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for regular articles is followed, and page proofs are sent to authors.

Comment on ‘‘Quantum suppression of chaos in the spin-boson model’’

Luca Bonci,1 Roberto Roncaglia,2 Bruce J. West,3 and Paolo Grigolini1,3,4

1Dipartimento di Fisica, Universita` di Pisa, Piazza Torricelli 2, 56127 Pisa, Italy
2FORTH, Institute of Electronic Structure and Laser, P.O. Box 1527, 711 10 Heraclion, Crete, Greece

3Department of Physics, University of North Texas, P.O. Box 5368, Denton, Texas 76203
4Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via San Lorenzo 26, 56127 Pisa, Italy

~Received 11 October 1996!

We independently examine the case of a spin-j particle interacting with a boson field studied by Finney and
Gea-Banacloche. We concentrate on their conclusion that in the casej 51/2 the correspondence between the
quantum and the semiclassical case is damaged to the point that the increase of entropy and quantum uncer-
tainty for regular motion exceeds that for the chaotic case. We demonstrate by direct calculation that this
conclusion is the result of mistakenly identifying a regular evolution of the spin-boson system as being chaotic.
@S1063-651X~97!01608-5#

PACS number~s!: 05.45.1b, 03.65.Sq
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In a recent paper@1# Finney and Gea-Banacloche~FGB!
have studied the problem of the correspondence betwee
chaotic behavior of the spin-boson system resulting from
so-called Hartree approximation@2–4#, a factorization as-
sumption also referred to as the ‘‘semiclassical approxim
tion,’’ and the exact quantum behavior of the same syst
In a striking contrast with the results reached by Bonciet al.
@5# their main conclusion has been that the increase of
tropy,S, and of quantum uncertainty,U, in the quantum case
corresponding to the regular semiclassical case is larger
in the quantum case corresponding to the chaotic semic
sical case. They do not explain the physical reasons for
result but only vaguely allude to the fact that the sp
j 51/2 is so dramatically quantum as to violate any cor
spondence between quantum and semiclassical mechani
fact they find that in the casej 53/2, the qualitative corre-
spondence with the intuitive arguments of Bonciet al. @5# is
recovered. They argue that this latter agreement is an ind
tion that the predictions of classical physics, as well as th
of the semiclassical approximation, should be restored in
limiting case of a spinj whose strength tends to infinity, bu
are strikingly violated in the casej 51/2.

The conclusions of FGB@1# that regular dynamics lead
to an increase inS andU that is faster than that for chaoti
dynamics should be viewed with skepticism for a number
reasons not discussed by these authors. First of all there
two mechanisms that yield increasingS and U. As clearly
illustrated by Phoenix and Knight@6# the case of regula
dynamics leads to increasingS when the effects of incom
mensurate fluctuations from an infinitely large number
photons are taken into account. Bonciet al. @5# discuss this
alternative source of increase inS and U and have consid-
ered initial conditions canceling the contribution made
561063-651X/97/56~2!/2325~4!/$10.00
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this source so as to isolate the increase produced by c
alone. This was not done in@1#. In fact FGB @1# do not
discuss this traditional mechanism for the increase inS and
U at all in their paper, much less compare it with the increa
associated to chaos.

Our main purpose here is to shed light on these impor
aspects, left unexplored by the work of FGB@1#. To accom-
plish this we not only do the calculations reported in@1#, but
we extend them to cases that are still more nonlinear. M
precisely, we consider the key parameter defined by th
equation~7!:

e[
gAn̄

2v
, ~1!

wherev denotes the frequency of the radiation field. Follo
ing the calculations in@1# we focus on the case wher
v5v0, with v0 being the frequency of the spin-1/2 system
We reproduce their calculation keeping the value ofe fixed,
and changing the number of photons involved in the inter
tion. It is evident from the equation that decreasing the nu
ber of photons requires that the strength of the nonlin
interaction increases for constante. Consequently, the effec
of semiclassical chaos is expected to become more and m
important until it dominates the process. We study the ca
of average photon numbern̄ equal to 100, 81, and 25. Th
first two cases correspond to dynamical configurations id
tified by FGB as regular and chaotic, respectively. The l
case has the largest interaction strength and we shall dis
the effect of this nonlinearity subsequently. But first we fo
low the calculations also done in@1#.

The time evolution is calculated corresponding to the f
torized initial conditions given byuc6&ua&, whereua& is a
2325 © 1997 The American Physical Society
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boson field coherent state with real amplitudea and uc6&
are two special initial states of the spin that, according
FGB, lead to a quantum evolution that preserves the in
factorization for long times~see Refs.@1,7# for details!. Fol-
lowing FGB we denote as the (1) and (2) branch the tra-
jectories stemming from the two respective initial conditio
of the spin-1/2 system,uc6&.

Figure 1 illustrates the crucial casen̄581, discussed by
FGB, and our results are indeed consistent with those
picted in their Fig. 1. We see that the trajectory correspo
ing to the (2) branch is regular, whereas the trajectory c
responding to the (1) branch looks very irregular. FGB
identify the (1) branch as being chaotic, however, we sh
below that it is at most quasiperiodic and certainly not c
otic.

An unambiguous way to assess whether or not a trajec
is chaotic or not is to determine if its Lyapunov exponent
positive. We see from Fig. 2~b! that the time averaged
Lyapunov exponent of the trajectories corresponding to
(2) branch tends to vanish like 1/t with increasing time. It is
therefore safe to consider these trajectories as being reg
for the values of the average photon number considered
the other hand, the Lyapunov exponents depicted in Fig.~a!
for the (1) branch tell a very different story. There is n
doubt that the casen̄525 implies chaos, since the Lyapuno
exponent converges to a finite valuel;0.04. For the other
two cases, we find the same behavior as in Fig. 2~b!, i.e., a
Lyapunov exponent vanishing within the computational
curacy. In other words, if the authors of Ref.@1# refer to
n̄5100 as regular the casen̄581 also should be considere
regular.

FIG. 1. Classical spin trajectories on the Bloch sphere for

casen̄581. The (1) branch is illustrated in~a! and the (2) branch
in ~b!. The values of the parameters arev5v051, e51.
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This error in the identification of the nature of a trajecto
would account for the counterintuitive result@1#, namely,
that the regular case produces a faster increase ofS and U
than does the chaotic case. The authors would have in
assigned different dynamical properties to two orbits of
same type. Had these authors judged to be chaotic a tra
tory that is actually regular, the discrepancy between the c
clusions of@1# and those of@5# would be resolved. Thus, to
double check this possibility, in Fig. 3 we plot the Poinca´
sections corresponding to the ‘‘erratic’’ and regular trajec
ries of Fig. 1. We see that in this representation the app
ently chaotic trajectory looks completely regular. T
strengthen our conclusions we changed a little bit the ini
conditions around the two branches and again we fo
regular behavior as shown in Fig. 4.

We can thus conclude that the reason for the ‘‘errati
behavior of Fig. 1~a! is that the trajectories plotted conce
the motion ofx(t),y(t), andz(t), which represent the mea
value of the Pauli spin operators. In fact these variables
not canonical and there is no reason to conclude that
projection on the Bloch sphere of a regular trajectory is re
lar too.

We are therefore forced to conclude that FBG@1# were
deceived by the representation of the trajectories on
Bloch sphere, which makes the regular motion of the traj

e

FIG. 2. Lyapunov exponents.~a! illustrates the results for the
(1) branch and~b! the results for the (2) branch. The two sets o

curves denote, from top to bottom, the casesn̄525, 81, and 100,
respectively. The value of the parameters arev5v051, e51.
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tories appear erratic. Thus, in both cases explored by the
their paper, the only source of theS andU increase is given
by the incommensurate fluctuations of the infinite numbe
photons necessary to realize a coherent state@6# not by any
chaotic sea in phase space. These fluctuations in ph
number were in fact eliminated by Bonciet al. @5# in order
for their calculation to reveal the true effects of chaos onS
andU.

Before ending this Comment, we would like to warn t
reader against another incorrect conclusion that could be
rived from the paper by FGB@1#. FGB gives the impression
that it is possible to think of the quantum dynamics in ter
of single classical trajectories, some stable and regular,
others unstable and chaotic. Applied to the casen̄525, the
FGB analysis of the quantum result would be based on
single trajectories, one corresponding to the (1) branch and
the other to the (2) branch, with totally different dynamica
properties: the former would be chaotic and the latter regu
although imbedded in the chaotic sea.

We judge this physical condition to be very difficult t
realize. The explanation of our conviction lies in an impo
tant aspect already pointed out in@4# and@5#, and it has to do
with the joint action of deterministic chaos and the unc
tainty principle. For a proper comparison between the qu
tum and the semiclassical treatment, not conflicting with
uncertainty principle, we cannot rest on an individual traje
tory but we have to consider a set of distinct trajector
departing from a spread of initial conditions. In our previo
work @5# this allowed us to reproduce with remarkable p
cision the quantumlike dynamical properties of the ‘‘reg
lar’’ case. In the casen̄525 this quantum mechanical con
straint might result in a spreading of initial conditions larg
than the distance from the stable branch within which
initial condition must lie for the trajectory to remain regula
Thus, the mere fulfillment of the uncertainty principle r
quirement might have the effect of abolishing the distinct
between the chaotic and the regular branch. This phys

FIG. 3. Poincare´ sections in theqp space of the boson system
for the (1) branch, the five small islands, and the (2) branch, the
five points. The sections are defined byy[^sy&50 with
dy/dt<0; see Ref.@8#. Note that within the semiclassical approx
mation the radiation field becomes a classical oscillator andq and
p denote its coordinate and momentum, respectively. The value

the parameters aren̄581, v5v051, e51.
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condition is in fact illustrated by Fig. 5 where we plot th
Poincare´ section of two sets of three different trajectori
with initial conditions close to the (1) branch,~a!, and to the
(2) branch, ~b!. Of course, within the rigorous quantum
mechanical treatment this chaotic phase space structure
comes a broadened quantum mechanical wave function.

The consequences of this property on the growth of
quantum mechanical uncertainyU, as given by both a rigor-
ous quantum mechanical treatment and the semiclassica
proximation of@5#, are illustrated in Fig. 6. We see that i
the quantum case the distinction between the branche
almost abolished and that, as in the original papers of R
@5#, in the semiclassical case the increase ofU is slower than
in the quantum case. This result shows that we cannot re
a reliable conclusion on the effect of chaos on quantum
namics if we do not properly refer to the semiclassical d
namics, by focusing on the global properties of the cor
sponding phase space. In fact, Fig. 6 shows that it
misleading to interpret the results of an exact quantum m
chanical calculation as the signature of a single classical
jectory. We see that in the case of the regular (2) branch the
uncertaintyU grows with a speed comparable to if not fast
than that of the chaotic (1) branch. This seemingly counter
intuitive property is made still more pronounced by the sem
classical calculation yielding a growth ofU distinctly faster
in the former case. Actually, all this only proves that t

FIG. 4. Same as Fig. 3, for two sets of three distinct trajecto
close to the (1) branch~a! and to the (2) branch~b!.
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speed of the quantum uncertainty growth cannot be c
nected to the local stability of the single trajectories. If t
statistical prescription of Bonciet al. @5# is adopted, the para
doxical result might be explained, since it seems to dep
on the fact that the phase space surrounding the (2) branch
is probably more chaotic than that in which the (1) branch
is imbedded, see Fig. 5.

FIG. 5. Poincare´ sections for three trajectories with initial con
ditions close to the (1) branch~a! and the (2) branch~b!. The

values of the parameters aren̄525, v5v051, e51.
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In conclusion, the claim that the regular case produces
entropy and uncertainty increase faster than in the cha
case is wrong, and it is essentially due to mistaking for c
otic a quite regular case. As far as the role of chaos is c
cerned, as already done in Ref.@5#, we point out again that
the result of Fig. 6 is produced by the joint action of tw
distinct sources of disorder, and that to see the effect
deterministic chaos alone we should proceed as in Ref.@5#,
and thus adopt initial conditions that cancel the effects of
incommensurate fluctuations produced by the broad pho
distribution of the coherent state. We cannot rule out, ho
ever, the possibility that physical conditions might exist pr
ducing trajectories that are stable within a belt whose wi
is larger than the size of the quantum blurring strip th
according to the prescriptions of the uncertainty princip
must surround each trajectory. In this case, the perspec
suggested by FGB could be sustained.

One of us~R.R.! thanks the CEE for~TMR! Programme
Research Training Grant No. ERB4001GT952681.

FIG. 6. The quantum uncertaintyU as a function of time. The
two upper curves refer to the quantum case and the two bot
curves to the semiclassical approximation. The solid and lo
dashed line refer to the branch (1). The upper dashed line and th
dotted one refer to the branch (2). The value of the parameters ar

n̄525, v5v051, e51.
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