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A general method to deal with tHeelativistic) force-free electromagnetic field is developed. We formulate
the theory without assuming symmetry of the electromagnetic field configuration. Thus we can apply it to any
object where the force-free approximation is justified, e.g., the pulsar magnetosphere, the black-hole magneto-
sphere, and the magnetosphere around the accretion disk. We describe the force-free electromagnetic field by
a classical field theory. The basic variables are the Euler potentials extended to the relativistic degenerate
electromagnetic field. The basic equation is given by a two-component nonlinear equation for two Euler
potentials. The theory has a close connection with geometry. It is based on the concept of the flux surface. The
flux surface is a geometric entity corresponding to the world sheet of the magnetic field line. We give both the
covariant and the 81 expression of the basic equation. By the latter form, the causal development of the
force-free electromagnetic field is discussed. It is shown that the theory describes the causal development of the
force-free electromagnetic field self-consistently as fdf a5>0. The basic equation contains arbitrariness. It
does not determine the solution uniquely. Although this arbitrariness originates from the gauge freedom of the
electromagnetic field, it differs from the arbitrariness in the ordinary gauge field theories. Namely, the dynam-
ics of the Euler potentials itself does not contain arbitrariness. It appears from nonuniqueness in correspon-
dence between the Euler potentials and the electromagnetic field. Further, we discuss the breakdown of the
force-free approximatiorf.S1063-651X97)03008-(

PACS numbsgps): 41.20—q, 95.30.Qd

I. INTRODUCTION axisymmetric cases still remains in a quite underdeveloped
state. In fact, the foregoing works on the nonstationary-
The force-free approximatiofimassless approximatipn axisymmetric configurations did not give any systematic
of the relativistic magnetohydrodynamics has been usefhethod to deal with the force-free electromagnetic fields nor
widely in studies on the magnetosphere around the relativis€veal dynamical properties of the force-free electromagnetic
tic object, such as the pulsgk—3], the black hold4—7], and field. Accordingly, a systematic mathematical procedure
the accretion disk8]. We can apply this approximation to treating the force-free electromagnetic field is still absent ex-
the region where the electromagnetic energy density is mucgept for the stationary and axisymmetric case. As a result, we
greater than both the rest mass and the thermal energy dete still almost ignorant of the dynamical properties of the
sity of the plasma. However, most of the foregoing studiedorce-free electromagnetic field. Further, reflecting such ig-
were devoted to the stationary and axisymmetric electromag?orance, overall consistency of the force-free approximation
netic field configuration. Only a few works have treated thehas sometimes been questiori&l. Indeed, the force-free
nonstationary_axisymmetric case. As examples Of Sucl@lectromagnetic f|e|d haS never been Studied from the f|e|d
works, we have studies on the obliquely rotating pulsar magtheoretical point of view as a field that has its own dynamics.
netospherg9] and the time-dependent axisymmetric mag_RecentIy the present author has formulated a linear perturba-
netosphere around the black-hole accretion-disk syft@in ~ tion theory of the force-free electromagnetic fields and
A|th0ugh these were pioneer works and important Contribulreated small disturbances in the force-free black-hole mag-
tions in their specific problems, they are quite unsatisfactonjl€tosphere. In due course, we find that the force-free elec-
in the understanding of the general properties of the forcetromagnetic field is generally described by a field theory with
free electromagnetic field. two scalar variables. In this work, we will present a system-
The method to treat the stationary and axisymmetricatic treatment of the force-free approximation using this idea.
force-free electromagnetic field has been almost established The basic equations for the force-free electromagnetic
through the works cited aboy&—8] and others. Namely, the field are
stationary and axisymmetric force-free electromagnetic field
is described by the stream function of the poloidal magnetic ViF .+ V, Fat+V,F\ =0, (1.2
field lines together with two integrals on the poloidal mag-
netic field lines. The stream function is determined by a par-
tial differential equation called the pulsar equation or the V FHr =473 (1.2
transfield equation. It decides the electromagnetic force bal-
ance across the poloidal magnetic field lifigés-8]. Thus, in
the studies on the stationary and axisymmetric force-free
configuration, major difficulty lies in solving the pulsar equa-
tion to construct realistic models. whereF ,, is the electromagnetic field anit is the four-
On the contrary, the method for nonstationary-current. Equationgl.l) and(1.2) are Maxwell's equations.

F,.,J"=0, (1.3
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Equation (1.3 is the force-free condition that is justified these formulations, the indeterminacy in the basic equation is
when the Lorentz force acting on the plasma is much greatetlarified. In Sec. VI the breakdown of the force-free approxi-
than the inertial forcg¢1-8]. mation is discussed.

In the ordinary treatment of Maxwell’s equations, the cur-  Our metric signature is + + +). We use units in which
rentJ* is determined by the matter distribution. The electro-c=G=1.
magnetic field is solved so as to be consistent with the cur-
rent distribution and the boundary condition. On the other Il. EULER POTENTIALS
hand, in the force-free approximation, the role of E2) is
to express the current by the electromagnetic field. Namely, _ R )
the current is not a quantity independent of the electromag- Equation(1.3) implies that the force-free electromagnetic

netic field. Accordingly, Eqs(1.2) and(1.3) give a nonlinear field is necessarily a degenerate electromagnetic field.
equation forF Namely, F,, satisfies dét,,=0, as a matrix. This is also
v

MY =
Here, some reader may wonder at the absence of equ g(pressgd as F*_ Fu,=0 by mea}\ns of the dual tensor of
which is given by F#"=¢#"*"F, _. In nonrelativistic

tions concerning the macroscopic four-velocity of the plasma #v’ oS ) Lo ) i
from the basic equations. In fact, traditionally the macro-language, this is written &s-B=0 in terms of the magnetic
scopic four-velocity of the matter has been introduced basetield B and the electric fieldE, of course. The degenerate
on the specific microscopic picture of the plasma. It waselectromagnetic fields have distinct algebraic and geometric
sometimes treated as one of the basic variables together wigHoperties that manifestly distinguish them from the nonde-
the electromagnetic field. However, as we will see below, thé@enerate fields. The theory explored here is largely based on
force-free approximation is independent of any picture of thdhe intrinsic geometrical nature of the degenerate electro-
constituent plasmas except for the point of whether or not th&@gnetic fields. Thus the degeneracy of the force-free elec-
force-free approximation is justified. The dynamics of the
force-free electromagnetic field is described completel)yv !
without the macroscopic four-velocity of the plasma. Of 2e?i%n;i:}3ry of the properties of the degenerate electromag-

course, in many cases, introduction of the macroscopic four- First, let us consider the algebraic propertie€qf, as an

velocity offers useful physmal mforr_natlon. Espeual!y, when antisymmetric matrix. By antisymmetry, a degenerate elec-
one compares theoretical results with the astronomical obse,

. : {r'omagnetic field tensof ,, becomes an even rank matrix.
vation or with the results of other theory such as the magn

. , ) eConsequently, dét,,= 0 implies that the rank df ,, is two
tohydrodynamic§MHD), the macroscopic four-velocity of if F,, has nonvanishing components. THas, has a two-

the plasma is necessary. Further, there will be the case iymensional vector space of zero eigenvectors. Namely,

which the four-velocity based on a specific physical picturénere are two linearly independent vectors that become solu-
is incompatible with the force-free approximation. However, tions of the equation

this is another problem to be considered apart from the dy-

namics of the force-free electromagnetic field. In the present F..&"=0. 2.1

work, we thus stress the point that the primary problem in_ . ,

the force-free approximation is in Eq4..1)—(1.3). Introduc- Evidently, Eq.(2.1) has nontrivial solutpns onIy. when

tion of the macroscopic four-velocity is the secondary prob-d€F .»=0. Further, we can show thatdfs is a solution of

lem in this sense. Therefore we concentrate our effort on &9: (2.1), another solutior(y orthogonal tag(s) is given by

systematic treatment of Eg&l.1)—(1.3). Py 2.2
The plan of this paper is as follows. Among the properties &) vo>(1- '

of the force-free electromagnetic field, the one most fundatpen any vector written by a linear combinationgQ’{) and

mental to the present theory is its degeneracy. The 'nt”ns';‘-f‘z) also satisfies Eq2.1). Thus zero eigenvectors constitute
cally geometric nature of the theory results from this fact. I, "two-dimensional vector space.

Sec. Il properties of the degenerate electromagnetic field are Thege properties are illustrated easily by a simple ex-
discussed. The Euler potentials and the notion of the flilgmple in the flat space. Let us set the magnetic field as
surface are introduced. They are the key concepts of thngéy and the electric fielcﬁzEéz, whereéy and 52 are

theory. In Sec. lll the covar'lant form of the basic quatlon IS nit vectors in the Cartesian coordinate. Obviously,
given by a set of two equations for two Euler potentials. Theé B=0 is satisfied. There . and *F . respectively. be-
action that yields the basic equations is obtained. Arbitrari-_ ~ ' my P Y

: . . k . co
ness in solutions is also considered. In Sec. IV, leaving the

A. Degenerate electromagnetic field

uv

main development aside, we consider description of the mag- 0 0 0 —-E 0 0 -B O
netic field line. The magnetic field line is treated as a geo- 0 0 0 -B 0 o 0
metric entity that has its own self-identity. In Sec. V, the g _ *E = _
causal development of the force-free electromagnetic fieldis “~ {0 0 0 0 " " *" | B —E 0
studied. In the flat space-time, the basic equation is rewritten E B O O 0 O 0

to the 3+1 form that is suitable for this purpose. Splitting the (2.3

time derivatives from the spatial derivatives, we get the basic

equations that are second order in the time derivative. FufFrom the first of the above equations, we see g} is

ther, the canonical equations of motion are derived. Usinghosen as §(;)=(0,0,1,0). From Eq.(2.2, we have
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g{z)=(—B,E,0,0). It is easy to see that the relations ther, we can find variables that make K1) trivial. Thus
*FAF,,=0, F#Vg(vz)zo, andg(l)ﬂgé)zo are all satisfied. EQ. (1.1) is not a dynamical equatio'n. These facts indicate
We can also see thét,, is a rank-2 matrix. These algebraic that the force-free electromagnetic field has only twox)
properties are independent of the orientation of the coordidegrees of freedom as a field theoretical system. This obser-
nate system. Further, a similar argument is possible in th¥ation is also consistent with the fact that the electromag-
curved space-time making use of the tetrad. Thus the resulf$tic field in vacuum has two degrees of freedom of the
hold generally. polar|zat|on._ _

The degenerate electromagnetic field terSpy is classi-  Note that if we choose the vector potenig) as the basic
fied into three classes by the sign of a four-invariant quantityfield in Eqgs.(1.2) and (1.3, we cannot handle these equa-
F,,F** [11]. When F,,F#">0, there exist timelike zero tONS so transparently. Since four equations are necessary to
eigenvectors of ,,. Making use of a Lorentz boost, we can determine four components of the vector pot_entlal, two inde-
find a frame in which observers at rest see a pure magneti€ndent components of the force-free equation, the degener-
field. In this sense, the degenerate electromagnetic field @te condition F#*F,,=0 and a gauge condition such as the
magnetic in this casé, ,F#*=0 is the case of the null field Lorentz gauge, possibly become a closed set of the basic
and corresponds to the radiation field. Wtep,F#'<0, all equations. Thus at this stage we cannot exclude a possibility
the zero eigenvectors df ,, are spacelike. In this case, that there exists a general description of the fo_rce-free elec-
F ., is electric, i.e., we can find a frame in which observers romagnetic field by means of the vector potential. However,

at rest see a pure electric field. in such a formulation, two equations are constraint. It will be

Although the force-free electromagnetic field is describecifficult to solve two constraint equations simultaneously.
apart from the picture of the underlying plasma, the physicall Nerefore it seems evident that the theory that describes the
force-free electromagnetic field should permit the existencdorce-free electromagnetic field by two variables is far more
of the velocity field of the plasma. If we demand that thePreferable. Indeed, we can find such a theory.
velocity field U# satisfiesF ,,U”=0 in the force-free ap-
proximation as in MHD, the force-free electromagnetic field B. Euler potentials
must be magnetic becaukk* is a timelike vector. Thus the

physical force-free electromagnetic field must satisfy As mentioned above, we can find the two-dimensional

flux surface at every point where the degenerate electromag-
F FM'>0 (2.4) netic field is well behaved. An important theorem follows
nv ’ . . . .
from the existence of the flux surfaces. It yields a simple
expression of the degenerate electromagnetic field. Namely,
he theorem asserts that a degenerate electromagnetic field is
enerally written as

in all over the force-free region. In the following, condition
(2.4) is regarded as a basic inequality that the physicall)}
acceptable force-fee electromagnetic field must satisfy. I
Sec. VI, however, we will briefly discuss this point again. — _

Degenerate electromagnetic fields have these algebraic Fun=0ubrdvbz= 0ub20vba, 29
properties at every point. This adds distinct geometric prop-
erties to them. If the electromagnetic field is locally well by two scalarsp, and ¢,. This expression of the degenerate
behaved, we can construct two linearly independent |oca||)electromagnetic field provides the basis for the rest of all our
well behaved vector fields of the zero eigenvectors. By virtugliscussions. Inversely, if once E@.5 is established, the
of Maxwell's equation, then these vector fields generate 4lux surfaces are defined as a family of surfaces on which
family of two-dimensional integral surface in the four- ¢; and¢, are constant. As far as we know, Carfig2] first
dimensional space-time. In the next subsection, we provéemarked this point in the field of relativistic astrophysics,
this in a somewhat restricted form. A general proof is givenbut this is a relativistic generalization of the Euler potentials
in the Appendix. We call this integral surface the flux sur-used in the nonrelativistic MHD(See[13], for the Euler
face. A vector field that satisfies E(.1) is called the gen- potentials in the nonrelativistic MHDIn the nonrelativistic
erator of the flux surface. The present theory is largely baset!HD, the Euler potentials are often used in the form as
on the concept of the flux surface. The geometrical nature o=V o x ﬁﬁ. This corresponds td=;=d;ad;B—d;5;a
the theory follows from this fact. (i,j=1-3. Similarity between this and Eq2.5) is evident.

Further, the existence of such integral surfaces enables Otus we also callp; and ¢, the Euler potentials henceforth.
to introduce the concept of the magnetic field lines into theHowever, the Euler potentiala and B in the traditional
magnetic degenerate electromagnetic field in a geometricglsage and our Euler potentialg and ¢, are not equivalent.
way. The magnetic field line on a given three-space is deTherefore, leaving a general mathematical proof of cp)
fined by the intersection between the three-space and the fluy the Appendix, here we introdue#, and ¢, deriving Eq.
surface. Thus the magnetic field line has invariant meaning2.5 from the nonrelativistic Euler potentials in the flat
on each three-space. It behaves as a stringlike object thgpace. This will clarify the relation between the traditional
preserves its self-identity during its time evolution. Con-nonrelativistic Euler potentials and our Euler potentials.
versely, in t'he'stl y|ewp0|nt, _the flux surfac_e isatrack that  \ye assumézﬁaxﬁﬁ andB-E=0. As is well known,
the magnetic field line draws in four-space-time. Namely, the . . >
flux surface is the world sheet of the magnetic field line. a solenoidal (dlvergence-fre)e_vector B is géeneerally &x

From the fact that the degenerate electromagnetic tens@€ssed by the Euler potentiais and 8 as B=VaxVp
F,. is a rank-2 matrix, we immediately see that the force-{13,14. Substituting this equation inte;B+VXE=0, we
free Eqg.(1.3) has only two independent components. Fur-have
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VX[E+daVB—d,BVa+V(adB)]=0. (2.6 b1=4, =t+D(4,B), (2.19
Thus we have we haveF=d¢;/\d¢,. Accordingly, we can conclude that
the degenerate electromagnetic fi€lg, is written as Eq.
E+ataﬁﬁ—&tﬁ€a+ ﬁ(aatﬂ):€f, 2.7 (2.5 by two functions¢; and ¢,. Then the degenerate con-
dition
wheref is an arbitrary function. Then the degenerate condi- N
tion B-E=0 leads us to FFEYE =48R0, 410,20\ $1d:4,=0  (2.17)
5. V»(f — wd,)=0. 2.9 becomes obvious.

Once expressiofR.5) for the degenerate electromagnetic
field is established, the flux surfaces are defined inversely by
the surfaces on whicth, and ¢, are constant. This condition
yields two relations among four coordinates. Thus it defines
a family of two-dimensional surfaces in the four-dimensional
space-time.

An expression of the vector potential that yields an elec-

SinceB=Vax Vg, this impliesf— ad,8= y(a,B), where
Y(a,B) is an arbitrary function ofe and 3. Thus the electric
field and the magnetic field are written as

E= —ﬁta€ﬁ+ ﬁtﬁ€a+§¢(a,ﬂ), B=Vax ﬁﬁ

(2.9 tromagnetic field2.5) is given by
This expression is different from E(R.5) except for the case 1
ﬁ:/;(a,,@) =0. Thus the next step of the proof is to show that AM=§(¢13M¢2— h20,$1). (2.18
it is always possible to rewrite the above expression to the
form

Note that the Euler potentials that yield a given degenerate
electromagnetic field are not unique. For example, after fix-
(2.10 ing ¢4, we can changeb, as ¢,— d,+f(¢,) by an arbi-

' trary function of¢4. This transformation changes the vector

This step becomes somewhat transparent making use of titential (2.18 as A,—A,+3J,N(¢1) with \(¢y)

E=— 011V ot 01V by, B=VehxVh,.

differential form. The electromagnetic field two-forfnis F = 1/2[ (¢1df/d1— f)d¢1 Thus this corresponds to the
=(1/2)F ,,dx*/\dx". Then we can rewrite Eq2.9) as gauge transformation. We will later give a thorough discus-
sion on this point.
F=da/N\dB+dy/\dt. (2.11 Further, the expression of the vector potential by the fixed

Euler potentials is not unique. In fact, a gauge transformation
We have to derive two functiong, and ¢, that express the generated by an arbitrary function ¢f and ¢, as
electromagnetic field two-form aS=d¢,/\d¢,. The case
in which gyl da= gyl 9B=0 is trivial. By virtue of the an- A=At IN (D1, d2) (2.19
tisymmetry ofF ,, in « andg, it suffices to consider the case

in which ay/da#0. Sincedyl da+0, Eq.(2.11) is rewritten gives a different expression of the vector potential written by
’ the same Euler potentials. For example, by the gauge trans-

as :
formation
I B B
_(&a) («Md +0BdB>AdB+d"/jAdt A, —A,=A,+ = aﬂ(¢1¢2) (2.20
)\t
Idl///\[dH Ja dﬁ]- (2.12  we have
Further, by virtue ofdy/da#0, we can inverty=y(a,B) "E‘u: $10,b2. (229

asa=a(i,B). Thus we have The similar form of the vector potential is often used in the

Ja nonrelativistic MHD asA= aV .
F=dy/N\ dt+wjd,8 . (2.13
11l. BASIC EQUATION
Defining @ (¢, 5) as A. Derivation of basic equation
B da(,B) If F,, is a solution of Eqs(1.1)—(1.3), it is necessarily a
(y.B)= Y B, (2.14 degenerate electromagnetic field. Thus we can look for solu-
tions of these equations from degenerate electromagnetic
we have fields. Namely, we can restrict the electromagnetic fields to

the degenerate fields before solving the force-free equation.

The electromagnetic field is restricted to the degenerate field
ap d'3+_¢d‘p (2.19 expressing it as E(2.5 by means of two Euler potentials.

Then Eq.(1.1) is automatically satisfied. Since the force-free
Therefore introducing two scalags, and ¢, as equation has two independent components, Ef®2) and

F=dy/\ dtjL
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(1.3 give a closed set of two equations for two Euler poten- The transformation defined by Eq€3.3) and (3.5 in-
tials. Accordingly, the basic equations of the force-free elecduces a gauge transformation to the vector potential. Let
trodynamics are always described by two nonlinear equaA, be the vector potential given by E¢.18. Then the
tions for two Euler potentials. In fact, using express{@rb) gauge transformation induced 4), is as follows. From Egs.
and also combining Eq1.2) with Eq. (1.3), the force-free (2.18 and(3.3), we have

equation becomes

~ 1. - - -
(0,010, ¢2= 0,20, 1)V \(3" P15 po— 0" 29" 1) =0. A= E(d’laud’Z_ $20,$1)
(3.1
~ 0y ~ 9 b d
Sinced, ¢, andd, ¢, are independent and nonzero as long :[ b1—— #2 —pp—— e 3, b2~ B e — b 2 d ¢1]
asF,, does not vanish, we can separate &1) to I Ib2 I I1
(3.6
9,10 {N—9(0" 10" o~ 9" 23" 1)} =0, .
Further, there are relations
9,20\ {N—9(0"$10" b= 3" o3  $1)}=0. (3.2 7B 3
~ ~ 1
These are the general basic equations of the force-free aﬁ ¢1&TBZ d)zﬁsz
proximation. o _ _
W prdo)  ~ P ~ X2
B. Arbitrariness in solutions D) Yopiod, T2dpidd,
As mentioned in Sec. Il, we cannot determine the Euler 27 Pre
potentials that yield a given degenerate electromagnetic field =1+, b2 — by b1 (3.7)
uniquely. Consequently, our basic equati¢®) also do not dp10 ¢, dp19¢,
have unique solutions. Now we clarify the extent of this d
arbitrariness. One degenerate electromagnetic field configL?—n
ration corresponds to one geometrical configuration of the 7% 0%
flux surfaces. Thus the transformation of the Euler potentlals_ —— 1 ”l_z}
that leaves the electromagnetic field invariant does nof®2l ~“d¢é1 dy
change the geometrical configuration of the flux surfaces. o _ _
Therefore such a transformation evidently has the form _ N1, P5) 25 P, +,q.5 9y
- = ~ o~ (b1 Iy i,
b1=b1(d1,¢2), P2=b(d1,¢2), 3.3
o ~ Pdy . P
where (1,®,) and (¢,,¢,) are two sets of the Euler po- =1- ¢1<9¢1c9¢2 ¢2¢9¢13¢>2 3.8

tentials. This is because it does not alter the equipotential
surfaces of the Euler potentials. Further, by this transformamtroducing a function\ (¢4, ¢,) by
tion the electromagnetic field changes as

-~~~ - N _lf ~ Pdy - P dend
ﬁzaa_ﬁaaa:%%_%% ($1.42)=75 ¢1(9¢(9¢ ¢20¢(9¢> $1d o3,
w2 TRTETL N 9y agy  ddy I (3.9

X (0, $10,2—3,,$29,01). then we can integrate Eg&.7) and(3.8) as
(3.9 e 5 P s +2ﬂ
Thus, so that the electromagnetic field becomes invariant, the 1(9¢> 2(7 %0,
transformation must satisfyi4] _ _
~ o~ ~ ~ ~ o~ ~§;¢>1_~(9L52_ —— 3.1
0y by 0y 0dy_(drdy) oo Y254, Mag, P2 %oy (310

Ipy Iy Iy dp1 I, da)

respectively. Therefore we have

whered( b, 1)/ (1, d,) is the Jacobian of transformation

~ 1
(3.3. We can regard ¢;,$,) and (¢;,$;) as two sets of A= 5 (910,02 20, b1) + — == ¢ ¢
coordinates orthogonal to the flux surface. Thus geometri-
cally this implies that the volume element of the two- =A,+ N1, 07). (3.11)
dimensional subspace orthogonal to the flux surface must be
invariant. In other words, the mutual spacing of the flux sur-This gives the gauge transformation induced in the vector
faces along the direction orthogonal to these surfaces mugbtential explicitly.
be invariant so that the electromagnetic field will be invariant  Since the force-free equation can be written by the elec-
under transformationi3.3). tromagnetic field=,,, only, clearly our equation of motion is

¢9¢2 3, b1
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also invariant under the transformation defined by E8<) normal tetrace(,, so thate(,, ande(;, will be the generator
and (3.5). Therefore we can determine the solution of theof the flux surfaces andf, and efs) will be orthogonal to
basic equations3.2) within the arbitrariness arising from the flux surface, the energy-momentum tensor of the degen-

this transformation. erate electromagnetic field becomes a diagonal form

C. Action principle N .
Tw)(,,):TMe(M)e(V): E(F . F)d'aq - 1,_ 1,1,1)

(3.18

v 4 X .
T 16x7 FAF N —gdx, (312 From these observations, we have some conclusions. Let
U#,s denote the four-velocity of an arbitrary observer. Then

where the vector potential is the dynamical varigd#,16.  the magnetic field observed by this observer B ~
The action that yields our basic Ed8.2) also follows from  _» FhUgps. SinceF ,,Bg,=0 holds, Eq(3.16) implies that

Maxwell’'s equation is derived from the action

. . . . obs* obs
Eqg. (3.12 regarding the Euler potentials as dynamical vari-every observer sees the magnetic tension @/E)along his

ables. Expressin§ ,, by the Euler potentials, then the La- magnetic field. Further, an observer comoving with the mag-

grangian density. becomes netic field lines, i.e., an observer whose four-velodity,
1 satisfiesF ,,U¢,,=0, sees the electromagnetic energy den-
L=\—gL=—- F\/—g(a%la”(ﬁz—a”(ﬁzawl) sity (1/2)F-F. He also observes the magnetic pressure
m (1/2)F - F to the spatial direction orthogonal to his magnetic
X(9yp10x o= 0y badhb), 313  field
where thel is _the Lagrangian scalar. Indeed, the Euler- IV. DESCRIPTION OF FORCE-FREE
Lagrange equations fap, and ¢, become ELECTROMAGNETIC FIELD

BY MAGNETIC FIELD LINE

3,90, a0 1" o= 0% 20" 1)} =0,
The basic variables of our theory are the Euler potentials.
(9#{\/—_gr7v¢l(a“¢1(9V¢2—a“¢>2(9V¢1)}=0, (3.14  They have distinct geometric meaning as discussed above.
) ) ) However, the basic equation8.2) do not have intuitive
respectively. Since,d,¢i=4,d,¢; holds, these equations forms. Sometimes the magnetic field line seems more intui-
coincide with Egs(3.2). Thus action3.12) in fact yields the  tjve than the Euler potential. As mentioned in Sec. I, the

basic equations of the force-free approximation. magnetic degenerate electromagnetic field introduces the
As usual, the energy-momentum ten3ét” is defined by  magnetic field lines on an arbitrary three-space without am-
T#'=(2N-9g)6(V—gL)/69,,. Thus we have biguity. Each magnetic field line behaves as a one-

dimensional stringlike entity that keeps its self-identity dur-
FW‘F”—E HENTE ing the causal development in the degenerate electro-
»" 79 ATl dynamics. Thus a description of the force-free electromag-
(3.15  hetic field by the magnetic field line becomes possible. It will
complement the description by the Euler potentials and help
where the electromagnetic field is written by the Euler po-our understanding of the dynamics of the force-free electro-
tentials as Eq.(2.5. Eq. (3.15 shows that the energy- magnetic field, especially in81 formalism.
momentum tensor derived from E@.13 is also consistent
with that of the ordinary electromagnetic field.
Some algebraic properties of the energy-momentum ten-

sor result from the degeneracy of the electromagnetic field. [N this work, we consider only the space-time that has
Let é’li denote a generator of the flux surface. Fromglobal time coordinaté. Let N* be the four-VeIOC|ty of the

F,,&=0, we find fiducial observer[5,7,15,16. Namely, N* is a vector or-

. thogonal to the three-space of constant global timEhus it
is written asN“=ad,t where « is the lapse functionN*
also satisfiedN“N,=—1. The magnetic field3* and the
electric fieldE* in this three-space are defined, respectively,
whereF-F=F#"F . Namely, a generator of the flux sur- by
face becomes an eigenvector of the energy-momentum ten-
sor. Its eigenvalue is given by (1/2)F -F. Similarly, we Bf=—*FN,, Ef=FN,. 4.9
can also see

2 s(V-gL) 1
\/__g 89, A

TrY=
A. Kinetic quantities for magnetic field lines

ThE=— S (P, (316

ThenF,, and *F#” are decomposed as

1
Td,¢i=5(F-F)d,éi. (3.17 Fu=N,E,—N,E, +e,,,,N'B",
This implies that a vector orthogonal to the flux surface also *Fu=—N,B,+N,B,+ sWMN*ET. (4.2

becomes an eigenvector of the energy-momentum tensor that
has eigenvalue (1/B)-F. Accordingly, choosing an ortho- By definition, B# satisfies relations
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F,.,B"=0, N,B"=0. (4.3 The last equation agrees with the expressigr E x B/B?
in the nonrelativistic MHD. Evidentlyy£B,=0 also holds.
From the first of the above equations, we see ®vatis a Inversely,F ,, and *F~” are written, respectively, as
generator of the flux surface. Further, from the second, we
see thatB* is tangent to the three-space of constant time. F,,= v ‘e, UtB7, *FA'=—yc (UEB"—UEBH),

Thus Egs(4.3) show that the magnetic field indeed becomes (4.10
tangent to the intersection of the flux surface and the three- )
space of constarit by means ofB# and U{. In these equationsyr appears

The four-velocity of the magnetic field ling# is intro- because the magnetic field is defined with respect to the fi-
duced uniquely by the following three requirements: ducial observers. LeB* denote the magnetic field observed

by an observer who moves witlf. Then we have
(i) URUg,=—1, (i) F,,Ug=0, (iii) U’éBMZO(- ) B“=y:'B*. Thus Egs.(4.10 are equivalent toF,,
4.4

=&,,,UEB" and *F#"= — (U£B”— UEB*), which are the
equations that frequently appear in the relativistic MHD.

enerally, the same relations hold for observers moving with
jlswe four-velocity tangent to the flux surface.

The first equation demands tHag is a timelike unit vector.
Since the flux surface is a world sheet of the magnetic fiel
line, U must be tangent to the flux surface. The secon
equation guarantees this condition. Consequently,
Ugd,d1=Ugd,¢,=0 holds. We can regard arnly¢ that
satisfies(i) and(ii) as the four-velocity of the magnetic field  The basic equations are rewritten By andUf . Equa-
line, because there is no physical reasoning to decide th&on (1.2) is equivalent toVM*F“‘=O. Substituting Eq.
component ofU# along the magnetic field line. Thus the (4.10 into this equation, we have
third one is an auxiliary condition so as to make the direction T, 1y 1 vap
of U# unique. Later, we will see thal# determined adding Y UpV,BY =BV, (ye UR)+V, (e Up)B
(_iii) is_ well incorporated with the dynamics of the magnetic —y=}(V,B")UE=0. 4.11
field lines.

SinceB* is a generator of the flux surface, another gen-, the above equation, the component alaiy is
erator of the flux surface orthogonal ®* is given by
*FAVB, accordlrlg to Eq(2.2). From condition(iii ), we see UEUEY B, + ¥V ( 7;13V):o_ (4.12
Ufx*F#"B,. Since

B. Dynamics of the magnetic field line

The components orthogonal W are
1
O*FMB¥FB,= — S B%(F-F)=—B*B*-E?), heULV ,BM— BV U+ eV, (v5 UL)B#=0,
(4.5 (4.13

whereh{’ is the projection tensor into the directions orthogo-

with B=(B#B )2 andE=(E*E )2 we have
(B"By) (E"E,) nal toU¢, that is,

\E 1 B S B
UEZB(F_F)lz* FMVBI/:B(BZ_EZ)lZ*F#VBv' h{=6{+UEUE, . (4.19

(4.6) SubstitutingB# andU# into the force-free equation, we have

I_:rom Egs.(4.5 and (4_.5), it turn.s out _th{:uU’F‘_can be time- 82(6{—BAB”/BZ)U’F‘{VM( yglupy)_vy( YEIUFM)}
like only when condition(2.4) is satisfied, i.e., when the .
degenerate electromagnetic field is magnetic. Further, we can +vg hx(V,B,—V,B,)B#=0. (4.19
decompos&J{ into the three-velocity £ and the component . o ]
orthogonal to three-space of constaras Here (5, —B,B"/B?) is the projection tensor into the sub-
space orthogonal t®“. Thus the inner products of Eg.
Ul=ye(N*+ob), (4.77 (4195 with B# and Ug both vanish identically. Thus Eq.
(4.195 gives only two components of the acceleration. The
where ¢ is the Lorentz factor of the magnetic field line. f€maining component follows from E¢4.12. Making use
Then we have of B,Ug=0, we have
ye=—UEN,, vf=ye'(N*N,+8)U, (48 B RV, U= eV, (7: '8 =0, (419

. . ) Equation (4.16 gives the acceleration along the magnetic
respectively. These quantities are also written as field. From Eqs(4.15 and(4.16, we have

B?a,—[V,B"+2y£B"V, ¥ 1B,

1 B2 1/2 1 "
Ye=(1l—vg) "= BZ_E2| Uﬁ:?Nxs KTE B,
(4.9 +h{{yeB?V % *+(V,B,—V,B,)B"]=0,  (4.17)
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wherea, is the acceleration of the magnetic field lines de-g. is a unit vector along the electric field. From E¢4.18
fined bya*=UgV Ug. This is the Euler equation for the 5.4 (420, it is easily verified thatD(B-og)=0 if

magnetic field lines. Together witHJfUg,=—1 and

UgB,=0, Egs.(4.13 and (4.1 describe the dynamics of
the force-free electromagnetic field completely. Thus thes

equations constitute another set of the basic equations.
From Eg. (4.1, we haveV B"=—-*F*'"V ,N,. Since

N,=—ad,t, V,B” in Eq. (4.17) vanishes in many cases.

B-vr=0 holds. Here the right-hand side of E¢4.18 and

(4.21) are written byB, ve, and their spatial derivatives.

Consequently, ifB-vp=0 is satisfied initially, B-vg=0
holds through the evolution. Thus together with the initial
condition B-v=0, Egs. (4.18 and (4.21) determine the

Especially, in the Minkowski space-time, these equations arevolution of the force-free electromagnetic field completely

greatly simplified. SubstitutingJ’,éz(yF,ypl;p), and B#
=(0,B), together withV,B"=V-B=0, Eq. (4.13 is re-
duced to

B - . .
— —VX(vpxB)=0.

pr (4.18

This is the induction equation. Further, theomponent of
Eq. (4.17) becomes

1

=(0eXB)-[9(veXB)+VXB]=0. (4.19

in the flat space.

Equation(4.18 is identical with the induction equation.
Further, mathematical structure of E¢.21) is very similar
to the Euler equation in the nonrelativistic MHD. Probably
numerical method in the nonrelativistic MHD will be appli-
cable to the force-free electromagnetic field modifying the
force term in the Euler equation.

The right-hand side of Eq4.21) corresponds to the force
acting on the magnetic field lines. It arises from three differ-

ent effectsVv2, V- (B%) and (V X B) X B. The force due
to €v§ has the opposite effect in the direction along the
magnetic field and in the directions orthogonal to the mag-

netic field. The force fronV - (B%vg) acts in the direction
along the velocity of the magnetic fielg IiQe only. Further,
(V><I§)><I§ force has a similar form tg XB force in the
nonrelativistic MHD. However, it is enhanced by a factor

As seen from the second gxpression of the above equatiopy |2y, the direction of the velocity of the magnetic field
this corresponds td-E=0, i.e., absence of the Joule heat- ine; on the other hand, it is reduced by<%2) in the di-

ing. The spatial components of E@.17) are

. I | .
yEBZDtuFJryF(B.Vvé)BJrE(atBZ—y§B2atv§)uF
1 2p2y..2 5 v/ o3 A

— 5 ¥EB?Vui+BXx(VXB)=0, (4.20

whereD; is &ﬁ(ﬁ,:ﬁ). The third term is rewritten by Egs.

rection of the electric field. WhenZ<1, i.e., in “nonrela-
tivistic” limit, the right-hand side of Eq.(4.21) tends to
(1/B%)(V X B) x B. Thus B? corresponds to the mass. Fur-
ther, from Eq.(4.17), we also have

1 L
Eat(BzuéJrBZ)+V.(BZUF)=0. (4.23

(4.18 and (4.19. After some manipulations, we have the This is equivalent to the energy conservation. We treat an-

equation of motion for the magnetic field lines,

O ('L P
egt+ E(el)'V)UF‘FEZ—V’(B UF)

R
DIUF:_ E(eB’V)UF

e,+

N
E(eE'V)UF

1 .
+¥(1+v§)ev-[(VXB)XB]

1 - IR
+—2(1—u,2:)eE-[(V><B)><B]]eE. (4.21

B

other form of this equation in the next section.

V. EVOLUTION OF FORCE-FREE ELECTROMAGNETIC
FIELD

A. Initial value problem

In order to gain further insight into the contents and the
structure of the basic equations, we are going to consider the
causal development of the force-free electromagnetic field.
For this purpose, we separate the time derivatives of the
Euler potentials from the spatial derivatives in E8.2). Al-
though we confine our consideration to the flat Minkowski

Hereeg, €,, andeg are three spatial basis vectors orthogo-space-time for simplicity, this does not bring any essential

nal to each other, i.e.,

- 1 8 & 1. - 1 £ 1 . <B
eg=—=Db, €,=—= Vg, €g=—=E= = > UF
Bl 7 Jvel |E| lvexB|
4.2

Namely, eg is a unit vector along the magnetic fielg, is a

restriction to our analysis. Extension to the B formulation

in the curved space-time is straightforward. In the flat three-

space, we assume a curvilinear orthogonal coordinate and
use the ordinary vector analysis to the spatial derivatives of
quantities.

The magnetic field® and the electric fiel& are given by
Eqg. (2.10. Let us split the time derivatives ab;(i=1,2)
explicitly denotingd; ¢; as¢;. Straightforward but somewhat

unit vector along the velocity of the magnetic field line, andtedious calculations show us that E¢3.2) become
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Vo Vb —v*¢1-v*¢2)<¢1+ Vo Vb Vi-Vd,—2V -V, «'zsl)
~V¢-Vg, V-V b, V-V~ 2V -V, V-V, b,
b\ . - . V ¢
+ (haV2eh1— b1 V2ehy) ¢>2 VX (VX Vebo) | - 2)=o (5.2)
1 1
Thus if the condition
VooV, —Ver-Vepo| . N
N .. T =(VeixVey)?=|B|?#0, (5.2
VeV, Ve Ve R

is satisfied, i.e., iB#0 holds everywhere, we can invert E&.1) to the form

(d’l) (Vi XV ¢by) VXV, VXV, [ ¢y _6-(¢1ﬁ¢2—¢2€¢1){€¢1'6¢2 V¢,V d’l)
b2 (V¢1XV¢2)2 VXV, VXV, \ ¢, (VX Vh,)? \€¢2'€¢2 V-V \ ¢,

— Vorx(VaxV o) VX (Vb XV by) (5.3
(Vb1 XV h3)2\ V by X (V by X V by) B '

This equation has a typical form of the Cauchy problem. As B10)=F1($1(0),$,(0)), B(0)="F(h1(0),d,(0)),

far as|B| #0 holds, the second time derivatives ¢f in the (5.9
left-hand side of the above equation are expressed by _ _

&, ¢, and their spatial derivatives. Accordingly, if we pre- 9($1(0),42(0) _ 9(F4,f>) _1 5.5
scribe the Euler potentials and their first time derivatives all d(h1(0),¢5(0))  3(h1(0),d»(0)) '

over the initial three-space as initial data, the second time

derivatives are given at every point of this three-surface fronf"

the initial data. This is because the spatial derivatives of N
these quantities can be evaluated by differentiating them on $1(0)=
the initial three-surface. Further, if this is done at a tiymee

can decidep; and¢; att+ At by Eq.(5.3) so far as the Euler

potentials admit smooth, i.e., power-series-like, causal devel- $,(0)= ¢ ¢>1(0)+ ¢ = ,(0), (5.6
opment. Therefore, continuing this process, we can trace a

causal development of the Euler potentials by Ef3) in on the initial three-space. In fact, we find

principle until |I§| =0 occurs. Thus our basic equation gives _ e = -
complete and self-consistent description of the force-free =V XV =V XV,

electromagnetic field as far d8|#0. For a while, let us = i R i 1 S S

gnetic field as far 38| e, IeLUS g (G 55,4 B,V B0 = — (515 b oV bo).
assume thatB|+0 is satisfied in the whole region consid- (5.7)
ered and study the contents of E§.3) further.

——=$1(0)+-—=(0),

d> d>

Thus we should consider the relation between two sets of the
Euler potentials that have evolved from two different sets of
B. Arbitrariness in solutions the initial condition satisfying relation&.4)—(5.6).

The covariant basic equatidB.2) does not determine the Let $(t) and ¢(t) denote the Euler potentials starting
Euler potentials uniquely. We now clarify how this arbitrari- from the initial data(é;(0), $(0)). Thus By(t) and Bo(t)
ness appears in the causal development of the Euler poteabey the same equation as H§.3) in which ¢; are all
tials. Without any loss of generality, we can set the initialreplaced byg;. For a while, we refer to this equation as Eq.
time ast=0. Weﬁabbreviatabi(t,x) as¢i(t) below. Further,  (5.3'). Suppose thafg;(0),4;(0)) and(¢;(0),¢:(0)) relate
we assume thdB|=0 does not occur. as Eqgs(5.4)—(5.6) in the initial three-space. Then our task is

First, we should note that the initial data of the Euleryg clarify the relation between (¢i(t),:(t)) and

tential d their first time derivati that yield [ ~ = . . .
potehtia’s and Their first ime dervatives that yield a glven(¢i(t),¢i(t)) (i=1,2) for all future time. The relation after

initial electromagnetic field configuration are not unique. Inthe infinitesimal intervalht suffices for this purbose. Since
fact, two sets of initial data: (¢;(0),4;(0)) and purpose.

($:(0),4:(0)) (i=1,2), give the same electromagnetic field b.(AD)=.(0)+ ¢;(0)At, Gi(At)=,(0)+ ¢ (0)AL,
if they relate as (5.8
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and

=$:(0)+ $;(0) At
(5.9

Bi(AD)=(0)+ Bi(0)AL, ¢(At)

hold, we need to expresféi(O) andzi(O) as functions of
#i(0) and¢;(0). From Egs.(5.6) and(5.8), we find

- ot o,
¢i(At)_fi(¢l(O)a¢2(o))+Tmt=0¢1(0)At+@t_o
X ¢o(0)At
=fi(h1(Al),ho(AL)) (i=1,2). (5.10

Thus att=At, ¢, and ¢, are the same functions of; and
¢, as att=0. Consequently, we also have

A(Pa(AD), Bo(AD) _ d(f1.f5)
A(ba(A1), d2(AD) ~ a( b1, 2)

Here we use the fact that E¢G.5) is a functional identity
between two sets of functionst(,f,) and (¢4, ¢,). This is
easily seen from the following consideration.
a(f1,f5)13(41(0),0,(0)) is generally a function ofp,(0)

=1.

(5.1))

and ¢,(0). Denoting d(fq,f5)/3(¢1(0),05(0)) as
F(¢$1(0),$,(0)), on the initial three-space we have
VF($1(0),¢2(0))= Vd>1 V¢2—0 (5.12

¢ ¢9¢

FromB#0, we seeV ¢, #0 andV ¢,#0. Further, we can
also see thaV ¢, andV ¢, are not parallel. Thus we have

IF(h1,¢7) :F7F(¢1,¢2)
ddq I,

Thus F does not depend ow,(0) and ¢,(0). Therefore
d(f1,f2)/(1(0),45(0))=1 identically holds irrespective of
the functional forms of$,(0) and¢,(0) as functions of the
position.

Next we must rewrite the right-hand side of E§.3').
Using Eq.(5.7), the second and the third terms of the right-
hand side of Eq(5.3") are expressed easily by;(0) and
¢,(0). On theother hand, the first term is tedious. From the
spatial derivatives of Eq(5.6) on the initial three-surface,
and further using

=0. (5.13

_ 9 (b1 b2)
dp, (b1, d2)

0 (1,4,
dpy I d1,92)

=0, (5.19

we have

(Vpy X Va<-f’2)’;51— (V¥ V+<-1>1)’€22
¢1

[(V¢1XV¢2)¢1 (VX V) ]

A

+_[(V¢2XV¢2)¢1 (VX V) o]

TOSHIO UCHIDA

ey

-
7 A

54’1(9952

2
oy
e AcH

><V¢1><V¢2,

$1ho+

(5.15
and

(Vo Vef.ﬁz)gl_ (Vo xV ¢1)’<Z2
Iba

=70 (VX Vo) o]

—=[(Vpy XV ) py—

i (VX V) o]

(5.1

In Egs. (5.14—-(5.16), ¢;(0) is abbreviated ag;. Using
Egs.(5.195 and(5.16) in the first term of Eq(5.3"), we have

(VX V) py—

2
7%,
A

b,
P10,

+ —_
712 +2 b1t

b,
{ b1

P,
XV X Vby.

of; 5
¢>(0) f7¢1 o 0¢1(0)+(9¢)2t 0¢2(O)+’9¢’2t 0¢>1 (0)
+2 il 0) (0)+— Al 2(0
Thsidi_ OO 0.
(5.17
The second of Eqg5.9) then becomes
$i(At)=¢i(0)+ s t=O<f>1(0)+67{)2t=0¢2(0)
+ﬂ 2(0)+2———— Al 0) ¢,(0
3¢§t O¢1( )+ i, od>1( ) $2(0)
2
2(0) |At
75§t 0¢2( )}
= a_f' +ﬂ b.(0)At
R 397 t=0¢>1( )
25 ) ) .
+f7¢1<9¢2 tO<i52(0)A'E}[<751(0)+ $1(0)At]
+ I + il $,(0)At
dbal,_, Ib19d2 t:0¢1( )
2f| . .
+(972 $2(0)At|[$2(0) + h2(0)AL], (5.18
2lt=0

where Eq.(5.6) is also used. Therefore finally we have

#2(AL), (5.19

t=At

o,
Br(A) +——

F(ay= o

f7¢>

t=At
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up to the first order imAt. Thus ¢; and ¢; have the same b1 V-V, V-V,
relation as Eq(5.6) att=At. From Egs.(5.10, (5.13), and

ar

(. ) r T T ( 1). (5.23
. . o
(5.19, we can conclude that the functional relation between b2 Vd1-Vdy VoV, !

two sets of the Euler potentials is preserved through thew-|ere we become aware of the difference between the force-

evolution as specified at the initial time. We can expect thig, electromagnetic field and the ordinary gauge fields
result to some extent. This is because the covariant form g gain. As is well known, in the gauge field theory, the deter-

4
~B?

the basic equatiori3.2) has solutions that yield the same
electromagnetic field and relate as E3) and(3.4) in the
whole space-time. Further, conditiorts.4) and (5.5 are
nothing but the restriction of Eq$3.3) and(3.4) to the initial
three-surface. Furthermore, conditith6) is the restriction
of the time derivatives of Eq(3.3) to the initial surface.
However, these arguments manifestly lead us to the follow
ing conclusions(i) Arbitrariness in the solutions of the Euler
potentials can always be reduced to the arbitrariness in t
initial datum of the Euler potentials. Namely, specifying one

minant of the Hessian matrix vanishes. The time derivatives
of some of the field variables cannot be expressed by the
conjugate momenta. This demands introduction of constraint
conditions. Consequently, the gauge field is generally de-
scribed as a constraint systdii7]. On the contrary, in the

force-free electromagnetic field, the time derivatives of the
Euler potentials are written by their conjugate momenta

pwithout a constraint condition as E¢5.23 so far as|B|?

#0 holds. This happens in spite of the existence of the ar-

initial datum from all the possible initial data, the subsequenf!rariness originating from the gauge freedom. This feature

causal development of the Euler potentials is determine
uniquely. (ii) Thus this indeterminacy does not lie in the
dynamics of the Euler potentials but lies in the nonunique

ness of correspondence between the Euler potentials and tA

electromagnetic field(ii) We need not add the gauge con-

dition further, although the arbitrariness comes from the

gauge invariance of the electromagnetic field.

C. Canonical formulation

Time evolution of the force-free electromagnetic field is
described more transparently by the Hamiltonian form. Prob
ably this formulation is also useful in the numerical simula-
tion of the time evolution of the force-free electromagnetic
field.

Let 7, and 7, be the canonical momentum conjugate to
¢, and ¢,, respectively, i.e.qr; and 7, are defined by

B JL
Iy

aL

v (5.20

T T2

Usually, the canonical momentum is defined from the La-

grangian density a8£/d¢;. In the non-Cartesian coordinate,
this definition differs from the present one by the three-

volume element. Both conventions describe the canonical

§f the basic equations is consistent with the conclusion of the

preceding subsection. We can also explain it noting that the
arbitrariness of the Euler potentials results only from the
gnuniqueness of the correspondence between the Euler po-
tentials and the electromagnetic field in the initial data.

The Hamiltonian scalaH is defined by

H:7Tl(.ﬁ1+’772(.ﬁ2_|_. (524)
Then we have
] 1 (4)2 N .
H= P W(Trlvd’ﬁ mV )
+(€¢1x€¢2)2]. (5.25

From the relation betweeg; and #;, we can also find that
the electric field and the magnetic field are, respectively, ex-
pressed as

4a(mV y+ 1,V ¢y)

E= = R
(VX V py)?

X (Ve XV ¢by)

B=Vp XV, (5.26

equation of motion consistently. However, when the vector h ical variabl hus the fi in th |
analysis in a curvilinear orthogonal coordinate is used for th&Y the canonical variables. Thus the first term in the curly

spatial derivatives, the present one is simpler.
Equation(5.20 gives

-

Therefore, when the Hessian mattiiL/d¢,d¢, satisfies

1

41

¢1
2

~Vé,- Vo,
V-V

Vo Vs
~V-Vo,

KL

T2

|

(5.21

d°L B

- T 1Bl2
I, (477)2|B| 70

(5.22

in the entire force-free region, we can invert £§.21) as

brackets o, Eq. (5.25), is |E|? and the second term corre-
sponds tdB|2. Further, the Poynting vect@ is given by

1

S= 1 -ExB=—(mV,+ mV¥ ). (627
By Eq. (5.25, the canonical equations of motion
. oH dH v JH
|_57Ti_(9’77i &(V)ﬂ_i)'
. oH JH '5) oH 528
F=——=—|——V. — _
[ S 2o AV ;)

become
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:4W(W1€¢1+ W2€¢2) ©

e [4w(wﬁ¢1+wﬁ¢2>

- - Vi, 7=V = -
T exvay? e (VorxVp?
_47T(7T1€¢1+7T2v)¢2) N _i 1_(477)2(7Tlv_)¢l+772v§¢2)2‘|
2 (Vi XV hy)? Vo (529 4m (VX Vipy)*
and x€¢lx(€¢lx€¢2)]. (5.30
s [477(7716(}51"'7726(}52)
7T1—V' = > T
(V1 XV y)?

Perhaps these are the most compact expressions of the ca-

P v P RY . .
1] 1_(477) (7%71V¢1a+ 2V ¢2) l nonical equations fotr; and m,. However, sometimes an-
4m (Vp X V)t other form is far more convenient. Decomposing the square
brackets in the right-hand side and also rearranging the
x§¢2x(€¢lxﬁ¢2)], terms, we have

: 1. - = - - (W1€¢1+W2€¢2)'V»¢2[(7T1V9¢1+772V9¢2)‘Ve¢2»
=——V¢, - VX(VPp XV )47V - - - ~ \Y
T ag 2 GV o) am { (VéixVe)? | (VX V)2

|

. 1. - - = >

1

(m,V ¢y + W2€¢2)'€¢1§
(Vi XV py)2

2

(m1V s+ Wzﬁ¢2)'V*¢1[(771V*¢1+772V*¢2)'V»¢2 =
R e

1

_(71€¢1+ 7V 2)Vepy -
(Vi XV )2

2

] : (5.3

For purposes such as checking the consistency of the canonjf B andu . After somewnhat tedious calculation, it turns out
cal equations of motion with the equation of moti@1) or  that we have Eq94.18 and(4.21) indeed.

the proof of the energy conservation the latter expression is Using Eq.(5.33, Egs.(5.29 are written as

more useful.

Time evolution of any quantity written by the canonical (3+ve-V)p1=0, (d+ve-V)p,=0. (5.39
variables is then obtained from Eq%.29 and (5.30. For
example, it is straightforward to show This manifests that the Euler potentials are indeed constant
on a given magnetic field line. Further, E¢5.30 are writ-
dH+V-S=0. (532 tenas

. . . - - 1. - R R
I_n Se_c. Il we mtroducepl the three-velocny of the ma_lgnetlc Ay + V- (muE)=— 4—V ba-VX{yg 2V XV bo,
field line. By the canonical variables, the three-velocity and ™
the Lorentz factor are written, respectively, as 1
R R 3t”2+ﬁ‘(W25F):E€¢1'€X{7526¢1X6¢2}-
> 4’77( 7TlV ¢2+ 772V ¢2)

V= pes > (535)
(V1% V b2)? . |
Thus Egs.(5.30 have similar structure to the equation of
. (477)2(7715 b1+ Y )2 —1/2 533 continuity with the source or the sink.
F— - = = .
(V¢1XV¢2)4 D. Arbitrariness in canonical variables

Substituting these equations into E¢5.25 and (5.27), we The arbitrariness appears also in the canonical formalism.
can eas”y see the equivalence between (Bcga and Eq Let ¢i and d)i be two sets Of the Euler pOtentia|S relating as

(5.32). We can also derive equations for the time derivativesEqgs. (3.3 and(3.5). Further, letr; be the canonical momen-
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tum conjugate tad, . Then a similar relation to Eq5.21) “ af 4 ofq
~ ~ m(0)=—=  m(0)———| m(0)
holds betweenr; and ¢; . From Eq.(5.6), then we can show b1l _, dbal,_q
that r; and 7; relate as ’ ’
L 0+ 5,(0) | ml0)
~ ~ ~ ~ 5 ;] r
~ ¢ dps ~ dpq +(7¢1 2 t=0 ' I$19%a| ’ ?
T1=— T 5 To, To= — —, T - T
gyt 0y T 0yt 04y 2(5 . 2%, | 2%,
: - 0)+ 0) | 74(0).
(0¢15¢2 tzod’l( ) m t:0¢2( )) 1( )
(5.39

Equations(3.3), (3.5, and (5.36 define a transformation
from one set of the canonical variable,(;) to another

set @, 7). Since there are relations Using Egs. (5.31) and (5.37), together with ¢;(At)

=3,(0)+ ¢;(0)At and 7, (At) =7, (0)+ m,(0)At, we arrive

at the relations between two sets of the canonical variables

after the infinitesimal time intervaAt. Namely, att=At,

VX V=V ¢ two sets of the Euler potentials relate as
N - — o e e fi fi
TV 1+ 7V py=m Ve +m,V s, (5.37 $i(At)=;(0)+ $1(0) + $2(0) [At
ﬁd’ t=0 (9¢2t 0
=Tfi(p1(Al), p2(AL)). (5.40
the magnetic field and the electric field are invariant under n 2
this transformation. _ . _ The canonical momenta relate as
The canonical equations of motion are similarly written as
Egs.(5.29 and (5.30 in terms of m; and $;. Thus the so- o, 2, _
lution of the canonical equations of motion is determined Ti'l(At)E{&— + hadn $1(0)At
within the arbitrariness arising from the transformation given P2lig |Ib19db2li g
by Egs.(3.3), (3.5, and (5.36. Here, note that we can re- Pt . .
strict this transformation to a three-space of constant time. +(92— ¢-(0)At ][w1(0)+771(0)At]
Thus it will be reduced to the arbitrariness in the initial data. 2 t=0
Let (¢;(0),7i(0)) and (¢;(0),7;(0)) be two initial data if, Pt .
corresponding to the same electromagnetic field. Namely, RES Py $1(0)At
they relate as Eqg5.4), (5.5), and t=0 0
&t : .
+— 0)At|}[7,(0)+ m5(0)At
Tonods 0 ][ 2(0) + m5(0) At]
~ af ﬁf
I$2 t=At '?qsl t=At '
a¢1 —o 9Pl _,
-~ A
Further, let(¢;(t),m(t)) denote the Euler potentials and T biod, B2(0)At | [ 7(0) +m,(0)AL]
their conjugate momenta that have evolved from the initial t=0
data(¢;(0),7;(0)). From Eq.(5.4), we have Eq(5.6) again. [ fy Pt O
Further, from Eq(5.39, we get s t:0+ G310y I:Ofl'Jl( )AL
9°f
1
~ af,| . af,| . +_(92¢ $2(0)At ][771(0 + 3 (0)At]
m(0)=—~ 7(0)——— 7(0) 2lt=0
Ibal,_, b1l
2 2 il (At)+—= oty (AL, (5.4))
f2 . J f2 = W T (9¢ . .
+ 0)+—— 0) | 7,(0 2lp=at Lt=at
&¢1(9¢2 t=0¢l( ) &2(152 t=0¢ ( )) l( )
52 #f, Therefore the functional relation between two sets of the
—(2—2 b1(0)+ ¢2(0))772(0) canonical variables that yield the same initial electromag-
Fb1li_g IP19¢al,_q netic field does not change during the evolution of the sys-
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tem. Consequently, the arbitrariness in the canonical variproaches the three-velocity of the magnetic field line when
ables is also reduced to the arbitrariness in the initial data a8?— E? approaches 0. The limiting behavi.5) is irrel-

expected.

VI. BREAKDOWN OF FORCE-FREE APPROXIMATION

We have assumeB+0 so far. We have also stated that

the force-free approximation breaks down Bis>0. How-

evant to the choice of; and a,. At the same time, the
three-velocity of the magnetic field line itself tends to the
speed of light asB2—E? vanishes, unless condition
(B2—E?)/B?>0 is kept wherB?— E? approaches zero.

The special case mentioned above is possible only when

bothB andE simultaneously tend to Batisfying the condi-

ever, this statement is somewhat crude. First, strictly speakion (B2— E?)/B?>0. Thus this happens only when the rank

ing, we did not decide whether the force-free approximationys

actually breaks down or not @—0 yet. Indeed,|B|=0

xv @S @ matrix becomes zero Bs-0. By the canonical
variables, these conditions are written as

implies that two canonical momenta cannot be independent

and the system becomes a constrained one. Probably,
|B|=0 will happen in some region or at a point. If this is

true, both the regions in whicB|=0 and|B|#0 will co-

exist in the same three-space. As far as we know, such a case
has never been treated in the field theory. The author cannot

go into further detail at this point.

7716¢1+ 7726(1)2—>6, €¢1X€¢2%6,

1_(4W)2(71€¢1+ oV )2

There is, however, a more important point. As mentioned

in Sec. Il, a physical force-free electromagnetic field must
satisfy F - F=2(B%2—E?)>0. This condition is necessary as
long as we assume the existence of the macroscopic four-

velocity field of the mattelJ}; satisfyingF ,,Uy,=0. Since
B2=0 andE2=0 hold, generallyF-F>0 is more stringent

thanB#0.

When F - F vanishes, we can no longer find a timelike

= = >0. 6.6
(Vi XV y)* (©9
Thus the condition
(4W)(71€¢1+72€¢2)‘<1 6.7
(Vér1xVe)? | '

is guaranteed even iﬁ((ﬁlxﬁ(ﬁz)zﬂo. Therefore all the
apparently singular terms in the canonical equations of mo-
tion (5.29 and (5.30 remain regular in this case. Thus the

generator of the flux surfacelf, is a unit timelike generator basic equations are still applicable whafp; XV ¢,=0
of the flux surface pointing future. Accordingly, it satisfies arses.

F,,Un=0,g,UlUl=—1, ULN,<0. (6.1

In order that Eq(6.7) is satisfied, the denominator and the
numerator in the left-hand side of this equation approach
zero at least at the same rate. Roughly speaking, the denomi-

Any generator of the flux surface is written by a linear com-pa¢or vanishes wheR ¢, =0, V,=0, or V||V, hap-

bination of UE andB#. ThusU}; is written as

Up=a,UE+ayef, (6.2
whereef=B*/|B|. Herea, anda, may be functions of po-
sition. Further, they satisfg?—a5=1 anda;>1 by Egs.
(6.1). From Eqgs.(4.7) and(4.9), we have

B2 \12
o] N

U/I\l;lzal BZ_EZ

a;

2 1/2
@) vE+ aze’B‘] .
(6.3

DecomposindJy, into the Lorentz factoryy and the three-
velocity v{; measured by a fiducial observer, we have

BZ 1/2

YmM= a1 BZ_E2

2_E2

BZ

1/2
eg,

vh=vE+(1-1/a})" (6.4
respectively, where we eliminat, by a?—a3=1. From
these equations, we can see th@3f- E>—0 happens leav-
ing B2 finite, yy andvf, tend to

YM— %, U;I\jl_u)éy (65)

pens. In any case, fine tuning of the canonical momentum is

necessary so that the numerator vanishes with the denomina-
tor. Thus this is indeed a very special case. Judging from

this, it seems that we can exclude this case from consider-
ation.

Probably the breakdown of the conditidh- F>0 hap-
pens fairly universally in the real magnetospheres. Further, it
seems very likely that it plays an important role in the mag-
netospheres. This is the reason for paying much attention to
this point. Indeed, in a magnetosphere that consists of both
the open and the closed field lines, such as the pulsar mag-
netosphere, the magnetic neutral pdiime, or sheetarises
at the boundary of the open field lines and the closed field
lines. More generally, such a region appears in the configu-
rations in which the magnetic field lines having different
topology coexist. At the magnetic neutral poifiine, or
shee}, the magnetic field vanishes. In the neighborhood of
the magnetic neutral point, the force-free approximation will
thus break down in twofold ways. Namely, in some region
around the magnetic neutral point, the conditiBnF>0
will break down. This causes disappearance of the timelike
generators of the flux surface. Further, at the magnetic neu-

tral point|B|=0 occurs. This alters the structure of the basic

equation except for the special case mentioned above.
Unfortunately, the complexity of the basic equations pre-

vents us from having any definite picture of the breakdown

respectively. Namely, Eq6.4) shows that the three-velocity of the force-free approximation within the scope of this
of any four-velocity field tangent to the flux surfaces ap-work. What physical or initial conditions do cause the break-



56 THEORY OF FORCE-FREE ... . I. ... 2195

down of the force-free approximation? What physical pro-many problems that have not been studied systematically yet.
cess takes place if the force-free approximation break3he structure of the obliquely rotating pulsar magnetosphere
down? Further, do the basic equations really become singuland the evolution of the axisymmetric magnetosphere around
or remain apparent singularity near the magnetic neutrathe black hole or the accretion disk are a few examples. We
point? These questions remain open. hope and think that our formalism offers a concrete base for
Concerning this point, however, it is suggestive to recallresearches on these objects. Further, we have also formulated
the solutions of the stationary and axisymmetric configurathe initial value problem of the force-free electromagnetic
tion of the force-free electromagnetic field or the ideal MHD field. We hope that this stimulates the numerical investiga-
known so far. Almost all of them are made up of the opentions of the force-free electromagnetic field and the relativ-
field lines only. The examples are Michel's split-monopoleistic magnetosphere.
solution of the force-free electromagnetic fidl|, the pa- Although we believe that this work has clarified the es-
raboloidal force-free electromagnetic field by Blandf$&d, sential features of the force-free electromagnetic field, sev-
Macdonald’s numerical solutions of the force-free black-holeeral important questions remain open to future work. Espe-
magnetospherfs], and the numerical solutions of the non- cially, the question on the breakdown of the force-free
relativistic ideal MHD flow by Sakurdil8]. On the contrary, approximation near the magnetic neutral point will be impor-
numerical construction of the force-free electromagnetic fieldant. Existence of the magnetic neutral pdirggion will be
configuration that has both the open and the closed field lineguite universal, as already mentioned. Further, it seems that
(cited in [3]) indicates difficulty at the light cylinder. Evi- various energetic phenomena in the universe take place in
dently, there is much difficulty in the treatment of the force-association with the magnetic neutral point. The analysis on
free electromagnetic configurations that consist of both thehis point given in this work is quite insufficient and prelimi-
open and the closed field lines. It seems very likely that thenary. It calls for further investigation.
force-free approximation cannot describe the boundary be- A topic that is not considered in this work is concerned
tween the topologically different field lines. with the method of treating the configuration with symmetry.
In addition, we should also note thatRf F=0 happens, We discuss this point in the accompanying work.
any theory based on the degenerate electromagnetic field, Another problem that is not considered here is introduc-
such as the ideal MHD approach, equally breaks down as fdion of the macroscopic four-velocity field of plasmas into
as the existence of the four-velocity tangent to the flux surthe force-free approximation. As mentioned in the Introduc-
face is assumed. Consequently, inclusion of the effect of théon, this is because the four-velocity of the plasma is an
finite inertia of the plasma does not resolve the difficulty.auxiliary variable in the force-free electrodynamics, and it
Thus the breakdown of the force-free approximation dis-should be distinguished from the dynamical variables of the
cussed above is not a defect proper to the force-free approxierce-free electromagnetic field. However, it becomes neces-
mation. sary when we relate solutions of the electromagnetic field
Hitherto, we have demanded that the physical force-freavith the motion of matter. Traditionally, the four-velocity of
electromagnetic fields must have a four-velocity field satisthe plasma is introduced by means of the electric current and
fying F,,U"=0. This requires F-F>0. However, the charge density ap=p.. However, this definition is
B~ E?=0 does not make the basic equations singular as fahadequate in the magnetospheres around the black hole or
as|B|#0. Since the force-free electromagnetic field is de-the accretion disk, because the fluid description of the
scribed without the four-velocity field of the matter, we have plasma is more adequate in these objects. We will treat this
a possibility to extend the force-free approximation to theproblem elsewhere and propose another way to introduce the
region whereF-F<0 allowing F,,Uy#0. This implies four-velocity of the plasma to the force-free approximation.
that the degeneracy of the electromagnetic field still holds
but the magnetic flux freezing to the matter is_abgndo_ned. ACKNOWLEDGMENTS
Thus the flow of the matter across the magnetic field lines
appears. Such flows necessarily accompany dissipation. We thank O. Kaburaki for his continuous encouragement
Thus, if the fraction of the dissipative energy is much smalleand many suggestions on the subject. The author is greatly
than the whole electromagnetic energy, we will possibly ex4indebted to him for his knowledge of the Euler potential. We
tend the force-free approximation to the region where thealso thank I. Okamoto for his continuous encouragement.
conditionF - F>0 does not hold. In this sense, the force-free
approximation may become more flexible than the theory APPENDIX
based on the ideal MHD. Of course, the question of whether
such a description is actually possible or not must be exam- In this appendix, we shall prove the existence of the flux
ined in each specific physical context. This is beyond thesurface generally. We show that the zero eigenvectors of the
scope of this work. degenerate electromagnetic field generate a family of two-
dimensional integral surfaces. In addition to this point, we
also prove that a degenerate electromagnetic field is ex-
pressed as Eq2.5). The proof is based on Frobenius theo-
In this paper we have presented a method to deal with theem [19].
force-free electromagnetic field. We have shown that the Let F,, denote a magnetic degenerate electromagnetic
force-free electromagnetic field is described as a selffield. Then there is a vector field)=U*g, satisfying
consistent field theory so long ds-F>0 is satisfied. In  F,,U"=0 andU*U,=—1. (In this appendix, four-vectors
principle, the formulation presented here enables us to treare denoted by boldfageWe can define a vector field

VIl. CONCLUDING REMARKS
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B=B*g, by B#=—*F#*U,. In terms ofU* andB*, * F*”
is written as

*FAY=UHBY—BHU”, (A1)
Then Maxwell's equatiorlV * F#”=0 yields
U#V ,B"—B*V ,U"+(V ,U*)B"—(V,B*)U"=0.
(A2)
This is also written as
[U,B]=—(V-U)B+(V-B)U, (A3)

where[U,B] is the commutator o) andB. This is equiva-
lent to the Lie derivative oB with respect toU. We can
apply Frobenius theorem to EGA3).

Let us summarize the Frobenius theorem. TgtM) be
the tangent space ofdimensional manifold atxe M and
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degenerate electromagnetic field generate a family of two-
dimensional integral surfaces passing through each point.
This is the flux surface.

Further, the first order partial differential equations

U¥3,$=0, B*d,¢=0 (A5)

yield two integrals¢, and ¢, from (1). Then the flux surface
becomes a surface on which two scaléssand ¢, are con-
stant. Furthermore, frorfil) and (2), we can regardp, and

¢, as two coordinates orthogonal to the flux surfaces. Thus
d¢, anddg¢, are two independent one-forms orthogonal to
U andB. Therefore the electromagnetic field two-fofmis
written as

F=fdg,/\dd,. (A6)

Then dF=df/Ad¢,;/\d¢,=0 implies f=f(¢,,¢,). Thus
we have

A, be anm-dimensional subset of,(M)(m<n). Further, F=1(¢1,02)dd1/\d,. (A7)
let a set{X;)} (i=1, ... m) bem-linearly independent vec- .
tor fields constituting a local basis &f,. Then the Frobenius However, by the transformation
theorem asserts if and only if, for every local basis ~
¢1:f f(p1,¢2)deby, (A8)

X (i=1,...m), each commutatdrX;y,X;] is written
as

_ -k
[Xeiy X3y =Cij X » (A4)

by differentiable functionsc!‘j, there is anm-dimensional
integral submanifold passing through each poinMn
Further, this leads to the following corollaries.
(1) A Pfaffian systenX{;)d,f=0 (i=1,...m) is com-

pletely integrable. We have—m independent integral func-

tions fX(k=m+1,...n). Slices on which f¥(k=m
+1,...n) are constant are the integral submanifolds for
(2) There is a local coordinate systex(j=1,... ),

such thata/ax'(i=1, ... m) becomes a local basis vector

for A, and any integral functiof(k=m+1,... n) is written
as a function oik*(k=m+1,...n).
Since Eq.(A3) has the form of Eq(A4), from the Frobe-

F is rewritten to the form a§=d7¢l/\d¢2. Therefore a
degenerate electromagnetic field is always expressed as Eq.
(2.5.

Further, from the definition ofJ and Maxwell's equa-
tions, we immediately see

£,F=0, £,dF=0.

Je= .

wherec andc’ denote two-surfaces connected by the tube of
the trajectory ofU (i.e., two two-surfaces on the same fluid
elemen). This corresponds to the flux freezing in the ideal

(A9)

This implies

(A10)

nius theorem it turns out that the zero eigenvectors of thenagnetohydrodynamics.
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