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Scattering amplitude for a plane angular sector

Ahmad T. Abawi and Roger F. Dashen
Physics Department, University of California, San Diego, La Jolla, California 92093
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The exact solution of the wave equation for an incident plane wave in the spheroconal coordinate system is
used to obtain formulas for scattering amplitude for a plane angular sector subject to Dirichlet or Neumann
boundary conditions. These formulas are obtained by performing line integrals along the edges of the sector.
The arguments of these integrals are the coefficients of the field singularity along the path of integration.
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[. INTRODUCTION of a quarter plane, but did not report any results for the
solutions of the scattered electric and magnetic fields. De

There are only a few objects for which the scattering am-Smedt and Van Blad¢b] also studied the singular behavior
plitude can be calculated analytically. The reason for this oPf the electric and magnetic fields near the tip of a PAS.
course is due to the fact that calculation of scattering ampliThey showed that the electric field is singularrés* and
tude for a given object requires the solution of the wavethe magnetic field is singular a$~*, wherer is distance to
equation by satisfying boundary conditions on the surface ofhe tip of the sector. They calculated the lowest values/for
the object. If the surface on which the boundary condition isand 7 using a variational technique. Boersifif] used the
specified corresponds to a coordinate surface, the wave equBabinet’s principle to show that the electric singularity ex-
tion can be separated into ordinary differential equationsponent for a conducting PAS is identical to the magnetic
which in most cases results in closed form solutions. Theingularity exponent for the complementary PAS. More re-
infinite cylinder, the half plane, and the sphere are examplegently, the solution of the wave equation for a PAS has been
of objects for which the scattering amplitude can be calcurevisited by Abawiet al.[8]. In addition to proving theorems
lated analytically. In addition to the above objects for whichon the properties of the eigenvalues of the PAS, they have
an analytical solution is possible in the familiar cylindrical reported methods for calculating the eigenvalues and eigen-
and polar coordinate systems, there are those objects fdnctions of the wave equation subject to Dirichlet or Neu-
which this solution is possible in less familiar coordinate mann boundary conditions on the surface of a PAS with
systems. For example, an analytic expression for scatteringfbitrary corner angle.
amplitude can be obtained for the parabolic cylinder and the In a previous paper a formula for scattering amplitude of
elliptic cylinder in the parabolic and elliptic coordinate sys- waves from plates of arbitrary shape in terms of a line inte-
tems, respectivel{1]. An analytic solution of the wave gral around the edges of the plate was deri\@dThe use of
equation satisfying boundary conditions on the surface of athis formula only requires the coefficient of field singularity
elliptic cone is also possible. Kraus and Levi@ used the
method of separation of variables in the spheroconal coordi-:
nate system to obtain Green'’s functions for the elliptic cone Wéj%
subject to either Dirichlet or Neumann boundary conditions.
In the spheroconal coordinate system the wave equatio
separates into two angular Larequations and the spherical
Bessel equation. The solution of the wave equation for a
plane angular sectdPAS) is a special case of the solution of
the wave equation for an elliptic cone, because, as is show
in Fig. 1, a PAS is a degenerate elliptic cone.

Since the work of Kraus and Levine other authors have
studied scattering from a PAS. Radl¢@] studied the scat-
tering of a plane wave from a quarter plane. Blume and
Kirchner [4] studied the singular behavior of the field near
the corner of a plane angular aperture and calculated th
lowest eigenvalues for several different slot angles. Satter-
white [5] investigated the scgttering of electromagnetic FIG. 1. This figure shows an elliptic cone with the apex at the
waves from a perfectly conducting PAS. He calculated theigin, which in the spheroconal coordinate system is represented
first few eigenvalues and eigenfunctions for the special casgy g=9,, whered, is the angle betwee®A and the positivex

axis. Ford,y= 7 the elliptic cone becomes degenerétee elliptic
base collapses to its major ax@D), resulting in the plane angular
*Present address: NCCOSC RTDE Division D881, 53560 Hullsector,COD, with corner angles. Note that3=0 corresponds to a
St., San Diego, CA 92152-5001. needle ang3= 7 corresponds to a half-plane.
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56 SCATTERING AMPLITUDE FOR A PLANE ANGULAR SECTOR 2173

on the edge of the plate. More specifically, for Dirichlet Ay
boundary condition it requires the coefficient of the normal
derivative and for Neumann boundary condition it requires
the coefficient of the tangential derivative of the solution of
the wave equation on the edge of the plate. If this coefficient
is obtained from the exact solution of the wave equation, the
scattering amplitude can be calculated exactly. In this paper,
the above mentioned formula is used to formulate the scat- e

tering amplitude for a PAS, where the coefficient of the field P
singularity is calculated from the exact solution of the wave L,/’
equation[2]. In Sec. Il, the exact solution of the wave equa- 1 e > x
tion for a PAS is reviewed. In Sec. Il this solution is used to h p > !
calculate the coefficient of the field singularity on the edges L==""c - __ PP el !
of a PAS. These coefficients are then used to derive separat ]
formulas for the scattering amplitude of waves from a PAS
subject Dirichlet and Neumann boundary conditions.
z
Il. THE SOLUTION OF THE WAVE EQUATION FIG. 2. The geometry of the spheroconal coordinate systés.
FOR A PLANE ANGULAR SECTOR the distance from the origin to the poipt
Kraus and Leving2] solved the wave equation in the 26012 262
spheroconal coordinate system. The spheroconal coordinate h2— 2 <3 I+ x""simy
system is defined by the set of equations 3 1-«'? cos ¢
Xx=r cos¥\1— k'2coLop, From the above equations we obtain the gradient
=r siny sing, . d V1—«2cogd d
y ¢ V=6 —+egy — = —
ar rJk? sirt9+ k' ?sir? ¢ 99
z=r cosp\1— k’cosd, )
L V1—«k'%cose J @
wher € - - Py
ere “rJk? si? 9+ k' sir? ¢ 9¢

k=cog B/2)=cog¢), A oA R . . L
4p12) se) whereg; , ey, ande, are unit vectors in the directions that

and k' = J1— % the ranges of the variables are the corresponding variables are increasing. Similarly, we find
the Laplacian
osd9<m, O0<e<2wm r=0.
19 g 1
The construction of this coordinate system is described, and A= Paate Aq,
its orthogonality proved, ifi2]. The geometry of the coordi-
nate system may briefly be described as follows: The coorghere
dinater is the distance to the origin, so the surfacer, is
a sphere with its center at the origin. The coordinate surface Ay
9= 1 is a semi-infinite elliptic cone whose cross section in
a planex=const is an ellipse centered on thaxis, with its
major axis in the plang=0. The surfacep= ¢, is a semi-
infinite elliptic half cone whose cross section in a plane
=const is half of an ellipse centered on thexis with its
major axis in the plangg=0. The geometry of the sphero-
conal coordinate system is shown in Fig. 2. For the case of
scattering from a PAS, the scattering surface corresponds tc
d=, as illustrated in Fig. 3. In this coordinate system the
metric is given by

ds?=h2dr?+h3d 92+ h3de?,

where

h2=1,

Z

2ci 12ai
2 K sinf 9+ «'?sirf g FIG. 3. The plane angular sectots=0, 9=, ¢=0, o=,
1—«k? cosd and ¢=21r.
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1
Ba= k2SIt 9+ k' ?sirt e
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X | J1— k?cogd
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G(l’z)(l’,ﬁ,(p;r’,ﬁ',go’)

J
[ J1— k°cosd o5

w1
=ik> <z i (kroh, (krs)
=1 Nen en en
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The wave equation in the spheroconal coordinate system is +ik§:

1
given by P leon(kk)hyon(ku)

1,2) . 1,2) 1,2) 1,2) . 1,2 1,2)
XOL2( %k, w52 1) O (85 ke, 52 ubi?)

19 d 1 12 . 12 (12
r_zﬁ(rzﬁw +r_2Ale+k2¢:0, ><¢)(0 )((P:K,ngn)-,U/gn ))
<O P D) @

Kraus and Levind2] have solved this equation by setting

Y(r,9,0)=R(r)V(9,¢). The above equation separates into!" the above ,¢.r) represents the source point and
a radial equation (9',¢',r'") represents the observation point. Also, in the

abover _=min(r,r') andr-=max(,r’) and the subscripts
e and o denote even and odd solutions. The Green’s func-

d
ar r2 g R +[k?r2—v(v+1)]R=0, tions satisfy the differential equation
and an angular equation izi (rziG(l'z) +£2AQG<1'2>+kZG<1’2>
reor ar r
AqV+v(v+1)V=0, (4)
__or—r)é(8—9")5e—¢’)

where the separation constant has been written(as-1). ro '
The solutions to the radial equation are the spherical Bessel o N
functions subject to Dirichlet boundary condition

G(l)(r,ﬁ,qo;r’,ﬁo,qo')=0,
A T
Ju(kr)= V 2kr Jy+ 212K or Neumann boundary condition

and GP(r,9,¢;r,90,¢')=0.

In addition to the above boundary conditions the coordinate
™ system imposes the matching conditions
(kD)= \ g H kD). y P g
GLA(r,3,¢;r", 9,0 ) =G1A(r, 8,0+ 2m;1r", ¥, 0'),

If we setV(9,9)=0(3)P(¢), the angular equation sepa-

rates into G2(r,0,¢;r", 9,0 )=G2(r,0,—¢;r', 9" ,¢’),

Gy 2(r0pir’,9,0")=—Gy2(r,0,—e;r', 9" ,¢").

d
J1—k’cos Y is

V1—k?cosd % ®(19)}

In the abovedy is the boundary surface. The normalization
coefficients are

+[v(v+1)k®sitd+ u]O(9)=0 (5)
m 1?0
and S I ey
d d X O (k' v1?2 112 25d9 de
—— - — ! P e 1 rven /fen '
J1—«'%coge de V1-«'%cofe do D(¢) )
™ 0
+[p(v+ 1)k Zsite— u]P(¢) =0, 6) NGR2 = fﬁ JO [05-2(9; k, V557 o)
Where u is another separation constant. Equatiéfisand XD (i k", v 1212649 de,

(6) are the trigonometric form of the Lanukfferential equa-
tion [10,11]. The Green'’s functions are found to & where
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From the Green’s functions we find the solutions of the wave
equation for an incident plane wave in the directidny) by
taking the limitr —oo:

k2SIt 9+ k' ?sirf e
J(1—k%co€9)(1— k' %coLep)

1
g= r_z h1h2h3:

1
Yo(D. @10 @)= 4w2 N D KT )"e0@ N (9 ke, v ) O (D, v )

1, . 1 . 1 1
XCI)(e )((,D,K',Ven ,,u,en)q)(e )((,o',K’ 4l ))

en 'Men

))@(1)(19/ K, V(l)

e 1 _
HKS Qg () 0 (05,8 )
(o]

X (@ik vor o) PG (@' ik Gr ) ®

and

1
In(, 01,9 @)= 4772 ND Jog (KE)(=1)"e0@ 2 (91,05, uEOP (81, v we) PP (@16 v )

en

XD (" k" w2 u?))

+ik >

1
H T\ Y, 2 . 2 2 2 2 2 . 2 2
N oK) 0@ 2 (9 k, G wS O (0" kv wE) P (@i v )

X®D (@' k" wa) u2)y, 9)

where the eigenvaluesand n are determined in such a way Where for the incident angled,¢,) and the observation
that for the Dirichlet boundary condition angle (¥q,¢q) in the spheroconal coordinate system we

have
lpD(ﬂ’qD;r,!

and for the Neumann boundary condition

190’90,):0!

ke=K|cost\1-k2cos g,
ky=k|sin 9y sin ¢,
k,=[k|cosp/1— Kk’coS'd,
0dx=|a|cosdqV1— k' “coS pq,
ay=|qlsindgsing,

0= 0| cospqV1— k? cos 9,

=0.

d
797 Un(G, @i 9, 0") )
0

9=

Methods for calculating the Lameigenvalues(»,u) and
their corresponding eigenfunctions for both Dirichlet and
Neumann boundary conditions are reported in a recent paper
and the references therdig.

Ill. SCATTERING AMPLITUDE

FOR A PLANE ANGULAR SECTOR

The Green's functions given by Eg7) are the general
solution of the wave equation when the boundary surface
Uy is an elliptic cone. For the case of a PAS, this boundary
surface collapses on its major axis resulting in the sector
Jo= . This is shown in Figs. 1 and 3. In this section we use

To(k,§)=

A. Dirichlet boundary condition

In this case the scattering amplitude is given[BYy

i

PREE JCD(E,r'>CD<—a,r'><ﬁ><é>-ar',
AXQ

Egs.(8) and(9) to calculate the coefficients of the field sin- \ynere

gularity on the edges of a PAS. These coefficients are then
used to calculate the scattering amplitude. Consider an in-
coming wave vectok and a outgoing wave vectar.

Q=k—-§=Q%+Q,9+Q.2,

nis »the outward unit normal on the surface of the PAS and

k=—k&—kJ—ky2,

a: qx§(+ Qy9+ qz2

Cp(k,r’) andCp(—q,r’) are the coefficients of the singu-
larity of the normal derivative ofip( Oy, @y ;r’

lpD(ﬁq 1 Pqf

9", ¢") and
", ¥'",¢") on the edges of the PAS. The above
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FIG. 4. The geometry of the PAS)y= .

integral is to be integrated along both edgésindB, of the
PAS as illustrated in Fig. 4. Here,

AXQ=9X (QX+Q2) = Q8 Q2,

and let us definé® andt® to be unit vectors along edgés
andB:
tA= —coeX+sineZ,

tB= — coseX—sSinez.

With cose=« and sine=«’, the above equations become

tA=— kX+k'Z,

8= —kX—«'Z
Along edgeA, dr’ can be written as
dr'=tAdr’ = (— kx+ «'2)dr’,
and along edg® it can be written as
dr’ =8dr’ = (- kX—«'2)dr’.
Thus
AXQ-dr'=—(xkQ,+ «'Q,)dr’
along edgeA and

AXQ-dr' = (- kQ,+ x' Q) dr’
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To(k,§) = —{kQ,+ k' Qy}

|Ax Q|2
xfo CAK,r")CA(—=g,r")dr’
+{_KQZ+K,QX}

><J CB(k,r")CB(—g,r)dr’'| (10
0

where the superscripts andB refer to edges#A andB. To
find Cp(k,r’) andCp(—q,r’) we write the normal deriva-
tive of Yp( Iy, ek;r', 0 ,¢’) as

ﬁ'leD(ﬁk!(Pk;r,lﬁ,!(P,):_éﬂ'va(ﬂkigok;r,!ﬂ,l@,)

B V1-kZcogd’

o VK2siPd’ + k' %sirf e’

J
XW Yo(F, o', 9, 0").

When evaluated on the surface of the PAS= =, it gives

N-Vip (ot 9,0 ) o -
1 J
rsing’ 99" Yo

(ﬁkiwk;rlaﬁ,!qol)

Y=

On edgesA andB (¢’ =0,7) the normal derivative is sin-
gular. The singularity is like 3/d, whered is the perpen-
dicular distance to the edge. Close to edgep’' —0,

1 d

T sing’ 997 vo(F, et 9, 0")

Y=
1 >
:\/? Ch(k,r"),

and close to edgB, ¢'—r,

1D

1 d

T sing’ 997 vo(, ot 9, 0")

Y =x

1 Dy ot
=\/ﬁ Cg(k,r’),

whered” is the perpendicular distance to edgeandd® is
the perpendicular distance to edBe To find C5, we need

to find a relationship between sigi andd”. In Appendix A
we find

(12

dA=r'k'\J1—k'°coS¢’ —r' kK’ COSp’
and

dB=r'k’\1— «k'%coe’ +1'kK'COSp’.

along edgeB. The scattering amplitude can then be writtenClose to edgé\ (¢’ —0) we expand the above expression in

as

powers of siwp’:



!

K
dA=r’ P sirfe’ +O(sing’)%.
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fo Ch(k,r")Ch(—G,r")dr’

By substituting ford” in Eq. (11) and taking the limit

¢'—0, we get

U [ AT T )
D\ ™ \/r_, 2k08' D\ Vk:»¥ks! )

S =z

Using Eq.(8) and noting that for Dirichlet boundary condi-
tions the odd solutions vanish on the edgsse Appendix

B), we find

o

. Ju, (r")
Cé(kyr’):zl Xo(VensMen: O, P

N

where we define

Xo(Vens Men: @, B; Bo)

k"1 .
=—4 ZN—E(—I) en@g(a;KaVenaMen)

XDPo(Bik" Ven, men)Pe(Boi k' Vens ten)
XW ®e(ﬁ/;K-Vena/-Len)|ﬂ’:Tr!

and the superscript 1 has been suppressed. Similarly,

oo

Jog, (11
o

Cé(—a,f')=n§=:l XD(VenvMen;ﬁqv‘Pq;o)

Similarly close to edg®, ¢’ — r,

!

dB=r’ ;(—K sirfe’ +O((sing’ ).

By substituting ford® in Eq. (12) and taking the limit

¢’ —, we find

R 1 K’ 1/2 J
B ,:—— R— —_—
CR(k,I") W(ZK) S
X (S, o1, )| 91—
or we can write
°° b (1)
Jr'

Cg(k’r,):ngl Xo(Ven»Men: i, @i )

and

[

)
—

Cg(_a,r’):nZl XD(VemMen;ﬂq"Pq;ﬂ-

Using these expressions, we can calculate

Tn(K,d)=

= 2 E Xo(Vens Mens T, 0k; 0)
n=1np-1

X Xp(Ven s Men 1ﬁq 1Pq ;0)
[ oo (P (1)
>< e —

; dr’.
0 r
The above integral can be evaluated to div2]

|(V,V’):f0m Jv(r )J[V’(r ) dr’

r

B co(w/2)(v—17")) 1
2w+ 12)(v' +1/2) |(v—1")2—1

1
- m] | 13
If we define

YAKGD = > Xo(Vensten V- ¢k;0)

n=1n'=1

X xp(Ven s Men 719q 1Pq ;0 (ven, ven)
and

8

Yg(kvd):;l XD(Veny,Uvenuﬁk;(Pk;W)
= n, 1

X xp(Ven s Men rﬁq 1Pq s ) (Vens Ven),
then the scattering amplitude, Ed.0), becomes
2i

— [« QYH(k,&)— YE(K,d)}
|nx Q2

To(k,q)=—

+kQAYAK, )+ YB(K,d)}]. (14)

B. Neumann boundary condition

In this case the scattering amplitude is given[BY

—2i

|,\ _,|2fCN(IZ,r’)CN(_a,r’)(ﬁXé)-ar,,
Ax O

which as in the Dirichlet case can be written as

Ta(k,G)=—

-

[nxQJ?

_{KQZ+K,QX}JOOCQ([()1|’,)
0
XCR(—G,r)dr’ +{—kQ,+«'Qy}

xf CB(k,r")CB(—g,r")dr'|. (15)
0
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In the above formuIeCN(Iz,r’) andCy(—q,r’) are the co- R o i, (r")
efficients of the 1{/d singularity of the tangential gradients CR(K.T)= 2 Xn(Von kon: Pk, @i 0) — =,
of ¥n(F,e;r’ 0", ¢") and n(Dq,@q:r", 9", ¢") normal n=1 NE

to the edge. From Ed2), the component of the gradient on i
the plane of the angular secta, =, normal to edge is Where we define
iven b
g y XN(Von s ton; @, B; Bo)

é@lﬂ’:w'Vd/N(ak!@k;r,1771(10,) 4 k 1 ( ) ® ( )
=—4q\/5— (—i)"n A K, Von»
1_K’2CO32(P, 5 2k’ N, o oniMon

S T rsing’  de’ IO ot '),

r'x’sing Do( Bk Von on) Oo( T K", Von, Mon)
On the edges ¢’ =0,7), the above quantity is singular; 9
close to edgeé\, ¢’ —0, we have Xﬂ_@’ @o(@';K',Von,Mon)|¢,:BO,
K J and the superscript 2 has been suppressed. Similarly,

_ I o’
K sing' dp’ In(O ;T @)oo

" ; - Jo (T7)
CAK.I). 2 XN(Pon s ton; ¥q.@q:0) —

1
Jar e "

Substituting ford®, we find

CB(k,r’ =E (Vons ton: Ok» 913 T) ,
N “ XN\ Von i Mon» Uk Pk \/r—,

1 Kk 0
A
SR == 7 g7 (Pt e Mo, 8N
- Jug (1)
Using Eq.(9) and noting that for Neumann boundary condi-  C3(—d,r')= >, xn(¥on:kon: ¥q,@q: ™) —=—".
tions the derivative of the even solutions vanish on the edges, n=1 '

we find (see Appendix B Using these expressions, we can calculate

o oo

F (1), (1)

J (kr )C (— G]I’ dr’ _nz Z XN(Von s Mons i @i 0) Xn(Vonr s Mon » 19q QDq-O) r dr’.
=ln'=1
By defining
Yﬁ(kﬂ):nzl E XN(Vonal’vonaﬂkv(Pk;O)XN(Von’1/J~on’vﬁqv(Pq;O)I(Voanon')a
= n’=
and

N(k q)_El E XN(Vons Mon s D @1 ) XN(Vonr » Mon s ﬁq (Pq177)|(7/onavon)
n'=1

and using Eq(15), we can write the scattering amplitude as

Ta(k,d)= [k QAYR(K,E) ~ YR(K,G)}+ kQAYR(K,8) + YR(K,G)}]. (16)

X Q2
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In the expressions onﬁ([(),a) and Yﬁ(lz,a), |(V0n,V’0n,) APPENDIX B: BOUNDARY CONDITIONS
is given by Eq.(13). Formulas given by Eq(14) and Eq. FOR A PLANE ANGULAR SECTOR

(16) may be used to calculate the cross section of a plate with Referring to Fig. 3, we take the boundary surface to be the

sharp COrners. The problem of scattering of waves froMsector 9= The coordinate-imposed boundary condition
plates with sharp corners cannot solved analytically. How-, d(¢) is that it must be periodic with period 7
ever, there are numerical methods, such as the method (+2m)=d (), in order to ensure that it is single val-

moments[13], that can be employed for this purpose. At - ; B (O)—

high frequenciegwhen the wavelength of the incident field bjﬁge If@(¢) is evenie.g®(¢)/ 9| -0=Pe(0)=0, we can
is much smaller than the length scale of the plateese

numerical methods become computationally intensive. At

this regime(high frequencieksit is reasonable to assume that ® (0+27)=P P (-

each corner of the plate is a PAS. Formuldg) or (16) elp+2m=De(¢)=Pe(—¢)

could be used to calculate the scattering amplitude for each or Bl(p+2m)=—D(— o)
e e "

corner. The scattering cross section for the plate would then
_be the m_agnitude squared of the coherent sum of the scattefy;g implies
ing amplitude for each corner.
® (m)=0.
APPENDIX A: CALCULATION OF d” AND d®

Referring to Fig. 4, leP;(z',x) be a point on the surface " the other hand, #(¢) is odd, ,(0)=0 and

of the PAS. Its distance to the poiRt(z; ,x’) on the edge is Do(@+2m) =Dy )= — Do — @)

c=z,—7". which implies
According to Eq.(1), x' andz’ on the surface of the PAS, ®y(m)=0.
9=, -

™. ae Thus for the even and odd periodic cases we must respec-
/ , 7 7 tively have
X'=—r'{yl—« 2CO_Szgo ,
z'=r'k'cosp’. DL0)=D(m)=0

On edgeA(¢=0), they become and

X’:—I'IK, q)o(O):q)o(W):O

. The boundary conditions oB(+) can be any of the follow-
Z =I K. ing:

From this we obtain the equation for edgk, x'=
—klk'Z', orz;=—«'Ikx’. ) ) , ) o
We thus write In this case®(9) is even[®/(0)=0] and it satisfies the
Dirichlet boundary condition on the boundary surface
[@(7)=0]. It has been shown by Kraus and Levifg
< that the factors®(9) and ®(¢) of the eigenfunction
c=——x'-7', V(9,¢) can only be both even or both odd. Sin®éd) has
K been chosen to be eved(p) must also be even resulting in
the following boundary conditions

1. The even Dirichlet boundary condition

. A: — .
and noting thatl”=c cose=ck, we find 01(0)=0, Oy(m)=0,

dA__K/XI_KZr (I)é(O):O, q)é(’TT):O

(B1)

or 2. The odd Neumann boundary condition

In this case®(?) is odd[®,(0)=0] and it satisfies the

A — - , Neumann boundary condition on the boundary surface
dA=r'k'V1-«'*cos e’ —r'kK'cOSp’, ©/(m)=0. Thend(¢) must also be odd, resulting in the

o ) following boundary conditions:
and we similarly find

0,(0)=0, ©.(m)=0 -
dB=r"k’J1—«k'%coS¢’ +r'kK'COSp’. ®,(0)=0, ®,(m)=0. (B2)
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3. The odd Dirichlet and the even Neumann boundary 0.0)=0, O.(m)=0,

conditions ®L(0)=0, ®.(m)=0.
By using the above arguments, for the odd Dirichlet case
we have In this case

Oy(9)=0())+06(-19)
0,(0)=0, O,m=0
d,(0)=0, Py (m)=0. or Oy(3)=0'(3—-0'(-19).

At the boundary surface the left hand side of the second

By writin - . o
4 g equation in the above vanishes, resulting in

O,(9)=0(3)-0(-19),

and imposing the boundary conditié, () =0, we find 0'(m)=0"(-m). (B4)
O(—m)=0(m). (83)  For the odd Dirichlet and the even Neumann boundary con-
ditions both®(¢) and O()) are periodic with period 2,
Similarly for the even Neumann boundary condition we havewhich results in integer eigenvalues.
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