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Power-law sensitivity to initial conditions within a logisticlike family of maps: Fractality and
nonextensivity
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Power-law sensitivity to initial conditions, characterizing the behavior of dynamical systems at their critical
points(where the standard Liapunov exponent vanighesstudied in connection with the family of nonlinear
one-dimensional logisticlike maps, ;=1—a|x* (z>1; 0<as2; t=0,1,2...). The main ingredient of our
approach is the generalized deviation law ligag) o[ AX(t)/AX(0)]=[1+(1—q)At]¥*~ @ (equal toeM"
for q=1, and proportional, for large, to t**~% for q#1; qeR is the entropic index appearing in the
recently introduced nonextensive generalized statjstidse relation between the parameteand the fractal
dimensiond; of the onset-to-chaos attractor is revealed:appears to monotonically decrease from 1
(Boltzmann-Gibbs, extensive, limito —«~ whend; varies from 1(nonfractal, ergodiclike, limjtto zero.
[S1063-651X97)04907-9

PACS numbds): 05.45+b, 05.20--y, 05.90:+m

I. INTRODUCTION 1 M

fue(X) = - eXp( -2 MMX)) : 4
The standard thermostatistical formalism of Boltzmann 1 r=1
and Gibbs(BG) constitutes one of the most successful para- o ) ]
digms of theoretical physics. It provides the link betweenWhere{\} are theM Lagrange multipliers associated with
microscopic dynamics and the macroscopic properties of’® known mean values, and the partition functiop is
matter. Inspired in Shannon’s information theof], ~ given by
Jaynes’$2] reformulation of the BG theory greatly increased "
its power and scope. Jaynes provided a general prescription
for the construction of a probability distribution(x) (x ZlEJ exp( _21 )‘rAr(X))dX'
e RY stands for a point in the relevant phase spasten the
only available information about the system are the mean
values ofM quantities

®)

Jaynes’s prescription can be regarded as a mathematical
formulation of the celebrated “Occam’s razor” principle. In
order to obtain a statistical description of a system, given by
(Ar(X)>Ef Af(x)dx  (r=1,...M). (1) the distributionf_(x), we must employ all and_only the_ avail-
able data(1), without assuming any further information we
do not actually have.
According to Jaynes, the least biased distribution compatible Jaynes’s informational approach allows us to consider
with the data(1) is the one that maximizes Shannon's infor- more general statistical ensembles than the Gibbs microca-
mation, nonical, canonical, and macrocanonical ensembles. Also it
provides a natural way to treat nonequilibrium situations.
. Despite its great success, the Boltzmann-Gibbs-Jaynes
Sl:_f F()Inf(x)dx @ formalism is unable to deal with a variety of interesting
physical problems such as the thermodynamics of self-
(the use of the subindex 1 will become transparent latg¢r ongravitating systems, some anomalous diffusion phenomena,
under the constraints imposed by the mean valdg¢sand  Levy flights and distributions, and turbulence, among others
appropriate normalization (see[3] for a more detailed list In order to deal with these
difficulties, Jaynes’s approach is compatible with exploring
the possibility of building up a thermostatistics based upon
J f(x)dx=1. (3)  an entropy functional different from the usual logarithmic
entropy. Recently one of us introducéd] the following

- eneralized, nonextensive entropy form:
The well known answer to the above variational problemg Py

is provided by the maximum entrogE) distribution
1—f [ f(x)]%x
Sq= q——l’ (6)
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whereq is a real parameter characterizing the entropy func- Xep1=1—a|x|?
tional Sy. This entropy recover$,; as theq=1 particular
instance and was introduced in order to describe systems (z>1;0<a<2:t=0,1,2...;x.e[—1,1]). 7)

where nonextensivity plays an important roleAifandB are

two independent systenis the sense that the probabilities Note that in the particular cage=2 we recover the standard
associated withA+ B factorize into those oA and B) we logistic map(in its centered representatjon

straightforwardly verify that S;(A+B)=S;(A) +S,(B) The paper is organized as follows. In Sec. Il we briefly
+(1-0)S(A)Sy(B). Indeed, nonextensive behavior is the review theq generalizations of the Liapunov exponent and
common feature among the above listed problems where thige KS entropy. In Sec. Il the results for the logisticlike
usual statistics fails. The generalized nonextensive thermanaps are presented. Our main conclusions are drawn in Sec.
statistics has already been applied to astrophysical selfV.

gravitating systems§5], the solar neutrino problerf6], dis-

tribution of peculiar velocities of galaxy clusterfr], Il. GENERALIZED LIAPUNOV EXPONENT
cosmology[8], two-dimensional turbulence in pure-electron AND KS ENTROPY

plasma[9], anomalous diffusions of the g [10] and cor-

related[11] types, long-range magnetic and Lennard-Jones- Let us consider, for a one-dimensional dynamical system,
like systems[12], simulated annealing and other optimiza- tWo nearby orbits whose initial conditions differ by the small
tion techniqueg13], and dynamical linear response theory quantityAx(0). Wewill assume that the time dependence of

[14], among others. the distance between both orbits is given by the andfiy
The nonextensivity effects displayed by the above listed
systems can arise from long-range interactions, long-range : Ax(1)

: . ) ) —— =1+ (1—qg)\ ]I D R), (8
microscopic memory, or fractal space-time constraints. Even  ,,, o Ax(0) [1H+(1= @At (QeR),

for dynamical systems that “live” in a Euclideamonfrac-

tal) space, if the subsébf this spacgthat the system visits where\ is our generalized Liapunov exponent, amds a
(most of the timg during its evolution has a fractal geom- real parameter characterizing the behavior of the system. We
etry, the generalized thermostatistics might provide a betteverify that this equation is identically satisfied for=0
account of the situation than that provided by the usual statVq), and thatq# 1 yields, for large times, thpower law
tistics. Indeed, it is well known that nonlinear chaotic dy-

namical systems may have fractal attrac{d’]. Two of the AX(t)

. . .. . lim ———~[(1—q)\ U1-a)pih1-q) (t—o0)
most important dynamical quantities usually employed in or- Ax(0) [ QA —*)
der to characterize such chaotic systems are the Liapunov Ax(0)-0 (9)

exponentd 16,17, and the Kolmogorov-SinaiKS) entropy

[18]. In recent work of Tsallis, Plastino, and Zhef®9]  op the other hand, it is plain that for—1 we recover the
(TPZ from here opy generalizations for these quantities in- standardexponentiadeviation law

spired in the generalized nonextensive entr@y(and its

consequencgswere introduced. The generalized Liapunov t)
exponent, and generalized KS entrog, provide a useful lim AX(0) =exd \t], (10
characterization of the dynamics corresponding to critical Ax(0)—0

points where the usual Liapunov exponent vanishes. For o )

these critical cases, the exponential sensitivity to initial conWhere Ay is just the usual Liapunov exponent. Thge=1
ditions is replaced by a power-law one, and the vanishinggCenario corres_ponds to situations with# 0. These cases
(standardl Liapunov exponend, provides but a poor de- describe chaotic behaV|or)\(>0) qnq regular behaylor
scription of the concomitant dynamics. On the contrary, thé)‘1<o)' The gener_all'zed exponeiy IS mte_ndeq to provide
generalized exponent, appropriately discriminates between a convenient description of the _marglnal situations where the
the different possible power-law behaviors. TPZ iIIustrateusual Liapunov exponent vanlshe;lng). I.n_.these Ia}gt
these ideas with the logistic map. It is of interest to explorecases’ we have the power-law sensibility to initial conditions

this f i lied 1o oth i 4 ical given by Eq.(9) instead of the usual exponential one. The
IS Tormalism as applied to other noniinear dynamica Sys'generalized deviation layEq. (8)] is inspired in the form of
tems. In particular, it is of importance to study families of

) X the g-generalized nonextensive canonical distribution, given
dynamical systems characterized by a set of parameterﬁy [4]

Each member of the family will have a different onset-to-

chaos critical point, with a corresponding attractor character-

ized by a Hausdorff fractal dimensiah and a suitable value

of the entropic parametey. The study of these families will

enlighten the relation betweenpandd; . ) . . ) i )
The specific aim of the present paper is to study the rela?Vith the generalized partition function being given by

tion between the fractal dimensiah of the onset-to-chaos

attractor and the parametgrfor the Iogi_sticlike family of ZqEZ [1-(1-q)Be Y19, (12)

maps(see[20-22, and references thergin i

_[1-(1-q)/Be* Y

p' 1
I Zq

(11)
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FIG. 2. z dependence of the entropic indgx The inset conve-
niently represents the— o neighborhoodthe continuous line is
the best fitting with a curvg=1—ay/(z—1)%; we obtaineda,
=0.75 anda;=0.60].

terized by a linear scale We will study the evolution of an
ensemble of identical copies of our system. We assume that
all the members of the ensemble starttatO with initial
conditions belonging to one and the same cell. This means
that the probability associated to that privileged cell is 1,
while the remaining cells of the partition have vanishing ini-
tial probabilities. As time goes by, and due to the sensitivity
to initial conditions, our ensemble will spread over an in-
creasing number of cells. The standard KS entropy can be
regarded as the rate of growth of the Boltzmann-Gibbs en-
tropy associated with the partition probability distribution.
Within the generalized nonextensive thermostatistics, the

[AX(t)/AX(0)] zx0)0

entropy functional for a discrete probability distribution

FIG. 1. Log-log plot of limyy) o[ AX(t)/AX(0)] versus the {pi} is given by
number of iterationdN calculated forx,=0 [the slope 1/(%q) is W
calculated using the upper bound points) z=1.25; (b) z=2; (¢) 2 q
z=3. =2 p

S=—g-1 (AeR), (15
where=1KkT and{e¢;} is the full set of eigenvalues of the
Hamiltonian of the system. Notice that, in the linit=1,  which, for equiprobability, becomes

this thermal canonical equilibrium distribution reduces to the

ordinary BG one, wi-a—1
quﬁ. (16)
p:eXF[_,BEi] 13
' Zy ' The use of Eq(15), instead ofS;= —E}’il pi Inp;, yields

(along Zanette's linef23)]) to the following generalization of

with the Kolmogorov-Sinai entropy:
= — Be. 1
2,=2 exl-pel (14 Kq=lim lim lim <= [Sy(N)=§,(0)], (17

7—0 -0 N—»

It is worth remarking that the marginal case with vanish-
ing (standargl Liapunov exponent ; displays a very rich
and complex behavior, reminiscent of what happens at the 1 [W(N)]E -1
critical point of thermal equilibrium critical phenomena. To K.=lim lim lim ————  —
just say thatn ;=0 is a very poor description of its richness, T 010 Now NT 1-q
intimately connected to fractality. Indeed, within our gener-
alized formalism, the parametgrprovides a characterization In both Eqs(17) and(18) we have maintained the traditional
of the kind of power-law sensitivity to initial conditions in- 7— 0 which applies for a continuous tineit is clear, how-
volved, and is expected to be related to the fractal dimensioaver, that, in our present case, this limit does not apply since
d; of the corresponding attractor. our t is discrete. We must remark that our generalization

In order to discuss the generalized KS entropy, let uK, of the KS entropy is different from the generalizations
consider a partition of phase space in cells with size charad(B) based upon Renyi information, usually called “Renyi

that under the assumption of equiprobability reduces to

(18
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FIG. 3. Box counting procedure for determining the onset-to-
chaos fractal dimensiod; for typical values ofz. In “mAx(o)—»oAX(t)/AX(O)z2#:1 In[azx,* 1] versus InN,

whereN is the number of iterationgNotice that for conve-

entropies” in the Ii_terature of thermodynamics c')f'chaotic nience we use, as argument of the logarithm, not exactly the
systemd24] (sometimes the parameter characterizing thes@erjvativedsx, , , /dx,, but rather its absolute valudsor each

generalizations of the KS entropies is callgdnstead of3 ¢ these plots we see an upper bound whose slope equals

Number of boxes

[25]; this_ parameteq should not be_co_nfused_with oqyp. 1/(1—q) [see Eq(9)], from which we determing;.
ConS|stentI_y with the behavior indicated in E®), we In Fig. 2 we show the behavior of the parameteas a
have(along Hilborn's lines[17]) function of the parameter characterizing the map. The fig-
W(N)=[1+ (1— )\ N7]H1-D), 19 ure suggests that fa@— 1, g tends to— o0, while in the limit
(N)=[1+(1=aeN7] (19 z—o, ¢ approaches 1.
which, replaced into Eq(18), immediately yieldgfor one- In Fig. 3 we can see, for typical values oft its chaotic
dimensional(1D) dynamical systenis thresholda,(z), the number of filled boxes as a function of
the number of boxes, corresponding to the box counting
Kq=NAq- (20 method employed in order to determine the fractal dimension

) ) ) ) ) ) ds.

This relation holds ifAq>0 (Kq vanishes ifA¢<0); it |n Fig. 4 the behavior of the fractal dimensid of the
constitutes a generalization of the well-known Pesin equalithaotic critical attractor as a function afis depicted. We
Ki=\y (if \;>0; K;=0 otherwisg, and unifieswithin @  can observe that, a1, d; seems to go to 0, while, in the
single scenario for both exponential and power-law sensitivijjmit z—, thed; curve approaches unity.

ties to initial conditiony the connection between sensitivity |, Fig. 5 we show the behavior of the parameteas a

and rhythm of loss of information. function of the fractal dimensionl;. We can see thag
displays a monotonically increasing behavior with the fractal
lll. THE LOGISTICLIKE MAP dimensiond; . The particular valug =0, that describebn-

Let us now illustrate some of the above concepts by fo_earsensmwty to initial conditions, corresponds, with notable

cusing the logisticlike map$7). These maps are relatively

well known and have been addressed on various occasions 10, : : —
([21,22, and references thereirThe topological properties 4.‘*
associated with thenfsuch as the sequence of attractors 0.0 )

while varying the parametex) do not depend om, but the 10+ o ]
metrical propertiegsuch as Feigenbaum’s expongrds de- —~ P

pend onz. We shall exhibit herein that the same occurs with T 20+ * 5 1
g. Indeed, although quite a lot is known for these maps, their o 30 | K :;, 05 i
sensitivity to the initial conditions at the onset to chaos has ' [ )

never been addressed as far as we know. As we shall see, for 40 , 00 5T 03 0 05
all values ofz, the sensitivity is of thaveaktype[19], i.e., 50 * .4
power laws instead of the usual exponential ones. 00 02 04 06 08 10

We present now our main numerical results. We com-
puted, as functions of, parameteq and the critical fractal
dimensiond; (determined within the box counting proce-  FiG. 5. d; dependence of the entropic indgxthe inset conve-
dure. niently represents thdfs% region. Notice that the pointd¢,q)

In Fig. 1 we exhibit, for typical values of at its chaotic  =(3,0) seems to belong to the curve. The dashed lines are guides to
threshold a.(z) and using x,=0, a plot of the eye.

f
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numerical accuracy, to the fractal dimensidp=0.5 (nu- TABLE I. The asterisk denotes the limiting values suggested by
merically d;=0.50+0.01, occurring forz=1.609-0.001). the numerical resultss.=1 for z=1 also has analytic suppdsee

It is remarkable that as the fractal dimension tends towards 121], and references thergjra.=2 for z—c also has renormaliza-
the parameteq approaches 1. If this tendency becomes condion group supporf21].

firmed by analytic results or more powerful numerical work,

this would be very enlightening, because in the lidhit-1 2 & q dr
the attractor loses its fractal natufie the sense thad; co- 1 1* oo 0*
incide_s Wlth the Euclidean dlmenSICﬂF 1), and the usual 1.05 1.081688 ... —4.52+0.03 0.24-0.02
_stat|st_|cs(|.e., the us_ual exponential deviation of nearby tra- 4 19 1.124 985 . . . —228+0.02 0.32-0.02
jectorieg, characterized by=1, would be recovered. On 4 5¢ 1209537 . .. —0.76-0.01 0.4G-0.01
the other extreme, ad;—0, q appears to approach®, g 1.295509...  —0.12:0.01  0.480.01
hence 1/(_1— q) =0_, Whl_ch can t_)e_ conS|der_e(_JI_as an |n_d_|cat|on 1,609 1323635 0.00=0.01 0.50-0.01
Oofuar fgssj'tg'i‘:gZrl;trzrﬂgrsifgj'm"%yagl’;rl‘e initial conditions. 3 75 1355087, .. 013001  0.52-0.01
' 2.0 1.401151... 0.24+0.01 0.53:0.01
2.5 1.470580... 0.41+0.01 0.570.01
V. CONCLUSIONS 3.0 1.521887... 0.47+0.01  0.60:0.01
We have exhibited, for a family of logisticlike maps, the 5.0 1.645539... 0.62+0.01 0.65:0.01
behaviors of the entropic parametgand the fractal dimen-  » 2* 1* 1*

sion d; of the onset-to-chaos attractor. We showed that, at
this critical point, power deviation laws for nearby orbits,
similar to the ones appearifd9] in the logistic map, are rect and important insight into a problem which has been
observed. The concomitant value @fis related to the cha- quite elusive up to now, namely, the microscopic interpreta-
otic attractor fractal dimension. It would no doubt be inter-tion of the entropic indexj characterizing nonextensive sta-
esting to find out if, for generic nonlinear dynamical systemstistics. The present results clearly exhibit that what deter-
g depends only on; (support of the visiting frequency func- mines g is not the entire phase space within which the
tion) or also upon other characteristics of the critical attrac-system is allowed to evolvéhe Euclidean intervat- 1<x;
tor, such as the visiting frequency function itself. In order to<1 in the present exampledut the(possibly fractal subset
answer this question, it would be useful to explore the beof it onto which the system is driven by its own dynamics.
havior of families of maps whose possible chaotic criticalConsistently, whenever the relevant fractal dimension ap-
points depend on more than one parameter. Such studies, paches its associated Euclidean valdie 1 in the present
well as the application of these concepts to self-organizedasg, extensivity(i.e., q=1) and standard BG thermostatis-
criticality [26], would be very welcome. tics naturally become, as is well known, the appropriate
Finally, let us stress that the present study provides a distandpoints.
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