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Stability of lattice Boltzmann methods in hydrodynamic regimes

Rodney A. Worthing, Joel Mozer, and Guy Seeley
Phillips Laboratory, Hanscom Air Force Base, Bedford, Massachusetts 01730

~Received 29 August 1996; revised manuscript received 13 May 1997!

The Von Neumann linear stability theory as applied by Sterling and Chen@J. Comput. Chem.123, 196
~1996!# to lattice Boltzmann numerical methods is revisited and extended. A simplifying assumption made by
these authors~on the character of the most unstable mode! is abandoned and immediate refinements on their
stability results are attained. The inadequacy of uniform background flow, as a general point of expansion, is
evident from simulations of simple shear waves. The stability theory is consequently extended to address the
destabilizing role of ‘‘background’’ shear. To this end, exact time-dependent solutions of the nine-velocity
Bhatnagar-Gross-Krook~BGK! lattice Boltzmann model~LB9! are derived and used as expansion points for
the stability theory. Calculations reveal both physical and nonphysical instabilities, the former being inter-
preted via classical inviscid stability theory and the latter forming an empiricalinstability criterion ~fitting
better at small values of the viscosity!, N,R0.56, whereN is the number of mesh points in the shearing
direction andR is the flow Reynolds number. This is interestingly close to the Kolmogorov-Batchelor-
Kraichnan inertial range cutoffR1/2 for two-dimensional isotropic turbulence. In this case, stability seems to
require at least the spatial resolution required for accuracy. We also note that the particular class of solutions
found above for the LB9 model can be compared directly to corresponding solutions of the Navier-Stokes
equations. It is demonstrated that settingt51, wheret is the relaxation time of the BGK collision operator,
provides optimal accuracy in time. This observation may be relevant to current studies as lettingt→1/2
appears to be a common technique aimed at lowering the viscosity and thereby increasing the Reynolds
number of LB simulations.@S1063-651X~97!11608-7#

PACS number~s!: 47.11.1j, 02.70.Ns
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I. INTRODUCTION

This paper addresses the numerical stability of the lat
Boltzmann@2–5# class of simulation techniques designed
approximate, in its macrodynamics, the equations of fl
dynamics. The lattice Boltzmann~LB! method~which mod-
els the probability density of particles! and its predecessor
the lattice-gas~LG! method~which models an integer num
ber of particles@6#!, are arguably the simplest and most ge
eral computational techniques available for hydrodynam
In the spirit of the kinetic theory of gases, both the LG a
LB methods propose to simulate particle dynamics, but w
movements confined to a specified spatial lattice. Durin
fundamental time step, usually set to unity, particles m
advance only to a relatively predefined set of nearby no
x1ed with d50, . . . ,d max, and in this manner particle ve
locities are limited and discrete. At the end of the time st
conservative collisions are imagined to occur at each n
whereby mass is redistributed amongst the velocity se
preparation for the next ‘‘streaming’’ step. It has been de
onstrated@4# that such models can, at large scales, appro
mate the Navier-Stokes equations.

In this article focus will be on the more efficient LB
method withlinearizedcollision operator@3,5# since it has
been observed that the scale at which Navier-Stokes-
behavior is recognized is greatly reduced here compare
that of the LG methods@7# and that the computational cost o
the collision calculations is greatly reduced here compare
that of the strict LB formulation@2#, making the scheme
comparable in efficiency to conventional spectral meth
@8#. Apparently the price paid for these marked improv
ments is the introduction of numerical instabilities. LB pr
561063-651X/97/56~2!/2243~11!/$10.00
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ponents have mainly reported on simulations in stable
gimes or on cases where instabilities are ‘‘flushed’’ out
the system before maturing. Some authors@3,9# have even
suggested, based on a stability analysis about zero flow,
such schemes are actually stable. Yet it is common, if
tacit, knowledge among LB practitioners that instabilities a
present and impede the aggressive application of these m
ods to many hydrodynamic regimes.

This broaches an interesting point concerning the goal
a stability analysis. The task of delineating the exact reg
of parameter space that is stable, for all possible flow con
tions, seems unattainable. That digested, declaring any
gion stable~without many qualifiers! seems misleading. Per
haps a more reasonable though certainly more mo
approach is to delineate regions that are clearlyunstable. As
more and more initial fields are analyzed this region can
refined, but still it retains its basic property that somewhe
somehow, something has gone unstable within.

Both the streaming and collision steps of the LB meth

FIG. 1. The LB9 lattice configuration.
2243 © 1997 The American Physical Society
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2244 56RODNEY A. WORTHING, JOEL MOZER, AND GUY SEELEY
described above can be combined in the single formula

f d~x1ed ,t11!5 f d~x,t !1Vds$ f s~x,t !

2Fs„n~x,t !,m~x,t !…%, ~1!

wheref d(x,t) is defined only at the nodes and represents
mass of particles currently moving from nodex with the
prescribed velocityed . The presumed local equilibrium dis
tribution F ~which represents an attempt in extrapolation
thermodynamic equilibrium to the presence of a small i
posed velocityu) is a function off only through local mac-
roscopic quantities like massn5(df d and momentum
m5nu5(df ded . The role of the collision termV@ f2F# is
to nudge the system towards local equilibriumF in a manner
consistent with the local conservation principles of mass
momentum,

(
d

f d~x1ed ,t11!5(
d

f d~x,t !, ~2!

(
d

edf d~x1ed ,t11!5(
d

edf d~x,t !, ~3!

and energy in thermally cognizant models. As neither
collision operatorV, the local equilibrium distribution func-
tion F, nor the lattice structure is uniquely determined
requiring Navier-Stokes behavior at large scale, many dif
ent models have been and continue to be examined in
literature. It is hoped that the work presented here will h
provide guidance, based on stability considerations, in
choice of an optimal model. Two popular two-dimension
~2D! models~see Appendix A!, the seven-velocity triangula
lattice model LB7 and the nine-velocity, square lattice mo
LB9 ~see Fig. 1!, also considered by in@1#, are investigated
in detail. Both of these models are said to have a sin
relaxation time or Bhatnagar-Gross-Krook~BGK! @10# type
linearized collision operator of the simple form

V52
1

t
I , ~4!

where I in the identity operator andt is the relaxation pa-
rameter. There are no conceptual difficulties extending
techniques presented here to higher dimensions and/or m
general models.

II. LINEAR STABILITY THEORY

A natural starting place for a stability analysis is a re
angular periodic domain. Such domains are typically m
amenable mathematically than others and often used in
merical and theoretical studies as an apology for the infi
domain. Periodicity of Fourier modes allows for a simplifie
stability theory in which the boundary conditions are sa
fied automatically. The up side of this is that fundamen
modes of the dynamical system may be investigated in
lation, without the added complication of boundary con
tions. The down side is, of course, that boundary conditi
clearly do alter the modes of a system~though sometimes no
too dramatically! and these alterations as well as their role
initiating instabilities remain unaddressed.
e
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Suppose the LB dynamics are confined to a regular lat
roughly filling a rectangular region of space defined by

0<x,Lx , 0<y,Ly , ~5!

where the smallest node-node distance is convention
taken to be 1. For purposes of the stability theory it is co
venient to introduce another, perhaps finer,Nx3Ny rectan-
gular mesh defined as the smallest which contains the no
of the original dynamical lattice. The probability distributio
function f d(x,y,t) of the lattice Boltzmann method is de
fined only at the appropriate subset of the nodal values

x5S 03
Lx

Nx
,13

Lx

Nx
, . . . ,~Nx21!3

Lx

Nx
D cross

y5S 03
Ly

Ny
,13

Ly

Ny
, . . . ,~Ny21!3

Ly

Ny
D . ~6!

The stability of the dynamical system

f d~x1ed ,t11!2 f d~x,t !52
1

t
@ f d~x,t !2Fd~x,t !#1Bd~x,t !

~7!

is investigated near a completely arbitrary given distribut
f d(x,t)5Fd(x). In Eq. ~7!, Fd represents a local equilibrium
distribution andBd represents corrections due to body forc
like gravity. For any specific model, bothFd and Bd are
prescribed functions off, though this dependence is not e
plicitly shown.

Expanding nearFd(x) by writing

f d~x,t !5Fd~x!1 f d8~x,t !, ~8!

one finds, to first order inf8,

f d8~x1ed ,t11!5Gd~x!1S 12
1

t D f d8~x,t !

1(
s

Jds~x! f s8~x,t !, ~9!

where

Gd~x![Fd~x!2Fd~x1ed!1BduF1
1

t
@FduF2Fd~x!#

~10!

and the combined Jacobian is

Jds~x![F1

t

]Fd

] f s
1

]Bd

] f s
G
F

. ~11!

Except for special cases, like an initially uniform distrib
tion, Gd(x) will be nonzero; nevertheless, this inhomog
neous term apparently only contributes algebraic growth
can be safely ignored when characterizing the more ra
exponential type instabilities commonplace to the L
schemes. So doing results in the homogeneous, noncon
coefficient difference equation
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56 2245STABILITY OF LATTICE BOLTZMANN METHODS IN . . .
f d8~x1ed ,t11!5S 12
1

t D f d8~x,t !1(
s

Jds~x! f s8~x,t !.

~12!

A complete Fourier representation@11# of the state of the
system~at the nodes! can be written

f d8~x,y,t !5 (
kx ,ky

f d
~kx ,ky!eikx~2p/Lx!xeiky~2p/Ly!y, ~13!

where wave numberskx and ky loop over their allowable
integer values:

2
Nx

2
<kx<

Nx

2
21, 2

Ny

2
<ky<

Ny

2
21. ~14!

In this paper, the case whereF, and so the initial mean
quantities, depends only the single coordinatey is consid-
ered. Incorporating this simplification into Eq.~12! and ex-
panding the resulting Jacobian in its own Fourier series,

Jds~y!5(
Ky

J ds
~Ky!eiK y~2p/Ly!y, 2

Ny

2
<Ky<

Ny

2
21,

~15!

gives

eikx~2p/Nx!xdeiky~2p/Ny!ydf d
~kx ,ky!

~ t11!

5S 12
1

t D f d
~kx ,ky!

~ t !1J ds
~Ky! f s

~kx ,ky2Ky!
~ t !, ~16!

where the components of velocity vectors have been den
by ed5xdi1ydj .

Since thex modes remain uncoupled, they are conside
independently via

eikx~2p/Nx!xdeiky~2p/Ny!ydf d
~ky!

~ t11!

5S 12
1

t D f d
~ky!

~ t !1J ds
~Ky! f s

~ky2Ky!
~ t !. ~17!

In the Galerkin manner, the highesty harmonics arising from
the convolution term are ignored@12# allowing Eq.~17! to be
written as a matrix iteration

ft115Aft , ~18!

where the vectorf has componentsf d
(ky) . If the spectral ra-

dius ofA, r(A), is larger than unity, then the system is sa
to be linearly unstable.

III. INSTABILITY ASSOCIATED WITH UNIFORM
BACKGROUND FLOW

A. Nonlinear instability

It turns out that a very general~independent of the choic
of F) statement of instability in terms of the eigenspectru
of the collision operatorV in Eq. ~1! can be made: If there
exists an eigenvaluel of V such thatl,22 or l.0, then
at least certain initial value problems~1! will be unstable.
ed

d

This point is demonstrated by analyzing the particular pr
lem of a uniform initial condition. In one way or anothe
other authors@9,5,1# have come to an identical criterion
however, it is hoped that the discussion that follows helps
clarify this instability. The theory is completely nonlinear
that no assumption concerning the proximity of the parti
density distribution to equilibrium is necessary.

Inspection of the evolution equation~1! shows that an
initially uniform flow, in the sense that

f d~x,t0!5 f d~ t0!, ~19!

will remain uniform at all later times. Furthermore, loc
conservation principles, Eqs.~2! and ~3!, then demand tha
both n(x,t) and m(x,t), which are always conserved glo
bally in a periodic domain, retain their initial constant value
n(x,t)5n0 and m(x,t)5m0. As Fd is only a function of
these macroscopic quantities, it too remains fixed in sp
and time. For this class of initial conditions, it therefore fo
lows that Eq.~1! is mathematically@13# equivalent to

f d~ t11!5 f d~ t !1Vds$ f s~ t !2Fs„n0 ,m0…% ~20!

and can be rewritten as

f̃ ~ t11!5@ I1V# f̃ ~ t !, ~21!

where the vectorf̃ has componentsf d(t)2Fd@n0 ,m0#. The
iteration equation~21! reveals unbounded growth if the spe
tral radius of@ I1V# exceeds unity, leading to the aforeme
tioned criterion on the spectrum ofV. For the BGK collision
operator~4! the instability criterion becomest,1/2 and can
typically be interpreted as a negativity condition on the m

FIG. 2. Top: Growth rates for LB7 show that the most unsta
wave number fort50.5 at a50.6 andU50.2 has bothx and y
dependence. Bottom: Similar to the top, but witht50.505 intended
to demonstrate the continuation of ther(A) surface in thet→1/2
limit.
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2246 56RODNEY A. WORTHING, JOEL MOZER, AND GUY SEELEY
roscopic kinematic viscosity~see Appendix A for specific
formulas! making it analogous to the blowup of the notorio
backwards diffusion equation] t f 52¹2f . In contrast, typi-
cal numerical instabilities rely on the introduction of sm
amplitude noise~via round-off! and depend on the mea
state of the system for energy. These types of instabilities
analyzed in the remainder of this section using linear sta
ity theory.

B. Linear instability

The logic leading to Eq.~20! breaks down if the initial
uniform distribution is contaminated with the tiniest amou
of nonuniformity, opening the door to spatially depende
instabilities. Consider a uniform velocity fieldu5U î as the
point of expansion. For nonthermal models,F is typically a
function of bothu andn while its JacobianJ depends only
on u ~see Appendix A!. This allows for a generalization o
the results that follow to arbitrary density profilesn(x,y).

The y independence of the selected background velo
is carried over to the Jacobian@i.e., Ky50 is the only sur-
viving term in its expansion~15!#, leading to decoupling of

FIG. 3. LB7 stability boundary curve compared to time simu
tions on an 838 mesh. The squares designate initial conditions t
have become clearly unstable by the time given in the figure.

FIG. 4. Same as Fig. 3 but with a mesh size of 16316.
re
il-

t
t

y

-
t

FIG. 5. Results for LB9, showing the stable~to uniform flow!
values of the free parametersa andb. As the mesh size is increase
the region of stability diminishes. The pair used by Martinezet al.

@8# (a5
4
9, b5

1
9 ) is marked with1.

FIG. 6. LB9 neutral stability curve and simulations fort51/2.
A ‘‘ s ’’ designates an initial condition that is found to be unstab
by the timeT given in the title of each plot.

FIG. 7. LB9 stability boundary curves for uniform flow at var
ous mesh sizes. The 2D ‘‘turbulent’’ simulation of Martinezet al.
@8# on a 5123512 mesh is designated by a ‘‘s ’’ and lies just stable
of the corresponding neutral stability curve.
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FIG. 8. Velocity vector diagrams displaying an inviscid-type instability. Time increases from left to right with the valuest50 and 6000,
8000, 10 000, 12 000, and 40 000. Maximal horizontal (H) and vertical (V) velocities for this simulation are plotted as solid curves.
t50 the distribution was assigned the equilibrium distribution for a purek52 horizontal flow of amplitude 1022 and then contaminated with
1025 random noise. The dotted lines are similar simulations but with significantly smaller noise and intended to help clarify the
dynamics via rate-of-dissipation comparisons.
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the y modes in Eq.~17!. By considering these modes ind
pendently, as discussed previously for thex modes, the di-
mension of system~18! is reduced by a factor ofNy , and
one arrives at the matrix investigated by Sterling and C
@1#,

A5DF S 12
1

t D I1JG , ~22!

whereD is a diagonal matrix with entries

Dds5e2 i ~uxxd1uyyd!dd,s ~23!
n

and ux[2pkx /Nx and uy[2pky /Ny are ‘‘relative’’ wave
numbers. Instability occurs if

max
ux ,uy

r~A@ux ,uy ,U,t,a,b#!.1. ~24!

The last two arguments in the list above represent free
rameters that can ultimately be chosen, for example, to
prove a model’s stability characteristics. The maximizati
is over all allowable wave numbers~14!, and it is only
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2248 56RODNEY A. WORTHING, JOEL MOZER, AND GUY SEELEY
through this restriction@14# that the size of the lattice con
tinues to enter into the stability problem for uniform flow. A
the mesh size increases,ux anduy approach continuous vari
ables on (2p,p#. If the above maximization is considere
over the continuous variables, then all possible meshes
have been taken into account. As a function of (ux ,uy) the
spectral radiusr is continuous~see Fig. 2, for example! but
will typically have finite jumps in its first derivative due to
switching from one eigenspace to another when tracking
maximum eigenvalue. In the discrete problem, the sharp
calization of unstable wave numbers~as evident from Fig. 2!
provides a significant source of mesh dependence. In
work we adhere to the discrete formulation of the problem
order to investigate such dependence as well as to facil
the detailed comparison between theory and simulation.
course, increasing the mesh size can be interpreted as e
ating more points on ther surface. Therefore, all else con
stant, uniform flow on a superset of a particular mesh can
be more stable than on the original mesh. Also apparent f
Fig. 2 is that near criticality in parameter space the m
unstable wave number can have bothx andy dependence. In
contrast, Sterling and Chen@1# reported results based on th
assumption that the most unstable modes were 1D w
ky50. Indeed, Fig. 2 corresponds to an unstable regime
would appear stable under such a supposition.

In hydrodynamics, large-Reynolds-number (R5LU/n)
flows are of considerable importance and provide the m
vation for attempting to lett→1/2 in LB simulations. Zero
viscosity is a singular limit of the Navier-Stokes equation
but appears to be a regular limit within the LB stabili
theory, in that ther surface of Fig. 2 only gradually deform
ast is perturbed from 1/2~see Fig. 2 as a graphical indica
tion of this!. It then seems reasonable to study stabilityat
t51/2 @1# with the understanding that a ‘‘small’’ increas
from this value would result in a ‘‘small’’ change in th
reported stability curves.

For model LB7, Figs. 3 and 4 display stability boundar
at t51/2 as a function of the model parametera together
with the results of actual simulations in a doubly period
domain. The simulations were initialized with constant de
sity and the desired uniform mean velocity using the ass
ated equilibrium distribution functionFd . Instabilities are
dramatic and easily detected by monitoring, for examp
maxx,df d(x,t) during the course of the simulation and a
nouncing ‘‘instability’’ when and if it exceeds a predefine
value like 1 or 106. Such criteria are rather arbitrary, but th
practical difference between any reasonable criterion aim
at detecting instability seems to be only a matter of a f
time steps.

The agreement between theory and simulation is evid
in Figs. 3 and 4. It is interesting that the theory predict
dramatic reduction in stability should the mass distributio
parametera be lowered below a slightly mesh-depende
value. Based on these findings, it seems advantageou
have, at equilibrium, roughly 1/2 or more of the mass d
tributed in the rest particle state when using LB7. A simi
sequence of plots for model LB9 is presented in Fig.
There, the stable region for even the smallest amplitude
form flow shrinks to a tiny island in (a,b) parameter space
The values (4/9,1/9) suggested by Qianet al. @5# based on
maintaining Galilean invariance and isotropy of the four
ill
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order velocity tensor continue to remain on the stable side
the mesh is refined. For this reason and simplicity, their
rameter values are adopted when investigating the influe
of other variables like mesh size andt on stability. Notable
~see Fig. 6! is the trendy increase in stability witht. Simu-
lations are again performed to verify aspects of the
findings and four plots intended to relay a feeling for t
growth rate of the instabilities are given. If the mesh s
is doubled@15#, then the stability curve can only move to th
left, yielding a larger unstable regime. In Fig. 7 the neut
stability curves for mesh sizes ranging from 23 to 29 are
presented. As the mesh size increases the stability cu
tend to converge but retain greatest disparity neart51/2.
Unfortunately, it is not clear from these limited resul
whether the curves above approach the origin of the p
indicating instability of any uniform flow as the mesh siz
increases to infinity. It is interesting that the 2D ‘‘turbulent
simulations of Martinezet al.. @8# with Nx5Ny5512 ~de-
noted by ‘‘s ’’ in Fig. 7! lie so close to the correspondin
linear stability boundary for uniform flow~the farthest curve
to the left in the same figure!.

IV. INSTABILITY ASSOCIATED
WITH BACKGROUND SHEAR

In the previous section it was demonstrated that numer
instabilities could be encountered when using BGK-type
tice Boltzmann methods to simulate uniform flow, itself a
exact and physically stable solution of the Navier-Stok
equations in the periodic domain. The more general utility
the instability criteria developed therein lies in the belief th
even complicated flows have regions of approximate unif
mity.

Thematically similar reasoning prompted the investig
tion of the simple class of periodic shear layers:

u5U~ t !cosS k
2p

Ly
yD î . ~25!

FIG. 9. LB9 neutral stability curve~solid curve! and results of
simulations fork51 shear profiles on a 16316 mesh. The regions
denoted by a ‘‘s ’’ are clearly unstable byT510 000 and increas-
ing T does not substantially change this plot. Also plotted~dashed
curve! for reference is the uniform flow stability boundary for th
mesh size.
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56 2249STABILITY OF LATTICE BOLTZMANN METHODS IN . . .
Exact solutions having this form exist for both the NS a
LB9 equations though with slightly differing expressions f
U(t). ~See Appendix B for further comparisons along the
lines.!

Extrapolating from the theory of inviscid fluids one wou
expect initial flows of higher wave numberk to be unstable
to flows of lower wave number@16#, at least in the limit of
small viscosity. Figure 8 demonstrates this instability
plotting maximal horizontal and vertical velocities during
LB9 simulation initialized with ak52 mean shear wave
along with smaller amplitude noise. Instabilities leading to
k51 mode are evident from the change in the rate of di

FIG. 10. A measure of instability is plotted for simulations
the regions marked with 1, 2, and 3 in Fig. 9. Both theory a
simulation agree that 1 and 3 are, respectively, stable and unst
The theory’s claim that 2 is unstable is based on its clear in
instability. The subsequent restabilization of 2 occurs later in ti
apparently due to the decay of the basic shear from the unstab
the stable region of parameter space—all before the instability
matured beyond control.

FIG. 11. LB9 shear stability boundaries~neart51/2) for mesh
sizes 8, 16, 32, and 64. The linearity of each curve provide
maximal Reynolds number criterion if the mesh size is conside
fixed.
e

a
i-

pation ~slope on this plot! well above the noise level. It is a
curiosity that the flow ends up essentially orthogonal to
initial direction. The existence of these inviscid instabiliti
for k.1 suggests thatk51 is unique among this class as
quiescent place in which spurious numerical instabilities c
be easily identified and studied. This limitation is apparen
the price paid for retaining periodicity iny. Even so, signifi-
cant stability restrictions beyond those based on unifo
flow can be obtained by investigating the single shear m
k51, and the results of such investigations are now repor

d
le.
l
e
to
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a
d

FIG. 12. The data of Fig. 11 under the transformati
U→U/N0.8. If the data under this scaling continue to move to t
left as the mesh size is increased, then aninstability criterion based
on U/Na.(const)(t21/2) ~where the constant is determined b
the rightmost curve! can be derived.

FIG. 13. The results of two simulations att50.501 having
identical macroscopic butdifferent microscopic initial conditions.
The usual local equilibrium distribution was used to initialize t

run denoted by the lower curve~IC-1!. Note theO„1/(t2
1
2 )… time

scale for relative decay of the highly oscillatory non-NS mod
The upper curve~IC-2! corresponds to a run initialized with a pro
jected form of the equilibrium distribution.



th
be
s
t
n
as
re
re
e
o

ua
am
a

n
pr
g
-
m

e
.
c

bil-

d in
ion
the
al

nd
ccu-

of
n
s

e
ore
m.
s of
ri-
on

en
rk
ys-

2250 56RODNEY A. WORTHING, JOEL MOZER, AND GUY SEELEY
To check the theory, the stability boundary fork51 on
16316 mesh is calculated and displayed together with
results of actual simulations in Fig. 9. The agreement
tween theory and simulation seems not as impressive a
the case of uniform flow. Note, however, that agreemen
better at smaller values oft, consistent with the explanatio
that the discrepancy is merely due to the decay of the b
shear which is not accounted for in the theory laid forth he
Indeed, further evidence of the reasonability of this interp
tation is given in Fig. 10 wherein the time evolution of th
flow is monitored in various stable and unstable regions
parameter space. One could reasonably construct a q
steady version of the theory to account for the decaying
plitude of the basic shear, but we shall resist as our prim
interest lies in investigating stability ast→1/2 ~the limit of
small viscosity!, a region wherein this effect is minimized. I
this region, results for several different mesh sizes are
sented in Fig. 11. First note that all of the curves go throu
the (Umax,t21/2) origin showing that, in contrast to the re
sults based on uniform flow, stability requires that the a
plitude of the background field approach zero ast→1/2.
Second, each curve is near linear, providing a maximal R
nolds number orn,c0u type criterion for fixed mesh size
This is a much larger region of instability than that conje
tured by Rothman and Zaleski@17#, i.e., n,c0u2, based on
the 1D model of Qianet al. @18#. It also follows that, of the
three methods to increase the flow’s Reynolds number~i.e.,
e
-

for
is

ic
.
-

f
si-
-

ry

e-
h

-

y-

-

increasingN, decreasingt, and increasingu), only increas-
ing the mesh size retains the possibility of numerical sta
ity. The instability criterion N,R0.56 is obtained from these
data by supposing a continued leftward trend, as displaye
Fig. 12, of the data with increasing mesh size. This criter
constrainsN close to the accuracy requirements based on
extent of the Kolmogorov-Batchelor-Kraichnan inerti
range in 2D isotropic turbulence, i.e.,N'R1/2.

The type of stability analysis undertaken by Sterling a
Chen@1# and refined and extended in this paper seems a
rate and effective in delineating clearly unstable regions
parameter space@19# associated with the lattice Boltzman
simulation of fluid flows. Nonperiodic boundary condition
could potentially modify stability by altering the effectiv
local Reynolds number of the mean flow and, perhaps m
dangerously, by sufficiently perturbing the spectral proble
Such boundary conditions would also permit other classe
physically stable flows to be investigated for purely nume
cal instabilities and thereby provide possible refinements
the regions of instability described here.
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APPENDIX A

Details of models LB7 and LB9 follow.

1. Hexagon-7„2D…

BGK collision operator: V52
1

t
I

velocity vectors: ed50, d50

ed5@cos~ud!, sin~ud!#, ud5p~d21!/3, d51 . . . 6

local mass: n5(
d

f d

local momentum: nu5(
d

f ded

equilibrium: Fd5n„Ad1Bded•u1Cd~ed•u!21Ddu•u…

Jacobian:
]Fd

] f s
5Ad1Bded•es1Cd@2~ed•es!~ed•u!2~ed•u!2#1Dd@2es•u2u•u#

coefficients: Ad5a, Bd50, Cd50, Dd521; d50

Ad5
12a

6
, Bd5 1

3 , Cd5
2

3
, Dd52 1

6 ; d51 . . . 6

parameters: t, a

viscosity: n5 1
4 ~t2 1

2 !
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2. Square-9„2D…

BGK collision operator: V52
1

t
I

velocity vectors: ed50, d50

ed5@cos~ud!, sin~ud!#, ud5p~d21!/2, d51 . . . 4

ed5A2@cos~ud!, sin~ud!#, ud5
p~d2511/2!

2
, d55 . . . 8

local mass: n5(
d

f d

local momentum: nu5(
d

f ded

equilibrium: Fd5n„Ad1Bded•u1Cd~ed•u!21Ddu•u…

Jacobian:
]Fd

] f s
5Ad1Bded•es1Cd@2~ed•es!~ed•u!2~ed•u!2#1Dd@2es•u2u•u#

coefficients: Ad5a, Bd50, Cd50, Dd52 2
3 ; d50

Ad5b, Bd5 1
3 , Cd5 1

2 , Dd52 1
6 ; d51 . . . 4

Ad5
124b2a

4
, Bd5 1

12 , Cd5 1
8 , Dd52 1

24 ; d55 . . . 8

parameters: t, a, b

viscosity: n5 1
3 ~t2 1

2 !
e
fo

er
-

e

o
be
e

in
APPENDIX B

In this appendix it is demonstrated that decaying, p
fectly sinuous, shear modes exist in the periodic domain
the LB9 equations. Comparison with solutions of the Navi
Stokes equations indicates thatt51 provides optimal accu
racy in time.

Periodic solutions of

f d~x1ed ,t11!5 f d~x,t !2
1

t
$ f d~x,t !2Fd„n~x,t !,m~x,t !…%

~B1!

„where Fd5n@Ad1Bded•u1Cd(ed•u)21Ddu•u# has ap-
propriate coefficients for LB9… are sought which maintain th
macroscopic properties

n~x,t ![( f d5n0 ,

m~x,t !5nu[( f ded5@uteiky1c.c.# î . ~B2!

The mesh size need not be specified as it is absorbed int
resolution wave numberk, and the time dependence can
elevated to a superscript on the remaining variables du
the LB discretization, i.e.,t50,1,2, . . . . Inserting the pos-
tulated form
r-
r
-

the

to

f d~x1ed ,t !5ad
t 1@bd

t eiky1cd
t e2iky1c.c.# ~B3!

into Eq.~B1! and requiring closure and consistency results
the dynamical equations

ad
t115~12t21!ad

t 1
n0

t
@Ad12~Cd~ î•ed!21Dd!uutu2#,

~B4!

eik~ ĵ•ed!bd
t115~12t21!bd

t 1
n0

t
@Bd~ î•ed!ut#, ~B5!

e2ik~ ĵ•ed!cd
t115~12t21!cd

t 1
n0

t
@Cd~ î•ed!21Dd#~ut!2,

~B6!

and constraints

( ad
t 5n0, ( bd

t 50, ( cd
t 50,

( ~ î•ed!ad
t 50, ( ~ î•ed!bd

t 5n0ut, ( ~ î•ed!cd
t 50,

~B7!

( ~ ĵ•ed!ad
t 50, ( ~ ĵ•ed!bd

t 50, ( ~ ĵ•ed!cd
t 50.
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The question of existence becomes: For fixedk, n0, andu0,
can initial values for the complex sequencesbd

t , cd
t and real

sequencesad
t be chosen so that the stated dynamics main

the above constraints. To see that the answer is yes, cons
for example, only the ‘‘a’’ equations. If at any timet the
following is true,

a1
t 5a3

t , a2
t 5a4

t , a5
t 5a6

t 5a7
t 5a8

t , and ( ad
t 5n0 ,

~B8!

then two things can be said; first the ‘‘a’’ constraints of Eq.
~B7! are clearly satisfied and secondly the relations~B8! will
continue to hold at all later times. The last statement follo
by considering various combinations of the dynamical eq
tions, like (a12a3) t115(12t21)(a12a3) t. It is helpful to
note (Ad51 and (Cd( î•ed)21Dd50 to verify (ad

t11

5(ad
t 5n0. Similar considerations for the ‘‘b’’ and ‘‘ c’’

equations suggest initially assigning values so:

a1
05a3

0 , a2
05a4

0 , a5
05a6

05a7
05a8

0 , ( ad
05n0 ,

~B9!

b0
050, b1

052b3
0 , b2

052b4
0 , b5

052b6
0 ,

b7
052b8

0 , ( ~ î•ed!bd
05u0, ~B10!

c1
05c3

0 , c2
05c4

0 , c5
05c6

05c7
05c8

0 , ( cd
050.

~B11!

A concrete example of such an initial condition~one satisfy-
ing the class described above! derives from the equilibrium
distributionFd ,

ad
05n0$Ad12@Cd~ î•ed!21Dd#uu0u2%, ~B12!

bd
05n0Bd~ î•ed!u0, ~B13!

cd
05n0@Cd~ î•ed!21Dd#~u0!2. ~B14!

Therefore solutions of the discrete LB9 equations having
exact form~B2! exist.

To describe the macroscopic time dependenceut further
analysis of the central and self-closing ‘‘b’’ equation ~B5! is
required. The particularly simple and solely macrosco
equation

ut115
21cos~k!

3
ut ~t51! ~B15!

is obtained by settingt51 and taking appropriate sums o
Eq. ~B5!. Comparing this with the corresponding Navie
Stokes equation@20#

ut115e2k2/6ut ~B16!

gives a remarkably small difference;k6/3240~for small k)
in decay rates. Unfortunately, we shall findt51 unique in
in
er,

s
-

e

c

these regards in that other non-NS type behavior is to
expected from LB9 at other values oft, especially in the
important limit t→1/2.

For generalt, the dynamics ofut can be written as
n0ut5@1 1 1#•bt where

bt115Abt,

A[F 12
1

3t

2

3t

2

3t

e2 ik
1

6t
e2 ikS 12

5

6t D e2 ik
1

6t

eik
1

6t
eik

1

6t
eikS 12

5

6t D G ,

and

bt[F b1
t 2b3

t

b5
t 2b6

t

b8
t 2b7

t
G .

Though an exact eigenanalysis and therefore closed form
lution of the above iteration equation exists, approximate
pressions for the eigenvalues in the limit of smallk with
emphasis on the case wheret<1 seem more digestible fo
our purposes, i.e.,

l1;12nk21H 1

2
n21S 3n32

1

12
n D J k42•••, ~B17!

l2,3;S 12
1

t D F16 iA2

3
k2•••G , ~B18!

where we have setn5(t21/2)/3 in the expression forl1 to
facilitate comparison with the corresponding NS eigenva

l NS;12nk21 1
2 n2k42•••.

Settingt51 simultaneously removes the non-NS modes a
decreases the error of the physical mode fromO(k4) to
O(k6). However, neart51/2, the ratio of eigenvalues re

veals that one must wait at leastO„(t2 1
2 )21

… in time before
the nonphysical modes are relatively decayed~see Fig. 13!.
For the simple sinuous profiles discussed here, this unfo
nate time scale can be easily avoided by altering the mic
scopic initial conditions slightly from those based on t
equilibrium distribution. Indeed the results~Fig. 13! of a run
beginning with aprojectedform of the equilibrium distribu-
tion ~onto thel1 eigenspace! show no such unphysical os
cillations. It is not clear whether this idea could be reaso
ably extended to improve general LB9 simulations of lo
viscosity fluids.
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