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Theory of force-free electromagnetic fields. I. General theory

Toshio Uchida
Division of Theoretical Astrophysics, National Astronomical Observatory, Mitaka, Tokyo 181, Japan

~Received 17 December 1996!

A general method to deal with the~relativistic! force-free electromagnetic field is developed. We formulate
the theory without assuming symmetry of the electromagnetic field configuration. Thus we can apply it to any
object where the force-free approximation is justified, e.g., the pulsar magnetosphere, the black-hole magneto-
sphere, and the magnetosphere around the accretion disk. We describe the force-free electromagnetic field by
a classical field theory. The basic variables are the Euler potentials extended to the relativistic degenerate
electromagnetic field. The basic equation is given by a two-component nonlinear equation for two Euler
potentials. The theory has a close connection with geometry. It is based on the concept of the flux surface. The
flux surface is a geometric entity corresponding to the world sheet of the magnetic field line. We give both the
covariant and the 311 expression of the basic equation. By the latter form, the causal development of the
force-free electromagnetic field is discussed. It is shown that the theory describes the causal development of the
force-free electromagnetic field self-consistently as far asF•F.0. The basic equation contains arbitrariness. It
does not determine the solution uniquely. Although this arbitrariness originates from the gauge freedom of the
electromagnetic field, it differs from the arbitrariness in the ordinary gauge field theories. Namely, the dynam-
ics of the Euler potentials itself does not contain arbitrariness. It appears from nonuniqueness in correspon-
dence between the Euler potentials and the electromagnetic field. Further, we discuss the breakdown of the
force-free approximation.@S1063-651X~97!03008-0#

PACS number~s!: 41.20.2q, 95.30.Qd
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I. INTRODUCTION

The force-free approximation~massless approximation!
of the relativistic magnetohydrodynamics has been u
widely in studies on the magnetosphere around the relat
tic object, such as the pulsar@1–3#, the black hole@4–7#, and
the accretion disk@8#. We can apply this approximation t
the region where the electromagnetic energy density is m
greater than both the rest mass and the thermal energy
sity of the plasma. However, most of the foregoing stud
were devoted to the stationary and axisymmetric electrom
netic field configuration. Only a few works have treated t
nonstationary-axisymmetric case. As examples of s
works, we have studies on the obliquely rotating pulsar m
netosphere@9# and the time-dependent axisymmetric ma
netosphere around the black-hole accretion-disk system@10#.
Although these were pioneer works and important contri
tions in their specific problems, they are quite unsatisfact
in the understanding of the general properties of the for
free electromagnetic field.

The method to treat the stationary and axisymme
force-free electromagnetic field has been almost establis
through the works cited above@1–8# and others. Namely, the
stationary and axisymmetric force-free electromagnetic fi
is described by the stream function of the poloidal magn
field lines together with two integrals on the poloidal ma
netic field lines. The stream function is determined by a p
tial differential equation called the pulsar equation or t
transfield equation. It decides the electromagnetic force
ance across the poloidal magnetic field lines@1–8#. Thus, in
the studies on the stationary and axisymmetric force-f
configuration, major difficulty lies in solving the pulsar equ
tion to construct realistic models.

On the contrary, the method for nonstationar
561063-651X/97/56~2!/2181~17!/$10.00
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axisymmetric cases still remains in a quite underdevelo
state. In fact, the foregoing works on the nonstationa
axisymmetric configurations did not give any systema
method to deal with the force-free electromagnetic fields
reveal dynamical properties of the force-free electromagn
field. Accordingly, a systematic mathematical procedu
treating the force-free electromagnetic field is still absent
cept for the stationary and axisymmetric case. As a result,
are still almost ignorant of the dynamical properties of t
force-free electromagnetic field. Further, reflecting such
norance, overall consistency of the force-free approximat
has sometimes been questioned@3#. Indeed, the force-free
electromagnetic field has never been studied from the fi
theoretical point of view as a field that has its own dynami
Recently the present author has formulated a linear pertu
tion theory of the force-free electromagnetic fields a
treated small disturbances in the force-free black-hole m
netosphere. In due course, we find that the force-free e
tromagnetic field is generally described by a field theory w
two scalar variables. In this work, we will present a syste
atic treatment of the force-free approximation using this id

The basic equations for the force-free electromagn
field are

¹lFmn1¹mFnl1¹nFlm50, ~1.1!

¹nFmn54pJm, ~1.2!

FmnJn50, ~1.3!

whereFmn is the electromagnetic field andJm is the four-
current. Equations~1.1! and ~1.2! are Maxwell’s equations.
2181 © 1997 The American Physical Society
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2182 56TOSHIO UCHIDA
Equation ~1.3! is the force-free condition that is justifie
when the Lorentz force acting on the plasma is much gre
than the inertial force@1–8#.

In the ordinary treatment of Maxwell’s equations, the cu
rentJm is determined by the matter distribution. The elect
magnetic field is solved so as to be consistent with the c
rent distribution and the boundary condition. On the oth
hand, in the force-free approximation, the role of Eq.~1.2! is
to express the current by the electromagnetic field. Nam
the current is not a quantity independent of the electrom
netic field. Accordingly, Eqs.~1.2! and~1.3! give a nonlinear
equation forFmn .

Here, some reader may wonder at the absence of e
tions concerning the macroscopic four-velocity of the plas
from the basic equations. In fact, traditionally the mac
scopic four-velocity of the matter has been introduced ba
on the specific microscopic picture of the plasma. It w
sometimes treated as one of the basic variables together
the electromagnetic field. However, as we will see below,
force-free approximation is independent of any picture of
constituent plasmas except for the point of whether or not
force-free approximation is justified. The dynamics of t
force-free electromagnetic field is described complet
without the macroscopic four-velocity of the plasma.
course, in many cases, introduction of the macroscopic fo
velocity offers useful physical information. Especially, wh
one compares theoretical results with the astronomical ob
vation or with the results of other theory such as the mag
tohydrodynamics~MHD!, the macroscopic four-velocity o
the plasma is necessary. Further, there will be the cas
which the four-velocity based on a specific physical pictu
is incompatible with the force-free approximation. Howev
this is another problem to be considered apart from the
namics of the force-free electromagnetic field. In the pres
work, we thus stress the point that the primary problem
the force-free approximation is in Eqs.~1.1!–~1.3!. Introduc-
tion of the macroscopic four-velocity is the secondary pro
lem in this sense. Therefore we concentrate our effort o
systematic treatment of Eqs.~1.1!–~1.3!.

The plan of this paper is as follows. Among the propert
of the force-free electromagnetic field, the one most fun
mental to the present theory is its degeneracy. The intri
cally geometric nature of the theory results from this fact.
Sec. II properties of the degenerate electromagnetic field
discussed. The Euler potentials and the notion of the
surface are introduced. They are the key concepts of
theory. In Sec. III the covariant form of the basic equation
given by a set of two equations for two Euler potentials. T
action that yields the basic equations is obtained. Arbitr
ness in solutions is also considered. In Sec. IV, leaving
main development aside, we consider description of the m
netic field line. The magnetic field line is treated as a g
metric entity that has its own self-identity. In Sec. V, th
causal development of the force-free electromagnetic fiel
studied. In the flat space-time, the basic equation is rewri
to the 311 form that is suitable for this purpose. Splitting th
time derivatives from the spatial derivatives, we get the ba
equations that are second order in the time derivative. F
ther, the canonical equations of motion are derived. Us
er
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these formulations, the indeterminacy in the basic equatio
clarified. In Sec. VI the breakdown of the force-free appro
mation is discussed.

Our metric signature is (2111). We use units in which
c5G51.

II. EULER POTENTIALS

A. Degenerate electromagnetic field

Equation~1.3! implies that the force-free electromagnet
field is necessarily a degenerate electromagnetic fi
Namely, Fmn satisfies detFmn50, as a matrix. This is also
expressed as *FmnFmn50 by means of the dual tensor o
Fmn , which is given by *Fmn5«mnltFlt . In nonrelativistic
language, this is written asEW •BW 50 in terms of the magnetic
field BW and the electric fieldEW , of course. The degenerat
electromagnetic fields have distinct algebraic and geome
properties that manifestly distinguish them from the non
generate fields. The theory explored here is largely base
the intrinsic geometrical nature of the degenerate elec
magnetic fields. Thus the degeneracy of the force-free e
tromagnetic field plays a crucially important role in th
work. Therefore it is appropriate to start our discussion w
a summary of the properties of the degenerate electrom
netic field.

First, let us consider the algebraic properties ofFmn as an
antisymmetric matrix. By antisymmetry, a degenerate el
tromagnetic field tensorFmn becomes an even rank matrix
Consequently, detFmn50 implies that the rank ofFmn is two
if Fmn has nonvanishing components. ThusFmn has a two-
dimensional vector space of zero eigenvectors. Nam
there are two linearly independent vectors that become s
tions of the equation

Fmnjn50. ~2.1!

Evidently, Eq. ~2.1! has nontrivial solutions only when
detFmn50. Further, we can show that ifj (1)

m is a solution of
Eq. ~2.1!, another solutionj (2)

m orthogonal toj (1)
m is given by

j~2!
m 5* Fn

mj~1!
n . ~2.2!

Then any vector written by a linear combination ofj (1)
m and

j (2)
m also satisfies Eq.~2.1!. Thus zero eigenvectors constitu

a two-dimensional vector space.
These properties are illustrated easily by a simple

ample in the flat space. Let us set the magnetic field
BW 5BeW y and the electric fieldEW 5EeW z , whereeW y andeW z are
unit vectors in the Cartesian coordinate. Obvious
EW •BW 50 is satisfied. ThenFmn and *Fmn, respectively, be-
come

Fmn5S 0 0 0 2E

0 0 0 2B

0 0 0 0

E B 0 0

D , * Fmn5S 0 0 2B 0

0 0 E 0

B 2E 0 0

0 0 0 0

D .

~2.3!

From the first of the above equations, we see thatj (1)
m is

chosen as j (1)
m 5(0,0,1,0). From Eq. ~2.2!, we have
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56 2183THEORY OF FORCE-FREE . . . . I. . . .
j (2)
m 5(2B,E,0,0). It is easy to see that the relatio

* FmnFmn50, Fmnj (2)
n 50, andj (1)mj (2)

m 50 are all satisfied.
We can also see thatFmn is a rank-2 matrix. These algebra
properties are independent of the orientation of the coo
nate system. Further, a similar argument is possible in
curved space-time making use of the tetrad. Thus the res
hold generally.

The degenerate electromagnetic field tensorFmn is classi-
fied into three classes by the sign of a four-invariant quan
FmnFmn @11#. When FmnFmn.0, there exist timelike zero
eigenvectors ofFmn . Making use of a Lorentz boost, we ca
find a frame in which observers at rest see a pure magn
field. In this sense, the degenerate electromagnetic fiel
magnetic in this case.FmnFmn50 is the case of the null field
and corresponds to the radiation field. WhenFmnFmn,0, all
the zero eigenvectors ofFmn are spacelike. In this case
Fmn is electric, i.e., we can find a frame in which observe
at rest see a pure electric field.

Although the force-free electromagnetic field is describ
apart from the picture of the underlying plasma, the phys
force-free electromagnetic field should permit the existe
of the velocity field of the plasma. If we demand that t
velocity field Um satisfiesFmnUn50 in the force-free ap-
proximation as in MHD, the force-free electromagnetic fie
must be magnetic becauseUm is a timelike vector. Thus the
physical force-free electromagnetic field must satisfy

FmnFmn.0, ~2.4!

in all over the force-free region. In the following, conditio
~2.4! is regarded as a basic inequality that the physica
acceptable force-fee electromagnetic field must satisfy
Sec. VI, however, we will briefly discuss this point again

Degenerate electromagnetic fields have these algeb
properties at every point. This adds distinct geometric pr
erties to them. If the electromagnetic field is locally we
behaved, we can construct two linearly independent loc
well behaved vector fields of the zero eigenvectors. By vir
of Maxwell’s equation, then these vector fields generat
family of two-dimensional integral surface in the fou
dimensional space-time. In the next subsection, we pr
this in a somewhat restricted form. A general proof is giv
in the Appendix. We call this integral surface the flux su
face. A vector field that satisfies Eq.~2.1! is called the gen-
erator of the flux surface. The present theory is largely ba
on the concept of the flux surface. The geometrical natur
the theory follows from this fact.

Further, the existence of such integral surfaces enable
to introduce the concept of the magnetic field lines into
magnetic degenerate electromagnetic field in a geomet
way. The magnetic field line on a given three-space is
fined by the intersection between the three-space and the
surface. Thus the magnetic field line has invariant mean
on each three-space. It behaves as a stringlike object
preserves its self-identity during its time evolution. Co
versely, in the 311 viewpoint, the flux surface is a track tha
the magnetic field line draws in four-space-time. Namely,
flux surface is the world sheet of the magnetic field line.

From the fact that the degenerate electromagnetic te
Fmn is a rank-2 matrix, we immediately see that the forc
free Eq. ~1.3! has only two independent components. F
i-
e
lts

y

tic
is

s

d
l
e

y
In

ic
-

ly
e
a

e
n
-

d
of

us
e
al
-

ux
g
at

-

e

or
-
-

ther, we can find variables that make Eq.~1.1! trivial. Thus
Eq. ~1.1! is not a dynamical equation. These facts indica
that the force-free electromagnetic field has only two (3`)
degrees of freedom as a field theoretical system. This ob
vation is also consistent with the fact that the electrom
netic field in vacuum has two degrees of freedom of
polarization.

Note that if we choose the vector potentialAm as the basic
field in Eqs.~1.2! and ~1.3!, we cannot handle these equ
tions so transparently. Since four equations are necessa
determine four components of the vector potential, two in
pendent components of the force-free equation, the dege
ate condition *FmnFmn50 and a gauge condition such as t
Lorentz gauge, possibly become a closed set of the b
equations. Thus at this stage we cannot exclude a possib
that there exists a general description of the force-free e
tromagnetic field by means of the vector potential. Howev
in such a formulation, two equations are constraint. It will
difficult to solve two constraint equations simultaneous
Therefore it seems evident that the theory that describes
force-free electromagnetic field by two variables is far mo
preferable. Indeed, we can find such a theory.

B. Euler potentials

As mentioned above, we can find the two-dimensio
flux surface at every point where the degenerate electrom
netic field is well behaved. An important theorem follow
from the existence of the flux surfaces. It yields a simp
expression of the degenerate electromagnetic field. Nam
the theorem asserts that a degenerate electromagnetic fi
generally written as

Fmn5]mf1]nf22]mf2]nf1 , ~2.5!

by two scalarsf1 andf2. This expression of the degenera
electromagnetic field provides the basis for the rest of all
discussions. Inversely, if once Eq.~2.5! is established, the
flux surfaces are defined as a family of surfaces on wh
f1 andf2 are constant. As far as we know, Carter@12# first
remarked this point in the field of relativistic astrophysic
but this is a relativistic generalization of the Euler potenti
used in the nonrelativistic MHD.~See @13#, for the Euler
potentials in the nonrelativistic MHD.! In the nonrelativistic
MHD, the Euler potentials are often used in the form
BW 5¹W a3¹W b. This corresponds toFi j 5] ia] jb2] ib] ja
( i , j 51 –3!. Similarity between this and Eq.~2.5! is evident.
Thus we also callf1 andf2 the Euler potentials henceforth
However, the Euler potentialsa and b in the traditional
usage and our Euler potentialsf1 andf2 are not equivalent.
Therefore, leaving a general mathematical proof of Eq.~2.5!
to the Appendix, here we introducef1 andf2 deriving Eq.
~2.5! from the nonrelativistic Euler potentials in the fla
space. This will clarify the relation between the tradition
nonrelativistic Euler potentials and our Euler potentials.

We assumeBW 5¹W a3¹W b andBW •EW 50. As is well known,
a solenoidal ~divergence-free! vector BW is generally ex-
pressed by the Euler potentialsa and b as BW 5¹W a3¹W b

@13,14#. Substituting this equation into] tBW 1¹W 3EW 50W , we
have



d

a
th

f

e

t

-

tic
by

es
al

ec-

rate
fix-

or

e
s-

ed
tion

by
ans-

he

olu-
etic
to

ion.
eld
.
e

2184 56TOSHIO UCHIDA
¹W 3@EW 1] ta¹W b2] tb¹W a1¹W ~a] tb!#50W . ~2.6!

Thus we have

EW 1] ta¹W b2] tb¹W a1¹W ~a] tb!5¹W f , ~2.7!

where f is an arbitrary function. Then the degenerate con
tion BW •EW 50 leads us to

BW •¹W ~ f 2a] tb!50. ~2.8!

SinceBW 5¹W a3¹W b, this implies f 2a] tb5c(a,b), where
c(a,b) is an arbitrary function ofa andb. Thus the electric
field and the magnetic field are written as

EW 52] ta¹W b1] tb¹W a1¹W c~a,b!, BW 5¹W a3¹W b.
~2.9!

This expression is different from Eq.~2.5! except for the case
¹W c(a,b)50W . Thus the next step of the proof is to show th
it is always possible to rewrite the above expression to
form

EW 52] tf1¹W f21] tf2¹W f1 , BW 5¹W f13¹W f2 .
~2.10!

This step becomes somewhat transparent making use o
differential form. The electromagnetic field two-formF is F
5(1/2)Fmndxm`dxn. Then we can rewrite Eq.~2.9! as

F5da`db1dc`dt. ~2.11!

We have to derive two functionsf1 andf2 that express the
electromagnetic field two-form asF5df1`df2. The case
in which ]c/]a5]c/]b50 is trivial. By virtue of the an-
tisymmetry ofFmn in a andb, it suffices to consider the cas
in which ]c/]aÞ0. Since]c/]aÞ0, Eq.~2.11! is rewritten
as

F5S ]c

]a D 21S ]c

]a
da1

]c

]b
db D`db1dc`dt

5dc`H dt1S ]c

]a D 21

dbJ . ~2.12!

Further, by virtue of]c/]aÞ0, we can invertc5c(a,b)
asa5a(c,b). Thus we have

F5dc`H dt1
]a

]c
dbJ . ~2.13!

Defining F(c,b) as

F~c,b!5E ]a~c,b!

]c
db, ~2.14!

we have

F5dc`H dt1
]F

]b
db1

]F

]c
dcJ . ~2.15!

Therefore introducing two scalarsf1 andf2 as
i-

t
e

the

f15c, f25t1F~c,b!, ~2.16!

we haveF5df1`df2. Accordingly, we can conclude tha
the degenerate electromagnetic fieldFmn is written as Eq.
~2.5! by two functionsf1 andf2. Then the degenerate con
dition

* FmnFmn54«mnlt]mf1]nf2]lf1]tf250 ~2.17!

becomes obvious.
Once expression~2.5! for the degenerate electromagne

field is established, the flux surfaces are defined inversely
the surfaces on whichf1 andf2 are constant. This condition
yields two relations among four coordinates. Thus it defin
a family of two-dimensional surfaces in the four-dimension
space-time.

An expression of the vector potential that yields an el
tromagnetic field~2.5! is given by

Am5
1

2
~f1]mf22f2]mf1!. ~2.18!

Note that the Euler potentials that yield a given degene
electromagnetic field are not unique. For example, after
ing f1, we can changef2 as f2→f21 f (f1) by an arbi-
trary function off1. This transformation changes the vect
potential ~2.18! as Am→Am1]ml(f1) with l(f1)
51/2*(f1d f /df12 f )df1. Thus this corresponds to th
gauge transformation. We will later give a thorough discu
sion on this point.

Further, the expression of the vector potential by the fix
Euler potentials is not unique. In fact, a gauge transforma
generated by an arbitrary function off1 andf2 as

Am→Am1]ml~f1 ,f2! ~2.19!

gives a different expression of the vector potential written
the same Euler potentials. For example, by the gauge tr
formation

Am→Ãm5Am1
1

2
]m~f1f2!, ~2.20!

we have

Ãm5f1]mf2 . ~2.21!

The similar form of the vector potential is often used in t
nonrelativistic MHD asAW 5a¹W b.

III. BASIC EQUATION

A. Derivation of basic equation

If Fmn is a solution of Eqs.~1.1!–~1.3!, it is necessarily a
degenerate electromagnetic field. Thus we can look for s
tions of these equations from degenerate electromagn
fields. Namely, we can restrict the electromagnetic fields
the degenerate fields before solving the force-free equat
The electromagnetic field is restricted to the degenerate fi
expressing it as Eq.~2.5! by means of two Euler potentials
Then Eq.~1.1! is automatically satisfied. Since the force-fre
equation has two independent components, Eqs.~1.2! and
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~1.3! give a closed set of two equations for two Euler pote
tials. Accordingly, the basic equations of the force-free el
trodynamics are always described by two nonlinear eq
tions for two Euler potentials. In fact, using expression~2.5!
and also combining Eq.~1.2! with Eq. ~1.3!, the force-free
equation becomes

~]mf1]nf22]mf2]nf1!¹l~]nf1]lf22]nf2]lf1!50.
~3.1!

Since]mf1 and]mf2 are independent and nonzero as lo
asFmn does not vanish, we can separate Eq.~3.1! to

]nf1]l$A2g~]nf1]lf22]nf2]lf1!%50,

]nf2]l$A2g~]nf1]lf22]nf2]lf1!%50. ~3.2!

These are the general basic equations of the force-free
proximation.

B. Arbitrariness in solutions

As mentioned in Sec. II, we cannot determine the Eu
potentials that yield a given degenerate electromagnetic
uniquely. Consequently, our basic equations~3.2! also do not
have unique solutions. Now we clarify the extent of th
arbitrariness. One degenerate electromagnetic field con
ration corresponds to one geometrical configuration of
flux surfaces. Thus the transformation of the Euler potent
that leaves the electromagnetic field invariant does
change the geometrical configuration of the flux surfac
Therefore such a transformation evidently has the form

f̃15f̃1~f1 ,f2!, f̃25f̃2~f1 ,f2!, ~3.3!

where (f1 ,f2) and (f̃1,f̃1) are two sets of the Euler po
tentials. This is because it does not alter the equipoten
surfaces of the Euler potentials. Further, by this transform
tion the electromagnetic field changes as

]mf̃1]nf̃22]mf̃2]nf̃15S ]f̃1

]f1

]f̃2

]f2
2

]f̃1

]f2

]f̃2

]f1
D

3~]mf1]nf22]mf2]nf1!.

~3.4!

Thus, so that the electromagnetic field becomes invariant
transformation must satisfy@14#

]f̃1

]f1

]f̃2

]f2
2

]f̃1

]f2

]f̃2

]f1
5

]~f̃1,f̃1!

]~f1 ,f2!
51, ~3.5!

where](f̃1,f̃1)/](f1 ,f2) is the Jacobian of transformatio
~3.3!. We can regard (f1 ,f2) and (f̃1,f̃1) as two sets of
coordinates orthogonal to the flux surface. Thus geome
cally this implies that the volume element of the tw
dimensional subspace orthogonal to the flux surface mus
invariant. In other words, the mutual spacing of the flux s
faces along the direction orthogonal to these surfaces m
be invariant so that the electromagnetic field will be invaria
under transformation~3.3!.
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The transformation defined by Eqs.~3.3! and ~3.5! in-
duces a gauge transformation to the vector potential.
Am be the vector potential given by Eq.~2.18!. Then the
gauge transformation induced inAm is as follows. From Eqs.
~2.18! and ~3.3!, we have

Ãm5
1

2
~f̃1]mf̃22f̃2]mf̃1!

5H F f̃1

]f̃2

]f2
2f̃2

]f̃1

]f2
G]mf22F f̃2

]f̃1

]f1
2f̃1

]f̃2

]f1
G]mf1J .

~3.6!

Further, there are relations

]

]f1
F f̃1

]f̃2

]f2
2f̃2

]f̃1

]f2
G

5
]~f̃1,f̃2!

]~f1 ,f2!
1f̃1

]2f̃2

]f1]f2
2f̃2

]2f̃1

]f1]f2

511f̃1

]2f̃2

]f1]f2
2f̃2

]2f̃1

]f1]f2
~3.7!

and

]

]f2
F f̃2

]f̃1

]f1
2f̃1

]f̃2

]f1
G

5
]~f̃1,f̃2!

]~f1 ,f2!
2f̃1

]2f̃2

]f1]f2
1f̃2

]2f̃1

]f1]f2

512f̃1

]2f̃2

]f1]f2
1f̃2

]2f̃1

]f1]f2
. ~3.8!

Introducing a functionl(f1 ,f2) by

l~f1 ,f2!5
1

2E F f̃1

]2f̃2

]f1]f2
2f̃2

]2f̃1

]f1]f2
Gdf1df2 ,

~3.9!

then we can integrate Eqs.~3.7! and ~3.8! as

f̃1

]f̃2

]f2
2f̃2

]f̃1

]f2
5f112

]l

]f2
,

f̃2

]f̃1

]f1
2f̃1

]f̃2

]f1
5f222

]l

]f1
, ~3.10!

respectively. Therefore we have

Ãm5
1

2
~f1]mf22f2]mf1!1

]l

]f2
]mf21

]l

]f1
]mf1

5Am1]ml~f1 ,f2!. ~3.11!

This gives the gauge transformation induced in the vec
potential explicitly.

Since the force-free equation can be written by the el
tromagnetic fieldFmn only, clearly our equation of motion is
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also invariant under the transformation defined by Eqs.~3.3!
and ~3.5!. Therefore we can determine the solution of t
basic equations~3.2! within the arbitrariness arising from
this transformation.

C. Action principle

Maxwell’s equation is derived from the action

I 52
1

16pE FmnFmnA2gd4x, ~3.12!

where the vector potential is the dynamical variable@11,16#.
The action that yields our basic Eqs.~3.2! also follows from
Eq. ~3.12! regarding the Euler potentials as dynamical va
ables. ExpressingFmn by the Euler potentials, then the La
grangian densityL becomes

L5A2gL52
1

16p
A2g~]nf1]lf22]nf2]lf1!

3~]nf1]lf22]nf2]lf1!, ~3.13!

where theL is the Lagrangian scalar. Indeed, the Eul
Lagrange equations forf1 andf2 become

]m$A2g]nf2~]mf1]nf22]mf2]nf1!%50,

]m$A2g]nf1~]mf1]nf22]mf2]nf1!%50, ~3.14!

respectively. Since]m]nf i5]n]mf i holds, these equation
coincide with Eqs.~3.2!. Thus action~3.12! in fact yields the
basic equations of the force-free approximation.

As usual, the energy-momentum tensorTmn is defined by
Tmn5(2/A2g)d(A2gL)/dgmn . Thus we have

Tmn5
2

A2g

d~A2gL!

dgmn
5

1

4pS FmlFl
n2

1

4
gmnFltFltD ,

~3.15!

where the electromagnetic field is written by the Euler p
tentials as Eq.~2.5!. Eq. ~3.15! shows that the energy
momentum tensor derived from Eq.~3.13! is also consisten
with that of the ordinary electromagnetic field.

Some algebraic properties of the energy-momentum
sor result from the degeneracy of the electromagnetic fi
Let jm denote a generator of the flux surface. Fro
Fmnjn50, we find

Tn
mjn52

1

2
~F•F !jm, ~3.16!

whereF•F5FmnFmn . Namely, a generator of the flux su
face becomes an eigenvector of the energy-momentum
sor. Its eigenvalue is given by2(1/2)F•F. Similarly, we
can also see

Tmn]nf i5
1

2
~F•F !]mf i . ~3.17!

This implies that a vector orthogonal to the flux surface a
becomes an eigenvector of the energy-momentum tensor
has eigenvalue (1/2)F•F. Accordingly, choosing an ortho
-

-

-

n-
d.

n-

o
at

normal tetrade(n)
m so thate(0)

m ande(1)
m will be the generator

of the flux surfaces ande(2)
m and e(3)

m will be orthogonal to
the flux surface, the energy-momentum tensor of the deg
erate electromagnetic field becomes a diagonal form

T~m!~n!5Tlte~m!
l e~n!

t 5
1

2
~F•F !diag~21,21,1,1!.

~3.18!

From these observations, we have some conclusions.
Uobs

m denote the four-velocity of an arbitrary observer. Th
the magnetic field observed by this observer isBobs

m 5

2* Fn
mUobs

n . SinceFmnBobs
n 50 holds, Eq.~3.16! implies that

every observer sees the magnetic tension (1/2)F•F along his
magnetic field. Further, an observer comoving with the m
netic field lines, i.e., an observer whose four-velocityUcom

n

satisfiesFmnUcom
n 50, sees the electromagnetic energy de

sity (1/2)F•F. He also observes the magnetic press
(1/2)F•F to the spatial direction orthogonal to his magne
field.

IV. DESCRIPTION OF FORCE-FREE
ELECTROMAGNETIC FIELD
BY MAGNETIC FIELD LINE

The basic variables of our theory are the Euler potenti
They have distinct geometric meaning as discussed ab
However, the basic equations~3.2! do not have intuitive
forms. Sometimes the magnetic field line seems more in
tive than the Euler potential. As mentioned in Sec. II, t
magnetic degenerate electromagnetic field introduces
magnetic field lines on an arbitrary three-space without a
biguity. Each magnetic field line behaves as a on
dimensional stringlike entity that keeps its self-identity du
ing the causal development in the degenerate elec
dynamics. Thus a description of the force-free electrom
netic field by the magnetic field line becomes possible. It w
complement the description by the Euler potentials and h
our understanding of the dynamics of the force-free elec
magnetic field, especially in 311 formalism.

A. Kinetic quantities for magnetic field lines

In this work, we consider only the space-time that h
global time coordinatet. Let Nm be the four-velocity of the
fiducial observer@5,7,15,16#. Namely, Nm is a vector or-
thogonal to the three-space of constant global timet. Thus it
is written asNm5a]mt wherea is the lapse function.Nm

also satisfiesNmNm521. The magnetic fieldBm and the
electric fieldEm in this three-space are defined, respective
by

Bm52* FmnNn , Em5FmnNn . ~4.1!

ThenFmn and *Fmn are decomposed as

Fmn5NmEn2NnEm1«mnltN
lBt,

* Fmn52NmBn1NnBm1«mnltN
lEt. ~4.2!

By definition,Bm satisfies relations
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FmnBn50, NnBn50. ~4.3!

From the first of the above equations, we see thatBm is a
generator of the flux surface. Further, from the second,
see thatBm is tangent to the three-space of constant tim
Thus Eqs.~4.3! show that the magnetic field indeed becom
tangent to the intersection of the flux surface and the th
space of constantt.

The four-velocity of the magnetic field lineUF
m is intro-

duced uniquely by the following three requirements:

~ i! UF
mUFm521, ~ ii ! FmnUF

n 50, ~ iii ! UF
mBm50.

~4.4!

The first equation demands thatUF
m is a timelike unit vector.

Since the flux surface is a world sheet of the magnetic fi
line, UF

m must be tangent to the flux surface. The seco
equation guarantees this condition. Consequen
UF

m]mf15UF
m]mf250 holds. We can regard anyUF

m that
satisfies~i! and~ii ! as the four-velocity of the magnetic fiel
line, because there is no physical reasoning to decide
component ofUF

m along the magnetic field line. Thus th
third one is an auxiliary condition so as to make the direct
of UF

m unique. Later, we will see thatUF
m determined adding

~iii ! is well incorporated with the dynamics of the magne
field lines.

SinceBm is a generator of the flux surface, another ge
erator of the flux surface orthogonal toBm is given by
* FmnBn according to Eq.~2.2!. From condition~iii !, we see
UF

m}* FmnBn . Since

glm* FlnBn* FmtBt52
1

2
B2~F•F !52B2~B22E2!,

~4.5!

with B5(BmBm)1/2 andE5(EmEm)1/2, we have

UF
m5

A2

B~F•F !1/2* FmnBn5
1

B~B22E2!1/2* FmnBn .

~4.6!

From Eqs.~4.5! and ~4.6!, it turns out thatUF
m can be time-

like only when condition~2.4! is satisfied, i.e., when the
degenerate electromagnetic field is magnetic. Further, we
decomposeUF

m into the three-velocityvF
m and the componen

orthogonal to three-space of constantt as

UF
m5gF~Nm1vF

m!, ~4.7!

where gF is the Lorentz factor of the magnetic field line
Then we have

gF52UF
mNm , vF

m5gF
21~NmNn1dn

m!UF
n , ~4.8!

respectively. These quantities are also written as

gF5~12vF
2 !21/25S B2

B22E2D 1/2

, vF
m5

1

B2 Nl«lmntEnBt .

~4.9!
e
.

s
e-

d
d
y,

he

n

-

an

The last equation agrees with the expressionvW F5EW 3BW /B2

in the nonrelativistic MHD. Evidently,vF
mBm50 also holds.

Inversely,Fmn and *Fmn are written, respectively, as

Fmn5gF
21«mnltUF

lBt, * Fmn52gF
21~UF

mBn2UF
n Bm!,

~4.10!

by means ofBm and UF
m . In these equations,gF appears

because the magnetic field is defined with respect to the
ducial observers. LetB̃m denote the magnetic field observe
by an observer who moves withUF

m . Then we have

B̃m5gF
21Bm. Thus Eqs. ~4.10! are equivalent toFmn

5«mnltUF
l B̃t and *Fmn52(UF

mB̃n2UF
n B̃m), which are the

equations that frequently appear in the relativistic MH
Generally, the same relations hold for observers moving w
the four-velocity tangent to the flux surface.

B. Dynamics of the magnetic field line

The basic equations are rewritten byBm and UF
m . Equa-

tion ~1.2! is equivalent to¹m* Flm50. Substituting Eq.
~4.10! into this equation, we have

gF
21UF

n ¹nBm2Bn¹n~gF
21UF

m!1¹n~gF
21UF

n !Bm

2gF
21~¹nBn!UF

m50. ~4.11!

In the above equation, the component alongUF
m is

UF
mUF

n ¹nBm1gF¹n~gF
21Bn!50. ~4.12!

The components orthogonal toUF
m are

hl
mUF

n ¹nBl2Bn¹nUF
m1gF¹n~gF

21UF
n !Bm50,

~4.13!

wherehl
m is the projection tensor into the directions orthog

nal to UF
m , that is,

hl
m5dl

m1UF
mUFl . ~4.14!

SubstitutingBm andUF
m into the force-free equation, we hav

B2~dl
n2BlBn/B2!UF

m$¹m~gF
21UFn!2¹n~gF

21UFm!%

1gF
21hl

n~¹nBm2¹mBn!Bm50. ~4.15!

Here (dl
n2BlBn/B2) is the projection tensor into the sub

space orthogonal toBm. Thus the inner products of Eq
~4.15! with Bm and UF

m both vanish identically. Thus Eq
~4.15! gives only two components of the acceleration. T
remaining component follows from Eq.~4.12!. Making use
of BmUF

m50, we have

BmUF
n ¹nUF

m2gF¹n~gF
21Bn!50. ~4.16!

Equation ~4.16! gives the acceleration along the magne
field. From Eqs.~4.15! and ~4.16!, we have

B2al2@¹nBn12gFBn¹ngF
21#Bl

1hl
m@gFB2¹mgF

211~¹mBn2¹nBm!Bn#50 , ~4.17!
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whereal is the acceleration of the magnetic field lines d
fined by am5UF

n ¹nUF
m . This is the Euler equation for th

magnetic field lines. Together withUF
n UFn521 and

UF
n Bn50, Eqs.~4.13! and ~4.17! describe the dynamics o

the force-free electromagnetic field completely. Thus th
equations constitute another set of the basic equations.

From Eq. ~4.1!, we have¹nBn52* Fmn¹nNm . Since
Nm52a]mt, ¹nBn in Eq. ~4.17! vanishes in many cases
Especially, in the Minkowski space-time, these equations
greatly simplified. SubstitutingUF

m5(gF ,gFvW F), and Bm

5(0,BW ), together with¹nBn5¹W •BW 50, Eq. ~4.13! is re-
duced to

]BW

]t
2¹W 3~vW F3BW !50W . ~4.18!

This is the induction equation. Further, thet component of
Eq. ~4.17! becomes

1

2
] t~B2vF

2 !1~vW F3BW !•~¹W 3BW !

5~vW F3BW !•@] t~vW F3BW !1¹W 3BW #50. ~4.19!

As seen from the second expression of the above equa
this corresponds toJW•EW 50, i.e., absence of the Joule hea
ing. The spatial components of Eq.~4.17! are

gF
2B2DtvW F1gF~BW •¹W vF

2 !BW 1
1

2
~] tB

22gF
2B2] tvF

2 !vW F

2
1

2
gF

2B2¹W vF
21BW 3~¹W 3BW !50W , ~4.20!

whereDt is ] t1(vW F•¹W ). The third term is rewritten by Eqs
~4.18! and ~4.19!. After some manipulations, we have th
equation of motion for the magnetic field lines,

DtvW F52H 1

2
~eWB•¹W !vF

2 J eWB1H 1

2
~eW v•¹W !vF

21
uvW Fu
B2 ¹W •~B2vW F!

1
1

B2 ~11vF
2 !eW v•@~¹W 3BW !3BW #J eW v1H 1

2
~eWE•¹W !vF

2

1
1

B2 ~12vF
2 !eWE•@~¹W 3BW !3BW #J eWE . ~4.21!

HereeWB , eW v , andeWE are three spatial basis vectors orthog
nal to each other, i.e.,

eWB5
1

uBW u
BW , eW v5

1

uvW Fu
vW F , eWE5

1

uEW u
EW 52

1

uvW F3BW u
vW F3BW .

~4.22!

Namely,eWB is a unit vector along the magnetic field,eW v is a
unit vector along the velocity of the magnetic field line, a
-

e

re

n,

-

eWE is a unit vector along the electric field. From Eqs.~4.18!
and ~4.21!, it is easily verified that Dt(BW •vW F)50 if
BW •vW F50 holds. Here the right-hand side of Eqs.~4.18! and
~4.21! are written byBW , vW F , and their spatial derivatives
Consequently, ifBW •vW F50 is satisfied initially, BW •vW F50
holds through the evolution. Thus together with the init
condition BW •vW F50, Eqs. ~4.18! and ~4.21! determine the
evolution of the force-free electromagnetic field complete
in the flat space.

Equation~4.18! is identical with the induction equation
Further, mathematical structure of Eq.~4.21! is very similar
to the Euler equation in the nonrelativistic MHD. Probab
numerical method in the nonrelativistic MHD will be appl
cable to the force-free electromagnetic field modifying t
force term in the Euler equation.

The right-hand side of Eq.~4.21! corresponds to the force
acting on the magnetic field lines. It arises from three diff
ent effects:¹W vF

2 , ¹W •(B2vW F) and (¹W 3BW )3BW . The force due

to ¹W vF
2 has the opposite effect in the direction along t

magnetic field and in the directions orthogonal to the m
netic field. The force from¹W •(B2vW F) acts in the direction
along the velocity of the magnetic field line only. Furthe
(¹3BW )3BW force has a similar form tojW3BW force in the
nonrelativistic MHD. However, it is enhanced by a fact
(11vF

2) in the direction of the velocity of the magnetic fiel
line; on the other hand, it is reduced by (12vF

2) in the di-
rection of the electric field. WhenvF

2!1, i.e., in ‘‘nonrela-
tivistic’’ limit, the right-hand side of Eq.~4.21! tends to
(1/B2)(¹W 3BW )3BW . Thus B2 corresponds to the mass. Fu
ther, from Eq.~4.17!, we also have

1

2
] t~B2vF

21B2!1¹W •~B2vW F!50. ~4.23!

This is equivalent to the energy conservation. We treat
other form of this equation in the next section.

V. EVOLUTION OF FORCE-FREE ELECTROMAGNETIC
FIELD

A. Initial value problem

In order to gain further insight into the contents and t
structure of the basic equations, we are going to consider
causal development of the force-free electromagnetic fi
For this purpose, we separate the time derivatives of
Euler potentials from the spatial derivatives in Eq.~3.2!. Al-
though we confine our consideration to the flat Minkows
space-time for simplicity, this does not bring any essen
restriction to our analysis. Extension to the 311 formulation
in the curved space-time is straightforward. In the flat thr
space, we assume a curvilinear orthogonal coordinate
use the ordinary vector analysis to the spatial derivatives
quantities.

The magnetic fieldBW and the electric fieldEW are given by
Eq. ~2.10!. Let us split the time derivatives off i( i 51,2)
explicitly denoting] tf i asḟ i . Straightforward but somewha
tedious calculations show us that Eqs.~3.2! become
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S ¹W f2•¹W f2 2¹W f1•¹W f2

2¹W f1•¹W f2 ¹W f1•¹W f1
D S f̈1

f̈2
D 1S ¹W ḟ2•¹W f2 ¹W f1•¹W ḟ222¹W ḟ1•¹W f2

¹W ḟ1•¹W f222¹W f1•¹W ḟ2 ¹W ḟ1•¹W f1
D S ḟ1

ḟ2
D

6~ḟ2¹W 2f12ḟ1¹W 2f2!S ḟ2

ḟ1
D 6¹W 3~¹W f13¹W f2!•S ¹W f2

¹W f1
D 50. ~5.1!

Thus if the condition

U ¹W f2•¹W f2 2¹W f1•¹W f2

2¹W f1•¹W f2 ¹W f1•¹W f1
U5~¹W f13¹W f2!25uBW u2Þ0, ~5.2!

is satisfied, i.e., ifBW Þ0W holds everywhere, we can invert Eq.~5.1! to the form

S f̈1

f̈2
D 52

~¹W f13¹W f2!

~¹W f13¹W f2!2
•S ¹W f13¹W ḟ2 ¹W f13¹W ḟ1

¹W f23¹W ḟ2 ¹W f23¹W ḟ1
D S ḟ1

ḟ2
D 2

¹W •~ḟ1¹W f22ḟ2¹W f1!

~¹W f13¹W f2!2 S ¹W f1•¹W f2 2¹W f1•¹W f1

¹W f2•¹W f2 2¹W f1•¹W f2
D S ḟ1

ḟ2
D

1
1

~¹W f13¹W f2!2S ¹W f13~¹W f13¹W f2!

¹W f23~¹W f13¹W f2!
D •¹W 3~¹W f13¹W f2!. ~5.3!
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This equation has a typical form of the Cauchy problem.

far asuBW uÞ0 holds, the second time derivatives off i in the
left-hand side of the above equation are expressed

f i ,ḟ i , and their spatial derivatives. Accordingly, if we pr
scribe the Euler potentials and their first time derivatives
over the initial three-space as initial data, the second t
derivatives are given at every point of this three-surface fr
the initial data. This is because the spatial derivatives
these quantities can be evaluated by differentiating them
the initial three-surface. Further, if this is done at a timet, we
can decidef i andḟ i at t1Dt by Eq.~5.3! so far as the Euler
potentials admit smooth, i.e., power-series-like, causal de
opment. Therefore, continuing this process, we can trac
causal development of the Euler potentials by Eq.~5.3! in

principle until uBW u50 occurs. Thus our basic equation giv
complete and self-consistent description of the force-f

electromagnetic field as far asuBW uÞ0. For a while, let us

assume thatuBW uÞ0 is satisfied in the whole region consid
ered and study the contents of Eq.~5.3! further.

B. Arbitrariness in solutions

The covariant basic equation~3.2! does not determine th
Euler potentials uniquely. We now clarify how this arbitra
ness appears in the causal development of the Euler po
tials. Without any loss of generality, we can set the init
time ast50. We abbreviatef i(t,xW ) asf i(t) below. Further,
we assume thatuBW u50 does not occur.

First, we should note that the initial data of the Eu
potentials and their first time derivatives that yield a giv
initial electromagnetic field configuration are not unique.
fact, two sets of initial data: „f i(0),ḟ i(0)… and

„f̃ i(0),ḟ̃ i(0)… ( i 51,2), give the same electromagnetic fie
if they relate as
s

y

ll
e

f
n

l-
a

e

n-
l

r

f̃1~0!5 f 1„f1~0!,f2~0!…, f̃2~0!5 f 2„f1~0!,f2~0!…,
~5.4!

]„f̃1~0!,f̃2~0!…

]„f1~0!,f2~0!…
5

]~ f 1 , f 2!

]„f1~0!,f2~0!…
51, ~5.5!

and

ḟ̃1~0!5
] f 1

]f1
ḟ1~0!1

] f 1

]f2
f̃2~0!,

ḟ̃2~0!5
] f 2

]f1
f̃1~0!1

] f 2

]f2
ḟ2~0!, ~5.6!

on the initial three-space. In fact, we find

BW 5¹W f̃13¹W f̃25¹W f13¹W f2 ,

EW 52~ ḟ̃1¹W f̃21 ḟ̃2¹W f̃1!52~ḟ1¹W f22ḟ2¹W f1!.
~5.7!

Thus we should consider the relation between two sets of
Euler potentials that have evolved from two different sets
the initial condition satisfying relations~5.4!–~5.6!.

Let f̃1(t) and f̃2(t) denote the Euler potentials startin

from the initial data„f̃ i(0),ḟ̃ i(0)…. Thus f̃1(t) and f̃2(t)
obey the same equation as Eq.~5.3! in which f i are all
replaced byf̃ i . For a while, we refer to this equation as E

~5.38). Suppose that„f̃ i(0),ḟ̃ i(0)… and„f i(0),ḟ i(0)… relate
as Eqs.~5.4!–~5.6! in the initial three-space. Then our task
to clarify the relation between „f i(t),ḟ i(t)… and

„f̃ i(t),ḟ̃ i(t)… ( i 51,2) for all future time. The relation afte
the infinitesimal intervalDt suffices for this purpose. Since

f i~Dt !5f i~0!1ḟ i~0!Dt, f̃ i~Dt !5f̃ i~0!1 ḟ̃ i~0!Dt,
~5.8!
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and

ḟ i~Dt !5ḟ i~0!1f̈ i~0!Dt, ḟ̃ i~Dt !5 ḟ̃ i~0!1 f̈̃ i~0!Dt
~5.9!

hold, we need to expressḟ̃ i(0) and f̈̃ i(0) as functions of
f i(0) andḟ i(0). From Eqs.~5.6! and ~5.8!, we find

f̃ i~Dt !5 f i„f1~0!,f2~0!…1
] f i

]f1
U

t50

ḟ1~0!Dt1
] f i

]f2
U

t50

3ḟ2~0!Dt

> f i„f1~Dt !,f2~Dt !… ~ i 51,2!. ~5.10!

Thus att5Dt, f̃1 andf̃2 are the same functions off1 and
f2 as att50. Consequently, we also have

]„f̃1~Dt !,f̃2~Dt !…

]„f1~Dt !,f2~Dt !…
5

]~ f 1 , f 2!

]~f1 ,f2!
51. ~5.11!

Here we use the fact that Eq.~5.5! is a functional identity
between two sets of functions: (f 1 , f 2) and (f1 ,f2). This is
easily seen from the following consideratio
]( f 1 , f 2)/](f1(0),f2(0)) is generally a function off1(0)
and f2(0). Denoting ]( f 1 , f 2)/]„f1(0),f2(0)… as
F„f1(0),f2(0)…, on the initial three-space we have

¹W F~f1~0!,f2~0!!5
]F

]f1
¹W f11

]F

]f2
¹W f250W . ~5.12!

From BW Þ0W , we see¹W f1Þ0W and ¹W f2Þ0W . Further, we can
also see that¹W f1 and¹W f2 are not parallel. Thus we have

]F~f1 ,f2!

]f1
5

]F~f1 ,f2!

]f2
50. ~5.13!

Thus F does not depend onf1(0) and f2(0). Therefore
]( f 1 , f 2)/„f1(0),f2(0)…51 identically holds irrespective o
the functional forms off1(0) andf2(0) as functions of the
position.

Next we must rewrite the right-hand side of Eq.~5.38).
Using Eq.~5.7!, the second and the third terms of the righ
hand side of Eq.~5.38) are expressed easily byf1(0) and
f2(0). On theother hand, the first term is tedious. From t
spatial derivatives of Eq.~5.6! on the initial three-surface
and further using

]

]f1

]~f̃1 ,f̃2!

]~f1 ,f2!
5

]

]f2

]~f̃1 ,f̃2!

]~f1 ,f2!
50, ~5.14!

we have

~¹W f̃13¹W ḟ2!ḟ̃12~¹W f̃13¹W ḟ1!ḟ̃2

5
]f̃1

]f1
@~¹W f13¹W ḟ2!ḟ12~¹W f13¹W ḟ1!ḟ2#

1
]f̃1

]f2
@~¹W f23¹W ḟ2!ḟ12~¹W f23¹W ḟ1!ḟ2#
2F ]2f̃1

]f1
2 ḟ1

212
]2f̃1

]f1]f2
ḟ1ḟ21

]2f̃1

]f2
2 ḟ2

2G
3¹W f13¹W f2 , ~5.15!

and

~¹W f̃23¹W ḟ2!ḟ̃12~¹W f̃23¹W ḟ1!ḟ̃2

5
]f̃2

]f1
@~¹W f13¹W f2!ḟ12~¹W f13¹W ḟ1!ḟ2#

1
]f̃2

]f2
@~¹W f23¹W ḟ2!ḟ12~¹W f23¹W ḟ1!ḟ2#

2F ]2f̃2

]f1
2 ḟ1

212
]2f̃2

]f1]f2
ḟ1ḟ21

]2f̃2

]f2
2 ḟ2

2G
3¹W f13¹W f2 . ~5.16!

In Eqs. ~5.14!–~5.16!, f i(0) is abbreviated asf i . Using
Eqs.~5.15! and~5.16! in the first term of Eq.~5.38), we have

f̈̃ i~0!5
] f i

]f1
U

t50

f̈1~0!1
] f i

]f2
U

t50

f̈2~0!1
]2f i

]f2
2U

t50

ḟ1
2~0!

12
]2f i

]f1]f2
U

t50

ḟ1~0!ḟ2~0!1
]2f i

]f2
2U

t50

ḟ2
2~0!.

~5.17!

The second of Eqs.~5.9! then becomes

ḟ̃ i~Dt !5 ḟ̃ i~0!1F ] f i

]f1
U

t50

f̈1~0!1
] f i

]f2
U

t50

f̈2~0!

1
]2f i

]f2
2U

t50

ḟ1
2~0!12

]2f i

]f1]f2
U

t50

ḟ1~0!ḟ2~0!

1
]2f i

]f2
2U

t50

ḟ2
2~0!GDt

>F ] f i

]f1
U

t50

1
]2f i

]f1
2U

t50

ḟ1~0!Dt

1
]2f i

]f1]f2
U

t50

ḟ2~0!DtG @ḟ1~0!1f̈1~0!Dt#

1F ] f i

]f2
U

t50

1
]2f i

]f1]f2
U

t50

ḟ1~0!Dt

1
]2f i

]f2
2U

t50

ḟ2~0!DtG @ḟ2~0!1f̈2~0!Dt#, ~5.18!

where Eq.~5.6! is also used. Therefore finally we have

ḟ̃ i~Dt !>
] f i

]f1
U

t5Dt

ḟ1~Dt !1
] f i

]f2
U

t5Dt

ḟ2~Dt !, ~5.19!
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up to the first order inDt. Thus ḟ i and ḟ̃ i have the same
relation as Eq.~5.6! at t5Dt. From Eqs.~5.10!, ~5.11!, and
~5.19!, we can conclude that the functional relation betwe
two sets of the Euler potentials is preserved through th
evolution as specified at the initial time. We can expect t
result to some extent. This is because the covariant form
the basic equation~3.2! has solutions that yield the sam
electromagnetic field and relate as Eqs.~3.3! and~3.4! in the
whole space-time. Further, conditions~5.4! and ~5.5! are
nothing but the restriction of Eqs.~3.3! and~3.4! to the initial
three-surface. Furthermore, condition~5.6! is the restriction
of the time derivatives of Eq.~3.3! to the initial surface.
However, these arguments manifestly lead us to the follo
ing conclusions.~i! Arbitrariness in the solutions of the Eule
potentials can always be reduced to the arbitrariness in
initial datum of the Euler potentials. Namely, specifying o
initial datum from all the possible initial data, the subsequ
causal development of the Euler potentials is determi
uniquely. ~ii ! Thus this indeterminacy does not lie in th
dynamics of the Euler potentials but lies in the nonuniq
ness of correspondence between the Euler potentials an
electromagnetic field.~iii ! We need not add the gauge co
dition further, although the arbitrariness comes from
gauge invariance of the electromagnetic field.

C. Canonical formulation

Time evolution of the force-free electromagnetic field
described more transparently by the Hamiltonian form. Pr
ably this formulation is also useful in the numerical simu
tion of the time evolution of the force-free electromagne
field.

Let p1 andp2 be the canonical momentum conjugate
f1 andf2, respectively, i.e.,p1 andp2 are defined by

p15
]L

]ḟ1

, p25
]L

]ḟ2

. ~5.20!

Usually, the canonical momentum is defined from the L
grangian density as]L/]ḟ i . In the non-Cartesian coordinat
this definition differs from the present one by the thre
volume element. Both conventions describe the canon
equation of motion consistently. However, when the vec
analysis in a curvilinear orthogonal coordinate is used for
spatial derivatives, the present one is simpler.

Equation~5.20! gives

S p1

p2
D 5

1

4pS ¹W f2•¹W f2 2¹W f1•¹W f2

2¹W f1•¹W f2 ¹W f1•¹W f1
D S ḟ1

ḟ2
D .

~5.21!

Therefore, when the Hessian matrix]2L/]ḟ1]ḟ2 satisfies

]2L

]ḟ1]ḟ2

5
1

~4p!2 uBW u2Þ0 ~5.22!

in the entire force-free region, we can invert Eq.~5.21! as
n
ir
s
of

-

he

t
d

-
the

e

-
-

-

-
al
r
e

S ḟ1

ḟ2
D 5

4p

B2 S ¹W f1•¹W f1 ¹W f1•¹W f2

¹W f1•¹W f2 ¹W f2•¹W f2
D S p1

p1
D . ~5.23!

Here we become aware of the difference between the fo
free electromagnetic field and the ordinary gauge fie
again. As is well known, in the gauge field theory, the det
minant of the Hessian matrix vanishes. The time derivati
of some of the field variables cannot be expressed by
conjugate momenta. This demands introduction of constr
conditions. Consequently, the gauge field is generally
scribed as a constraint system@17#. On the contrary, in the
force-free electromagnetic field, the time derivatives of t
Euler potentials are written by their conjugate mome
without a constraint condition as Eq.~5.23! so far asuBW u2
Þ0 holds. This happens in spite of the existence of the
bitrariness originating from the gauge freedom. This feat
of the basic equations is consistent with the conclusion of
preceding subsection. We can also explain it noting that
arbitrariness of the Euler potentials results only from t
nonuniqueness of the correspondence between the Eule
tentials and the electromagnetic field in the initial data.

The Hamiltonian scalarH is defined by

H5p1ḟ11p2ḟ22L. ~5.24!

Then we have

H5
1

8pH ~4p!2

~¹W f13¹W f2!2
~p1¹W f11p2¹W f2!2

1~¹W f13¹W f2!2J . ~5.25!

From the relation betweenḟ i andp i , we can also find that
the electric field and the magnetic field are, respectively,
pressed as

EW 5
4p~p1¹W f11p2¹W f2!

~¹W f13¹W f2!2
3~¹W f13¹W f2!,

BW 5¹W f13¹W f2 , ~5.26!

by the canonical variables. Thus the first term in the cu
brackets ofH, Eq. ~5.25!, is uEW u2 and the second term corre
sponds touBW u2. Further, the Poynting vectorSW is given by

SW 5
1

4p
EW 3BW 52~p1¹W f21p2¹W f2!. ~5.27!

By Eq. ~5.25!, the canonical equations of motion

ḟ i5
dH

dp i
5

]H

]p i
2¹W •

]H

]~¹W p i !
,

ṗ i52
dH

df i
52S ]H

]f i
2¹W •

]H

]~¹W f i !
D ~5.28!

become
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ḟ15
4p~p1¹W f11p2¹W f2!

~¹W f13¹W f2!2
•¹W f1 ,

ḟ25
4p~p1¹W f11p2¹W f2!

~¹W f13¹W f2!2
•¹W f2 , ~5.29!

and

ṗ15¹W •H 4p~p1¹W f11p2¹W f2!

~¹W f13¹W f2!2
p1

1
1

4pF12
~4p!2~p1¹W f11p2¹W f2!2

~¹W f13¹W f2!4 G
3¹W f23~¹W f13¹W f2!J ,
o

n

al

ti
n

e

ṗ25¹W •H 4p~p1¹W f11p2¹W f2!

~¹W f13¹W f2!2
p2

2
1

4pF12
~4p!2~p1¹W f11p2¹W f2!2

~¹W f13¹W f2!4 G
3¹W f13~¹W f13¹W f2!J . ~5.30!

Perhaps these are the most compact expressions of th

nonical equations forṗ1 and ṗ2. However, sometimes an
other form is far more convenient. Decomposing the squ
brackets in the right-hand side and also rearranging
terms, we have
ṗ152
1

4p
¹W f2•¹W 3~¹W f13¹W f2!24p¹W •H ~p1¹W f11p2¹W f2!•¹W f2

~¹W f13¹W f2!2 F ~p1¹W f11p2¹W f2!•¹W f2

~¹W f13¹W f2!2
¹W f1

2
~p1¹W f11p2¹W f2!•¹W f1

~¹W f13¹W f2!2
¹W f2G J ,

ṗ252
1

4p
¹W f1•¹W 3~¹W f13¹W f2!14p¹W •H ~p1¹W f11p2¹W f2!•¹W f1

~¹W f13¹W f2!2 F ~p1¹W f11p2¹W f2!•¹W f2

~¹W f13¹W f2!2
¹W f1

2
~p1¹W f11p2¹W f2!•¹W f1

~¹W f13¹W f2!2
¹W f2G J . ~5.31!
ut

tant

of

sm.
as
-

For purposes such as checking the consistency of the can
cal equations of motion with the equation of motion~5.1! or
the proof of the energy conservation the latter expressio
more useful.

Time evolution of any quantity written by the canonic
variables is then obtained from Eqs.~5.29! and ~5.30!. For
example, it is straightforward to show

] tH1¹W •SW 50. ~5.32!

In Sec. II we introduced the three-velocity of the magne
field line. By the canonical variables, the three-velocity a
the Lorentz factor are written, respectively, as

vW F5
4p~p1¹W f21p2¹W f2!

~¹W f13¹W f2!2
,

gF5F12
~4p!2~p1¹W f11p2¹W f2!2

~¹W f13¹W f2!4 G21/2

. ~5.33!

Substituting these equations into Eqs.~5.25! and ~5.27!, we
can easily see the equivalence between Eq.~4.23! and Eq.
~5.32!. We can also derive equations for the time derivativ
ni-

is

c
d

s

of BW andvW F . After somewhat tedious calculation, it turns o
that we have Eqs.~4.18! and ~4.21! indeed.

Using Eq.~5.33!, Eqs.~5.29! are written as

~] t1vW F•¹W !f150, ~] t1vW F•¹W !f250. ~5.34!

This manifests that the Euler potentials are indeed cons
on a given magnetic field line. Further, Eqs.~5.30! are writ-
ten as

] tp11¹W •~p1vW F!52
1

4p
¹W f2•¹W 3$gF

22¹W f13¹W f2%,

] tp21¹W •~p2vW F!5
1

4p
¹W f1•¹W 3$gF

22¹W f13¹W f2%.

~5.35!

Thus Eqs.~5.30! have similar structure to the equation
continuity with the source or the sink.

D. Arbitrariness in canonical variables

The arbitrariness appears also in the canonical formali
Let f i andf̃ i be two sets of the Euler potentials relating
Eqs.~3.3! and~3.5!. Further, letp̃ i be the canonical momen
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tum conjugate tof̃ i . Then a similar relation to Eq.~5.21!

holds betweenp̃ i andf̃ i . From Eq.~5.6!, then we can show

that p i and p̃ i relate as

p̃15
]f̃2

]f2
p12

]f̃2

]f1
p2 , p̃252

]f̃1

]f2
p11

]f̃1

]f1
p2 .

~5.36!

Equations~3.3!, ~3.5!, and ~5.36! define a transformation
from one set of the canonical variables (f i ,p i) to another

set (f̃ i ,p̃ i). Since there are relations

¹W f13¹W f25¹W f̃13¹W f̃2 ,

p1¹W f11p2¹W f25p̃1¹W f̃11p̃2¹W f̃2 , ~5.37!

the magnetic field and the electric field are invariant un
this transformation.

The canonical equations of motion are similarly written

Eqs. ~5.29! and ~5.30! in terms ofp̃ i and f̃ i . Thus the so-
lution of the canonical equations of motion is determin
within the arbitrariness arising from the transformation giv
by Eqs.~3.3!, ~3.5!, and ~5.36!. Here, note that we can re
strict this transformation to a three-space of constant ti
Thus it will be reduced to the arbitrariness in the initial da

Let „f i(0),p i(0)… and „f̃ i(0),p̃ i(0)… be two initial data
corresponding to the same electromagnetic field. Nam
they relate as Eqs.~5.4!, ~5.5!, and

p̃1~0!5
] f 2

]f2
p1~0!2

] f 2

]f1
p2~0!,

p̃2~0!52
] f 1

]f2
p1~0!1

] f 1

]f1
p2~0!. ~5.38!

Further, let „f̃ i(t),p̃ i(t)… denote the Euler potentials an
their conjugate momenta that have evolved from the ini
data„f̃ i(0),p̃ i(0)…. From Eq.~5.4!, we have Eq.~5.6! again.
Further, from Eq.~5.38!, we get

ṗ̃1~0!5
] f 2

]f2
U

t50

ṗ1~0!2
] f 2

]f1
U

t50

ṗ2~0!

1S ]2f 2

]f1]f2
U

t50

ḟ1~0!1
]2f 2

]2f2
U

t50

ḟ2~0! Dp1~0!

2S ]2f 2

]2f1
U

t50

ḟ1~0!1
]2f 2

]f1]f2
U

t50

ḟ2~0! Dp2~0!,
r

s

e.
.

y,

l

ṗ̃2~0!5
] f 1

]f1
U

t50

ṗ2~0!2
] f 1

]f2
U

t50

ṗ1~0!

1S ]2f 1

]2f1
U

t50

ḟ1~0!1
]2f 1

]f1]f2
U

t50

ḟ2~0! Dp2~0!

2S ]2f 1

]f1]f2
U

t50

ḟ1~0!1
]2f 1

]2f1
U

t50

ḟ2~0! Dp1~0!.

~5.39!

Using Eqs. ~5.31! and ~5.37!, together with f̃ i(Dt)

5f̃ i(0)1 ḟ̃ i(0)Dt andp̃ i(Dt)5p̃ i(0)1ṗ i(0)Dt, we arrive
at the relations between two sets of the canonical varia
after the infinitesimal time intervalDt. Namely, att5Dt,
two sets of the Euler potentials relate as

f̃ i~Dt !5f̃ i~0!1F ] f i

]f1
U

t50

ḟ1~0!1
] f i

]f2
U

t50

ḟ2~0!GDt

5 f i„f1~Dt !,f2~Dt !…. ~5.40!

The canonical momenta relate as

p̃1~Dt !>H ] f 2

]f2
U

t50

1F ]2f 2

]f1]f2
U

t50

ḟ1~0!Dt

1
]2f 2

]2f2
U

t50

ḟ2~0!DtG J @p1~0!1ṗ1~0!Dt#

2H ] f 2

]f1
U

t50

1F ]2f 2

]2f1
U

t50

ḟ1~0!Dt

1
]2f 2

]f1]f2
U

t50

ḟ2~0!DtG J @p2~0!1ṗ2~0!Dt#

5
] f 2

]f2
U

t5Dt

p1~Dt !2
] f 2

]f1
U

t5Dt

p2~Dt !,

p̃2~Dt !>H ] f 1

]f1
U

t50

1F ]2f 1

]2f1
U

t50

ḟ1~0!Dt

1
]2f 1

]f1]f2
U

t50

ḟ2~0!DtG J @p2~0!1ṗ2~0!Dt#

2H ] f 1

]f2
U

t50

1F ]2f 1

]f1]f2
U

t50

ḟ1~0!Dt

1
]2f 1

]2f2
U

t50

ḟ2~0!DtG J @p1~0!1ṗ1~0!Dt#

52
] f 1

]f2
U

t5Dt

p1~Dt !1
] f 1

]f1
U

t5Dt

p2~Dt !. ~5.41!

Therefore the functional relation between two sets of
canonical variables that yield the same initial electrom
netic field does not change during the evolution of the s
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2194 56TOSHIO UCHIDA
tem. Consequently, the arbitrariness in the canonical v
ables is also reduced to the arbitrariness in the initial dat
expected.

VI. BREAKDOWN OF FORCE-FREE APPROXIMATION

We have assumedBW Þ0W so far. We have also stated th
the force-free approximation breaks down asBW→0W . How-
ever, this statement is somewhat crude. First, strictly spe
ing, we did not decide whether the force-free approximat
actually breaks down or not asBW→0W yet. Indeed,uBW u50
implies that two canonical momenta cannot be independ
and the system becomes a constrained one. Prob
uBW u50 will happen in some region or at a point. If this
true, both the regions in whichuBW u50 and uBW uÞ0 will co-
exist in the same three-space. As far as we know, such a
has never been treated in the field theory. The author ca
go into further detail at this point.

There is, however, a more important point. As mention
in Sec. II, a physical force-free electromagnetic field m
satisfyF•F52(B22E2).0. This condition is necessary a
long as we assume the existence of the macroscopic f
velocity field of the matterUM

m satisfyingFmnUM
n 50. Since

B2>0 andE2>0 hold, generallyF•F.0 is more stringent
thanBW Þ0W .

When F•F vanishes, we can no longer find a timelik
generator of the flux surface.UM

m is a unit timelike generato
of the flux surface pointing future. Accordingly, it satisfie

FmnUM
n 50, gmnUM

m UM
n 521, UM

m Nm,0. ~6.1!

Any generator of the flux surface is written by a linear co
bination ofUF

m andBm. ThusUM
m is written as

UM
m 5a1UF

m1a2eB
m , ~6.2!

whereeB
m5Bm/uBu. Herea1 anda2 may be functions of po-

sition. Further, they satisfya1
22a2

251 and a1.1 by Eqs.
~6.1!. From Eqs.~4.7! and ~4.9!, we have

UM
m 5a1S B2

B22E2D 1/2

Nm1H a1S B2

B22E2D 1/2

vF
m1a2eB

mJ .

~6.3!

DecomposingUM
m into the Lorentz factorgM and the three-

velocity vM
m measured by a fiducial observer, we have

gM5a1S B2

B22E2D 1/2

,

vM
m 5vF

m1~121/a1
2!1/2S B22E2

B2 D 1/2

eB
m , ~6.4!

respectively, where we eliminatea2 by a1
22a2

251. From
these equations, we can see that ifB22E2→0 happens leav-
ing B2 finite, gM andvM

m tend to

gM→`, vM
m→vF

m , ~6.5!

respectively. Namely, Eq.~6.4! shows that the three-velocit
of any four-velocity field tangent to the flux surfaces a
i-
as

k-
n

nt
ly,

se
ot

d
t

r-

-

-

proaches the three-velocity of the magnetic field line wh
B22E2 approaches 0. The limiting behavior~6.5! is irrel-
evant to the choice ofa1 and a2. At the same time, the
three-velocity of the magnetic field line itself tends to t
speed of light as B22E2 vanishes, unless conditio
(B22E2)/B2.0 is kept whenB22E2 approaches zero.

The special case mentioned above is possible only w
both BW andEW simultaneously tend to 0W satisfying the condi-
tion (B22E2)/B2.0. Thus this happens only when the ran
of Fmn as a matrix becomes zero asBW→0W . By the canonical
variables, these conditions are written as

p1¹W f11p2¹W f2→0W , ¹W f13¹W f2→0W ,

12
~4p!2~p1¹W f11p2¹W f2!2

~¹W f13¹W f2!4
.0. ~6.6!

Thus the condition

U~4p!~p1¹W f11p2¹W f2!

~¹W f13¹W f2!2 U,1 ~6.7!

is guaranteed even if (¹W f13¹W f2)2→0. Therefore all the
apparently singular terms in the canonical equations of m
tion ~5.29! and ~5.30! remain regular in this case. Thus th
basic equations are still applicable when¹W f13¹W f250W
arises.

In order that Eq.~6.7! is satisfied, the denominator and th
numerator in the left-hand side of this equation approa
zero at least at the same rate. Roughly speaking, the den
nator vanishes when¹W f150W , ¹W f250W , or ¹W f1i¹W f2 hap-
pens. In any case, fine tuning of the canonical momentum
necessary so that the numerator vanishes with the denom
tor. Thus this is indeed a very special case. Judging fr
this, it seems that we can exclude this case from consi
ation.

Probably the breakdown of the conditionF•F.0 hap-
pens fairly universally in the real magnetospheres. Furthe
seems very likely that it plays an important role in the ma
netospheres. This is the reason for paying much attentio
this point. Indeed, in a magnetosphere that consists of b
the open and the closed field lines, such as the pulsar m
netosphere, the magnetic neutral point~line, or sheet! arises
at the boundary of the open field lines and the closed fi
lines. More generally, such a region appears in the confi
rations in which the magnetic field lines having differe
topology coexist. At the magnetic neutral point~line, or
sheet!, the magnetic field vanishes. In the neighborhood
the magnetic neutral point, the force-free approximation w
thus break down in twofold ways. Namely, in some regi
around the magnetic neutral point, the conditionF•F.0
will break down. This causes disappearance of the time
generators of the flux surface. Further, at the magnetic n
tral point uBW u50 occurs. This alters the structure of the ba
equation except for the special case mentioned above.

Unfortunately, the complexity of the basic equations p
vents us from having any definite picture of the breakdo
of the force-free approximation within the scope of th
work. What physical or initial conditions do cause the brea
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down of the force-free approximation? What physical p
cess takes place if the force-free approximation bre
down? Further, do the basic equations really become sing
or remain apparent singularity near the magnetic neu
point? These questions remain open.

Concerning this point, however, it is suggestive to rec
the solutions of the stationary and axisymmetric configu
tion of the force-free electromagnetic field or the ideal MH
known so far. Almost all of them are made up of the op
field lines only. The examples are Michel’s split-monopo
solution of the force-free electromagnetic field@2#, the pa-
raboloidal force-free electromagnetic field by Blandford@8#,
Macdonald’s numerical solutions of the force-free black-h
magnetosphere@6#, and the numerical solutions of the no
relativistic ideal MHD flow by Sakurai@18#. On the contrary,
numerical construction of the force-free electromagnetic fi
configuration that has both the open and the closed field l
~cited in @3#! indicates difficulty at the light cylinder. Evi-
dently, there is much difficulty in the treatment of the forc
free electromagnetic configurations that consist of both
open and the closed field lines. It seems very likely that
force-free approximation cannot describe the boundary
tween the topologically different field lines.

In addition, we should also note that ifF•F50 happens,
any theory based on the degenerate electromagnetic fi
such as the ideal MHD approach, equally breaks down as
as the existence of the four-velocity tangent to the flux s
face is assumed. Consequently, inclusion of the effect of
finite inertia of the plasma does not resolve the difficul
Thus the breakdown of the force-free approximation d
cussed above is not a defect proper to the force-free app
mation.

Hitherto, we have demanded that the physical force-f
electromagnetic fields must have a four-velocity field sa
fying FmnUn50. This requires F•F.0. However,
B22E250 does not make the basic equations singular as
as uBW uÞ0. Since the force-free electromagnetic field is d
scribed without the four-velocity field of the matter, we ha
a possibility to extend the force-free approximation to t
region whereF•F<0 allowing FmnUM

n Þ0. This implies
that the degeneracy of the electromagnetic field still ho
but the magnetic flux freezing to the matter is abandon
Thus the flow of the matter across the magnetic field lin
appears. Such flows necessarily accompany dissipa
Thus, if the fraction of the dissipative energy is much sma
than the whole electromagnetic energy, we will possibly
tend the force-free approximation to the region where
conditionF•F.0 does not hold. In this sense, the force-fr
approximation may become more flexible than the the
based on the ideal MHD. Of course, the question of whet
such a description is actually possible or not must be ex
ined in each specific physical context. This is beyond
scope of this work.

VII. CONCLUDING REMARKS

In this paper we have presented a method to deal with
force-free electromagnetic field. We have shown that
force-free electromagnetic field is described as a s
consistent field theory so long asF•F.0 is satisfied. In
principle, the formulation presented here enables us to t
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many problems that have not been studied systematically
The structure of the obliquely rotating pulsar magnetosph
and the evolution of the axisymmetric magnetosphere aro
the black hole or the accretion disk are a few examples.
hope and think that our formalism offers a concrete base
researches on these objects. Further, we have also formu
the initial value problem of the force-free electromagne
field. We hope that this stimulates the numerical investi
tions of the force-free electromagnetic field and the rela
istic magnetosphere.

Although we believe that this work has clarified the e
sential features of the force-free electromagnetic field, s
eral important questions remain open to future work. Es
cially, the question on the breakdown of the force-fr
approximation near the magnetic neutral point will be imp
tant. Existence of the magnetic neutral point~region! will be
quite universal, as already mentioned. Further, it seems
various energetic phenomena in the universe take plac
association with the magnetic neutral point. The analysis
this point given in this work is quite insufficient and prelim
nary. It calls for further investigation.

A topic that is not considered in this work is concern
with the method of treating the configuration with symmet
We discuss this point in the accompanying work.

Another problem that is not considered here is introd
tion of the macroscopic four-velocity field of plasmas in
the force-free approximation. As mentioned in the Introdu
tion, this is because the four-velocity of the plasma is
auxiliary variable in the force-free electrodynamics, and
should be distinguished from the dynamical variables of
force-free electromagnetic field. However, it becomes nec
sary when we relate solutions of the electromagnetic fi
with the motion of matter. Traditionally, the four-velocity o
the plasma is introduced by means of the electric current
the charge density asjW5revW . However, this definition is
inadequate in the magnetospheres around the black ho
the accretion disk, because the fluid description of
plasma is more adequate in these objects. We will treat
problem elsewhere and propose another way to introduce
four-velocity of the plasma to the force-free approximatio
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APPENDIX

In this appendix, we shall prove the existence of the fl
surface generally. We show that the zero eigenvectors of
degenerate electromagnetic field generate a family of t
dimensional integral surfaces. In addition to this point,
also prove that a degenerate electromagnetic field is
pressed as Eq.~2.5!. The proof is based on Frobenius the
rem @19#.

Let Fmn denote a magnetic degenerate electromagn
field. Then there is a vector fieldU5Um]m satisfying
FmnUn50 andUmUm521. ~In this appendix, four-vectors
are denoted by boldface.! We can define a vector field
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B5Bm]m by Bm52* FmnUn . In terms ofUm andBm, * Fmn

is written as

* Fmn5UmBn2BmUn. ~A1!

Then Maxwell’s equation¹n* Fmn50 yields

Um¹mBn2Bm¹mUn1~¹mUm!Bn2~¹mBm!Un50.
~A2!

This is also written as

@U,B#52~“•U!B1~“•B!U, ~A3!

where@U,B# is the commutator ofU andB. This is equiva-
lent to the Lie derivative ofB with respect toU. We can
apply Frobenius theorem to Eq.~A3!.

Let us summarize the Frobenius theorem. LetTx(M ) be
the tangent space ofn-dimensional manifoldM at xPM and
Dx be anm-dimensional subset ofTx(M )(m,n). Further,
let a set$X( i )% ( i 51, . . . ,m) bem-linearly independent vec
tor fields constituting a local basis ofDx . Then the Frobenius
theorem asserts if and only if, for every local bas
$X( i )% ( i 51, . . . ,m), each commutator@X( i ) ,X( j )# is written
as

@X~ i ! ,X~ j !#5ci j
k X~k! , ~A4!

by differentiable functionsci j
k , there is anm-dimensional

integral submanifold passing through each point inM .
Further, this leads to the following corollaries.
~1! A Pfaffian systemX( i )

m ]m f 50 (i 51, . . . ,m) is com-
pletely integrable. We haven2m independent integral func
tions f k(k5m11,...,n). Slices on which f k(k5m
11,...,n) are constant are the integral submanifolds forD.

~2! There is a local coordinate systemxj ( j 51, . . . ,n),
such that]/]xi( i 51, . . . ,m) becomes a local basis vecto
for D, and any integral functionf k(k5m11,...,n) is written
as a function ofxk(k5m11,...,n).

Since Eq.~A3! has the form of Eq.~A4!, from the Frobe-
nius theorem it turns out that the zero eigenvectors of
c.

c

e

degenerate electromagnetic field generate a family of t
dimensional integral surfaces passing through each po
This is the flux surface.

Further, the first order partial differential equations

Um]mf50, Bm]mf50 ~A5!

yield two integralsf1 andf2 from ~1!. Then the flux surface
becomes a surface on which two scalarsf1 andf2 are con-
stant. Furthermore, from~1! and ~2!, we can regardf1 and
f2 as two coordinates orthogonal to the flux surfaces. T
df1 anddf2 are two independent one-forms orthogonal
U andB. Therefore the electromagnetic field two-formF is
written as

F5 f df1`df2 . ~A6!

Then dF5d f`df1`df250 implies f 5 f (f1 ,f2). Thus
we have

F5 f ~f1 ,f2!df1`df2 . ~A7!

However, by the transformation

f̃15E f ~f1 ,f2!df1 , ~A8!

F is rewritten to the form asF5df̃1`df2. Therefore a
degenerate electromagnetic field is always expressed as
~2.5!.

Further, from the definition ofU and Maxwell’s equa-
tions, we immediately see

£UF50, £UdF50. ~A9!

This implies

E
c
F5E

c8
F, ~A10!

wherec andc8 denote two-surfaces connected by the tube
the trajectory ofU ~i.e., two two-surfaces on the same flu
element!. This corresponds to the flux freezing in the ide
magnetohydrodynamics.
ld,
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