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Acoustic resonant scattering by an ellipsoid air bubble in a liquid
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and Department of Physics, National Central University, Taiwan, Republic of China
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This paper reports a simple analytic formula for the low frequency resonant scattering by an ellipsoid air
bubble in a liquid. For a spherical bubble, the result reduces to a previous well-known formula.
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Much effort has been devoted to acoustic resonant s
tering of air-filled bubbles in past years because of
prominent role played by air bubbles in a variety of situ
tions of great interest, such as generation of noise@1,2#, wave
propagation@3#, and gas transfer@4# in the upper ocean sur
faces, modeling scattering by fish swimbladders@5,6#, and,
more recently, sonoluminescence@7#. Moreover, due to their
high acoustic contrast air bubbles are useful tracers for p
ing many important ocean processes, including turbule
generated by breaking waves, Langmuir circulation, fron
and internal waves@8#.

Previous attention has been mainly focused on air bub
with spherical geometry. In the resonant regime, where
acoustic wavelength is much larger than the size of bubb
i.e., low frequencies, the scattering function of such a sph
cal air bubble is well known, and can be expressed in
analytic form as~e.g., p. 1498 in Ref.@9#!

f 5
a

v0
2/v2212 ika

, ~1!

where a is the radius of the bubble,v0 is the resonance
frequency,v is the angular frequency of the incident wav
and k is the acoustic wave number. In this formula,ka is
identified as the radiation damping factor.

Few studies, however, have been directed to air bub
with other geometries. This is because the spherical assu
tion for air bubbles is sufficient for many cases of intere
Another reason is the difficulty in dealing with nonspheric
bubbles. Intuitively, the spherical assumption is only va
for sufficiently small bubbles for which the tension at t
bubble-medium interface can sustain deformation. When
condition is not satisfied, investigation of acoustic scatter
by nonspherical bubbles is necessary. Indeed, the stud
sound scattering from deformed bubbles has become an
portant area. This is not only because deformed bubbles
be used to model many actual targets such as fish swimb
ders, large air bubbles in upper ocean surfaces, and
bubbles embedded in the sediments in ocean bottoms, bu
problem of sound scattering by deformed bubbles is theo
cally challenging in its own right.

Sound scattering by nonspherical bubbles was first c
sidered by Strasberg@10#. He derived a theoretical expres
sion for the resonance frequency which compares favora
with experimental data. In his study, however, no ment
was made about how the scattering amplitude is affected
561063-651X/97/56~2!/2318~3!/$10.00
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deformation. It is only recently that more detailed studies
the problem are given@6,11#. Unfortunately, these works
have either been purely numerical or involved discomfort
approximations for boundary conditions, and are restricte
prolate spheroid air bubbles. The more general case of
filled ellipsoid bubbles remains untackled.

In this Brief Report, we present a simple approxima
solution to acoustic resonant scattering by an ellipsoid
bubble in a liquid. Our method, motivated by an analo
between the resonant scattering and the electrostatics,
the Kirchhoff theorem for scattered waves and the therm
dynamics relations for gases. The resonance frequency
the quality factor (Q) characterizing the broadening of res
nance will also be shown in a simple form.

Consider a unit plane wave incident on an ellipsoidal g
bubble at the origin. The incident plane wave can be

pressed aspi(rW8)5eikW8 i•rW8 with suppressed time dependen
e2 ivt. The equation for the surface of the ellipsoid is

x2

a2 1
y2

b2 1
z2

c2 51.

For convenience, the three axes of the ellipsoid are arran
in the ordera>b>c.

The wave equation reads

~¹21k2!p~rW8!50. ~2!

The total wave field including the scattered wave is given
the Kirchhoff theorem

p~rW8!

0 J 5pi~rW8!1
1

4p E
S
ds8@p1nW •¹G~kurW82rW8u!

2 ivr lunG~kurW2rW8u!# for rW8Houtside S
inside S, ~3!

where the integration is performed over the surface of
object,r 8 is taken onS, nW is a unit outward normal vector to
the surface, andG is the usual three-dimensional Green
functionG(r )5exp(ikr)/r. In this expression,p1 andun are
the total pressure field and the normal velocity on the s
face, approached from outside, andr l is the density of the
surrounding liquid.
2318 © 1997 The American Physical Society
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It is clear that the scattered waveps is represented by the
integral in Eq.~3!. In the far field region, wherer @r 8, ps
behaves as a spherically spreading wave. And the con
tional scattering functionf (kW i ,kW s) can be evaluated from
„e.g., Eq.~9.125! in Ref. @12#…

f ~kW i ,kW s!52
1

4p E
S
ds8e2 ikWs•rW8@ ikW s•nW p11 ivr lun#, ~4!

where kW i ,kW s are the incident and scattering wave vecto
respectively.

According to Eq.~4!, the scattering functionf (kW i ,kW s) is
determined by the surface values ofp1 andun . In the fol-
lowing, we briefly outline the procedure in solving for the
two quantities, while a detailed derivation is left to a fort
coming paper@13#. ~1! First notice the continuity across th
boundary in the absence of viscosity

pg5p1 , ug,n5un . ~5!

The index ‘‘g’’ refers to the quantities inside the ellipsoi
bubble. For the resonant scattering occurring at low frequ
cies, i.e.,ka!1, pg can be treated as a constant@9#. ~2!
Analogous to the spherical case@9#, the thermodynamics
equation gives

PVg5const, ~6!

for ideal gases in an adiabatic process withg being the poly-
tropic exponent.~3! Equation~6! gives

dV

dt
5E

S
unds85

ivV0

gP0
pg , ~7!

where V0 is the volume of the ellipsoid bubble given b
4pabc/3, andP0 is the hydrostatic pressure.~4! Using Eq.
~3! for rW50 leads to

0511
1

4p E
S
ds8@p1nW ¹•G~kurW8u!2 ivr lunG~kurW8u!#.

~8!

With

G~kr8!5
1

r 8
eikr 8, ¹G~kurW8u!5~211 ikr 8!

rW8

r 83 eikr 8

and a Taylor expansion foreikr 8 at low frequencies, Eq.~8!
can be further simplified to the first order ofkr8 as

ivr l

4p
E

S

11 ikr 8

r 8
unds81

pg

4p
E

S

rW8•nW

r 83 ds851. ~9!

~5! According to Strasberg@10#, un is mathematically
equivalent to the charge density on a perfect conductor h
ing the same shape and can be written in the following fo
for the ellipsoid@14#:

un5
A

Ax2/a41y2/b41z2/c4
, ~10!

whereA is a constant to be determined.
n-

,

n-

v-

From Eqs.~7!, ~9!, and ~10!, A and pg can be solved.
Plugging these into Eq.~4!, the scattering function can b
obtained as

f 5
aEc /F~F,m!

v0
2/v2212 ikaEc /F~F,m!

, ~11!

where

v0
25

3gP0

a2r l
F Ec

ebecF~F,m!G , ~12!

and the two ratio aspects are defined aseb[b/a, ec[c/a,
and Eb[A12eb

2, Ec[A12ec
2. F(F,m) is the first kind

elliptic function @15#

F~F,m!5E
0

F da

A12m2 sin2 a
. ~13!

The two variables in the elliptic functionF are given asF
5sin21 Ec andm5Eb /Ec .

The scattering function in Eq.~11!, bearing the resonan
feature, and the resonance frequency in Eq.~12! can be re-
garded as the general formulas for resonant scattering by
family of ellipsoids, including spheres, oblate spheroids a
prolate spheroids. The termkaEc /F in the denominator of
Eq. ~11! is identified as the radiation damping factor, and
inverse is defined as the quality factorQ. A striking feature
from Eq.~11! is that the resonant scattering is approximat
omnidirectional. This is in analogy with the static electric
field generated by an ellipsoidal conductor. At the near fie
the electrical field is directional, but in the far field region th
field tends to be omnidirectional.

We consider a few special cases. Whenv!v0

f '
r lV0

4pgP0
v2. ~14!

The scattering function is independent of the shape of
ellipsoid at very low frequencies, following the Rayleig
volume scattering. Whenv5v0 , the scattering amplitude
the peak amplitude, is inversely proportional to the damp
factor, and equals

f 5
ics

v0
, ~15!

wherecs is the sound speed in the medium. Equation~15!
suggests that the higher the resonance frequency, the lo
the resonant amplitude. Whenv@v0 and kaEc /F!1, the
scattering function becomes

f 'aEc /F. ~16!

It is also easy to verify that for the case of a spheri
bubble, Eq.~11! reduces to Eq.~1!. Also, as will be reported
elsewhere @16#, when it is applied to prolate spheroi
bubbles the numerical computation based upon the exac
lution seems to support the present analytic solution, an
shows that the present solution is valid forka,0.3, which
covers the whole resonance region. In contrast to the pre
result, however, the numerical computation based on
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T-matrix method shows that the resonance scattering
prolate spheroid bubble is directional@11#. We note the reso-
nant scattering function of ellipsoidal bubbles may also
computed numerically by the improvedT-matrix method
proposed by Bostro¨m @17#.

We have derived an analytic solution for acoustic scat
ing by an ellipsoid bubble at low frequencies. The result w
be potentially useful in a number of processes such as
sonoluminescence@7# when the deformation of a spheric
bubble is important, as it may guide deriving a governi
equation for such a deformed bubble. This solution may
used as a check for any numerical method to be develope
ev
a

e

r-
l
he

e
to

calculate acoustic scattering by gas ellipsoids. Finally,
state that the present results are derived when the heat t
fer and viscosity effects are ignored. When these effects
taken into account, the quality factorQ and the amplitude a
resonance are both expected to reduce. In addition, the
sumed adiabatic behavior of the gas may not be approp
for some extreme cases such as very flat or slender bub
The inclusion of thermal and viscosity effects remains to
the subject of a future work.

This work received support from the Department
Fisheries and Oceans, Canada and the National Ce
University.
,

@1# D. M. Farmer and D. D. Lemon, J. Phys. Oceanogr.14, 855
~1984!.

@2# Z. Ye, J. Appl. Phys.78, 6389~1995!.
@3# Z. Ye and L. Ding, Can. J. Phys.74, 92 ~1996!, and references

therein.
@4# J. Wu, J. Geophys. Res.86, 457 ~1981!.
@5# D. E. Weston, inUnderwater Acoustics, edited by V. M. Al-

bers~Plenum, New York, 1967!.
@6# Z. Ye, J. Acoust. Soc. Am.99, 785 ~1996!.
@7# B. P. Barber and S. J. Putterman, Nature~London! 352, 318

~1991!; R. Hiller, S. J. Putterman, and B. P. Barber, Phys. R
Lett. 69, 1182~1992!.

@8# S. A. Thorpe, Proc. R. Soc. London, Ser. A304, 155 ~1982!;
Prog. Oceanogr.35, 315 ~1995!.

@9# See, e.g., P. M. Morse and H. Feshbach,Methods of Theoret-
.

ical Physics~McGraw-Hill, New York, 1953!.
@10# M. Strasberg, J. Acoust. Soc. Am.25, 536 ~1953!.
@11# C. Feuillade and M. Werby, J. Acoust. Soc. Am.96, 3684

~1994!.
@12# J. D. Jackson,Classical Electrodynamics~Wiley, New York,

1975!.
@13# Z. Ye, J. Acoust. Soc. Am.101, 681 ~1997!.
@14# J. A. Stratton,Electromagnetic Theory~McGraw-Hill, New

York, 1941!.
@15# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series

and Products~Academic, New York, 1980!.
@16# Z. Ye, J. Acoust. Soc. Am.101, 1945 ~1997!; Z. Ye and E.

Hoskinson~unpublished!.
@17# A. Bostrom, J. Math. Phys.~N.Y.! 23, 1444~1982!.


