physics. It provides the link betwe
microscopic dynamics and the macroscopic properties
matter. Inspired in Shannon’s information theory@1#,
Jaynes’s@2# reformulation of the BG theory greatly increase
its power and scope. Jaynes provided a general prescrip
for the construction of a probability distributionf (x) ~x
PRd stands for a point in the relevant phase space!, when the
only available information about the system are the m
values ofM quantities

^Ar~x!&[E Ar~x! f ~x!dx ~r51,...,M !. ~1!

According to Jaynes, the least biased distribution compat
with the data~1! is the one that maximizes Shannon’s info
mation,

S1[2E f ~x!lnf ~x!dx ~2!

~the use of the subindex 1 will become transparent later!
under the constraints imposed by the mean values~1! and
appropriate normalization

E f ~x!dx51. ~3!

The well known answer to the above variational proble
is provided by the maximum entropy~ME! distribution
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1

Z1
expS 2(

r51

M

l rAr~x!D , ~4!

where$l r% are theM Lagrange multipliers associated wit
the known mean values, and the partition functionZ1 is
given by

Z1[E expS 2(
r51

M

l rAr~x!D dx. ~5!

Jaynes’s prescription can be regarded as a mathema
formulation of the celebrated ‘‘Occam’s razor’’ principle. I
order to obtain a statistical description of a system, given
the distributionf (x), we must employ all and only the avai
able data~1!, without assuming any further information w
do not actually have.

Jaynes’s informational approach allows us to consi
more general statistical ensembles than the Gibbs micr
nonical, canonical, and macrocanonical ensembles. Als
provides a natural way to treat nonequilibrium situations.

Despite its great success, the Boltzmann-Gibbs-Jay
formalism is unable to deal with a variety of interestin
physical problems such as the thermodynamics of s
gravitating systems, some anomalous diffusion phenom
Lévy flights and distributions, and turbulence, among oth
~see@3# for a more detailed list!. In order to deal with these
difficulties, Jaynes’s approach is compatible with explori
the possibility of building up a thermostatistics based up
an entropy functional different from the usual logarithm
entropy. Recently one of us introduced@4# the following
generalized, nonextensive entropy form:

Sq[
12E @ f ~x!#qdx

q21
, ~6!
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246 56COSTA, LYRA, PLASTINO, AND TSALLIS
whereq is a real parameter characterizing the entropy fu
tional Sq . This entropy recoversS1 as theq51 particular
instance and was introduced in order to describe syst
where nonextensivity plays an important role; ifA andB are
two independent systems~in the sense that the probabilitie
associated withA1B factorize into those ofA andB! we
straightforwardly verify that Sq(A1B)5Sq(A)1Sq(B)
1(12q)Sq(A)Sq(B). Indeed, nonextensive behavior is th
common feature among the above listed problems where
usual statistics fails. The generalized nonextensive ther
statistics has already been applied to astrophysical s
gravitating systems@5#, the solar neutrino problem@6#, dis-
tribution of peculiar velocities of galaxy clusters@7#,
cosmology@8#, two-dimensional turbulence in pure-electro
plasma@9#, anomalous diffusions of the Le´vy @10# and cor-
related@11# types, long-range magnetic and Lennard-Jon
like systems@12#, simulated annealing and other optimiz
tion techniques@13#, and dynamical linear response theo
@14#, among others.

The nonextensivity effects displayed by the above lis
systems can arise from long-range interactions, long-ra
microscopic memory, or fractal space-time constraints. E
for dynamical systems that ‘‘live’’ in a Euclidean~nonfrac-
tal! space, if the subset~of this space! that the system visits
~most of the time! during its evolution has a fractal geom
etry, the generalized thermostatistics might provide a be
account of the situation than that provided by the usual
tistics. Indeed, it is well known that nonlinear chaotic d
namical systems may have fractal attractors@15#. Two of the
most important dynamical quantities usually employed in
der to characterize such chaotic systems are the Liapu
exponents@16,17#, and the Kolmogorov-Sinai~KS! entropy
@18#. In recent work of Tsallis, Plastino, and Zheng@19#
~TPZ from here on!, generalizations for these quantities i
spired in the generalized nonextensive entropySq ~and its
consequences! were introduced. The generalized Liapun
exponentlq and generalized KS entropyKq provide a useful
characterization of the dynamics corresponding to criti
points where the usual Liapunov exponent vanishes.
these critical cases, the exponential sensitivity to initial c
ditions is replaced by a power-law one, and the vanish
~standard! Liapunov exponentl1 provides but a poor de
scription of the concomitant dynamics. On the contrary,
generalized exponentlq appropriately discriminates betwee
the different possible power-law behaviors. TPZ illustra
these ideas with the logistic map. It is of interest to explo
this formalism as applied to other nonlinear dynamical s
tems. In particular, it is of importance to study families
dynamical systems characterized by a set of parame
Each member of the family will have a different onset-t
chaos critical point, with a corresponding attractor charac
ized by a Hausdorff fractal dimensiondf and a suitable value
of the entropic parameterq. The study of these families wil
enlighten the relation betweenq anddf .

The specific aim of the present paper is to study the r
tion between the fractal dimensiondf of the onset-to-chaos
attractor and the parameterq for the logisticlike family of
maps~see@20–22#, and references therein!,
-
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xt11512auxtuz

~z.1;0,a<2;t50,1,2,...;xtP@21,1# !. ~7!

Note that in the particular casez52 we recover the standar
logistic map~in its centered representation!.

The paper is organized as follows. In Sec. II we brie
review theq generalizations of the Liapunov exponent a
the KS entropy. In Sec. III the results for the logisticlik
maps are presented. Our main conclusions are drawn in
IV.

II. GENERALIZED LIAPUNOV EXPONENT
AND KS ENTROPY

Let us consider, for a one-dimensional dynamical syste
two nearby orbits whose initial conditions differ by the sm
quantityDx(0). Wewill assume that the time dependence
the distance between both orbits is given by the ansatz@19#

lim
Dx~0!→0

Dx~ t !

Dx~0!
5@11~12q!lqt#

1/~12q! ~qPR!, ~8!

wherelq is our generalized Liapunov exponent, andq is a
real parameter characterizing the behavior of the system.
verify that this equation is identically satisfied fort50
(;q), and thatqÞ1 yields, for large times, thepower law

lim
Dx~0!→0

Dx~ t !

Dx~0!
;@~12q!lq#

1/~12q!t1/~12q! ~ t→`!.

~9!

On the other hand, it is plain that forq→1 we recover the
standardexponentialdeviation law

lim
Dx~0!→0

Dx~ t !

Dx~0!
5exp@l1t#, ~10!

where l1 is just the usual Liapunov exponent. Theq51
scenario corresponds to situations withl1Þ0. These cases
describe chaotic behavior (l1.0) and regular behavio
(l1,0). The generalized exponentlq is intended to provide
a convenient description of the marginal situations where
usual Liapunov exponent vanishes (l150). In these last
cases, we have the power-law sensibility to initial conditio
given by Eq.~9! instead of the usual exponential one. T
generalized deviation law@Eq. ~8!# is inspired in the form of
theq-generalized nonextensive canonical distribution, giv
by @4#

pi5
@12~12q!/be i #

1/~12q!

Zq
, ~11!

with the generalized partition function being given by

Zq[(
i

@12~12q!be i #
1/~12q!, ~12!
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56 247POWER-LAW SENSITIVITY TO INITIAL CONDITIONS . . .
whereb[1/kT and$e i% is the full set of eigenvalues of th
Hamiltonian of the system. Notice that, in the limitq→1,
this thermal canonical equilibrium distribution reduces to
ordinary BG one,

pi5
exp@2be i #

Z1
, ~13!

with

Z1[(
i

exp@2be i #. ~14!

It is worth remarking that the marginal case with vanis
ing ~standard! Liapunov exponentl1 displays a very rich
and complex behavior, reminiscent of what happens at
critical point of thermal equilibrium critical phenomena. T
just say thatl150 is a very poor description of its richnes
intimately connected to fractality. Indeed, within our gen
alized formalism, the parameterq provides a characterizatio
of the kind of power-law sensitivity to initial conditions in
volved, and is expected to be related to the fractal dimens
df of the corresponding attractor.

In order to discuss the generalized KS entropy, let
consider a partition of phase space in cells with size cha

FIG. 1. Log-log plot of limDx(0)→0@Dx(t)/Dx(0)# versus the
number of iterationsN calculated forx050 @the slope 1/(12q) is
calculated using the upper bound points#: ~a! z51.25; ~b! z52; ~c!
z53.
e
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e
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terized by a linear scalel . We will study the evolution of an
ensemble of identical copies of our system. We assume
all the members of the ensemble start att50 with initial
conditions belonging to one and the same cell. This me
that the probability associated to that privileged cell is
while the remaining cells of the partition have vanishing in
tial probabilities. As time goes by, and due to the sensitiv
to initial conditions, our ensemble will spread over an i
creasing number of cells. The standard KS entropy can
regarded as the rate of growth of the Boltzmann-Gibbs
tropy associated with the partition probability distribution.

Within the generalized nonextensive thermostatistics,
entropy functional for a discrete probability distributio
$pi% is given by

Sq5

12(
i51

W

pi
q

q21
~qPR!, ~15!

which, for equiprobability, becomes

Sq5
W12q21

12q
. ~16!

The use of Eq.~15!, instead ofS152( i51
W pi ln pi , yields

~along Zanette’s lines@23#! to the following generalization of
the Kolmogorov-Sinai entropy:

Kq[ lim
t→0

lim
l→0

lim
N→`

1

Nt
@Sq~N!2Sq~0!#, ~17!

that under the assumption of equiprobability reduces to

Kq5 lim
t→0

lim
l→0

lim
N→`

1

Nt

@W~N!#~12q!21

12q
. ~18!

In both Eqs.~17! and~18! we have maintained the traditiona
t→0 which applies for a continuous timet; it is clear, how-
ever, that, in our present case, this limit does not apply si
our t is discrete. We must remark that our generalizat
Kq of the KS entropy is different from the generalizatio
K(b) based upon Renyi information, usually called ‘‘Ren

FIG. 2. z dependence of the entropic indexq. The inset conve-
niently represents thez→` neighborhood@the continuous line is
the best fitting with a curveq512a0 /(z21)a1; we obtaineda0
50.75 anda150.60#.
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248 56COSTA, LYRA, PLASTINO, AND TSALLIS
entropies’’ in the literature of thermodynamics of chao
systems@24# ~sometimes the parameter characterizing th
generalizations of the KS entropies is calledq instead ofb
@25#; this parameterq should not be confused with ourq!.

Consistently with the behavior indicated in Eq.~8!, we
have~along Hilborn’s lines@17#!

W~N!5@11~12q!lqNt#1/~12q!, ~19!

which, replaced into Eq.~18!, immediately yields@for one-
dimensional~1D! dynamical systems#

Kq5lq . ~20!

This relation holds iflq.0 ~Kq vanishes iflq<0!; it
constitutes a generalization of the well-known Pesin equa
K15l1 ~if l1.0; K150 otherwise!, and unifies~within a
single scenario for both exponential and power-law sensit
ties to initial conditions! the connection between sensitivi
and rhythm of loss of information.

III. THE LOGISTICLIKE MAP

Let us now illustrate some of the above concepts by
cusing the logisticlike maps~7!. These maps are relativel
well known and have been addressed on various occas
~@21,22#, and references therein!. The topologicalproperties
associated with them~such as the sequence of attracto
while varying the parametera! do not depend onz, but the
metricalproperties~such as Feigenbaum’s exponents! do de-
pend onz. We shall exhibit herein that the same occurs w
q. Indeed, although quite a lot is known for these maps, th
sensitivity to the initial conditions at the onset to chaos h
never been addressed as far as we know. As we shall se
all values ofz, the sensitivity is of theweaktype @19#, i.e.,
power laws instead of the usual exponential ones.

We present now our main numerical results. We co
puted, as functions ofz, parameterq and the critical fractal
dimensiondf ~determined within the box counting proce
dure!.

In Fig. 1 we exhibit, for typical values ofz at its chaotic
threshold ac(z) and using x050, a plot of

FIG. 3. Box counting procedure for determining the onset-
chaos fractal dimensiondf for typical values ofz.
e
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-
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ln limDx(0)→0Dx(t)/Dx(0)5(n51
N ln@azuxnuz21# versus lnN,

whereN is the number of iterations.~Notice that for conve-
nience we use, as argument of the logarithm, not exactly
derivativedxt11 /dxt , but rather its absolute value.! For each
of these plots we see an upper bound whose slope eq
1/(12q) @see Eq.~9!#, from which we determineq.

In Fig. 2 we show the behavior of the parameterq as a
function of the parameterz characterizing the map. The fig
ure suggests that forz→1, q tends to2`, while in the limit
z→`, q approaches 1.

In Fig. 3 we can see, for typical values ofz at its chaotic
thresholdac(z), the number of filled boxes as a function o
the number of boxes, corresponding to the box count
method employed in order to determine the fractal dimens
df .

In Fig. 4 the behavior of the fractal dimensiondf of the
chaotic critical attractor as a function ofz is depicted. We
can observe that, asz→1, df seems to go to 0, while, in the
limit z→`, thedf curve approaches unity.

In Fig. 5 we show the behavior of the parameterq as a
function of the fractal dimensiondf . We can see thatq
displays a monotonically increasing behavior with the frac
dimensiondf . The particular valueq50, that describeslin-
earsensitivity to initial conditions, corresponds, with notab

-

FIG. 4. z dependence of the fractal dimensiondf . The inset
conveniently represents thez→` neighborhood„the continuous
line is the best fitting with a curvedf5exp2@b0 /(z21)b1#; we ob-
tainedb050.62 andb150.27….

FIG. 5. df dependence of the entropic indexq; the inset conve-
niently represents thedf<

1
2 region. Notice that the point (df ,q)

5( 12,0) seems to belong to the curve. The dashed lines are guid
the eye.
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56 249POWER-LAW SENSITIVITY TO INITIAL CONDITIONS . . .
numerical accuracy, to the fractal dimensiondf50.5 ~nu-
merically df50.5060.01, occurring forz51.60960.001!.
It is remarkable that as the fractal dimension tends toward
the parameterq approaches 1. If this tendency becomes c
firmed by analytic results or more powerful numerical wo
this would be very enlightening, because in the limitdf→1
the attractor loses its fractal nature~in the sense thatdf co-
incides with the Euclidean dimensiond51!, and the usual
statistics~i.e., the usual exponential deviation of nearby t
jectories!, characterized byq51, would be recovered. On
the other extreme, asdf→0, q appears to approach2`,
hence 1/(12q)50, which can be considered as an indicati
of a possiblelogarithmicsensitivity to the initial conditions.
Our results are summarized in Table I.

IV. CONCLUSIONS

We have exhibited, for a family of logisticlike maps, th
behaviors of the entropic parameterq and the fractal dimen-
sion df of the onset-to-chaos attractor. We showed that
this critical point,power deviation laws for nearby orbits
similar to the ones appearing@19# in the logistic map, are
observed. The concomitant value ofq is related to the cha
otic attractor fractal dimension. It would no doubt be inte
esting to find out if, for generic nonlinear dynamical system
q depends only ondf ~support of the visiting frequency func
tion! or also upon other characteristics of the critical attr
tor, such as the visiting frequency function itself. In order
answer this question, it would be useful to explore the
havior of families of maps whose possible chaotic critic
points depend on more than one parameter. Such studie
well as the application of these concepts to self-organi
criticality @26#, would be very welcome.

Finally, let us stress that the present study provides a
n
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rect and important insight into a problem which has be
quite elusive up to now, namely, the microscopic interpre
tion of the entropic indexq characterizing nonextensive sta
tistics. The present results clearly exhibit that what det
mines q is not the entire phase space within which t
system is allowed to evolve~the Euclidean interval21<xt
<1 in the present examples!, but the~possibly fractal! subset
of it onto which the system is driven by its own dynamic
Consistently, whenever the relevant fractal dimension
proaches its associated Euclidean value~d51 in the present
case!, extensivity~i.e., q51! and standard BG thermostatis
tics naturally become, as is well known, the appropri
standpoints.

TABLE I. The asterisk denotes the limiting values suggested
the numerical results;ac51 for z51 also has analytic support~see
@21#, and references therein!; ac52 for z→` also has renormaliza
tion group support@21#.

z ac q df

1 1* 2`* 0*
1.05 1.081 648 8 . . . 24.5260.03 0.2460.02
1.10 1.124 988 5 . . . 22.2860.02 0.3260.02
1.25 1.209 513 7 . . . 20.7660.01 0.4060.01
1.5 1.295 509 9 . . . 20.1260.01 0.4860.01
1.609 1.323 643 5 . . . 0.0060.01 0.5060.01
1.75 1.355 060 7 . . . 0.1360.01 0.5260.01
2.0 1.401 155 1 . . . 0.2460.01 0.5360.01
2.5 1.470 550 0 . . . 0.4160.01 0.5760.01
3.0 1.521 878 7 . . . 0.4760.01 0.6060.01
5.0 1.645 533 9 . . . 0.6260.01 0.6560.01
` 2* 1* 1*
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