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Synchronization of spatiotemporal chaos with positive conditional Lyapunov exponents
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Computer simulations show that, following the scalar driving approach, synchronization of spatiotemporal
chaos can also be achieved in driven subsystem with positive conditional Lyapunov exponents. This is a result
of the so-called extreme trap. In the neighborhood of the maximum value, the higher-order term of difference
causes a first-order dissipative effect, which is not reflected by the conditional Lyapunov exponents. Hence the
actual average divergence rate is smaller than the maximum conditional Lyapunov number and thus causes the
driven system to synchronize even when the conditional Lyapunov exponents are positive.
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The synchronization of chaos@1,2# has attracted much
attention in recent years. Practically, it is motivated by
potential applications in secure communications@3–8#. In
the work done by Pecora and Carroll@1,2#, a chaotic system
is decomposed into two coupled subsystems, namely,
drive and response. When coupled with a common driv
signal, the response subsystem can synchronize with
driving one if all the conditional Lyapunov exponents a
negative. Recently, a number of synchronizing approac
have been proposed@9–16# and some experimental resul
have been reported@17–21#.

It is natural to speculate that the number of variables to
transmitted should be equal to that of the positive Lyapun
exponents in order to account for the same number of
stable directions along the chaotic trajectory. Lai and G
bogi analyzed the dynamics to synchronize hyperchaotic
tems@9# based on the controlling chaos method proposed
Ott, Grebogi, and Yorke@23#. In each iteration, an externa
control matrix is carefully calculated from the unstable ba
vectors. Then a control disturbance vector is computed
adjust the driven subsystem gradually. They showed that
subsystems can be in a synchronization state, while the
responding Lyapunov exponents are positive. Xiao, Hu,
Qu @8# reported that one can use an external chaotic con
key sequence to synchronize two identical spatiotemp
chaotic systems. This kind of synchronization is referred
as generalized synchronization@14,15#. To synchronize
N-dimensional hyperchaos, Penget al. @16# utilized a scalar
signal that is a function of the sender system withN
weighted parameters. To drive the response subsystem
otherN-dimensional vector is required. As a result, a total
2N parameters have to be found out in order to achieve
synchronization. The hyperchaotic synchronization discus
in Refs. @8, 16# is due to the fact that all the conditiona
Lyapunov exponents are negative.

The question raised by Pecora and Carroll@1# remains
unsolved: Can self-synchronization be accomplished in
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case of two or more positive exponents, but with only o
drive signal? If the stability of the response systems is c
sidered@1,2#, it seems that we are forbidden to synchroni
hyperchaos if the scheme of Pecora and Carroll is comple
followed. However, in this paper, we will give an affirmativ
answer by studying the coupled logistic map lattice. Furth
more, we will investigate a different synchronizing dynami
in which, by using a driving signal only, synchronization
spatiotemporal chaos can still be achieved even when s
of the conditional Lyapunov exponents are positive. It is
result of the extreme trap effect. Once the trajectory of
driven system approaches the maximum value, the hig
order term of the difference can no longer be neglected
causes a first-order dissipative effect that counteracts,
certain extent, the stretch effect of the linear term. This k
of dissipative effect is not reflected by the condition
Lyapunov exponent. Thus the actual average divergence
is smaller than the maximum conditional Lyapunov numb
As a result, even with positive conditional Lyapunov exp
nents, spatiotemporal chaos can still be synchronized by
scalar driving signal.

The dynamical behavior of the one-way coupled map
tice @22# has been investigated extensively and is now w
understood. Recently, the synchronization of its spatiote
poral chaos also has been discussed@8,9#. The spatiotempo-
ral chaotic lattice studied here is a periodic one-way coup
map lattice

x0~ t11!5~12e0! f „x0~ t !…1e0f „x1~ t !…,

xi~ t11!5~12e i ! f „xi~ t !…1e i f „xi 11~ t !… ~ i 51,...,N!,

xN11~ t !5x0~ t !. ~1!

The lattice can also be called the one-way coupled ring
tice @8# with lengthN11. Here we choosef (x)5ax(12x)
with a54.0, e050.01, ande i5e ( i 51,...,N). Following
Pecora and Carroll@1,2#, the scalar signalx0 is used as the
driving signal.

The Jacobian matrixD fW of the variational equations fo
the driven subsystem is a trigonometric matrix with the trig
nometric variables
2272 © 1997 The American Physical Society
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~D fW ! i i 5~12e! f 8~xi ! ~ i 51,...,N!. ~2!

As a result, the conditional Lyapunov exponents are

l i5 ln~12e!1 lna1 lim
T→`

1

T (
t51

T

lnu122xi~ t !u

~ i 51,...,N!. ~3!

To synchronize the spatiotemporal chaos, we
N5100. Whene.0.358, computer simulations show th
the two subsystems are always in synchronization by us
the scalar signalx0 only. In the synchronization state, all th
conditional Lyapunov exponents are negative. The two s
systems fail to be in synchronization whene,0.318, at
which all the conditional Lyapunov exponents are positiv

Now an interesting question arises: What will happen
the range 0.318,e,0.358? Numerical simulations sho
that complex and different synchronizing phenomena can

FIG. 1. Differences between two spatiotemporal chaotic coup
logistic map lattices in spacei and time t with e50.345 and
N5100. ~a! Time from 100 000 to 100 500 and~b! time from
400 000 to 400 500.
t

g

b-
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found there. For example, withe50.345, the two sub-
systems can be in complete synchronization with 75 posi
conditional Lyapunov exponents. The differencesD(xi) be-
tween the two spatiotemporal chaos in spacei and timet are
shown in Figs. 1~a! and 1~b!. Simulations show that the spa
tiotemporal chaos in the map lattice synchronizes fromxN to
x1 in order. This is because the latticexi of the response
system is driven by the driving signal through the casca
connection, i.e.,xN→xN21→•••→xi→•••→x1 . Eventually,
all the variables of the two subsystems are in synchron
tion. Figure 2 shows a plot of time versus the logarithm
the average absolute differenceD̄(t), which is defined as

D̄~ t !5
1

N (
i 51

N

uxi8~ t !2xi~ t !u. ~4!

At time t5520 000, all the coupled map lattices are in sy
chronization states and the average absolute differenc
smaller than 10218, which cannot be distinguished in ou
computer. However, one can see that it may take a long t
to reach synchronization because of the large number of
lattices. In Fig. 3 the number of synchronizing map lattic
M1 and the number of positive conditional Lyapunov exp
nentsM2 are plotted againste in the range 0.31–0.36.

This result conflicts with our knowledge of chaotic sy
chronization. To comprehend it, we now consider the s
plest case of the two-dimensional coupled map lattice,
N51. In other words, the two subsystems are both o
dimensional, namely,x1 and x18 . Simulations show that
when e50.2, synchronization is achieved withl50.100,
while the two Lyapunov exponents of the systemx0 andx1
are 0.604 and 0.103, respectively; whene50.335, synchro-
nization occurs atl50.023 with the two Lyapunov expo
nents of the systemx0 andx1 being 0.637 and 0.019, respe
tively.

Suppose two trajectories start at nearby poi
Dx1(0)5x18(0)2x1(0). Thevariational equation of motion
is

Dx1~ t11!5~12e! f 8„x1~ t !…Dx1~ t !, ~5!

d

FIG. 2. Plot of time versus the logarithm of the average abso
differenceD̄(t) with e50.345 andN5100. The outer plot is drawn
with time from 490 000 to 511 000 and the inner plot is drawn w
time from 0 to 511 000.
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with the higher-order term of the difference

o„Dx1~ t !…52a~12e!D2x1~ t !, ~6!

which always has been neglected by us. Now conside
special case thatx11x1851. In this case, we haveDx50 in
next iteration asf (x)5 f (12x) for the logistic map. As a
result, the systems immediately fall into the synchronizat
state. We call this the trap. Ifx11x18→1, we haveDx→0 in
the next iteration. This is because the higher-order te
o(Dx1) counteracts the linear term of the difference a
leads to convergence. But one can see that this kind of c
vergence is not reflected by the conditional Lyapunov ex
nent defined in Eq.~3!. In other words, it implies that the
actual average divergence rate can be smaller than the
ditional Lyapunov numberel.

However, with a set of random initial values, the relatio
ship x11x1851.0 is seldom satisfied. So it seems that
traps often lead to suppression of chaos inDx1 only, but
cannot result in synchronization. Simulations show that
trap at the maximum valuex15x1850.5, which is referred to
as the extreme trap, plays a different role in leading the s
tem to synchronization. The maximum of the functionf (x)
is at xm50.5, with f 8(xm)50 and f 9(xm)52a. Suppose
that the two trajectories are in the neighborhood ofxm ; we
get f 8„x(t)…52a„xm2x(t)…. Combining Eqs.~5! and~6!, we
have

Dx1
II ~ t11!5a~12e!@2„xm2x1~ t !…2Dx1~ t !#Dx1~ t !.

~7!

One can see that whenx1(t)→xm , the term 2„xm2x1(t)…
can be of the same order asDx1(t), which means that the
second-order nonlinear termo(Dx1) cannot be neglected in
this case. All the possible distributions ofx1 andx18 can be
classified into two cases:~a! the lower point is at the left-
hand side ofxm and ~b! the upper point is at the right-han
side of xm . In case~a!, without loss of generality, suppos
that x1(t) is the lower point@i.e., Dx1(t).0]. Equation~7!
shows that the second-order term counteracts the first-o
term and in fact contributes to the convergence wh
2„xm2x1(t)… is of the same order asDx1(t). The same re-

FIG. 3. Statistical results of the number of synchronizing m
latticesM1 and that of the positive conditional Lyapunov expone
M2 againste with N5100.
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sult can be obtained in case~b! if we let x1(t) be the upper
point. As a result, we always have

Dx1
II ~ t11!5A~ t !a~12e!„xm2x1~ t !…Dx1~ t !, ~8!

where the proportional parameterA(t) is smaller than 1. In
particular, if the distribution ofx1 andx18 on the two sides of
x0 is close to a symmetrical manner, we haveA!1. Com-
pare Eq.~8! with Eq. ~5!, one can see that if the trajectorie
are in the neighborhood ofxm , the nonlinear second-orde
term counteracts the linear term of the difference and cau
a deeper convergence, which is not reflected by the co
tional Lyapunov exponent defined in Eq.~3!. We call this
effect the extreme trap. As a consequence, if the syst
approach the extreme value with high frequency, the ac
average divergence rate can be smaller than the conditi
Lyapunov numberel. This implies that when the conditiona
Lyapunov exponent is slightly larger than zero, synchroni
tion may happen.

An example is shown in Fig. 4, in which the trajecto
x1 , the average value (x11x18)/2, the slopef 8(x1), and the
logarithm of the absolute differenceuDx1u are compared.
One can see that whenx1'x18'0.5, the slopef 8(x1)'0 and
it causes the logarithm of the absolute differenceuDx1u to
decrease rapidly in the next iteration. In some cases, it e
decreases by 1022 when the states are closer to the extre
trap.

Although these are the results of the simple tw
dimensional case, they can easily be extended to the ca
a high-dimensional coupled logistic map lattice. We can
gard the (N11)-dimensional coupled logistic map lattice a
the Nth-order cascade connections of one-dimensional c
Due to the extreme trap effect, once the actual average
vergence rate is smaller than unity, spatiotemporal chaos
be synchronized even when the maximum conditio
Lyapunov exponents are positive.

It should be emphasized that the dynamics of synchro
ing hyperchaos with positive conditional Lyapunov expone
is not limited to the coupled logistic map lattice. We can a

p
FIG. 4. Plot of time versus~a! the trajectoryx1 and the average

value (x11x18)/2 and~b! the slopef 8(x1) and the logarithm of the
absolute differenceuDx1u, for the two-dimensional coupled ma
with a54.0, e050.01, and e50.2. The initial values are
x050.33, x150.24, andx1850.51.
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observe this phenomenon in some other maps. An examp
x exp@a(12x)#. Our simulations show that the logistic ma
seems to be the most typical example for this kind of s
chronization because its higher-order term correspond
second-order only.

In conclusion, following the scheme proposed by Pec
and Carroll, we use the coupled logistic map lattice to sh
that one can synchronize the hyperchaotic subsystems w
single variable only. Furthermore, we have presented a
ferent dynamics to synchronize the spatiotemporal ch
with positive conditional Lyapunov exponents. This is a
sult of the extreme trap. It means that, near the extre
value, the higher-order term causes a first-order dissipa
effect that cannot be reflected by the conditional Lyapun
exponent. As a result, the actual average divergence ra
smaller than the conditional Lyapunov number. Once
chaotic trajectory wanders with high frequency near the
z,

ev

s.
is

-
to

a
w

a
if-
s

-
e

ve
v
is

e
-

treme trap, the driven subsystem can still synchronize w
the driving system if the maximum conditional Lyapuno
exponent is slightly larger than zero. Our further stud
show that the dynamics of synchronizing chaos with posit
conditional Lyapunov exponents is a widely existing ph
nomenon. For the case of synchronous chaos in coupled
cillator systems, which has been studied extensively@24#, we
find that such a phenomenon exists in the coupled logi
oscillator systems@25#. Furthermore, it is pointed out tha
noise-induced synchronization can also be obtained wit
positive conditional Lyapunov exponent@26#. These results
show that the conditional Lyapunov exponents cannot
used as a criterion for synchronous chaotic systems.

The authors would like to thank City University of Hon
Kong for providing the Strategic Research Grant for th
work.
tt.

,

zu,
@1# L. M. Pecora and T. L. Carroll, Phys. Rev. Lett.64, 821
~1990!.

@2# L. M. Pecora and T. L. Carroll, Phys. Rev. A44, 2374~1991!.
@3# L. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlit

Int. J. Bifurc. Chaos2, 709 ~1992!.
@4# K. M. Cuomo and A. V. Openheim, Phys. Rev. Lett.71, 65

~1993!.
@5# R. Lozi and L. O. Chua, Int. J. Bifurc. Chaos3, 1319~1993!.
@6# C. W. Wu and L. O. Chua, Int. J. Bifurc. Chaos3, 1619

~1993!.
@7# L. Kovarev and U. Parlitz, Phys. Rev. Lett.74, 5028~1995!.
@8# J. H. Xiao, G. Hu, and Z. Qu, Phys. Rev. Lett.77, 4162

~1996!.
@9# Y. C. Lai and C. Grebogi, Phys. Rev. E50, 1894~1994!.

@10# K. Pyragas, Phys. Lett. A181, 203 ~1993!.
@11# R. Brown, N. F. Rulkov, and E. R. Tracy, Phys. Rev. E49,

3784 ~1994!.
@12# J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys. Rev. E50,

1874 ~1994!.
@13# M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. R

Lett. 76, 1804~1996!.
@14# H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phy

Rev. E53, 4528~1996!.
.

@15# L. Kocarev and U. Parlitz, Phys. Rev. Lett.76, 1816~1996!.
@16# J. H. Peng, E. J. Ding, M. Ding, and W. Yang, Phys. Rev. Le

76, 904 ~1996!.
@17# T. C. Newell, P. M. Alsing, A. Gavrielides, and V. Kovanis

Phys. Rev. Lett.72, 1647~1994!.
@18# T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimi

Phys. Rev. Lett.72, 3502~1994!.
@19# R. Roy and K. S. Thornbrug, Jr., Phys. Rev. Lett.72, 2009

~1994!.
@20# D. W. Peterman, M. Ye, and P. E. Wigen, Phys. Rev. Lett.74,

1740 ~1995!.
@21# U. Ernst, K. Pawelzik, and T. Geisel, Phys. Rev. Lett.74, 1570

~1995!.
@22# T. Bohr and O. B. Christensen, Phys. Rev. Lett.63, 2161

~1989!.
@23# E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett.64, 1196

~1990!.
@24# J. F. Heahy, T. L. Carroll, and L. M. Pecora, Phys. Rev. E50,

1874 ~1994!.
@25# J. W. Shuai, K. W. Wong, and L. M. Cheng, Phys. Rev. E~to

be published!.
@26# J. W. Shuai and K. W. Wong~unpublished!.


