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Synchronization of spatiotemporal chaos with positive conditional Lyapunov exponents
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Computer simulations show that, following the scalar driving approach, synchronization of spatiotemporal
chaos can also be achieved in driven subsystem with positive conditional Lyapunov exponents. This is a result
of the so-called extreme trap. In the neighborhood of the maximum value, the higher-order term of difference
causes a first-order dissipative effect, which is not reflected by the conditional Lyapunov exponents. Hence the
actual average divergence rate is smaller than the maximum conditional Lyapunov number and thus causes the
driven system to synchronize even when the conditional Lyapunov exponents are positive.
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The synchronization of chadd,2] has attracted much case of two or more positive exponents, but with only one
attention in recent years. Practically, it is motivated by thedrive signal? If the stability of the response systems is con-
potential applications in secure communicatid8s-8]. In  sidered[1,2], it seems that we are forbidden to synchronize
the work done by Pecora and Carrfdll2], a chaotic system hyperchaos if the scheme of Pecora and Carroll is completely
is decomposed into two coupled subsystems, namely, thillowed. However, in this paper, we will give an affirmative
drive and response. When coupled with a common drivinganswer by studying the coupled logistic map lattice. Further-
signal, the response subsystem can synchronize with th@ore, we will investigate a different synchronizing dynamics
driving one if all the conditional Lyapunov exponents arein which, by using a driving signal only, synchronization of
negative. Recently, a number of synchronizing approachespatiotemporal chaos can still be achieved even when some
have been proposd®-16] and some experimental results of the conditional Lyapunov exponents are positive. It is a
have been reportgd 7—21. result of the extreme trap effect. Once the trajectory of the

It is natural to speculate that the number of variables to belriven system approaches the maximum value, the higher-
transmitted should be equal to that of the positive Lyapunowrder term of the difference can no longer be neglected. It
exponents in order to account for the same number of uncauses a first-order dissipative effect that counteracts, to a
stable directions along the chaotic trajectory. Lai and Grecertain extent, the stretch effect of the linear term. This kind
bogi analyzed the dynamics to synchronize hyperchaotic sysf dissipative effect is not reflected by the conditional
tems[9] based on the controlling chaos method proposed by.yapunov exponent. Thus the actual average divergence rate
Ott, Grebogi, and York¢23]. In each iteration, an external is smaller than the maximum conditional Lyapunov number.
control matrix is carefully calculated from the unstable baseAs a result, even with positive conditional Lyapunov expo-
vectors. Then a control disturbance vector is computed t#ents, spatiotemporal chaos can still be synchronized by the
adjust the driven subsystem gradually. They showed that thecalar driving signal.
subsystems can be in a synchronization state, while the co- The dynamical behavior of the one-way coupled map lat-
responding Lyapunov exponents are positive. Xiao, Hu, andice [22] has been investigated extensively and is now well
Qu [8] reported that one can use an external chaotic contrainderstood. Recently, the synchronization of its spatiotem-
key sequence to synchronize two identical spatiotemporgdoral chaos also has been discusg&8]. The spatiotempo-
chaotic systems. This kind of synchronization is referred tgal chaotic lattice studied here is a periodic one-way coupled
as generalized synchronizatiof14,15. To synchronize map lattice
N-dimensional hyperchaos, Pergal. [16] utilized a scalar
signal that is a function of the sender system with Xo(t+1)=(1— o) f(Xo(t))+ €of (X1(1)),
weighted parameters. To drive the response subsystem, an-
otherN-dimensional vector is required. As a result, a total of Xi(t+21)=(1—¢&)f(x(1))+&f(x11(1)) (i=1,...N),
2N parameters have to be found out in order to achieve the

synchronization. The hyperchaotic synchronization discussed Xn+1(t) =Xo(1). (0]
in Refs.[8, 16] is due to the fact that all the conditional
Lyapunov exponents are negative. The lattice can also be called the one-way coupled ring lat-

The question raised by Pecora and Carfdl]l remains tice [8] with lengthN+1. Here we choosé(x) =ax(1—x)
unsolved: Can self-synchronization be accomplished in thavith a=4.0, €,=0.01, ande;=€ (i=1,...N). Following
Pecora and Carro[l1,2], the scalar signak, is used as the

driving signal.
*Electronic address: eejws@cityu.edu.hk, jwshuai@xmu.edu.cn  The Jacobian matri0f of the variational equations for
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FIG. 2. Plot of time versus the logarithm of the average absolute
differenceA(t) with e=0.345 and\N=100. The outer plot is drawn
with time from 490 000 to 511 000 and the inner plot is drawn with
time from 0 to 511 000.

found there. For example, wite=0.345, the two sub-
systems can be in complete synchronization with 75 positive
conditional Lyapunov exponents. The differendes;) be-
~ tween the two spatiotemporal chaos in spaead timet are

= shown in Figs. (a) and Xb). Simulations show that the spa-

B tiotemporal chaos in the map lattice synchronizes fsqnto
;} Xy in order. This is because the latticg of the response
F system is driven by the driving signal through the cascade
connection, i.e Xy—Xy_1— - —X;— -+ —X4. Eventually,
all the variables of the two subsystems are in synchroniza-
tion. Figure 2 shows a plot of time versus the logarithm of

the average absolute differendét), which is defined as

| = S e g
0 400000 ¢ 400500 A(t):NE X/ (1) —x;(1)]. (4)
i=1

FIG 1. Differe.nces.betwee.n two spatiotemporal chaotic coupledat time t=520 000, all the coupled map lattices are in syn-
logistic map lattices in space and timet with €=0.345 and  cpyropjzation states and the average absolute difference is
2'020100000' t((?) 4g|0m5eo(§rom 100000 to 100500 anth) time from  gpyjer than 108, which cannot be distinguished in our

' computer. However, one can see that it may take a long time
to reach synchronization because of the large number of map

(Df)i=(1-ef'(x) (i=1...N). (2)  Jlattices. In Fig. 3 the number of synchronizing map lattices
. M, and the number of positive conditional Lyapunov expo-
As a result, the conditional Lyapunov exponents are nentsM, are plotted against in the range 0.31—0.36.
T This result conflicts with our knowledge of chaotic syn-
\i=In(1—e)+Ina+ lim E 2 In|1—2x,(1)| chronization. To comprghend. it, we now consider the s@m—
Toow T i=1 plest case of the two-dimensional coupled map lattice, i.e.,

N=1. In other words, the two subsystems are both one-
(i=1,...N). (3 dimensional, namelyx,; and x;. Simulations show that
when €=0.2, synchronization is achieved with=0.100,

To synchronize the spatiotemporal chaos, we sewhile the two Lyapunov exponents of the systggmandx;
N=100. Whene>0.358, computer simulations show that are 0.604 and 0.103, respectively; when 0.335, synchro-
the two subsystems are always in synchronization by usingization occurs ah =0.023 with the two Lyapunov expo-
the scalar signat, only. In the synchronization state, all the nents of the system, andx; being 0.637 and 0.019, respec-
conditional Lyapunov exponents are negative. The two subtively.
systems fail to be in synchronization wher<0.318, at Suppose two trajectories start at nearby points
which all the conditional Lyapunov exponents are positive. Ax;(0)=x;(0)—x4(0). Thevariational equation of motion

Now an interesting question arises: What will happen inis
the range 0.318 ¢<0.358? Numerical simulations show
that complex and different synchronizing phenomena can be Ax (t+1)=(1—e)f" (x1(t))Ax4(1), (5)
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FIG. 3. Statistical results of the number of synchronizing map ) )
latticesM; and that of the positive conditional Lyapunov exponents ~ FIG- 4. Plot of time versusa) the trajectoryx; and the average

M, againste with N= 100. value (x;+x;)/2 and(b) the slopef’(x,) and the logarithm of the
absolute differencéAx,|, for the two-dimensional coupled map
with the higher-order term of the difference with a=4.0, ¢,=0.01, and €=0.2. The initial values are

Xo=0.33,x,=0.24, andx;=0.51.
0(Axy(1))= —a(1-e)A%y(t), (6)
sult can be obtained in cashb) if we let x,(t) be the upper

which always has been neglected by us. Now consider Roint. As a result, we always have
special case that; +x;=1. In this case, we havax=0 in
next iteration asf(x)=f(1—x) for the logistic map. As a Axy (t+1)=A(Da(1—€) (Xm—X1()AX4 (1),  (8)
result, the systems immediately fall into the synchronization
state. We call this the trap. ¥; +x;— 1, we haveAx—0 in  where the proportional parameta(t) is smaller than 1. In
the next iteration. This is because the higher-order ternparticular, if the distribution ok, andx; on the two sides of
0(Ax;) counteracts the linear term of the difference andx, is close to a symmetrical manner, we hak¥&l. Com-
leads to convergence. But one can see that this kind of corpare Eq.(8) with Eq. (5), one can see that if the trajectories
vergence is not reflected by the conditional Lyapunov expoare in the neighborhood of,,,, the nonlinear second-order
nent defined in Eq(3). In other words, it implies that the term counteracts the linear term of the difference and causes
actual average divergence rate can be smaller than the coa-deeper convergence, which is not reflected by the condi-
ditional Lyapunov numbee*. tional Lyapunov exponent defined in E). We call this

However, with a set of random initial values, the relation-effect the extreme trap. As a consequence, if the systems
ship x; +x;=1.0 is seldom satisfied. So it seems that theapproach the extreme value with high frequency, the actual
traps often lead to suppression of chaosAir; only, but  average divergence rate can be smaller than the conditional
cannot result in synchronization. Simulations show that thd-yapunov numbee*. This implies that when the conditional
trap at the maximum value, = x;=0.5, which is referred to  Lyapunov exponent is slightly larger than zero, synchroniza-
as the extreme trap, plays a different role in leading the systion may happen.
tem to synchronization. The maximum of the functibx) An example is shown in Fig. 4, in which the trajectory
is at X,,=0.5, with f’(x,;)=0 and f"(x,,)=—a. Suppose X, the average valuex¢+x;)/2, the slopef’(x;), and the
that the two trajectories are in the neighborhoodkgf we  logarithm of the absolute difference\x;| are compared.
getf’ (x(t))=2a(x,— X(t)). Combining Egs(5) and(6), we  One can see that when~x;~0.5, the slopd’(x,)~0 and

have it causes the logarithm of the absolute differefdex;| to
decrease rapidly in the next iteration. In some cases, it even
Ax'l'(t+ D=a(l—e)[2(Xn—X1(1))— Ax1(t) JAX(1). decreases by 1¢ when the states are closer to the extreme
(7)  trap.

Although these are the results of the simple two-
One can see that when (t)— Xy, the term Zx,—X;(t))  dimensional case, they can easily be extended to the case of
can be of the same order &, (t), which means that the a high-dimensional coupled logistic map lattice. We can re-
second-order nonlinear tero(Ax;) cannot be neglected in gard the N+ 1)-dimensional coupled logistic map lattice as
this case. All the possible distributions »f andx; can be  the Nth-order cascade connections of one-dimensional case.
classified into two casega) the lower point is at the left- Due to the extreme trap effect, once the actual average di-
hand side of,, and (b) the upper point is at the right-hand vergence rate is smaller than unity, spatiotemporal chaos can
side ofx,,. In case(a), without loss of generality, suppose be synchronized even when the maximum conditional
thatx,(t) is the lower poinfi.e., Ax,(t)>0]. Equation(7) Lyapunov exponents are positive.
shows that the second-order term counteracts the first-order It should be emphasized that the dynamics of synchroniz-
term and in fact contributes to the convergence whering hyperchaos with positive conditional Lyapunov exponent
2(xm—X4(t)) is of the same order asx,(t). The same re- is not limited to the coupled logistic map lattice. We can also
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observe this phenomenon in some other maps. An example feeme trap, the driven subsystem can still synchronize with
x eXga(1—x)]. Our simulations show that the logistic map the driving system if the maximum conditional Lyapunov
seems to be the most typical example for this kind of syn-exponent is slightly larger than zero. Our further studies
chronization because its higher-order term corresponds tehow that the dynamics of synchronizing chaos with positive
second-order only. conditional Lyapunov exponents is a widely existing phe-
In conclusion, following the scheme proposed by Pecorgyomenon. For the case of synchronous chaos in coupled os-
and Carroll, we use the coupled logistic map lattice to showsjjjator systems, which has been studied extensif24, we
that one can synchronize the hyperchaotic subsystems withigq that such a phenomenon exists in the coupled logistic
single variable only. Furthermore, we have presented a difyggillator systemg$25]. Furthermore, it is pointed out that
ferent dynamics to synchronize the spatiotemporal chaoggise-induced synchronization can also be obtained with a
with positive conditional Lyapunov exponents. This is a ré-positive conditional Lyapunov exponef6]. These results
sult of the extreme trap. It means that, near the extremgnow that the conditional Lyapunov exponents cannot be

value, the higher-order term causes a first-order dissipatiVgsed as a criterion for synchronous chaotic systems.
effect that cannot be reflected by the conditional Lyapunov

exponent. As a result, the actual average divergence rate is The authors would like to thank City University of Hong
smaller than the conditional Lyapunov number. Once th&Kong for providing the Strategic Research Grant for this
chaotic trajectory wanders with high frequency near the exwork.
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