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Universality in dynamic critical phenomena
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We use heat bath dynamics to evaluate the dynamic critical exponentz and the dynamic finite-size scaling
function of an Ising model on square, planar triangular, and honeycomb lattices. We find convincing evidence
thatz is universal and, by choosing an aspect ratio and a nonuniversal metric factor for the scaled time of each
lattice, we can obtain a universal dynamic finite-size scaling function for the Ising model on the planar lattices.
Our results suggest many interesting problems for further research.@S1063-651X~97!15408-3#
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The physics of dynamic critical phenomena has been
interesting and important research subject in recent dec
@1–8#, but its progress is slower than static critical pheno
ena in which the universality of critical exponents was w
established long ago@9# and the universality of finite-size
scaling functions@10# was well established recently@11–13#.
It seems that there is no strong evidence to support the
versality in dynamic critical exponents@1# and there are no
previous studies of universal dynamic finite-size scal
functions at all. The purpose of this paper is to fill this ga
Using heat bath dynamics, we find convincing evidence t
for the Ising model on square~sq!, triangular~TP!, and hon-
eycomb~hc! lattices, the dynamic critical exponentz is uni-
versal and, by choosing an aspect ratio and a nonunive
metric factor for the scaled time of each lattice, we can
tain a universal dynamic finite-size scaling function~DFSSF!
for the Ising model on the planar lattices. Our results w
stimulate further researches on dynamic critical phenome

The dynamic critical exponentz @1,2# which characterizes
the critical slowing down near the critical temperature is
much interest@4#. Since there is no exact solution forz,
computer simulation plays an important role in the eval
tion of z. In the past two decades, estimates ofz varied in a
large range between 1.7 and 2.3: see@5# for a review. Only
very recently, several authors reached a consistent value
this exponent with different simulation schemes. By cons
ering the dynamic scaling property of the relaxation time
the vicinity of the critical temperature, Miyashita and Taka
@3# found that the dynamic critical exponentz is about 2.2
for the two-dimensional~2D! Ising model. From time relax-
ation of the magnetization and energy of the Ising model,
@5# found thatz52.16560.010 for the sq lattice Ising mode
which was confirmed by other calculations@6–8#. While the
universality of static critical exponents was well establish
long ago@9#, the universality ofz, in the sense thatz does
not depend on details of local interactions and lattice str
tures @1#, is rarely extensively studied in the literature. A
most all simulations are performed on the sq lattice Is
model @14#.
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Finite-size scaling function is another important conce
in the theory of critical phenomena@10#. Using a histogram
Monte Carlo simulation method@15#, Hu, Lin, and Chen
~HLC! @11# have obtained an almost perfect universal fini
size scaling function for the existence probabilityEp and the
percolation probabilityP of bond and site percolation on sq
TP, and hc lattices by choosing a very small number of n
universal metric factors. Using another method, Okabe
Kichuchi @13# obtained universal finite-size scaling function
for the Ising model. In this paper, we will investigate th
universality ofz and the DFSSF for the Ising model on s
TP, and hc lattices with periodic boundary conditions.

The critical exponentz can be evaluated by studying th
relaxation of the magnetizationM on a lattice with a linear
dimensionL and N lattice sites, which has the following
form at the critical temperature Tc @2#:
M (Tc ,t)[M „L→`,Tc ,t)…;t2b/nz, whereb andn are uni-
versal static exponents forM and correlation length, respec
tively, and are 1/8 and 1 for the two-dimensional Isin
model, andt is the number of Monte Carlo steps with th
unit of one sweep of all lattice sites. In the damage spread
method @4# used in this paper, on a lattice ofN sites we
consider two spin configurations denoted byA and B. The
same sequence of the random numbersRi(t) is used to up-
date Ising spinss i

A ands i
B on thei th sites of systemA and

systemB, respectively, where 1< i<N. We use the follow-
ing heat bath dynamics for the evolution of systemA from a
state att to a state att1dt @16,17#:

s i
A~ t1dt !5sgn@Pi

A~ t !2Ri~ t !# ~1!

and

Pi
A~ t !5

exp@(ksk
A~ t !/T#

exp@(ksk
A~ t !/T#1exp@2(ksk

A~ t !/T#
, ~2!

where T is the temperature of the system,(k sums over
nearest neighbors of thei th site, anddt51/N. Similar evo-
lution equations may be written for systemB. In the evolu-
tion process, the Hamming distanceD(L,T,t) of two con-
figurations is defined by the equation

D~L,T,t !5K 1

N (
i 51

N

us i
A~ t !2s i

B~ t !u/2L . ~3!

ai
ss:
-
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With the heat bath algorithm, it is easy to prove that if t
initial configurations of two systems satisfy the conditi
s i

A(0)>s i
B(0) for 1< i<N, thens i

A(t)>s i
B(t) for any time

t.0 @18#. This property is called themonotonicity. With this
condition, we haveD(L,T,t)5@MA(L,T,t)2MB(L,T,t)#
/2[M (L,T,t), whereMA(L,T,t) and MB(L,T,t) are mag-
netizations of systemA and systemB, respectively. The
merit of this method is thatD(L,T,t) has less fluctuations
produced by random numbers during the evolution proc
and shows a better power law behavior for a much lon
simulation time.

We first study the Ising model on 100031000 sq, TP,
and hc lattices and sets i

A(0)52s i
B(0)51 as the initial

configurations. All simulations are performed at the critic
temperatures of the lattices@19#, namely,Tc52/ln(&11),
4/ln 3, and 2/ln(21)) for sq, TP, and hc lattices, respe
tively. The logarithmic-scaled relaxation curves forM (Tc ,t)
are shown in Fig. 1. The data for each curve come from
average of 2000 independent runs. Sinceb andn are univer-
sal, if z is universal, then all relaxation curves should ha
the same slope. Figure 1 shows that this is indeed the c
Using linear least squares fitting, we estimatez to be
2.16660.007, 2.16460.007, and 2.17060.010 for sq, TP,
and hc lattices, respectively, which are consistent with e
other and also consistent with other calculations@5–8#. To
test the reliability of our computer programs and the rand
number generator, we also use Glauber dynamics to calcu
M (Tc ,t) for the Ising model on a 100031000 TP lattice.
We find that we should have the average of 5000 runs in
Glauber dynamics in order to get precision comparable
that of the 2000 runs in the heat bath dynamics with
damage spreading technique. The agreement ofM (Tc ,t) ob-
tained by two methods is very well.

The universality ofz provides us a good basis to study t
universality of the DFSSF. Suzuki proposed that whenT is
nearTc , the magnetization of a system of linear dimensionL
at time t, M (L,T,t), may be written as@2#

M ~L,T,t !5L2b/n f „L1/n~T/Tc21!,tL2z
…. ~4!

We first consider the caseT5Tc and have

FIG. 1. lnM(Tc ,t) vs ln(t) for the Ising model on sq, TP, and h
lattices withL51000 andt510– 1000 MCS.
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M ~L,t ![M ~L,Tc ,t !5L2b/n f ~ tL2z!, ~5!

where L5AN. In @11#, HLC considered 5123512 sq,
4333500 TP, and 4333250 hc lattices, so that aspect ratio
of sq, TP, and hc lattices approximately have the proporti
1:)/2:) and the existence probabilityEp at critical points
are identical for all lattices@20#, which is a crucial step to
obtain universal finite-size scaling functions forEp and P.
To obtain the universal finite-size scaling function for t
Ising model, we should choose the ratios between as
ratios of different lattices to be approximately equal to tho
of @11#. Therefore, in the following we consider the Isin
model on 32351 and 643102 sq lattices, 27350 and
543100 TP lattices, and 27325 and 81375 hc lattices. The
relaxation ofM (L,t) of the Ising model on such lattices i
shown in Fig. 2~a!. Using the data of Fig. 2~a!, we plot
M (L,t)Lb/n as a function oftL2z and show the results in
Fig. 2~b!, which shows that two curves of the same latti
with different L fall onto an identical dynamic finite-size
scaling function and scaling functions for different lattic
structures are different. Following the case of static criti
phenomena@10,11#, we propose the following equation for
universal DFSSFF(x):

DiM ~L,t !5L2b/nF~CitL
2z!. ~6!

Here Di and Ci for i being 1, 2, and 3 are nonunivers
metric factor for sq, TP, and hc lattices, respectively. W
Di51 (i 51,2,3), C151, C251.22260.009, and
C350.69360.018, we get Fig. 2~c! which shows that data
for different lattices fall on a universal DFSSF.

Next we evaluateM (L,T,t) for the Ising model on a
32351 sq lattice, 27350 TP lattice, and 27325 hc lattice
for TÞTc and at some finite scaled times, sa
Cit iL

2z51.658g with g being 0.5, 1, and 2, which mean
that t155000g Monte Carlo steps~MCS! for the sq lattice,
t253332g MCS for the TP lattice, andt352773g MCS for
the hc lattice. Following@11#, we propose the following
equation for a universal DFSSFF8:

DiM ~L,T,t i !L
b/n5 f „EiL

1/n~T/Tc21!,Cit iL
2z
…

[F8„EiL
1/n~T/Tc21!…, ~7!

whereDi andEi for 1< i<3 are nonuniversal metric factors
With Di5Ei51 for 1< i<3 andCi of Fig. 2~c!, we show
DiM (L,T,t i)L

b/n as a function ofx5EiL
1/n(T/Tc21) in

Fig. 3, which shows that in the critical region and for a
value of g, three lattices have universal DFSSF’s f
M (L,T,t i).

Figure 3 suggests that asg→`, Di5Ei51 for 1< i<3
still gives a universal DFSSF forM (L,T,t i) and such non-
universal metric factors should be consistent with nonuniv
sal metric factors for the static finite-size scaling functi
~SFSSF! @11,13#. A cluster Monte Carlo method@21# which
can overcome the critical slowing down is used to calcul
the equilibrium magnetizationMe of the Ising model on
32351 sq, 27350 TP, and 27325 hc lattices to test this
idea. It has been found thatDi8MeL

b/n as a function of
x5Ei8L

1/n(T/Tc21) for three lattices has universal SFSSF
@22# with Di8'Ei8'1 for i 51, 2, and 3. The nonuniversa
metric factors for the Ising model obtained by Okabe a
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Kikuchi @13# are corresponding toD185E1851 for the sq
lattice, D2851.0260.02 andE2850.9660.03 for the TP lat-
tice, andD3850.9860.02 andE3851.0060.02 for the hc lat-
tice, which are very close toDi5Ei51 for 1< i<3 used in
Fig. 3 of this paper.

It is well known that the Ising model and the bond ra

FIG. 2. ~a! M (L,t) of Eq. ~5! vs t for the Ising model on sq, PT
and hc lattices.~b! M (L,t) vs tL2z. ~c! DiM (L,t) vs CitL

2z with
nonuniversal scaling factorsD15D25D351, C151 ~sq lattice!,
C251.22260.009~TP lattice!, andC350.69360.018~hc lattice!
dom percolation model~BRPM! correspond to theq-state
Potts model@19# with q being 2 and 1, respectively, so th
the bond probabilityp of the percolation model is related t
the temperatureT of the Potts model byp512exp(22/T)
@23#. HLC @11# obtained nonuniversal metric factors fo
BRPM, using (p2pc)L

1/n as a scaling variable. Recalcula
ing their result using (T/Tc21)L1/n as a scaling variable, we
find metric factors of D185E1851 for the sq lattice,
D2851.02160.021 andE2850.99660.034 for the TP lattice,
andD3850.98760.011 andE3851.01160.019 for the hc lat-
tice, which is presented in this paper. Our results imply t
nonuniversal metric factorsC1 andC2 considered in@10# are
equal to 1 or very close to 1 for sq, TP, and hc lattices.

From Eq.~5!, we may defineQ(L) and it scales withL as

Q~L ![E
0

`

M ~L,t !dt5(
t51

`

M ~L,t !;Lz2b/n. ~8!

FIG. 3. DiM (L,T,t i)L
b/n of Eq. ~7! vs EiL

1/n(T/Tc21) with
Di5Ei51 for 1< i<3 for the Ising model on sq, TP, and hc la
tices near the critical temperature of each lattice and for the sc
timesCit iL

2z51.658g with g being 0.5, 1, and 2. AtT5Tc , the
curves from top to bottom are forg being 0.5, 1.0, and 2.0, respec
tively.

FIG. 4. lnQ(L) vs lnL for 8<L<90.
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For eachL, we simulate 103– 106 sequences ofM at Tc and
continue the simulation untilM50. The average ofM in
these sequences givesM (L,t) of Eq. ~8!. The ln-ln plots of
Q(L) vs L for sq, TP, and hc lattices are shown in Fig.
The least squares fittings of such lines givez, which are
2.16860.005, 2.18060.009, and 2.16760.008 for sq, TP,
and hc lattices, respectively. Such values are consistent
each other and they are consistent withz evaluated from Fig.
1. This result implies that short time and long time behavi
of M are governed by the same dynamic critical exponenz.

In summary, Figs. 1 and 4 give convincing evidence t
z is universal and Figs. 2 and 3 show that the DFSSF
universal forT5Tc and TÞTc with only one nonuniversa
metric factor for scaled time of each lattice. Such results w
stimulate many researches on dynamic critical phenom
t-
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e.g., the universality ofz and the DFSSF in other physica
quantities, update algorithms, and dynamic systems~includ-
ing surfaces, interfaces, systems quenched fromT..Tc to
Tc @24#, etc.!, renormalization group approach to the unive
sal DFSSF, etc.
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