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Finite-size scaling of the density of zeros of the partition function
in first- and second-order phase transitions
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The finite-size scaling form for the density of zeros of the partition function in first- and second-order phase
transitions is derived. Using the finite-size scaling of the density of zeros, the order of a phase transition can be
easily determined and the order parameter calculated from finite-size data. We illustrate the scaling theory
using exact values for the zeros of the partition function of the two-dimensional Ising model in the complex
magnetic-field plang.S1063-651X97)03107-3
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I. INTRODUCTION gularities in the second derivatives of the free energy at the
transition point. However, in finite-size systergunction
In 1952 Yang and Led1] proposed a mathematical singularities are rounded and tkeéectivetransition point is
mechanism for the occurrence of phase transitions in thehifted. These behaviors at first-order transitions in finite-
thermodynamic limit by introducing the concept of the zerossize systems are qualitatively similar to the finite-size effects
of the grand partition function. They also formulated the cel-at second-order transitions. In the theory of Fisher and
ebrated circle theorem stating that for the Ising ferromagnetBerker[18], scaling at a first-order transition is treated iden-
the zeros of the grand partition function in the complex mag+ically to scaling at a second-order transition with the tem-
netic field plane lie on the unit circle. Since then the zeros operature or magnetic scaling exponents assuming the maxi-
the partition function have attracted continuous interest. Irmal valuesy;,y,=d. As a result, in a situation where the
1964 Fishef2] initiated the study of the partition function order of a phase transition is not known, ordinary finite-size
zeros in the completemperatureplane for the square lattice scaling analysis may be ambiguous. The worst situation is a
Ising model. The study of the distribution of the partition weak first-order transition, for example, the temperature-
function zeros in the complemagnetic fieldor temperature  driven transition in the two-dimensional five-state Potts
planes has been extended to the Ising model of arbitrarilynodel [22—24. This model suffers from severe crossover
high spin[3], the Ising model of multiple spin interactions effects[23,24 and has a very small latent hg&5] and a
[4], the three-dimensional Ising modg3,6], the quantum very large(but finite) correlation lengtth23,26 at the critical
Heisenberg mode[4], the classicalXY and Heisenberg point. Currently, the best calculations of the order parameter
model [7], the continuous spin mode[8], the six-vertex and latent heat in the Potts models, which@r 4 exhibit a
model [9], the eight-vertex mode[4], the Potts model first-order transition in two dimensions, are low-temperature
[10,11], the Blume-Capel mod¢L 2], the hierarchical model series expansiong27]. It is the purpose of this paper to
[13], etc. In particular, the circle theorem has been extendegresent an alternative approach based on the finite-size scal-
to general Ising models and other modgtsl1,12,14. ing properties of the distribution of Yang-Lee zeros. In ad-
Since its introduction in the early 1970s finite-size scalingdition to condensed matter physics, the identification of the
theory[15] has been a very powerful tool in interpreting dataorder of a phase transition and the study of first-order phase
obtained in finite-size systems, especially in numerical simutransitions are very important in particle physics, especially
lation. While finite-size scaling theory at second-order phasén quantum chromodynamics and lattice gauge theory
transitions has been well establisHé&,16, finite-size scal- [24,2§ and in the theories of the very early Univef@9].
ing theory at first-order phase transitions has a more recent Until now the study of partition function zeros with finite-
history [17—21] and is a topic of considerable current inter- size scaling has been concentrated on the approach of the
est. According to scaling arguments, it was shdd@8] that edge zeros to the real critical poif,30,31. However, the
all finite-size effects at a first-order phase transition dependensity of zeros of the partition function contains more in-
on the volume of the systein®. Binderet al.[19] proposed  formation about a system. In this paper we introduce finite-
a phenomenological double Gaussian approximation for theize scaling of the density of zeros that enables us to extract
probability distribution of finite-size systems at a first-orderthis information from calculations on finite-size systems. By
transition, built on the theory of thermodynamic fluctuations.studying finite-size scaling of the density of zeros, we can
Lee and Kosterlit420] discussed the finite-size effects at a determine the order of a phase transition from finite-size data
first-order transition by a mimic partition function. Borgs and we can evaluate physical quantities such as the sponta-
et al.[21] studied the phenomenological theory of finite-sizeneous magnetization and the latent heat. In this paper we
systems at a first-order transition from a rigorous point ofgive results for the Ising model in an external magnetic field,
view. which exhibits a first-order phase transition below the critical
It is well known that in the thermodynamic limit first- temperature, but our method is very general and is extended
order phase transitions are characterizedskynction sin-  to other models easily, especially to the Potts mdé@el.
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Here we use an exact numerical technique for evaluation of Fort<0 we expect the transition to be first order with a
partition functions, the microcanonical transfer matrix spontaneous magnetization given by H®). If we let

(#CTM), recently invented by one of UR.J.C) [31]. #—0 andL—« keepingfLYh=c fixed, then
Il. SCALING THEORY FOR THE DENSITY OF ZEROS g(0t)= , '(')T g(e.t,L)

The Hamiltonian for the Ising model in an external mag-

o . g\ (d=Yn/yn) g\ ~Yt/¥n
netic fieldH is :(E g(c,t E) )N(_t)/}, (11)
H= _JUED 010~ HEi Oi» (1) where we have assumed the asymptotic formgfor
whereJ is the exchange constargt,j) means the sum over ge.y)~(=y)?

all nearest-neighbor pairs of lattice sites, ane = 1. In the

thermodynamic limit, the free energy per sftés for large negative values ofy, and we have used

B=(d—yn)/y;. Comparing Eqs(5) and(11) we see that we
w , recover the familiar result

—ﬁf=,8H+J g(6,t)In(x—e'%de, 2)
- lim mg(t)~|t|A. (12)

where t=(T—T.)/T,, x=e™ ", h=2H/kgT=28H, and =0

9(6.t) is the density of zeros of the partition function, which we|| below the critical temperature, in the region of the

satisfies the conditions strong first-order phase transition, according to the theory of
o Fisher and Berkef18], y;=y,=d, =0, and we have the
9(6.t)=9(=6.1) ®) finite density of zeros on the positive real axis, which is a

clear indicator of a first-order phase transition even in finite-

and .
size systems.
- 1 We can summarize these results as
f g(ﬁ,t)dﬂzz- 4
0 |6)¥%, t=0 (second order
limg(o,t)~ ! (13
The angleé is the argument of the zeros in the complex- 6—0 mo(t), t<0 (firstordey,
plane, which, by the Yang-Lee theordr], lie on the unit
circle. The spontaneous magnetizatidn=0) is[1,33] which is the magnetic analog of the result of Fisf@rin the
complex temperature plane,
mo(t)=27g(0t) 5
I |6]*~*, second order
ization is gi ' ~ . 14
and the magnetization is given 3] Hlinog(a) const(latent heat  first order. (14
mct.n~ah [ 90U 44 )
’ 0 6°+h?" lIl. NUMERICAL RESULTS

The partition functionZ(x) for finite rectangular lattices
@s polynomials in the magnetic field paramexere” %"
can be calculated by the microcanonical transfer mag&i.
These calculations were carried out for square lattices of
sizes 4<L=<14 with cylindrical boundary conditions and
sizes 4<L <10 for square lattices with fully periodic bound-
m(t,h,L)=L "9 Yam(tLY,hLYn), (7)  ary conditions. For the smaller lattices it is possible to obtain
exact integer values for the restricted density of states
wherey,, is the magnetic scaling exponent andhe thermal  ((M,E), which leads to the analytic form fc,
scaling exponent. From E¢6) we see that if the magnetiza-
tion is to be a homogeneous functiontofas in Eq.(7), then _ ELM
0 should scale in the same way lasTherefore, we have Z(x,y)—% ; QM. Bjy™, (15

It is well known that in the thermodynamic limit the proper-
ties of the density of zeros determine the critical behavior o
the Ising mode[1,33].

For a finite-size system of side, the singular part of the
magnetization has the scaling form

g(6,t,L)=L"4Yng(HLYntLY). (8 wherey=e"2A. For latticesL>10, memory limitations re-
quired us to use the restricted canonical transfer matrix,

At the critical temperaturé=0, Eq. (8) reduces to which yields, for a fixed value of, the coefficients

9e(6,L)=L"4"Ynge(HLn), 9
which implies “’(M):é Q(M,E)y* (16)

gc(0)~| 6] @ Ynlyn) =| 9|1, (100 as real numbers of finite precision.
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Re(x) tions, fory=y. (filled circleg andy= 0.5y, (open triangles

Equation (18) agrees with the result of AbE33], Suzuki
FIG. 1. Zeros of the partition function for a ¥X0L0 Ising model [33], Kortman and Griffith§34], and Itzyksoret al.[6]. The
in the complexx plane aty=y.=0.412. ... solid curve in Fig. 2 is a one-parameter fit to Ef8).
) _ The density of zerogper site at 6,=(0,.1+ 6,)/2 is
The calculations of the zeros of such large polynomialsyefined as
require arbitrary precision arithmetic; our calculations were
carried out USINgMATHEMATICA. The zeros forL=10, — 1 1
y=Yy.=0.4142... are shown in Fig. 1 for illustrative pur- 9000=N 5 —a (19
poses, and as expected they lie on the unit circle. ki1 Tk

Belowy. the zeros approach the real axis and in the limityhereN= ¢ and{#6,.k=1,... N} are the arguments of the
y—0 the zeros are uniformly distributed on the unit circle. zeros ofZ(x). In Fig. 3 we show the density of zeros for
Asy is increased abowg, a gap opens up and the edge zero,| =14,y=y., andy=0.5y,. Note that well below the criti-
or the Yang-Lee edge singularif$4,35, moves away from  ¢a| temperature the density is nearly constant, while close to
the real axis. By using the BST algorithj86], we extrapo-  the critical point it decreases sharply dstends to zero.

lated our results for finite lattices to infinite size, and thesesjmilar results for much smaller lattices have been reported
results are shown in Fig. 2. Note that belgwthe edge zero  py syzukiet al. [37].

lies on the real axis, while ag increases beyong;, the To extract the behavior of the density of zeros in the
angle for the edge zer@, increases. Using E8), the angle  nfinite size limit, we again applied the BST algorithm. In
for the edge zero for finite-size systems scales as Fig. 4 we show the density a=0 (normalized to unity at
zero temperatujeand compare it with Onsager and Yang's
Oo(t,L) =L "Yhgy(tLYY), (17 exact solution for the spontaneous magnetizaf&sj. Well

below the critical temperature our extrapolated values, which
scale asL 2, agree very well with the exact spontaneous

so that in the limitl. —c> we have, fort>0, magnetization. Close to the critical temperature, the domi-

fo~t"Vn=11%8 (18
10}
147 09 ¢
08
12f
07}
10 F s
“ 0.6 o
[
08 | N o5t
S g6t 0.4 -
03|
04
02t
02 01 L . . . . .
0.5 0.6 0.7 038 0.9 1.0
O0p = =+ o . y/ye
0.5 1.0 1.5 2.0
yiye FIG. 4. Extrapolated density of zeros as a functionyofThe

solid curve is Onsager and Yang's exact result for the spontaneous
FIG. 2. Edge zero in the complexplane as a function of. The magnetization. Open circles are our results for cylindrical boundary
solid curve is a fit to the scaling form(y) = (y—y)*>8 conditions and open squares are for periodic boundary conditions.
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nant scaling exponent crosses over to the magnetic exponeuwgnsity of zeros. The power of this approach is illustrated by
yrn=15/8. The error bars on our data are estimates from theur calculation of the spontaneous magnetization of the Ising
penultimate BST extrapolants, as described by Henkel anthodel, which reproduces the exact result of Onsager and
Schiz [36]. It is well known [36] that the BST algorithm Yang[38] except very close to the critical point. However,
does not work well for functions of the form we should emphasize that this approach is not limited to
problems whose solution is known exacfB9]; the micro-
canonical transfer matrix can be used to calculate the parti-

which is what one expects near the critical point. This istion function for any two-dimensional system and some
clearly shown in our calculations close §q, where the (smal) three-dimensional lattices. We are currently carrying
agreement is not as good. Also, we expect finite-size scalingut calculations for th€-state Potts models f@=3~8 on
to work well whené~L, and forL of the order 14 this limits  relatively small two-dimensional lattices using theCTM
us toyly, = 0.97. [32]. Larger latticegand bigger values dD) require the use
of umbrella samplingechniques. Calculations for the three-
IV. CONCLUSION dimensional Ising model in the magnetic-field variapd€)]
have been completed. Calculations for tQestate Potts

The development of techniqus0,31 for calculating the - qqels forQ=3 on large two- and three-dimensional lat-

partition function of finite systems has led to the possibilitytices[41] are currently in progress
of studying in detail the zeros.of the partition func.thn. N addition to the density of zeros at and below the critical
g(r:iir ttg ;ﬁr?ﬁggﬂg dthr?ara?ga}i\ﬁtr ?/t/éhﬁaf/irﬁtrgzjjlggg :ﬁgtemperature, which is the main interest of this paper, the
o . y - ._density of zeros above the critical temperature can be studied
finite-size scaling form for the density of zeros of the parti-

tion functiong(6). using our method. Kortman and Griffith84] showed that

We find that the behavior at both first- and second—ordel‘;"(bovel_the C(;'t'ca_l ter_npe:atu;e thhe densgy of e rosl Tt.the
transitions can be understood from the finite-size scaling’@"9-L€€ edge Is singular for the two-dimensional Ising

form of the density of zerog(6,t,L). Figures 2—4 show the model. This behavior of the zeros above the critical tempera-
clear difference between a first-order phase transition and e has also been studied for the hierarchical mpti&land
second-order phase transition. Furthermore, quantities su@her model$35,43 and by conformal field theorf#4]. The

as the order parameter, which are difficult to calculate bydetalls on zeros above the critical temperature are planned to
other numerical methods, can be found directly from thebe addressed in another pajpés].

g(x)=gotxP(ag+tax+---), (20
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