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for regular articles is followed, and page proofs are sent to authors.

Comment on “Quantum suppression of chaos in the spin-boson model”

Luca Bonci! Roberto Roncagli, Bruce J. West and Paolo Grigolirfi®#
Dipartimento di Fisica, Universitali Pisa, Piazza Torricelli 2, 56127 Pisa, Italy
2FORTH, Institute of Electronic Structure and Laser, P.O. Box 1527, 711 10 Heraclion, Crete, Greece
3Department of Physics, University of North Texas, P.O. Box 5368, Denton, Texas 76203
4|stituto di Biofisica, Consiglio Nazionale delle Ricerche, Via San Lorenzo 26, 56127 Pisa, Italy
(Received 11 October 1996

We independently examine the case of a gpparticle interacting with a boson field studied by Finney and
Gea-Banacloche. We concentrate on their conclusion that in thej eas® the correspondence between the
guantum and the semiclassical case is damaged to the point that the increase of entropy and quantum uncer-
tainty for regular motion exceeds that for the chaotic case. We demonstrate by direct calculation that this
conclusion is the result of mistakenly identifying a regular evolution of the spin-boson system as being chaotic.
[S1063-651%97)01608-5

PACS numbes): 05.45+b, 03.65.Sq

In a recent papelrl] Finney and Gea-BanaclocEGB)  this source so as to isolate the increase produced by chaos
have studied the problem of the correspondence between tladone. This was not done ifiL]. In fact FGB[1] do not
chaotic behavior of the spin-boson system resulting from theliscuss this traditional mechanism for the increas& and
so-called Hartree approximatidi2—4], a factorization as- U atall in their paper, much less compare it with the increase
sumption also referred to as the “semiclassical approximaassociated to chaos.
tion,” and the exact quantum behavior of the same system. Our main purpose here is to shed light on these important
In a striking contrast with the results reached by Baztcal. ~ aSPects, left unexplored by the work of FGB. To accom-

[5] their main conclusion has been that the increase of enplish this we not only do the calculations reported i but
tropy, S, and of quantum uncertainty, in the quantum case W€ e_xtend them to cases that are still more no_nlmear. Mor_e
corresponding to the regular semiclassical case is larger thdl{€CiSely, we consider the key parameter defined by their

in the quantum case corresponding to the chaotic semiclag-quat'onm:

sical case. They do not explain the physical reasons for this —

result but only vaguely allude to the fact that the spin qu e
j=1/2 is so dramatically quantum as to violate any corre- 20’

spondence between quantum and semiclassical mechanics. In
fact they find that in the casg=3/2, the qualitative corre- wherew denotes the frequency of the radiation field. Follow-
spondence with the intuitive arguments of Boatil.[5]is  ing the calculations in1] we focus on the case where
recovered. They argue that this latter agreement is an indicas = wo, With wq being the frequency of the spin-1/2 system.
tion that the predictions of classical physics, as well as thos¥/e reproduce their calculation keeping the value dixed,
of the semiclassical approximation, should be restored in thand changing the number of photons involved in the interac-
||m|t|ng case of a Sp”] whose Strength tends to |nf|n|ty’ but tion. It is evident from the equation that decreasing the num-
are strikingly violated in the case=1/2. ber of photons requires that the strength of the nonlinear
The conclusions of FGEB1] that regular dynamics leads interaction increases for constantConsequently, the effect
to an increase ir5 andU that is faster than that for chaotic Of semiclassical chaos is expected to become more and more
dynamics should be viewed with skepticism for a number offmportant until it dominates the process. We study the cases
reasons not discussed by these authors. First of all there aoé average photon number equal to 100, 81, and 25. The
two mechanisms that yield increasii®jand U. As clearly first two cases correspond to dynamical configurations iden-
illustrated by Phoenix and KnigHt6] the case of regular tified by FGB as regular and chaotic, respectively. The last
dynamics leads to increasir§when the effects of incom- case has the largest interaction strength and we shall discuss
mensurate fluctuations from an infinitely large number ofthe effect of this nonlinearity subsequently. But first we fol-
photons are taken into account. Bomtial. [5] discuss this low the calculations also done ji].
alternative source of increase $1and U and have consid- The time evolution is calculated corresponding to the fac-
ered initial conditions canceling the contribution made bytorized initial conditions given by )| ), where|a) is a
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FIG. 1. Classical spin trajectories on the Bloch sphere for the
casen=281. The (+) branch is illustrated iffa) and the () branch 0.0001 . . . .
in (b). The values of the parameters ase= wy=1, e=1. 10 100 1000 10000

t (arbitrary units)
g?es Ci\r;v(;‘leslge((::?;}ei;eigglsg?;?e\;vlg} ;ﬁ:l :pr?npl,::]ﬁ,m;c%yé%g to FIG. 2. Lyapunov exponentsa) illustrates the results for the
FGB, lead to a quantum evolution that preserves the initial *) Pranch andb) the results for the £) branch. The two sets of
factorization for long timegsee Refs[1,7] for detaily. Fol- ~ curves denote, from top to bottom, the cases25, 81, and 100,
lowing FGB we denote as ther) and () branch the tra- respectively. The value of the parameters arewy=1, e=1.
jectories stemming from the two respective initial conditions
of the spin-1/2 system..). This error in the identification of the nature of a trajectory

Figure 1 illustrates the crucial case=281, discussed by Would account for the counterintuitive resytt], namely,
FGB, and our results are indeed consistent with those ddghat the regular case produces a faster increas® afd U
picted in their Fig. 1. We see that the trajectory correspondthan does the chaotic case. The authors would have in fact
ing to the () branch is regular, whereas the trajectory cor-assigned different dynamical properties to two orbits of the
responding to the {) branch looks very irregular. FGB same type. Had these authors judged to be chaotic a trajec-
identify the (+) branch as being chaotic, however, we showtory that is actually regular, the discrepancy between the con-
below that it is at most quasiperiodic and certainly not cha<lusions of[1] and those of5] would be resolved. Thus, to
otic. double check this possibility, in Fig. 3 we plot the Poincare

An unambiguous way to assess whether or not a trajectoryections corresponding to the “erratic” and regular trajecto-
is chaotic or not is to determine if its Lyapunov exponent isries of Fig. 1. We see that in this representation the appar-
positive. We see from Fig. (B) that the time averaged enily chaotic trajectory looks completely regular. To
Lyapunov exponent of the trajectories corresponding to th@yrengthen our conclusions we changed a little bit the initial

(—) branch tends to vanish likethith increasing time. Itis  ¢ongitions around the two branches and again we found
therefore safe to consider these trajectories as being regu'?égular behavior as shown in Fig. 4

for the values of the average photon number considered. On We can thus conclude that the reason for the “erratic”
the other hand, the Lyapunov exponents depicted in k#). 2 behavior of Fig. 1a) is that the trajectories plotted concern

for the (+) branch_tell a very different story. There is no the motion ofx(t),y(t), andz(t), which represent the mean
doubt that the case =25 implies chaos, since the Lyapunov yajue of the Pauli spin operators. In fact these variables are
exponent converges to a finite valie-0.04. For the other not canonical and there is no reason to conclude that the
two cases, we find the same behavior as in Fi),2.e., @  projection on the Bloch sphere of a regular trajectory is regu-
Lyapunov exponent vanishing within the computational acqgr too.

curacy. In other words, if the authors of Ré¢l] refer to We are therefore forced to conclude that FBI3 were

n =100 as regular the case=81 also should be considered deceived by the representation of the trajectories on the
regular. Bloch sphere, which makes the regular motion of the trajec-
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FIG. 3. Poincaresections in thegp space of the boson system
for the (+) branch, the five small islands, and the X branch, the 10l S
five points. The sections are defined by=(o,)=0 with / e
dy/dt<0; see Ref[8]. Note that within the semiclassical approxi- s/ ,/ ]
mation the radiation field becomes a classical oscillator Graahd f
p denote its coordinate and momentum, respectively. The values of 0 /l/i
the parameters ane=81, w=wy=1, e=1. - | L |
\
tories appear erratic. Thus, in both cases explored by them in ST \ i
their paper, the only source of tl&andU increase is given \j\:«\
by the incommensurate fluctuations of the infinite number of -10 RN
photons necessary to realize a coherent $&it@ot by any e e
chaotic sea in phase space. These fluctuations in photor -15 1, . . B . ]
number were in fact eliminated by Bonet al. [5] in order -15 -10 -5 0 5 10 15
for their calculation to reveal the true effects of chaosSon a
andU. FIG. 4. Same as Fig. 3, for two sets of three distinct trajectories

Before ending this Comment, we would like to warn the close to the ¢-) branch(a) and to the ¢) branch(b).
reader against another incorrect conclusion that could be de-
rived from the paper by FGBL]. FGB gives the impression e : .
that it is possible to think of the quantum dynamics in termsCondltlon Is in fact illustrated by Fig. 5 where we plot the

of single classical trajectories, some stable and regular, anlapmpa}r_e sectlor_1_of two sets of three different trajectories
. . — with initial conditions close to the{) branch,(a), and to the
others unstable and chaotic. Applied to the case25, the

FGB analysis of the quantum result would be based on tW(g_) brapch,(b). of course, W'thm the rigorous guantum

. . X ) mechanical treatment this chaotic phase space structure be-
single trajectories, one corresponding to the) (branch and comes a broadened quantum mechanical wave function
the other to the {) branch, with totally different dynamical q '

properties: the former would be chaotic and the latter regular, The consequences of this- property on the grovvth of the
although imbedded in the chaotic sea. quantum mechanical uncertaitl, as given by both a rigor-

We judge this physical condition to be very difficult to ©US quaptum mechanigal treatme.nt apd the semiclassicgl ap-
realize. The explanation of our conviction lies in an impor-Proximation of[S], are illustrated in Fig. 6. We see that in -
tant aspect already pointed out[#] and[5], and it has to do the quantum case the distinction between the branches is
with the joint action of deterministic chaos and the uncer-2lmost abolished and that, as in the original papers of Ref.
tainty principle. For a proper comparison between the quanE5], in the semiclassical case the increas&aé slower than
tum and the semiclassical treatment, not conflicting with thén the quantum case. This result shows that we cannot reach
uncertainty principle, we cannot rest on an individual trajec-a reliable conclusion on the effect of chaos on quantum dy-
tory but we have to consider a set of distinct trajectoriesnamics if we do not properly refer to the semiclassical dy-
departing from a spread of initial conditions. In our previousnamics, by focusing on the global properties of the corre-
work [5] this allowed us to reproduce with remarkable pre-sponding phase space. In fact, Fig. 6 shows that it is
cision the quantumlike dynamical properties of the “regu-misleading to interpret the results of an exact quantum me-
lar” case. In the cas@ =25 this quantum mechanical con- chanical calculation as the signature of a single classical tra-
straint might result in a spreading of initial conditions largerjectory. We see that in the case of the regutaj) foranch the
than the distance from the stable branch within which theuncertaintyU grows with a speed comparable to if not faster
initial condition must lie for the trajectory to remain regular. than that of the chaotic) branch. This seemingly counter-
Thus, the mere fulfillment of the uncertainty principle re- intuitive property is made still more pronounced by the semi-
guirement might have the effect of abolishing the distinctionclassical calculation yielding a growth &f distinctly faster
between the chaotic and the regular branch. This physicah the former case. Actually, all this only proves that the
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FIG. 5. Poincaresections for three trajectories with initial con-
ditions close to the {) branch(a) and the ) branch(b). The

values of the parameters ane=25, w=wy=1, e=1.

speed of the quantum uncertainty growth cannot be co
nected to the local stability of the single trajectories. If the
statistical prescription of Boneit al.[5] is adopted, the para-
doxical result might be explained, since it seems to depen
on the fact that the phase space surrounding thg lfranch

is probably more chaotic than that in which the Y branch

is imbedded, see Fig. 5.
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FIG. 6. The quantum uncertainty as a function of time. The
two upper curves refer to the quantum case and the two bottom
curves to the semiclassical approximation. The solid and lower
dashed line refer to the branch-§. The upper dashed line and the
dotted one refer to the branch-|). The value of the parameters are
n=25 0=wy=1, e=1.

In conclusion, the claim that the regular case produces an
entropy and uncertainty increase faster than in the chaotic
case is wrong, and it is essentially due to mistaking for cha-
otic a quite regular case. As far as the role of chaos is con-
cerned, as already done in RE5], we point out again that
the result of Fig. 6 is produced by the joint action of two
distinct sources of disorder, and that to see the effect of
deterministic chaos alone we should proceed as in [Béf.
and thus adopt initial conditions that cancel the effects of the
incommensurate fluctuations produced by the broad photon
distribution of the coherent state. We cannot rule out, how-
ever, the possibility that physical conditions might exist pro-
ducing trajectories that are stable within a belt whose width
is larger than the size of the quantum blurring strip that,
according to the prescriptions of the uncertainty principle,
Just surround each trajectory. In this case, the perspective
suggested by FGB could be sustained.
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Research Training Grant No. ERB4001GT952681.

[1] G.A. Finney and J. Gea-Banacloche, Phys. Reb4E1449
(1996.

[2] R. Blumel and B. Esser, Phys. Rev. LetR, 3658(1994).

[3] D. Vitali, P. Allegrini, and P. Grigolini, Chem. Phy&80, 297
(1994.

[4] P. Allegrini, L. Bonci, P. Grigolini, R. Mannella, and R. Ron-
caglia, Phys. Rev. Let74, 1484(1995.

[5] L. Bonci, R. Roncaglia, B.J. West, and P. Grigolini, Phys. Rev.

Lett. 67, 2593 (1992); L. Bonci, R. Roncaglia, P. Grigolini,
and B.J. West, Phys. Rev. #5, 8490(1992.

[6] S.J.D. Phoenix and P.L. Knight, Ann. Phy®l.Y.) 186, 381
(1988.

[7] G.A. Finney and J. Gea-Banacloche, Phys. Re\60A 2040
(1994.

[8] L. Mdiller, J. Stolze, H. Leschke, and P. Nagel, Phys. Rev. A
44, 1022(1991).



