PHYSICAL REVIEW E VOLUME 56, NUMBER 2 AUGUST 1997

Universality in dynamic critical phenomena
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We use heat bath dynamics to evaluate the dynamic critical exparamd the dynamic finite-size scaling
function of an Ising model on square, planar triangular, and honeycomb lattices. We find convincing evidence
thatz is universal and, by choosing an aspect ratio and a nonuniversal metric factor for the scaled time of each
lattice, we can obtain a universal dynamic finite-size scaling function for the Ising model on the planar lattices.
Our results suggest many interesting problems for further resd@th63-651X%97)15408-3

PACS numbegps): 05.50+q, 05.70.Jk, 64.60.Ht, 75.10.Hk

The physics of dynamic critical phenomena has been an Finite-size scaling function is another important concept
interesting and important research subject in recent decadés the theory of critical phenomerfd0]. Using a histogram
[1-8], but its progress is slower than static critical phenom-Monte Carlo simulation metho@l15], Hu, Lin, and Chen
ena in which the universality of critical exponents was well(HLC) [11] have obtained an almost perfect universal finite-
established long agfo] and the universality of finite-size sjze scaling function for the existence probabiity and the
scaling function$10] was well established recen{i$1-13.  percolation probability? of bond and site percolation on sg,

It seems that there is no strong evidence to support the Unirp and hc lattices by choosing a very small number of non-
versality in dynamic critical exponenfd] and there are no ,niersal metric factors. Using another method, Okabe and

?Jr?::q%;]ss Z:u;jlieﬁ'hzf pﬂ?[iavoesr:%f ?r)lligagige:iinsittec;sfiiﬁethicgg?)gKiChucm [13] obtained universal finite-size scaling functions
Using heat bath dynamics, we find convincing evidence tha{Or the Ising model. In this paper, we will investigate the

for the Ising model on squaig), triangular(TP), and hon- _LIJ_rFl)lversdaI;]ty |sz. and t.hﬁ DF.S?.: fgr thi Ising mdq(_jel on sg,

eycomb(ho) lattices, the dynamic critical exponents uni- » and nc attices with periodic boundary con |t|on_s.

versal and, by choosing an aspect ratio and a nonuniversal The.cntlcal exponent can be evaluate_d by .study|.ng the

metric factor for the scaled time of each lattice, we can obJelaxation of the magnetizatiod on a lattice with a linear

tain a universal dynamic finite-size scaling functi@rssp ~ dimensionL and N lattice sites, which has the following

for the Ising model on the planar lattices. Our results willform — at ~ the  critical ~ temperature T,  [2]:

stimulate further researches on dynamic critical phenomenad¥ (T¢.t)=M(L—x,T¢,t))~t"#*% whereg and v are uni-
The dynamic critical exponemt[1,2] which characterizes versal static exponents fofl and correlation length, respec-

the critical slowing down near the critical temperature is oftively, and are 1/8 and 1 for the two-dimensional Ising

much interest{4]. Since there is no exact solution far model, andt is the number of Monte Carlo steps with the

computer simulation plays an important role in the evalua-unit of one sweep of all lattice sites. In the damage spreading

tion of z. In the past two decades, estimatezofaried ina  method[4] used in this paper, on a lattice &f sites we

large range between 1.7 and 2.3: §&pfor a review. Only  consider two spin configurations denoted Ayand B. The

very recently, several authors reached a consistent value fegame sequence of the random numii) is used to up-

this exponent with different simulation schemes. By consid-date Ising spinsriA and aiB on theith sites of system and

ering the dynamic scaling property of the relaxation time insystemB, respectively, where £i<N. We use the follow-

the vicinity of the critical temperature, Miyashita and Takanoing heat bath dynamics for the evolution of systanfrom a

[3] found that the dynamic critical exponentis about 2.2 state at to a state at+ ot [16,17):

for the two-dimensionaf2D) Ising model. From time relax-

ation of the magnetization and energy of the Ising model, Ito giA(H st)=sgri PiA(t) —Ri(1)] (1)

[5] found thatz=2.165+ 0.010 for the sq lattice Ising model,

which was confirmed by other calculatiof&-8]. While the  and

universality of static critical exponents was well established

long ago[9], the universality ofz, in the sense that does exd S ok(t)/T]

not depend on details of local interactions and lattice struc- PA(t)= XA S0 A (OIT]+ extl — 2 oM O/T]" 2

tures[1], is rarely extensively studied in the literature. Al- 2k = 2o

most all simulations are performed on the sq lattice Isin

model[14].

Yhere T is the temperature of the syster, sums over
nearest neighbors of thi¢h site, andét=1/N. Similar evo-
lution equations may be written for systeBn In the evolu-
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015 | ‘ - ‘ M(L,t)=M(L,T¢.t)=L"A"f(tL™?), (5)
e — ?ﬂ;ﬁ;;ﬁtﬁfﬁce where L=N. In [11], HLC considered 512512 sq,
R Honeycomb Lattice 433x500 TP, and 438 250 hc lattices, so that aspect ratios
of sq, TP, and hc lattices approximately have the proportions
1:v3/2:v3 and the existence probabilify, at critical points
are identical for all lattice$20], which is a crucial step to
obtain universal finite-size scaling functions figp, and P.
To obtain the universal finite-size scaling function for the
Ising model, we should choose the ratios between aspect
ratios of different lattices to be approximately equal to those
of [11]. Therefore, in the following we consider the Ising
model on 3X%51 and 64102 sq lattices, 2X50 and
54x100 TP lattices, and 2725 and 81X 75 hc lattices. The
, , ‘ , relaxation ofM(L,t) of the Ising model on such lattices is
2 32 42 In() 5.2 62 7.2 shown in Fig. 2a). Using the data of Fig. (&), we plot
M(L,t)L?"" as a function oftL "2 and show the results in
FIG. 1. INM(T, 1) vs In() for the Ising model on sq, TP, and hc Fig. 2(b), which shows that two curves of the same lattice
lattices withL = 1000 andt=10—1000 MCS. with different L fall onto an identical dynamic finite-size
scaling function and scaling functions for different lattice
With the heat bath algorithm, it is easy to prove that if thestructures are different. Following the case of static critical
initial configurations of two systems satisfy the condition phenomen10,11], we propose the following equation for a
o(0)=0P(0) for 1<i<N, theno?(t)=0?(t) for any time  universal DFSSH(x):
t>0 [18]. This property is called thenonotonicity With this v _
condition, we haveD(L,T,t)=[MA(L,T,t)—MB(L,T,1)] DIM(L)=L"#"F(CitL™?). ©)
[2=M(L,T.1), whereMA(L,T,t) andM®(L,T,1) are mag-  Here D, and C; for i being 1, 2, and 3 are nonuniversal
netizations of systemh and systemB, respectively. The  metric factor for sq, TP, and hc lattices, respectively. With
merit of this method is thab(L,T,t) has less fluctuations D=1 (i=1,23), C,;=1, C,=1.222+0.009, and

produced by random numbers during the evolution procesg.—0.693+0.018, we get Fig. @) which shows that data
and shows a better power law behavior for a much longefo; different lattices fall on a universal DESSF.

simulation time. _ Next we evaluateM(L,T,t) for the Ising model on a
We first study the Ising model on 1080000 sq, TP, 3551 sq lattice, 2% 50 TP lattice, and 2% 25 hc lattice
and hc lattices and setj(0)=—o07(0)=1 as the initial  for T%T, and at some finite scaled times, say,
configurations. All simulations are performed at the C”t'ca|citiL‘Z= 1.658) with g being 0.5, 1, and 2, which means

temperatures of the latticdd9], namely, T;=2/In(v2+1),  thatt, =500y Monte Carlo step$MCS) for the sq lattice,

4/In 3, and 2/In(2-v3) for sq, TP, and hc lattices, respec- t,=3332y MCS for the TP lattice, anty=2773y MCS for
tively. The logarithmic-scaled relaxation curves M(Tc.t)  the hc lattice. Following[11], we propose the following
are shown in Fig. 1. The data for each curve come from thequation for a universal DFSSF :

average of 2000 independent runs. Sigcand v are univer-
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sal, if z is universal, then all relaxation curves should have DiM(L,T,t)LA"=f(ELY(T/T,—1),Cit;L™?)
the same slope. Figure 1 shows that this is indeed the case. ., Wy
Using linear least squares fitting, we estimateto be =F'EL(T/Te—1), @

2.166+0.007, 2.1640.007, and 2.1780.010 for sq, TP,
and hc lattices, respectively, which are consistent with eac
other and also consistent with other calculatipfs8]. To DM(L.T.t)LA" as a function ofx=E,L¥(T/T,—1) in
test the reliability of our computer programs and the randony. - . L . ¢

number generator, we also use Glauber dynamics to calcula; e'? 3, V¥h'Ch Ehowsl that n Lhe C““C‘?" reg||on and f(?r a}ny
M(T.,t) for the Ising model on a 10001000 TP lattice value of g, three lattices have universal DFSSF's for

: = M(L,TLt).

We find that we should have the average of 5000 runs in the Figure 3 suagests that % D.—E =1 for 1<i<3
Glauber dynamics in order to get precision comparable t%till gives a ungi]\?ersal DFS%SF_)fd;n LI_T tl-_and suc\h ;on-
that of the 2000 runs in the heat bath dynamics with the 9 (L,T.5)

damage sreadng lechiaue. The agreemel(3. ) o 1" =8 MU BEr Shoul be s i peruner
tained by two methods is very well. 9

The universality oz provides us a good basis to study the (SFSSF [11,13. A cluster Monte Carlo methof1] which

universality of the DFSSF. Suzuki proposed that wifeis can overcome the critical slowing down is used to calculate

nearT., the magnetization of a system of linear dimendion the equilibrium magnetizatioM of the Ising model on
.o 9 Sy 32x51 sq, 2K 50 TP, and 2% 25 hc lattices to test this
at timet, M(L,T,t), may be written a$2]

idea. It has been found th@/M?" as a function of
M(L,T,t)=L"A"f(LY"(T/T,—1),tL?). (4) X= E/LY(T/T,—1) for three lattices has universal SFSSF’s
[22] with D{~E{~1 for i=1, 2, and 3. The nonuniversal
We first consider the case=T_. and have metric factors for the Ising model obtained by Okabe and

hereD; andE; for 1<i=<3 are nonuniversal metric factors.
ith Dy=E;=1 for 1<i<3 andC; of Fig. 2(c), we show
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FIG. 2. (8 M(L,t) of Eq.(5) vst for the Ising model on sq, PT,

and hc lattices(b) M(L,t) vstL % (c) D;M(L,t) vs C;tL ~* with
nonuniversal scaling facto®,=D,=D3=1, C;=1 (sq lattice,
C,=1.222+0.009(TP lattice, andC3=0.693+0.018 (hc lattice

Kikuchi [13] are corresponding t®;=E;=1 for the sq
lattice, D,=1.02+0.02 andE;=0.96+0.03 for the TP lat-
tice, andD4=0.98+0.02 andE}= 1.00+ 0.02 for the hc lat-
tice, which are very close tb;=E;=1 for 1<i=<3 used in
Fig. 3 of this paper.

It is well known that the Ising model and the bond ran-
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FIG. 3. D;M(L,T,t;)L?" of Eq. (7) vs E;,LY"(T/T,—1) with

Di:Ei:

1 for 1=<i=<3 for the Ising model on sq, TP, and hc lat-

tices near the critical temperature of each lattice and for the scaled

timesC;t,L %=

=1.658 with g being 0.5, 1, and 2. AT=T,, the

curves from top to bottom are fgr being 0.5, 1.0, and 2.0, respec-

tively.

dom percolation mode(BRPM) correspond to they-state

Potts

mode[19] with g being 2 and 1, respectively, so that

the bond probabilityp of the percolation model is related to
the temperaturd of the Potts model by=1—exp(—2/T)

[23]. HLC [11] obtained nonuniversal metric factors for
BRPM, using p—p.)LY" as a scaling variable. Recalculat-
ing their result usingT/T.— 1)L as a scaling variable, we

f|nd metric factors of D;=
=1.021+0.021 andE; =
and D;=

=E;=1 for the sq lattice,
0.996+ 0.034 for the TP lattice,
0.987+0.011 andE;=1.011+0.019 for the hc lat-

tice, which is presented in this paper. Our results imply that
nonuniversal metric factor§; andC, considered if10] are

equal

to 1 or very close to 1 for sq, TP, and hc lattices.

From Eq.(5), we may defin€(L) and it scales with. as

In[Q(L)]

Q(L)EJ:M(L,t)dtzgl M(L,t)~LZ A (8

o——o Square Lattice
o8 Triangular Lattice
¢----© Honeycomb Lattice .-

In(L)

FIG. 4. InQ(L) vs InL for 8<L=<90.
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For eachL, we simulate 1810 sequences ol at T, and  e.g., the universality of and the DFSSF in other physical
continue the simulation untiM =0. The average oM in quantities, update algorithms, and dynamic systémgud-
these sequences gives(L,t) of Eqg. (8). The In-In plots of  ing surfaces, interfaces, systems quenched ffoar>T, to
Q(L) vs L for sq, TP, and hc lattices are shown in Fig. 4. T¢ [24], etc), renormalization group approach to the univer-
The least squares fittings of such lines gimewhich are sal DFSSF, etc.

2.168+0.005, 2.1860.009, and 2.16¥ 0.008 for A, TP, e thank Jau-Ann Chen, Chi-Ning Chen, and Yau-Chr
and hc lattices, respectively. Such values are consistent WIt—Fsai for discussions and help on computer simulations, B. .
each other and they are consistent vatevaluated from Fig.  y51herin and K.-t. Leung for discussions, and H. W. J:t8lo
1. This result implies that short time and long time behaviorsy 5 ritical reading of the manuscript. This work was sup-
of M are governed by the same dynamic critical expoent ported by the National Science Council of the Republic of

In summary, Figs. 1 and 4 give convincing evidence thaiChina(Taiwan under Grant Nos. NSC 85-2112-M-001-007
z is universal and Figs. 2 and 3 show that the DFSSF isy and NSC 85-2112-M-001-045, the Computing Center of
universal forT=T. and T# T, with only one nonuniversal Academia Sinica (Taipe), National Center for High-
metric factor for scaled time of each lattice. Such results willPerformance ComputingTaiwan, and Harvard University
stimulate many researches on dynamic critical phenomenghrough NSF Grant No. DMR 94-16910.
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