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It is shown that, by applying a principle of information theory, one obtains Berry’s conjecture regarding the
high-lying quantal energy eigenstates of classically chaotic systems.@S1063-651X~97!03708-2#
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In many problems of physical interest, it is necessary
abandon a search for the exact solution, and to turn instea
a statistical approach. This involves mentally replacingthe
answer which we seek, with an ensemble of possibilit
then adopting the attitude that each member of the ensem
is an equally likely candidate for the true solution. T
choice of ensemble then becomes centrally important,
hereinformation theoryprovides a reliable guiding principle
The principle instructs us to choose the least biased ense
~the one which minimizes information content!, subject to
some relevant constraints. A well-known illustration arises
classical statistical mechanics: the least biased distributio
phase space, subject to a fixed normalization and ave
energy, is the canonical ensemble of Gibbs@1#. ~The prin-
ciple of least bias, or maximum entropy, arises innonequi-
librium situations as well@2#.! Another example appears i
random matrix theory: by minimizing the information co
tent of an ensemble of matrices, subject to various sim
constraints, one obtains the standard random matrix
sembles@3#. The purpose of this paper is to point out th
Berry’s conjecture@4# regarding the energy eigenstates
chaotic systems, also emerges naturally from thisprinciple of
least bias.

Berry’s conjecture makes two assertions regarding
high-lying energy eigenstatescE of quantal systems whos
classical counterparts are chaotic and ergodic:~1! Such
eigenstates appear to be random Gaussian functionsc(x) on
configuration space,~2! with two-point correlations given by

c* S x2
s

2DcS x1
s

2D5
1

SE dpeip•s/\d„E2H~x,p!…. ~1!

Here, E is the energy of the eigenstate,H(x,p) is the
classical Hamiltonian describing the system, a
S[*dx*dpd„E2H(x,p)…; if the Hamiltonian is time-
reversal invariant, thenc(x) is a real random Gaussian fun

*Electronic address: chrisj@t6-serv.lanl.gov
561063-651X/97/56~2!/2254~3!/$10.00
o
to

,
ble

d

ble

n
in
ge

le
n-
t
f

e

d

tion, otherwisec(x) is a complex random Gaussian functio
Berry’s conjecture thus uniquely specifies, for a given ene
E, an ensembleME of wave functionsc(x) @i.e.,ME is the
Gaussian ensemble with two-point correlations given by
~1!#, and states that an eigenstatecE at energyE will look as
if it were chosen randomly from this ensemble.

The correlations given by Eq.~1! are motivated by con-
sidering the Wigner function@5# corresponding to the eigen
statecE ,

WE~x,p![~2p\!2DE dscE* S x2
s

2DcES x1
s

2De2 ip•s/\,

~2!

whereD is the dimensionality of the system. For high-lyin
statescE , this Wigner function, after local smoothing in th
x variable, is expected to converge to the microcanon
distribution in phase space@4,6–8#:

WE
sm~x,p!'

1

S
d„E2H~x,p!…. ~3!

By taking the Fourier transform of both sides of Eq.~1!, and
then smoothing locally in thex variable@9# rather than av-
eraging over the ensembleME , it is straightforward to show
that the correlations given by Eq.~1! produce the desired
result, Eq.~3!.

The assertion thatcE(x) is a Gaussian random function
most easily motivated by viewingcE(x), locally, as a super-
position of de Broglie waves with random phases@4#. When
the number of these waves becomes infinite, the central l
theorem tells us thatcE(x) will look like a Gaussian random
function.

It should be noted here that, recently, the spatial corre
tions of chaotic wave functions have been studied within
alternative, ‘‘supersymmetric’’ framework@10#. The results
were found to be in agreement with Berry’s conjecture, a
also with microwave cavity experiments.
2254 © 1997 The American Physical Society
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We can interpret Berry’s conjecture as making a spec
prediction about the eigenstatecE : once we compute
cE(x) by solving the Schro¨dinger equation, we can subject
to various tests~see, e.g., Ref.@11#!, and we will observe
that, yes,cE(x) really behaves as a Gaussian random fu
tion with the two-point correlations given by Eq.~1!. Alter-
natively, we can interpret Berry’s conjecture as providing
with the appropriate ensemble of wave functions from wh
to choose a surrogate for the true eigenstatecE , if we cannot
~or do not care to! actually solve forcE(x). In this interpre-
tation,ME stands tocE much as, in classical statistical me
chanics, the canonical ensemble stands to the instantan
microscopic state of a system at a given temperature.
within the context of the second point of view that we w
show that Berry’s conjecture may be ‘‘derived’’ from info
mation theory. Specifically, we will show that, by applyin
the principle of least bias, and accepting the correlati
given by Eq.~1! as a set of relevant constraints, we are
immediately to a statement of Berry’s conjecture.

We thus pose the following question. Suppose we hav
quantal HamiltonianĤ, whose classical counterpartH(x,p)
is chaotic and ergodic; and suppose we are told that a h
lying eigenstate ofĤ—represented by a wave functio
cE(x)—exists at energyE. Given this limited knowledge
how do we go about making a ‘‘best guess’’ forcE(x)? By
a best guess, we mean not a single wave function, but ra
a probability distributionPE@c# in Hilbert space, such that
by sampling randomly from this distribution, we are maki
a guess which takes into account our limited knowledge
gardingcE , but is otherwise unbiased. Information theo
provides a general prescription for constructing such a
tribution. First, we quantify the informationI contained in an
arbitrary distributionP@c#. Next, we identify the constraint
on P@c# imposed by our limited knowledge. Finally, w
minimize I $P@c#% subject to these constraints. The resulti
distribution PE@c# is the least biased one, consistent w
our limited knowledge. Let us now implement this proc
dure.

Given a probability distributionP@c# in Hilbert space,
the amount of informationI contained in this distribution is

I $P@c#%5E P@c# lnP@c#. ~4!

The integral is over all square-integrable functionsc(x),
wherec(x) is taken to be real if the Hamiltonian is time
reversal invariant, and complex otherwise.@The integral in
Eq. ~4! requires a measuredm on Hilbert space. We take th
usual Euclidean measure of field theories@12#: a wave func-
tion is represented by its value atN discrete points in con-
figuration space, and the set of these values is regarded
~real or complex! Cartesian vector. Hence,dm
5dc1dc2 , . . . ,dcN , wherec i[c(xi). The limit N→` is
finally taken.#

Since we will want to minimizeI $P% subject to relevant
constraints on the distributionP@c#, our next task is to iden-
tify those constraints. The first is simply thatP ought to be
normalized to unity

E P@c#51. ~5!
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The second constraint is that embodied by Eq.~1!

E P@c#c* ~x1!c~x2!5
1

SE dpeip•s/\d„E2H~x,p!…,

~6!

where s[x22x1 and x[(x11x2)/2. ~Both x1 and x2 are
assumed to be within the classically allowed region; outs
this region, the wave function is taken to be zero.! As ex-
plained briefly above~see also Refs.@4,7,8#!, this constraint
is motivated by the expectation that the smoothed Wig
function corresponding tocE will approximate the microca-
nonical distribution in phase space@Eq. ~3!#. Note that Eq.
~6! does not represent asingleconstraint, but rather a set o
constraints, where each member of the set is specified
(x1 ,x2).

Finally, we minimize the informationI $P@c#%, subject to
the constraints in Eqs.~5! and ~6!. We do this in the usua
way, by introducing Lagrange multipliers. That is, we defi

A$P@c#%[I $P@c#%1lE P@c#

1E E L~x1 ,x2!E P@c#c* ~x1!c~x2!

5E P@c#S lnP@c#1l

1E E L~x1 ,x2!c* ~x1!c~x2! D , ~7!

wherel is the Lagrange multiplier associated with Eq.~5!,
L(x1 ,x2) is the set of multipliers associated with Eq.~6!,
and** is shorthand for*dx1*dx2. For a given distribution
P@c#, the change inA induced by a small variationdP@c#
is, to first order indP@c#,

dA5E dPS lnP1~l11!1E E L~x1 ,x2!c* ~x1!c~x2! D .

~8!

To minimizeA @i.e., to minimizeI subject to the constraint
imposed by Eqs.~5! and ~6!# we insist thatdA50 for all
variationsdP. From Eq.~8!, it follows that the distribution
PE@c# which accomplishes this minimization has the form

PE@c#5Nexp2E E L~x1 ,x2!c* ~x1!c~x2!. ~9!

The constantN is determined by normalization@Eq. ~5!#,
whereas the two-point correlations@Eq. ~6!# uniquely deter-
mineL(x1 ,x2). „Specifically, the kernelL(x1 ,x2) is just the
inverse ofc* (x1)c(x2), divided by 2 if H is time-reversal
invariant @13#.…

OnceN andL(x1 ,x2) are determined, Eq.~9! completely
specifies a probability distributionPE on Hilbert space. By
randomly sampling from this distribution, we generate a ra
dom function c(x), with two-point correlations
c* (x1)c(x2) which ~by construction! satisfy Eq.~1!. But is
a function sampled fromPE a Gaussianrandom function?
The answer is yes@11,13#. For a random functionf (x), let
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Pn( f 1 , . . . ,f n) denote the joint probability distribution o
finding thatf (xi)5 f i , i 51, . . . ,n. Then f (x) is Gaussian if
Pn is a Gaussian in (f 1 , . . . ,f n) space, for any
(x1 ,x2 , . . . ,xn), n>1 @14#. A function c(x) obtained by
sampling the probability distribution given by Eq.~9! satis-
fies this condition.

We thus arrive at the following conclusion: given the lim

ited knowledge that an eigenstate ofĤ exists at energyE, the
least biased guess forcE(x) ~by reasonable construction! is a
Gaussian random function, with the two-point correlatio
given by Eq.~1!. This is just another way of stating Berry’
conjecture.~Instead of saying thatcE ‘‘looks like’’ a Gauss-
ian random function, we say that a Gaussian random fu
tion is a ‘‘best guess’’ forcE .) In this sense, Berry’s con
jecture allows for a statistical description of eigenfunctio
by providing us with the appropriate ensembleME in Hil-
bert space to use as a stand-in for the true energy eigen
cE . When the latter is unobtainable@15# calculations per-
formed withME may be tractable@16#, just as the canonica
ensemble of ordinary statistical mechanics makes poss
s
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accurate computations without demanding detailed kno
edge of the microscopic state of the system.

The notion that Berry’s conjecture is gainfully viewed
a statistical theory—in analogy with classical statistic
mechanics, or random matrix theory—has been a guid
theme of this paper. As stressed in the opening paragr
the first order of business with such theories is to identify
proper ensemble to use in place of an exact description of
object of study~be it the microscopic state of a many-bod
system, or a complicated Hermitian matrix, or a quan
eigenstate!. A common feature of statistical theories is th
this ensemble follows in a natural way from the informati
theoretic principle of least bias. The purpose of this pa
has simply been to point out that Berry’s conjecture sha
this feature.
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