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Stability of lattice Boltzmann methods in hydrodynamic regimes
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The Von Neumann linear stability theory as applied by Sterling and Cheomput. Chem123 196
(1996)] to lattice Boltzmann numerical methods is revisited and extended. A simplifying assumption made by
these authorgéon the character of the most unstable modeabandoned and immediate refinements on their
stability results are attained. The inadequacy of uniform background flow, as a general point of expansion, is
evident from simulations of simple shear waves. The stability theory is consequently extended to address the
destabilizing role of “background” shear. To this end, exact time-dependent solutions of the nine-velocity
Bhatnagar-Gross-KroolBGK) lattice Boltzmann modelLB9) are derived and used as expansion points for
the stability theory. Calculations reveal both physical and nonphysical instabilities, the former being inter-
preted via classical inviscid stability theory and the latter forming an empiisaability criterion (fitting
better at small values of the viscositN<R%%6, whereN is the number of mesh points in the shearing
direction andR is the flow Reynolds number. This is interestingly close to the Kolmogorov-Batchelor-
Kraichnan inertial range cutofR*? for two-dimensional isotropic turbulence. In this case, stability seems to
require at least the spatial resolution required for accuracy. We also note that the particular class of solutions
found above for the LB9 model can be compared directly to corresponding solutions of the Navier-Stokes
equations. It is demonstrated that setting1, wherer is the relaxation time of the BGK collision operator,
provides optimal accuracy in time. This observation may be relevant to current studies as #ettiig
appears to be a common technique aimed at lowering the viscosity and thereby increasing the Reynolds
number of LB simulationg.S1063-651X97)11608-7

PACS numbdss): 47.11+j, 02.70.Ns

[. INTRODUCTION ponents have mainly reported on simulations in stable re-
gimes or on cases where instabilities are “flushed” out of

This paper addresses the numerical stability of the latticéhe system before maturing. Some auth@$9] have even
Boltzmann[2-5] class of simulation techniques designed tosuggested, based on a stability analysis about zero flow, that
approximate, in its macrodynamics, the equations of fluigsuch schemes are actually stable. Yet it is common, if not
dynamics. The lattice Boltzmar(hB) method(which mod- tacit, knowledge among LB practitioners that instabilities are
els the probability density of particlesind its predecessor, Present and impede the aggressive application of these meth-
the lattice-gagL.G) method(which models an integer num- ©0ds to many hydrodynamic regimes.
ber of particleg6]), are arguably the simplest and most gen- ~ This broaches an interesting point concerning the goals of
eral computational techniques available for hydrodynamicsa stability analysis. The task of delineating the exact region
In the spirit of the kinetic theory of gases, both the LG andof parameter space that is stable, for all possible flow condi-
LB methods propose to simulate particle dynamics, but witHions, seems unattainable. That digested, declaring any re-
movements confined to a specified spatial lattice. During &ion stable(without many qualifiersseems misleading. Per-
fundamental time step, usually set to unity, particles mayhaps a more reasonable though certainly more modest
advance only to a relatively predefined set of nearby nodegpproach is to delineate regions that are clearigtable As
x+ey with d=0, . .. d na and in this manner particle ve- more and more initial fields are analyzed this region can be
locities are limited and discrete. At the end of the time steprefined, but still it retains its basic property that somewhere,
conservative collisions are imagined to occur at each nodéomehow, something has gone unstable within.
whereby mass is redistributed amongst the velocity set in Both the streaming and collision steps of the LB method
preparation for the next “streaming” step. It has been dem-
onstrated 4] that such models can, at large scales, approxi-
mate the Navier-Stokes equations.

In this article focus will be on the more efficient LB
method withlinearized collision operato3,5] since it has
been observed that the scale at which Navier-Stokes-type
behavior is recognized is greatly reduced here compared to
that of the LG methodE7] and that the computational cost of
the collision calculations is greatly reduced here compared to
that of the strict LB formulation2], making the scheme
comparable in efficiency to conventional spectral methods
[8]. Apparently the price paid for these marked improve-
ments is the introduction of numerical instabilities. LB pro- FIG. 1. The LB9 lattice configuration.
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described above can be combined in the single formula Suppose the LB dynamics are confined to a regular lattice

roughly filling a rectangular region of space defined by
fa(x+eg,t+1)=fy(x,1)+Qqfs(X,1)

—Fs(n(x,t),m(x,1))}, ()

wheref 4(x,t) is defined only at the nodes and represents th
mass of particles currently moving from nodewith the

prescribed velocitye;. The presumed local equilibrium dis- : . /
tribution F (which represents an attempt in extrapolation OfguIar mesh defined as the smallest which contains the nodes

thermodynamic equilibrium to the presence of a small im_of the original dynamical lattice. The probability distribution

osed velocity) is a function off only through local mac- function f4(x,y,t) of the lattice Boltzmann method is de-
P : W) | . y 9 fined only at the appropriate subset of the nodal values
roscopic quantities like mass=3,f; and momentum

Os=x<L,, Osy<Ly, 5)

where the smallest node-node distance is conventionally
%aken to be 1. For purposes of the stability theory it is con-
venient to introduce another, perhaps fifdg X N, rectan-

m=nu=2X,f4ey. The role of the collision tern®)[f—F] is L L L
to nudge the system towards local equilibriin a manner X= OxN—x,lxN—X, oo Ny — 1)><N—X cross
consistent with the local conservation principles of mass and X x X
momentum,
Ly Ly Ly
y= OXN—,].XN—, ...,(Ny_l)XN— . (6)
> fa(xteg,t+1)=2, fa(xt), ) y y y
d d
The stability of the dynamical system
fy(x+eq,t+1)= fq(x,t), 3 1
5 elabch e th1)=3, arfa(c) O et D~ ol ) =~ [0~ FaxD) ]+ B,
and energy in thermally cognizant models. As neither the @)

ngséonngfetgﬂg}égeslt?ﬁgtlue;guii'bl;wimugisnézlfg?nqi;i?_b is investigated near a completely arbitrary given distribution
! quely yfd(x,t)=]-'d(x). In Eq.(7), F4 represents a local equilibrium

requiring Navier-Stokes behavior at large scale, many dncfer'distribution andB, represents corrections due to body forces

ent models have been and continue to be examined in ﬂ]ﬁ<e ravity. For anv specific model. bot. and B. are
literature. It is hoped that the work presented here will help._9raViy- y sp ! d d

provide guidance, based on stability considerations, in thglr.e.sf”bﬁd functions of, though this dependence is not ex-
choice of an optimal model. Two popular two-dimensionalp'cIty shown. .

(2D) models(see Appendix A the seven-velocity triangular Expanding neaty(x) by writing

lattice model LB7 and the nine-velocity, square lattice model
LB9 (see Fig. 1, also considered by ifl], are investigated
in detail. Both of these models are said to have a singl
relaxation time or Bhatnagar-Gross-KroRGK) [10] type
linearized collision operator of the simple form

fd(xrt):fd(x)+fé(xvt)! (8)

%ne finds, to first order if’,

1
L fé(x+ed,t+1)=Gd(x)+(1—;)f,’j(x,t)
QZ - ; | y (4)

+ 2 Jas0FLxY), ©)
wherel in the identity operator and is the relaxation pa- S
rameter. There are no conceptual difficulties extending the here
techniques presented here to higher dimensions and/or mof€
general models. 1
Gy(X)=Fg(X) — Fy(x+e€g)+ Bd|f+;[':d|f_ Fa(X)]
Il. LINEAR STABILITY THEORY

(10
A natural starting place for a stability analysis is a rect- . L
angular periodic domain. Such domains are typically moreAnd the combined Jacobian is
amenable mathematically than others and often used in nu- 10F. B
merical and theoretical studies as an apology for the infinite Jadx)=|= d 2=d) (11)
domain. Periodicity of Fourier modes allows for a simplified ° T dfs s,

stability theory in which the boundary conditions are satis-

fied automatically. The up side of this is that fundamentalExcept for special cases, like an initially uniform distribu-
modes of the dynamical system may be investigated in isoton, G4(x) will be nonzero; nevertheless, this inhomoge-
lation, without the added complication of boundary condi-neous term apparently only contributes algebraic growth and
tions. The down side is, of course, that boundary conditiongan be safely ignored when characterizing the more rapid
clearly do alter the modes of a systéthough sometimes not exponential type instabilities commonplace to the LB
too dramatically and these alterations as well as their role inschemes. So doing results in the homogeneous, nonconstant
initiating instabilities remain unaddressed. coefficient difference equation
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1 This point is demonstrated by analyzing the particular prob-
fé(X+ed,t+1)=(1— ;)f&(X,tHE Jas(X) F(x,1). lem of a uniform initial condition. In one way or another,
s (12 other authorg9,5,1] have come to an identical criterion;
however, it is hoped that the discussion that follows helps to
A complete Fourier representatigil] of the state of the clarify this instability. The theory is completely nonlinear in
system(at the nodescan be written that no assumption concerning the proximity of the particle
density distribution to equilibrium is necessary.
Inspection of the evolution equatiofi) shows that an

' _ (ky Ky) Qiky(27/Ly)x piky(277/L A . .
faxy )= 2> fxYelk@mboxglky@ilyy (13 initially uniform flow, in the sense that

Xy

where wave numberk, andk, loop over their allowable fa(x.to) =Tu(to), (19

integer values: will remain uniform at all later times. Furthermore, local

N conservation principles, Eq$2) and (3), then demand that
skys?y—l. (14 both n(x,t) and m(x,t), which are always conserved glo-
bally in a periodic domain, retain their initial constant values,
n(x,t)=ngy and m(x,t)=mgy. As F4 is only a function of
these macroscopic quantities, it too remains fixed in space
and time. For this class of initial conditions, it therefore fol-
lows that Eq.(1) is mathematicallyf 13] equivalent to

N, Ny Ny
2 kx 2 L 2
In this paper, the case whetg, and so the initial mean
guantities, depends only the single coordingtés consid-
ered. Incorporating this simplification into EGL2) and ex-
panding the resulting Jacobian in its own Fourier series,

$ sarnyy Ny Ny fult+1)=fo(0) + Qaef fo() ~Fsno, M)} (20
Jady)=2, T Yefyembyly <K <21,
asly i, ~ds 2 V2 and can be rewritten as

(19
gives f(t+1)=[1+Q]f (1), (21)
eikx(27-r/NX)xdeiky(ZW/Ny)ydfEjkx'ky)(t_l_ 1) where the vectoff has componentsy(t) —F4[ng,m,]. The

iteration equatiori21) reveals unbounded growth if the spec-

tral radius off | + Q] exceeds unity, leading to the aforemen-
fijkx'ky)(t)+ngy)f(kX’ky_Ky)(t), (16)  tioned criterion on the spectrum 6. For the BGK collision
s s operator(4) the instability criterion becomes< 1/2 and can

. typically be interpreted as a negativity condition on the mac-
where the components of velocity vectors have been denoted”'“®"Y P g y

by €3=Xqgi+Yadi.
Since thex modes remain uncoupled, they are considered
independently via

1
1-=
r

eikx(27T/Nx)Xdeiky(z'"'/Ny)Ydf gky)(t + 1)

1 _
= ( 1— ;) U9+ 7 (Yl (1), (17)

spectral radius, p(A)

In the Galerkin manner, the highgsharmonics arising from
the convolution term are ignoréd?2] allowing Eq.(17) to be
written as a matrix iteration

fir=Afy, (18)

where the vectof has componentsgky). If the spectral ra-

dius of A4, p(.A), is larger than unity, then the system is said
to be linearly unstable.

[ll. INSTABILITY ASSOCIATED WITH UNIFORM
BACKGROUND FLOW

spectral radius, p(A)

A. Nonlinear instability

It turns out that a very generéhdependent of the choice  FiG. 2. Top: Growth rates for LB7 show that the most unstable
of F) statement of instability in terms of the eigenspectrumyave number forr=0.5 ate=0.6 andU=0.2 has bottx andy
of the collision operatof2 in Eq. (1) can be made: If there dependence. Bottom: Similar to the top, but with 0.505 intended
exists an eigenvalue of  such thalh<—2 orA>0, then  to demonstrate the continuation of tp&A) surface in ther—1/2
at least certain initial value problen{4) will be unstable. limit.
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FIG. 3. LB7 stability boundary curve compared to time simula-

tions on an &8 mesh. The squares designate initial conditions thatt

have become clearly unstable by the time given in the figure.

roscopic kinematic viscositysee Appendix A for specific
formulag making it analogous to the blowup of the notorious
backwards diffusion equatioff=—V2f. In contrast, typi-
cal numerical instabilities rely on the introduction of small
amplitude noise(via round-off and depend on the mean

state of the system for energy. These types of instabilities are
analyzed in the remainder of this section using linear stabil-

ity theory.

B. Linear instability

The logic leading to Eq(20) breaks down if the initial
uniform distribution is contaminated with the tiniest amount
of nonuniformity, opening the door to spatially dependent

instabilities. Consider a uniform velocity fiels= Ui as the
point of expansion. For nonthermal moddfsis typically a
function of bothu andn while its Jacobian) depends only

the results that follow to arbitrary density profilagx,y).
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on u (see Appendix A This allows for a generalization of A “ O” designates an initial condition that is found to be unstable
by the timeT given in the title of each plot.

They independence of the selected background velocity

is carried over to the Jacobidne., K,=0 is the only sur-
viving term in its expansioril5)], leading to decoupling of
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1.01 ~ s earsenemmsEsna
EEESBEESE8 888
L 558 EEEEE 68 |
08" 5588 B8 8 |
5 EEEB B |
B EE B
BB B |
061 Samnaae]
B EEBBES® |
S - e B EEBRS® |
04l ssamansssssasmmmcnsasa]
EEBEEEEBRESSEEGSEGSZGSE5B8EE B
E @ EEEEBESESESESESESB8EB86EB
EEEEEEEEEESSESE 6 EEEE B
O2re e e e e e eee888065 5 68868 8 |
H B B R B E B S ® 5 DR B8 A E BB B
A EEEEEEBES®ESHSS 8686 EEE B
QO[BEEEEEEE®EmES88EEEED
0.00 0.10 0.20 0.30 0.40

Uniform Velocity

FIG. 4. Same as Fig. 3 but with a mesh size ok1f.

Mesh sizes 8, 16, 32, 64, 128, 512

0.591

0.58

057

0.56

©0.55F

0.54

0.531

0.52

0.51F

stable to uniform flow

T T

05
0

0.05 041

0.15 0.2 0.25
Amplitude of Uniform Velocity

04

FIG. 7. LB9 stability boundary curves for uniform flow at vari-
ous mesh sizes. The 2D “turbulent” simulation of Martinezal.
[8] on a 512512 mesh is designated by &" and lies just stable
of the corresponding neutral stability curve.



STABILITY OF LATTICE BOLTZMANN METHODS IN ...

PR R UG P PP U P

bbb s e — —+]

PRV N N ——

ey . e — ]

—r—

o et g g~

T
e RRNNN N L SN NN NS
S N
b NN e~ i
S T T T S
R R R IR
//'/'/'/"V_N\\\\ N

/'/'/'/'/'/v_..‘\\\\\\_,a

2247

SIS e aN~————]
B T TN

Y DU U U Bl et e e e e A Sl NN~ e L e

S R e e

~~~~~~~~~~~~~~~~ .—*~\\\\\\‘“<—'4—/‘/‘//./
R R A

//'/'/'/'—»_N\\ NN

ot ok ok /////'A_N\\\\\‘_M
4] . 5 10 15 0 S5 10 15 o 5 10 15
[ vy L, ; [FONRXN : ] i T, j
RMIRANNNNANNN BN © MY o o L]
BMALNRRRA R S AR T VAN o tel) b
o AARRR VY AR AR RN o t. b
SO N T4 RNV LN o1 teoy b
b 2SS T wh o 2 AL L] ol ot reoy b
AN AN ///(‘//,\\I i ot fon) b
NN A RARRINN LA ot teo) b
AR AR NN AANNN Y TRV ot 1l b
CNANA TN SN YNV T ot teoy b
s NN LY NN sbo~ N VAN R T M ANNG Y RN feoy bl
,_\\f\f\\\\._//\/\/\/‘/ ,\t/f/f/T/\\\,‘\L\\l\J/ 1 teod .
N [N [N 1 ' X
s 11 ,’/////,‘__,;/)//{ L vl i
//////..\\”////1/\, //rf((/"“/‘;%/’ o1 (R .
ot 7777 e T op /PTVNT  V ot XS
0 5 10 15 0 5 10 15 [s] 5 10 15
LB9, Inviscid Type Instability
= ..._f—purek=1

)

H

@

>

3

£

=

R

AV"'-_<-—purek=2
o5 1 15 2 25 3 35 4+ a5 5
time, t x10°

FIG. 8. Velocity vector diagrams displaying an inviscid-type instability. Time increases from left to right with the tz&0esnd 6000,
8000, 10 000, 12 000, and 40 000. Maximal horizontd) (and vertical ¥) velocities for this simulation are plotted as solid curves. At
t=0 the distribution was assigned the equilibrium distribution for a @ horizontal flow of amplitude 10 and then contaminated with
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the y modes in Eq(17). By considering these modes inde- and 6,=2wk,/N, and 6,=27k,/N, are “relative” wave
pendently, as discussed previously for thenodes, the di- numbers. Instability occurs if

mension of systent18) is reduced by a factor of,, and

one arrives at the matrix investigated by Sterling and Chen

[1], maxp(A[ 0,6, ,U,7,e,8])>1. (24)
Oy, by

; (22

A= D[ 1- E) [+J
T

The last two arguments in the list above represent free pa-

rameters that can ultimately be chosen, for example, to im-

prove a model's stability characteristics. The maximization

is over all allowable wave numbers(14), and it is only

whereD is a diagonal matrix with entries

Dys= e_i(exxd+0yyd)5d,s (23
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through this restrictioi14] that the size of the lattice con- order velocity tensor continue to remain on the stable side as
tinues to enter into the stability problem for uniform flow. As the mesh is refined. For this reason and simplicity, their pa-
the mesh size increases, and 6, approach continuous vari- rameter values are adopted when investigating the influence
ables on ¢ ,7]. If the above maximization is considered of other variables like mesh size amdn stability. Notable
over the continuous variables, then all possible meshes willsee Fig. 6 is the trendy increase in stability with Simu-
have been taken into account. As a function 6f,@,) the lations are again performed to verify aspects of these
spectral radiug is continuoussee Fig. 2, for exampebut ~ findings and four plots intended to relay a feeling for the
will typically have finite jumps in its first derivative due to a growth rate of the instabilities are given. If the mesh size
switching from one eigenspace to another when tracking thé doubled 15], then the stability curve can only move to the
maximum eigenvalue. In the discrete problem, the sharp lolft, yielding a larger unstable regime. In Fig. 7 the neutral
calization of unstable wave numbegss evident from Fig. 2~ stability curves for mesh sizes ranging from & 2° are
provides a significant source of mesh dependence. In thigresented. As the mesh size increases the stability curves
work we adhere to the discrete formulation of the problem intend to converge but retain greatest disparity nearl/2.
order to investigate such dependence as well as to facilitatdnfortunately, it is not clear from these limited results
the detailed comparison between theory and simulation. Otvhether the curves above approach the origin of the plot,
course, increasing the mesh size can be interpreted as evaindicating instability of any uniform flow as the mesh size
ating more points on the surface. Therefore, all else con- increases to infinity. It is interesting that the 2D “turbulent”
stant, uniform flow on a superset of a particular mesh canndtimulations of Martinezet al.. [8] with N,=N,=512 (de-
be more stable than on the original mesh. Also apparent fromoted by “O” in Fig. 7) lie so close to the corresponding
Fig. 2 is that near criticality in parameter space the mostinear stability boundary for uniform flowthe farthest curve
unstable wave number can have betandy dependence. In to the left in the same figuye
contrast, Sterling and Chdd] reported results based on the
assumption that the most unstable modes were 1D with
k,=0. Indeed, Fig. 2 corresponds to an unstable regime that
would appear stable under such a supposition.
Inhydrodynamics, large-Reynolds-numbeR<LU/v») |n the previous section it was demonstrated that numerical
flows are of considerable importance and provide the motiistabilities could be encountered when using BGK-type lat-
vation for attempting to let—1/2 in LB simulations. Zero tice Boltzmann methods to simulate uniform flow, itself an
viscosity is a singular limit of the Navier-Stokes equations,exact and physically stable solution of the Navier-Stokes
but appears to be a regular limit within the LB stability equations in the periodic domain. The more general utility of
theory, in that the surface of Fig. 2 only gradually deforms the instability criteria developed therein lies in the belief that
as is perturbed from 1/2see Fig. 2 as a graphical indica- even complicated flows have regions of approximate unifor-
tion of this). It then seems reasonable to study stabitity mity.
7=1/2 [1] with the understanding that a “small” increase  Thematically similar reasoning prompted the investiga-
from this value would result in a “small” Change in the tion of the Simp|e class of periodic shear |ayers:
reported stability curves.
For model LB7, Figs. 3 and 4 display stability boundaries om \.
at 7=1/2 as a function of the model parametertogether u=U(t)cos< k—y) i. (25
with the results of actual simulations in a doubly periodic Ly
domain. The simulations were initialized with constant den-
sity and the desired uniform mean velocity using the associ- 189 16x16 T=10000
ated equilibrium distribution functiory. Instabilities are o
dramatic and easily detected by monitoring, for example, L
max, 4f4(x,t) during the course of the simulation and an- 0.5081
nouncing “instability” when and if it exceeds a predefined
value like 1 or 16. Such criteria are rather arbitrary, but the
practical difference between any reasonable criterion aimed
at detecting instability seems to be only a matter of a few i
time steps. 0504~
The agreement between theory and simulation is evident
in Figs. 3 and 4. It is interesting that the theory predicts a ..,
dramatic reduction in stability should the mass distribution i
parametera be lowered below a slightly mesh-dependent .
value. Based on these findings, it seems advantageous to **% .
have, at equilibrium, roughly 1/2 or more of the mass dis-
tributed in the rest particle state when using LB7. A similar - £, 9. B9 neutral stability curvésolid curve and results of
sequence of plots for model LB9 is presented in Fig. Ssimulations fork=1 shear profiles on a 2616 mesh. The regions
There, the stable region for even the smallest amplitude unigenoted by a ©” are clearly unstable byf =10 000 and increas-
form flow shrinks to a tiny island ind, 3) parameter space. ing T does not substantially change this plot. Also plottdeshed
The values (4/9,1/9) suggested by Qietnal. [5] based on  curve for reference is the uniform flow stability boundary for this
maintaining Galilean invariance and isotropy of the fourth-mesh size.

IV. INSTABILITY ASSOCIATED
WITH BACKGROUND SHEAR
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FIG. 10. A measure of instability is plotted for simulations in
the regions marked with 1, 2, and 3 in Fig. 9. Both theory and
simulation agree that 1 and 3 are, respectively, stable and unstabl
The theory’s claim that 2 is unstable is based on its clear initial
instability. The subsequent restabilization of 2 occurs later in tim
apparently due to the decay of the basic shear from the unstable
the stable region of parameter space—all before the instability has
matured beyond control.

FIG. 12. The data of Fig. 11 under the transformation
U—U/N°8 If the data under this scaling continue to move to the
I%'ft as the mesh size is increased, theriratability criterion based
on U/N“>(const)(r— 1/2) (where the constant is determined by
e{l&e rightmost curvecan be derived.

pation (slope on this plotwell above the noise level. It is a

curiosity that the flow ends up essentially orthogonal to its
Exact solutions having this form exist for both the NS andinitial direction. The existence of these inviscid instabilities
LB9 equations though with slightly differing expressions for for k>1 suggests that=1 is unique among this class as a
U(t). (See Appendix B for further comparisons along thesequiescent place in which spurious numerical instabilities can
lines) be easily identified and studied. This limitation is apparently

Extrapolating from the theory of inviscid fluids one would the price paid for retaining periodicity . Even so, signifi-

expect initial flows of higher wave numbkrto be unstable cant stability restrictions beyond those based on uniform
to flows of lower wave numbe 6], at least in the limit of ~flow can be obtained by investigating the single shear mode
small viscosity. Figure 8 demonstrates this instability byk=1, and the results of such investigations are now reported.
plotting maximal horizontal and vertical velocities during a
LB9 simulation initialized with ak=2 mean shear wave LBS, Altering Initial Conditions
along with smaller amplitude noise. Instabilities leading to a
k=1 mode are evident from the change in the rate of dissi-
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FIG. 13. The results of two simulations at=0.501 having
0005 001 0015 002 0025 003 0035 004 00i5 005 identical macroscopic butlifferent microscopic initial conditions.
max U The usual local equilibrium distribution was used to initialize the
FIG. 11. LB9 shear stability boundariésear7=1/2) for mesh  run denoted by the lower curvéC-1). Note theO(1/(7— %)) time
sizes 8, 16, 32, and 64. The linearity of each curve provides &cale for relative decay of the highly oscillatory non-NS modes.
maximal Reynolds number criterion if the mesh size is considered’he upper curvélC-2) corresponds to a run initialized with a pro-
fixed. jected form of the equilibrium distribution.
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To check the theory, the stability boundary fo=1 on  increasingN, decreasing, and increasingi), only increas-
16X 16 mesh is calculated and displayed together with théng the mesh size retains the possibility of numerical stabil-
results of actual simulations in Fig. 9. The agreement beity. The instability criterion N<R°%%®is obtained from these
tween theory and simulation seems not as impressive as falata by supposing a continued leftward trend, as displayed in
the case of uniform flow. Note, however, that agreement ig-ig. 12, of the data with increasing mesh size. This criterion
better at smaller values af consistent with the explanation constraindN close to the accuracy requirements based on the
that the discrepancy is merely due to the decay of the basiextent of the Kolmogorov-Batchelor-Kraichnan inertial
shear which is not accounted for in the theory laid forth hererange in 2D isotropic turbulence, i.&\~R"?.

Indeed, further evidence of the reasonability of this interpre- The type of stability analysis undertaken by Sterling and
tation is given in Fig. 10 wherein the time evolution of the Chen[1] and refined and extended in this paper seems accu-
flow is monitored in various stable and unstable regions ofate and effective in delineating clearly unstable regions of
parameter space. One could reasonably construct a quagiarameter spacgl9] associated with the lattice Boltzmann
steady version of the theory to account for the decaying amsimulation of fluid flows. Nonperiodic boundary conditions
plitude of the basic shear, but we shall resist as our primargould potentially modify stability by altering the effective
interest lies in investigating stability as— 1/2 (the limit of  local Reynolds number of the mean flow and, perhaps more
small viscosity, a region wherein this effect is minimized. In dangerously, by sufficiently perturbing the spectral problem.
this region, results for several different mesh sizes are preSuch boundary conditions would also permit other classes of
sented in Fig. 11. First note that all of the curves go througtphysically stable flows to be investigated for purely numeri-
the (Uax.7—1/2) origin showing that, in contrast to the re- cal instabilities and thereby provide possible refinements on
sults based on uniform flow, stability requires that the am-the regions of instability described here.

plitude of the background field approach zero as 1/2.

Second, each curve is near Iine.zar,. providir_wg a maxima] Rey- ACKNOWLEDGMENTS
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APPENDIX A
Details of models LB7 and LB9 follow.

1. Hexagon-7(2D)

1
BGK collision operator: Q=—— |
;

velocity vectors: e=0, d=0
eg=[cog by), sin(6y)], Oy=m(d—1)/3, d=1...6

local mass: n=> fq
d
local momentum: nu=_, f4eq
d
equilibrium: Fa=n(Aq+Bgey U+ Cqy(ey-u)2+Dgyu-u)
. oF
Jacobian: Wd =Ay+Byey e+ Cy[2(ey- &) (- U) — (&g-U)2]+ Dyl 265-u—u- U]
S

coefficients: Ag=«a, By4=0, Cy4=0, Dy4=-1; d=0

parameters: 7, «

viscosity:  v=3(7— %)
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2. Square-9(2D)

1
BGK collision operator: Q= — —|

-
velocity vectors: e=0, d=0
e,=[cog 8y), sin(fy)], O4=m(d—1)/2, d=1...4
_ m(d—5+1/2)
ey=/2[cog 6y), sin(6g)], fg=—— . d=5...8
local mass: n=> fq
d
local momentum: nu=>, fqey
d
equilibrium: Fg=n(Aq+Bgey-u+Cy(ey-u)?+Dgyu-u)
. IF 4
Jacobian: 7~ =Aq+Bqey &t Co[2(6y- &) (&g ) — (&g U)?]+ D[ 265 u—u-u]
S

coefficients: Ay=a, By=0, C4=0, Dy=-%; d=0
Ad=B, Bd:%, Cd:%, Dd:_%; d=1...4
1-4B8—a

parameters: 7, «, f

viscosity:  v=1(7— 3)

APPENDIX B fa(x+eg,t)=ay+[bye™+cye?™+cc] (B3
In this appendix it is demonstrated that decaying, per-

fectly sinuous, shear modes exist in the periodic domain fol0 Ed.(B1) and requiring closure and consistency results in

the LB9 equations. Comparison with solutions of the Navier-the dynamical equations
Stokes equations indicates that 1 provides optimal accu-

racy in time. alfle(1_ 1 at+@ At 2(Ca(i 02+ D) utl2
Periodic solutions of o =177 Dagt A+ 2(Cyli- &) v,
(B4)

1
fa(x+eq,t+1)="F4(x,t)— ;{fd(x,t) —F4(n(x,t),m(x,t))}

s n
iK(j-eg)pt+l_ (1 _ —1ypt L0 : t

(B1) e by "=(1—71 ")by+ . [By(i-eg)u'], (B5)

(where Fg=n[Aq+Bgyey- u+ Cy(€y-u)?>+Dgyu-u] has ap- - ~ No  +

propriate coefficients for LB@are sought which maintain the €0 %cg"*=(1—r 1)034‘7[%(' -eg)?+Dgl(uh)?,

macroscopic properties (B6)

and constraints
nx,t)=2, f4=no,

2 ag=no, X by=0, 2 cy=0,

m(x,t)=nu= Y, fse;=[u'e™+c.c]i. (B2)

i-eyal=0, i-eg)bY=nout, i-eycy=0,
The mesh size need not be specified as it is absorbed into theE (I-€)ay 2 (I-€)bg="o 2 (I-€)Cq

resolution wave numbeg, and the time dependence can be (B7)
elevated to a superscript on the remaining variables due to
the LB discretization, i.et=0,1,2 ... .Inserting the pos-

= t_ - t_ ~ t
tulated form S (-epai=0, X (j-enbi=0, X (-eycy=0.
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The question of existence becomes: For fikea,, andu®,  these regards in that other non-NS type behavior is to be
can initial values for the complex sequentgs c;; and real  expected from LB9 at other values of especially in the
sequenceay, be chosen so that the stated dynamics maintaitimportant limit 7— 1/2.

the above constraints. To see that the answer is yes, consider, For generalr, the dynamics ofu' can be written as
for example, only the &” equations. If at any time the  ngu'=[1 1 1].b' where

following is true,

al=a}, ab=a}, al=al=al=a}, and >, a\=n,, bt =AD",
(B8)
then two things can be said; first the@™ constraints of Eq. r 1 2 2 7
(B7) are clearly satisfied and secondly the relati@®®) will 1- 37 37 37
continue to hold at all later times. The last statement follows
by considering various combinations of the dynamical equa- A= e—iki eik( 1— i) e—iki
tions, like @;—ag)t"1=(1—7"1)(a;—ay)". It is helpful to 67 67 67 |’
note SA;=1 and =Cy(i-&)?+Dy=0 to verify Zaj"* " 1 " 5
=3al=n,. Similar considerations for the " and “c” 5, s, e 1-5-
equations suggest initially assigning values so: - -
al-al, ag-al, al-al-al-al 3 al-n,,
and
(B9)
bg=0, bf=-b3, bY=-b3, b=-hg, bt — b}
" t__ t__ |t
b0=—-bg, 3 (iepb¢=u’ (810 e
bs— b
8 7
0 0

_ 0_.0 ~0_.0__0_.0 o_

ci=c3, c3=cf cg=cg=ci=c3, 2 c=0. Though an exact eigenanalysis and therefore closed form so-
(B11)  |ution of the above iteration equation exists, approximate ex-

pressions for the eigenvalues in the limit of smiallwith

emphasis on the case wherel seem more digestible for

A concrete example of such an initial conditiGmme satisfy- .
our purposes, i.e.,

ing the class described abgwderives from the equilibrium
distributionF 4,

1 1
Ai~1—vk2+ §v2+(31/3— 1—2V>]k4— -+, (B17)
ad=no{Aq+2[Cy(i-e9)2+Dyllu%2,  (B12)
0 R 0 1 ; 2

0__ = 2 02
Ca= Mol Call- €)™+ Dal(u)" (B19 where we have set=(7—1/2)/3 in the expression fox; to
facilitate comparison with the corresponding NS eigenvalue
Therefore solutions of the discrete LB9 equations having the
exact form(B2) exist. A ns~1—vk®+ 3 v2kA—- -,
To describe the macroscopic time dependeufcturther

analysis of the central and self-closing™ equation(BS) is  getting7=1 simultaneously removes the non-NS modes and
required. The particularly simple and solely macroscopiCyacreases the error of the physical mode fraxtk?) to

equation O(k®). However, nearr=1/2, the ratio of eigenvalues re-
1 2+cogk) | veals that one must wait at lea®{(7— 3) %) in time before
utt=——s——u (r=1) (B15  the nonphysical modes are relatively decaysee Fig. 18

For the simple sinuous profiles discussed here, this unfortu-
is obtained by setting=1 and taking appropriate sums of nate time scale can be easily avoided by altering the micro-
Eq. (B5). Comparing this with the corresponding Navier- Scopic initial conditions slightly from those based on the
Stokes equatiof20] equilibrium distribution. Indeed the resuliSig. 13 of a run

beginning with aprojectedform of the equilibrium distribu-
e K6t (B16)  tion (onto the\; eigenspadeshow no such unphysical os-
cillations. It is not clear whether this idea could be reason-
gives a remarkably small differencek®/3240 (for smallk) ably extended to improve general LB9 simulations of low
in decay rates. Unfortunately, we shall firg=1 unique in  viscosity fluids.

utti=
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