PHYSICAL REVIEW E VOLUME 56, NUMBER 2 AUGUST 1997

BRIEF REPORTS

Brief Reports are accounts of completed research which do not warrant regular articles or the priority handling given to Rapid
Communications; however, the same standards of scientific quality apply. (Addenda are included in Brief Reports.) A Brief Report may be
no longer than four printed pages and must be accompanied by an abstract. The same publication schedule as for regular articles is
followed, and page proofs are sent to authors.

Berry’s conjecture and information theory

C. Jarzynslfi
Theoretical Astrophysics, T-6, MS B288, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 28 March 1997

It is shown that, by applying a principle of information theory, one obtains Berry’s conjecture regarding the
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In many problems of physical interest, it is necessary taion, otherwise/(x) is a complex random Gaussian function.
abandon a search for the exact solution, and to turn instead ®erry’s conjecture thus uniquely specifies, for a given energy
a statistical approach. This involves mentally replading  E, an ensembleVii of wave functionsy(x) [i.e., Mg is the
answer which we seek, with an ensemble of possibilitiesGaussian ensemble with two-point correlations given by Eq.
then adopting the attitude that each member of the ensembie)], and states that an eigenstateat energyE will look as
is an equally likely candidate for the true solution. Thejf it were chosen randomly from this ensemble.
choice of ensemble then becomes centrally important, and The correlations given by Edq1) are motivated by con-

hereinformation theoryprovides a reliable guiding principle. sidering the Wigner functiofs] corresponding to the eigen-
The principle instructs us to choose the least biased ensembigate -,

(the one which minimizes information contgnsubject to

some relevant constraints. A well-known illustration arises in s s\
classical statistical mechanics: the least biased distribution in WE(x,p)E(ZTrh)*Df dsy | x— 5) Y| x+ 5 e P
phase space, subject to a fixed normalization and average @

energy, is the canonical ensemble of Gijthg (The prin-
ciple of least bias, or maximum entropy, arisesnomequi-
librium situations as wel[2].) Another example appears in
random matrix theory: by minimizing the information con-
tent of an ensemble of matrices, subject to various simplé(
constraints, one obtains the standard random matrix erfl
sembleq3]. The purpose of this paper is to point out that
Berry's conjecture[4] regarding the energy eigenstates of
chaotic systems, also emerges naturally from phisciple of
least bias

Berry's conjecture makes two assertions regarding th@y taking the Fourier transform of both sides of Etj), and
high-lying energy eigenstatege of quantal systems whose then smoothing locally in the variable[9] rather than av-
classical counterparts are chaotic and ergodio: Such  eraging over the ensemhlelg, it is straightforward to show
eigenstates appear to be random Gaussian funcfixson  that the correlations given by Eql) produce the desired
configuration space?) with two-point correlations given by  result, Eq.(3).

The assertion thabg(x) is a Gaussian random function is
¢*(X_ f) " most easily motivated by viewingg(X), locally, as a super-
2 position of de Broglie waves with random pha$4f When
the number of these waves becomes infinite, the central limit
Here, E is the energy of the eigenstatél(x,p) is the theorem tells us thagg(x) will look like a Gaussian random
classical Hamiltonian describing the system, andfunction.
S=[dx[dpS(E—H(x,p)); if the Hamiltonian is time- It should be noted here that, recently, the spatial correla-
reversal invariant, theg(x) is a real random Gaussian func- tions of chaotic wave functions have been studied within an
alternative, “supersymmetric” frameworKkLO]. The results
were found to be in agreement with Berry’s conjecture, and
*Electronic address: chrisj@t6-serv.lanl.gov also with microwave cavity experiments.

whereD is the dimensionality of the system. For high-lying
statesyg, this Wigner function, after local smoothing in the
variable, is expected to converge to the microcanonical
istribution in phase spadd,6—8:

1
\/\/E"‘(X.p)~§5(E—H(x,p)). )

.S
X f—
2

:%f dpe'® 9" S(E—H(x,p)). (1)
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We can interpret Berry’s conjecture as making a specificThe second constraint is that embodied by 89.
prediction about the eigenstat¢z: once we compute .
¥e(X) by solving the Schidinger equation, we can subject it * _ ip-s/h
to various testgsee, e.g., Ref[11]), and we will observe f PL#1Y™ (1) h(Xp) = EJ’ dpe’™ =t SE—H(x,p)),
that, yes,g(Xx) really behaves as a Gaussian random func- (6)
tion with the two-point correlations given by E(). Alter-
natively, we can interpret Berry’s conjecture as providing usvhere s=x,—x; and x=(x;+x,)/2. (Both x; and x, are
with the appropriate ensemble of wave functions from whichassumed to be within the classically allowed region; outside
to choose a surrogate for the true eigens¢ateif we cannot  this region, the wave function is taken to be zpis ex-
(or do not care tpactually solve fory(x). In this interpre-  Plained briefly abovesee also Refd4,7,8]), this constraint
tation, Mg stands tae much as, in classical statistical me- 1S motivated by the expectation that the smoothed Wigner
chanics, the canonical ensemble stands to the instantanedig§iction corresponding tge will approximate the microca-
microscopic state of a system at a given temperature. It i§onical distribution in phase spa¢gg. (3)]. Note that Eq.
within the context of the second point of view that we will (6) does not representsingle constraint, but rather a set of
show that Berry’s conjecture may be “derived” from infor- constraints, where each member of the set is specified by
mation theory. Specifically, we will show that, by applying (X1.X2).
the principle of least bias, and accepting the correlations Finally, we minimize the informatioh{ P[]}, subject to
given by Eq.(1) as a set of relevant constraints, we are ledthe constraints in Eqg5) and (6). We do this in the usual

immediately to a statement of Berry’s conjecture. way, by introducing Lagrange multipliers. That is, we define
We thus pose the following question. Suppose we have a
quantal HamiltoniarH, whose classical counterpat(x,p) A{p[¢]}z|{p[¢]}+)\f P[]

is chaotic and ergodic; and suppose we are told that a high-

lying eigenstate ofH—represented by a wave function

Ye(X)—exists at energyE. Given this limited knowledge, +f fA(XlaXZ)f Pl (X0) ¥(X2)
how do we go about making a “best guess” fgg(x)? By

a best guess, we mean not a single wave function, but rather
a probability distributionPg[ ] in Hilbert space, such that,

by sampling randomly from this distribution, we are making

a guess which ta_lkes into account_ our limited kn(_)wledge re- +f f A(Xq X0) % (X0) (Xo)
garding ¢z, but is otherwise unbiased. Information theory

provides a general prescription for constructing such a dis- . o . .
tribution. First, we quantify the informationcontained in an  WNereA is the Lagrange multiplier associated with E§),
arbitrary distributionP[ /]. Next, we identify the constraints A(*1,X2) is the set of multipliers associated with E@),
on P[] imposed by our limited knowledge. Finally, we andf[ is shorthand fc_)rfdxlfdxz. For a given distribution
minimize [{P[ ]} subject to these constraints. The resultingP[#1 thé change im induced by a small variatioaP[ y/]
distribution P[] is the least biased one, consistent with!S: 10 first order inéP[ ],

our limited knowledge. Let us now implement this proce-

=f P[(ﬂ](InP[w]-H\

, Y

dure. 5A=f 5P<InP+()\+1)+f fA(xl,xz)w*(xl)t/f(XZ) :
Given a probability distributiorP[ ¢] in Hilbert space,
the amount of informatiom contained in this distribution is ®)

To minimizeA [i.e., to minimizel subject to the constraints
I{P[zp]}:f P[4 ]InP[ ¢]. (4) imposed by Eqgs(5) and (6)] we insist thatdA=0 for all
variationsSP. From Eq.(8), it follows that the distribution
The integral is over all square-integrable functionéx),  Pel#] which accomplishes this minimization has the form:
where ¢(x) is taken to be real if the Hamiltonian is time-
reversal invariant, and complex otherwig&he integral in — *
Eq. (4) requires a measunt;u%n Hilbert sjace. We ?ake the Pelv] Nexp—f f A0 X g7 (X2) %p). ©

usual Euclidean measure of field theorfi&g]: a wave func- ) . o
tion is represented by its value At discrete points in con- 1€ constant\'is determined by normalizatiofEq. (5)],

figuration space, and the set of these values is regarded ad'iereas the two-point correlatiofq. (6)] uniquely deter-
(real or complex Cartesian vector. Hence,dy  MiN€A(x1,%;). (Specifically, the kerneh (x;,x,) is just the
=dyydif,, . .. Ay, Whereg;=y(x). The limitN—w js  Inverse of ™ (X1) ¥(x,), divided by 2 ifH is time-reversal
finally taken] invariant[13].) _

Since we will want to minimizd {P} subject to relevant ~ OnceN andA(x,,x,) are determined, E49) completely
constraints on the distributioR[ ], our next task is to iden- SPecifies a probability distributioRe on Hilbert space. By
tify those constraints. The first is simply thBtought to be  fandomly sampling from this distribution, we generate a ran-
normalized to unity dom function ¢(x), with two-point correlations

* (X1) (X,) which (by constructioh satisfy Eq.(1). But is
B a function sampled fronPz a Gaussianrandom function?
f Pl#]=1. 5 The answer is yef11,13. For a random functiori(x), let
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P.(f1, ... .,f,) denote the joint probability distribution of accurate computations without demanding detailed knowl-
finding thatf(x)=f;, i=1, ... n. Thenf(x) is Gaussian if edge of the microscopic state of the system.

P, is a Gaussian in f@,...,f,) space, for any The notion that Berry's conjecture is gainfully viewed as
(X1,%2, ... X), n=1 [14]. A function y(x) obtained by @ statistical theory—in analogy with classical statistical
sampling the probability distribution given by E@) satis- mechanics, or random matrix theory—has been a guiding
fies this condition. theme of this paper. As stressed in the opening paragraph,

We thus arrive at the f0||owing conclusion: given the lim- the first order of business with such theories is to Identlfy the

ited knowledge that an eigenstatelfd)iaxists at energg, the proper ensemble to use in place of an exact description of the
object of study(be it the microscopic state of a many-body

least biased guess fgiz(x) (by reasonable constructipis a i d Hermit . |
Gaussian random function, with the two-point correlationsSYStem' or a complicate ermman_ “.“at”X’ or a quanta
given by Eq.(1). This is just another way of stating Berry’s eigenstatg A common feature of statistical theories is that

conjecture(Instead of saying thate “looks like” a Gauss- this ensemble follows in a natural way from the information

ian random function, we say that a Gaussian random funct_heorenc principle of least bias. The purpose of this paper

tion is a “best guess” forye.) In this sense, Berry’s con- ha}s simply been to point out that Berry’s conjecture shares
jecture allows for a statistical description of eigenfunctions,thls feature.

by providing us with the appropriate ensemiiiég in Hil- The author wishes to acknowledge useful conversations
bert space to use as a stand-in for the true energy eigenstaiad correspondence with S. Jain, J. Morehead, and M. Sred-
Ye. When the latter is unobtainabld5] calculations per- nicki. This work was supported by the Polish-American
formed with Mg may be tractablgl6], just as the canonical Maria Sklodowska-Curie Joint Fund Il, under Project No.
ensemble of ordinary statistical mechanics makes possiblBAA/NSF-96-253.
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