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Scattering amplitude for a plane angular sector

Ahmad T. Abawi* and Roger F. Dashen
Physics Department, University of California, San Diego, La Jolla, California 92093

~Received 12 February 1997!

The exact solution of the wave equation for an incident plane wave in the spheroconal coordinate system is
used to obtain formulas for scattering amplitude for a plane angular sector subject to Dirichlet or Neumann
boundary conditions. These formulas are obtained by performing line integrals along the edges of the sector.
The arguments of these integrals are the coefficients of the field singularity along the path of integration.
@S1063-651X~97!10807-8#

PACS number~s!: 42.25.Fx, 42.25.Gy
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I. INTRODUCTION

There are only a few objects for which the scattering a
plitude can be calculated analytically. The reason for this
course is due to the fact that calculation of scattering am
tude for a given object requires the solution of the wa
equation by satisfying boundary conditions on the surface
the object. If the surface on which the boundary condition
specified corresponds to a coordinate surface, the wave e
tion can be separated into ordinary differential equatio
which in most cases results in closed form solutions. T
infinite cylinder, the half plane, and the sphere are exam
of objects for which the scattering amplitude can be cal
lated analytically. In addition to the above objects for whi
an analytical solution is possible in the familiar cylindric
and polar coordinate systems, there are those objects
which this solution is possible in less familiar coordina
systems. For example, an analytic expression for scatte
amplitude can be obtained for the parabolic cylinder and
elliptic cylinder in the parabolic and elliptic coordinate sy
tems, respectively@1#. An analytic solution of the wave
equation satisfying boundary conditions on the surface o
elliptic cone is also possible. Kraus and Levine@2# used the
method of separation of variables in the spheroconal coo
nate system to obtain Green’s functions for the elliptic co
subject to either Dirichlet or Neumann boundary conditio
In the spheroconal coordinate system the wave equa
separates into two angular Lame´ equations and the spheric
Bessel equation. The solution of the wave equation fo
plane angular sector~PAS! is a special case of the solution o
the wave equation for an elliptic cone, because, as is sh
in Fig. 1, a PAS is a degenerate elliptic cone.

Since the work of Kraus and Levine other authors ha
studied scattering from a PAS. Radlow@3# studied the scat-
tering of a plane wave from a quarter plane. Blume a
Kirchner @4# studied the singular behavior of the field ne
the corner of a plane angular aperture and calculated
lowest eigenvalues for several different slot angles. Sat
white @5# investigated the scattering of electromagne
waves from a perfectly conducting PAS. He calculated
first few eigenvalues and eigenfunctions for the special c
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of a quarter plane, but did not report any results for t
solutions of the scattered electric and magnetic fields.
Smedt and Van Bladel@6# also studied the singular behavio
of the electric and magnetic fields near the tip of a PA
They showed that the electric field is singular asr n21 and
the magnetic field is singular asr t21, wherer is distance to
the tip of the sector. They calculated the lowest values fon
and t using a variational technique. Boersma@7# used the
Babinet’s principle to show that the electric singularity e
ponent for a conducting PAS is identical to the magne
singularity exponent for the complementary PAS. More
cently, the solution of the wave equation for a PAS has b
revisited by Abawiet al. @8#. In addition to proving theorems
on the properties of the eigenvalues of the PAS, they h
reported methods for calculating the eigenvalues and eig
functions of the wave equation subject to Dirichlet or Ne
mann boundary conditions on the surface of a PAS w
arbitrary corner angle.

In a previous paper a formula for scattering amplitude
waves from plates of arbitrary shape in terms of a line in
gral around the edges of the plate was derived@9#. The use of
this formula only requires the coefficient of field singulari

ll

FIG. 1. This figure shows an elliptic cone with the apex at t
origin, which in the spheroconal coordinate system is represe
by q5q0 , whereq0 is the angle betweenOA and the positivex
axis. Forq05p the elliptic cone becomes degenerate~the elliptic
base collapses to its major axisCD!, resulting in the plane angula
sector,COD, with corner angleb. Note thatb50 corresponds to a
needle andb5p corresponds to a half-plane.
2172 © 1997 The American Physical Society
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56 2173SCATTERING AMPLITUDE FOR A PLANE ANGULAR SECTOR
on the edge of the plate. More specifically, for Dirichl
boundary condition it requires the coefficient of the norm
derivative and for Neumann boundary condition it requi
the coefficient of the tangential derivative of the solution
the wave equation on the edge of the plate. If this coeffici
is obtained from the exact solution of the wave equation,
scattering amplitude can be calculated exactly. In this pa
the above mentioned formula is used to formulate the s
tering amplitude for a PAS, where the coefficient of the fie
singularity is calculated from the exact solution of the wa
equation@2#. In Sec. II, the exact solution of the wave equ
tion for a PAS is reviewed. In Sec. III this solution is used
calculate the coefficient of the field singularity on the edg
of a PAS. These coefficients are then used to derive sepa
formulas for the scattering amplitude of waves from a P
subject Dirichlet and Neumann boundary conditions.

II. THE SOLUTION OF THE WAVE EQUATION
FOR A PLANE ANGULAR SECTOR

Kraus and Levine@2# solved the wave equation in th
spheroconal coordinate system. The spheroconal coord
system is defined by the set of equations

x5r cosqA12k82cos2w,

y5r sinq sinw,

z5r coswA12k2cos2q, ~1!

where

k5cos~b/2!5cos~«!,

andk85A12k2; the ranges of the variables are

0<q<p, 0<w<2p, r>0.

The construction of this coordinate system is described,
its orthogonality proved, in@2#. The geometry of the coordi
nate system may briefly be described as follows: The co
dinater is the distance to the origin, so the surfacer 5r 1 is
a sphere with its center at the origin. The coordinate surf
q5q1 is a semi-infinite elliptic cone whose cross section
a planex5const is an ellipse centered on thex axis, with its
major axis in the planey50. The surfacew5w1 is a semi-
infinite elliptic half cone whose cross section in a planez
5const is half of an ellipse centered on thez axis with its
major axis in the planey50. The geometry of the sphero
conal coordinate system is shown in Fig. 2. For the case
scattering from a PAS, the scattering surface correspond
q5p, as illustrated in Fig. 3. In this coordinate system t
metric is given by

ds25h1
2dr21h2

2dq21h3
2dw2,

where

h1
251,

h2
25r 2

k2sin2q1k82sin2w

12k2 cos2q
,

l
s
f
t
e
r,
t-

-

s
ate

ate

d

r-

e

of
to

h3
25r 2

k2sin2q1k82sin2w

12k82 cos2 w
.

From the above equations we obtain the gradient

¹5êr

]

]r
1êq

A12k2cos2q

rAk2 sin2q1k82sin2 w

]

]q

1êw

A12k82cos2w

rAk2 sin2 q1k82 sin2 w

]

]w
, ~2!

whereêr , êq , and êw are unit vectors in the directions tha
the corresponding variables are increasing. Similarly, we fi
the Laplacian

D5
1

r 2

]

]r
r 2

]

]r
1

1

r 2 DV ,

where

FIG. 2. The geometry of the spheroconal coordinate system.r is
the distance from the origin to the pointp.

FIG. 3. The plane angular sectorsq50, q5p; w50, w5p,
andw52p.
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DV5
1

k2sin2q1k82sin2w FA12k2cos2q
]

]q

3SA12k2cos2q
]

]q D
1A12k82cos2w

]

]w SA12k82cos2w
]

]w D G .
~3!

The wave equation in the spheroconal coordinate syste
given by

1

r 2

]

]r S r 2
]

]r
c D1

1

r 2 DVc1k2c50,

Kraus and Levine@2# have solved this equation by settin
c(r ,q,w)5R(r )V(q,w). The above equation separates in
a radial equation

d

dr S r 2
d

dr
RD1@k2r 22n~n11!#R50,

and an angular equation

DVV1n~n11!V50, ~4!

where the separation constant has been written asn(n11).
The solutions to the radial equation are the spherical Be
functions

j n~kr !5A p

2kr
Jn11/2~kr !

and

hn~kr !5A p

2kr
Hn11/2

~1! ~kr !.

If we set V(q,w)5Q(q)F(w), the angular equation sepa
rates into

A12k2cos2q
d

dq FA12k2cos2q
d

dq
Q~q!G

1@n~n11!k2sin2q1m#Q~q!50 ~5!

and

A12k82cos2w
d

dw FA12k82cos2w
d

dw
F~w!G

1@n~n11!k82sin2w2m#F~w!50. ~6!

Wherem is another separation constant. Equations~5! and
~6! are the trigonometric form of the Lame´ differential equa-
tion @10,11#. The Green’s functions are found to be@2#
is

el

G~1,2!~r ,q,w;r 8,q8,w8!

5 ik (
n51

`
1

Nen
~1,2! j nen

~kr,!hnen
~kr.!

3Qe
~1,2!~q;k,nen

~1,2! ,men
~1,2!!Qe

~1,2!~q8;k,nen
~1,2! ,men

~1,2!!

3Fe
~1,2!~w;k8,nen

~1,2! ,men
~1,2!!

3Fe
~1,2!~w8;k8,nen

~1,2! ,men
~1,2!!

1 ik (
n51

`
1

Non
~1,2! j non

~kr,!hnon
~kr.!

3Qo
~1,2!~q;k,non

~1,2! ,mon
~1,2!!Qo

~1,2!~q8;k,non
~1,2! ,mon

~1,2!!

3Fo
~1,2!~w;k8,non

~1,2! ,mon
~1,2!!

3Fo
~1,2!~w8;k8,non

~1,2! ,mon
~1,2!!. ~7!

In the above (q,w,r ) represents the source point an
(q8,w8,r 8) represents the observation point. Also, in t
above r ,[min(r,r8) and r .[max(r,r8) and the subscripts
e and o denote even and odd solutions. The Green’s fu
tions satisfy the differential equation

1

r 2

]

]r S r 2
]

]r
G~1,2!D1

1

r 2 DVG~1,2!1k2G~1,2!

52
d~r 2r 8!d~q2q8!d~w2w8!

r 2s
,

subject to Dirichlet boundary condition

G~1!~r ,q,w;r 8,q0 ,w8!50,

or Neumann boundary condition

Gq
~2!~r ,q,w;r 8,q0 ,w8!50.

In addition to the above boundary conditions the coordin
system imposes the matching conditions

G~1,2!~r ,q,w;r 8,q8,w8!5G~1,2!~r ,q,w12p;r 8,q8,w8!,

G~1,2!~r ,0,w;r 8,q8,w8!5G~1,2!~r ,0,2w;r 8,q8,w8!,

Gq
~1,2!~r ,0,w;r 8,q8,w8!52Gq

~1,2!~r ,0,2w;r 8,q8,w8!.

In the aboveq0 is the boundary surface. The normalizatio
coefficients are

Nen
~1,2!5E

2p

p E
0

q0
@Qe

~1,2!~q;k,nen
~1,2! ,men

~1,2!!

3Fe
~1,2!~w;k8,nen

~1,2! ,men
~1,2!!#2sdq dw,

Non
~1,2!5E

2p

p E
0

q0
@Qo

~1,2!~q;k,non
~1,2! ,mon

~1,2!!

3Fo
~1,2!~w;k8,non

~1,2! ,mon
~1,2!!#2sdq dw,

where
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1

r 2 h1h2h35
k2sin2q1k82sin2w

A~12k2cos2q!~12k82cos2w!
.
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From the Green’s functions we find the solutions of the wa
equation for an incident plane wave in the direction~q,w! by
taking the limit r→`:
cD~q,w;r 8,q8,w8!54p (
n51

`
1

Ne
~1! j nen

~kr8!~2 i !nenQe
~1!~q;k,nen

~1! ,men
~1!!Qe

~1!~q8;k,nen
~1! ,men

~1!!

3Fe
~1!~w;k8,nen

~1! ,men
~1!!Fe

~1!~w8;k8,nen
~1! ,men

~1!!

1 ik (
n51

`
1

No
~1! j non

~kr8!~2 i !nonQo
~1!~q;k,non

~1! ,mon
~1!!Qo

~1!~q8;k,non
~1! ,mon

~1!!

3Fo
~1!~w;k8,non

~1! ,mon
~1!!Fo

~1!~w8;k8,non
~1! ,mon

~1!! ~8!

and

cN~q,w;r 8,q8,w8!54p (
n51

`
1

Ne
~2! j nen

~kr8!~2 i !nenQe
~2!~q;k,nen

~2! ,men
~2!!Qe

~2!~q8;k,nen
~2! ,men

~2!!Fe
~2!~w;k8,nen

~2! ,men
~2!!

3Fe
~2!~w8;k8,nen

~2! ,men
~2!!

1 ik (
n51

`
1

No
~2! j non

~kr8!~2 i !nonQo
~2!~q;k,non

~2! ,mon
~2!!Qo

~2!~q8;k,non
~2! ,mon

~2!!Fo
~2!~w;k8,non

~2! ,mon
~2!!

3Fo
~2!~w8;k8,non

~2! ,mon
~2!!, ~9!
e

nd
-

e

where the eigenvaluesn andm are determined in such a wa
that for the Dirichlet boundary condition

cD~q,w;r 8,q0 ,w8!50,

and for the Neumann boundary condition

]

]q8
cN~q,w;r 8,q8,w8!U

q85q0

50.

Methods for calculating the Lame´ eigenvalues~n,m! and
their corresponding eigenfunctions for both Dirichlet a
Neumann boundary conditions are reported in a recent p
and the references therein@8#.

III. SCATTERING AMPLITUDE
FOR A PLANE ANGULAR SECTOR

The Green’s functions given by Eq.~7! are the genera
solution of the wave equation when the boundary surf
q0 is an elliptic cone. For the case of a PAS, this bound
surface collapses on its major axis resulting in the se
q05p. This is shown in Figs. 1 and 3. In this section we u
Eqs.~8! and ~9! to calculate the coefficients of the field sin
gularity on the edges of a PAS. These coefficients are t
used to calculate the scattering amplitude. Consider an
coming wave vectork¢ and a outgoing wave vectorq¢ :

k¢52kxx̂2kyŷ2kzẑ,

q¢5qxx̂1qyŷ1qzẑ.
er

e
y
r

e

n
n-

Where for the incident angle (qk ,wk) and the observation
angle (qq ,wq) in the spheroconal coordinate system w
have

kx5ukucosqkA12k82cos2 wk,

ky5ukusin qk sin wk ,

kz5ukucoswkA12k2cos2qk,

qx5uqucosqqA12k82cos2wq,

qy5uqusinqqsinwq ,

qz5uqucoswqA12k2 cos2qq.

A. Dirichlet boundary condition

In this case the scattering amplitude is given by@9#

TD~k¢ ,q¢ !5
2p i

un̂3Q¢ u2
E CD~k¢ ,r 8!CD~2q¢ ,r 8!~ n̂3Q¢ !•d¢r 8,

where

Q¢ 5k¢2q¢5Qxx̂1Qyŷ1Qzẑ,

n̂ is the outward unit normal on the surface of the PAS a
CD(k¢ ,r 8) andCD(2q¢ ,r 8) are the coefficients of the singu
larity of the normal derivative ofcD(qk ,wk ;r 8,q8,w8) and
cD(qq ,wq ;r 8,q8,w8) on the edges of the PAS. The abov
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integral is to be integrated along both edges,A andB, of the
PAS as illustrated in Fig. 4. Here,

n̂3Q¢ 5 ŷ3~Qxx̂1Qzẑ!5Qzx̂2Qxẑ,

and let us definet̂A and t̂B to be unit vectors along edgesA
andB:

t̂A52cos« x̂1sin« ẑ,

t̂B52cose x̂2sin« ẑ.

With cos«5k and sin«5k8, the above equations becom

t̂A52k x̂1k8ẑ,

t̂B52k x̂2k8ẑ.

Along edgeA, d¢r 8 can be written as

d¢r 85 t̂Adr85~2k x̂1k8ẑ!dr8,

and along edgeB it can be written as

d¢r 85 t̂Bdr85~2k x̂2k8ẑ!dr8.

Thus

n̂3Q¢ •d¢r 852~kQz1k8Qx!dr8

along edgeA and

n̂3Q¢ •d¢r 85~2kQz1k8Qx!dr8

along edgeB. The scattering amplitude can then be writt
as

FIG. 4. The geometry of the PAS,q05p.
TD~k¢ ,q¢ !5
2p i

un̂3Q¢ u2
F2$kQz1k8Qx%

3E
0

`

CD
A~k¢ ,r 8!CD

A~2q¢ ,r 8!dr8

1$2kQz1k8Qx%

3E
0

`

CD
B~k¢ ,r 8!CD

B~2q¢ ,r 8!dr8G ~10!

where the superscriptsA andB refer to edgesA andB. To
find CD(k¢ ,r 8) andCD(2q¢ ,r 8) we write the normal deriva-
tive of cD(qk ,wk ;r 8,q8,w8) as

n̂•“cD~qk ,wk ;r 8,q8,w8!52êq•“cD~qk ,wk ;r 8,q8,w8!

52
A12k2cos2q8

rAk2sin2q81k82sin2w8

3
]

]q8
cD~qk ,wk ;r 8,q8,w8!.

When evaluated on the surface of the PAS,q85p, it gives

n̂•“cD~qk ,wk ;r 8,q8,w8!uq85p

52
1

r sinw8

]

]q8
cD~qk ,wk ;r 8,q8,w8!U

q85p

On edgesA and B (w850,p) the normal derivative is sin-
gular. The singularity is like 1/Ad, whered is the perpen-
dicular distance to the edge. Close to edgeA, w8→0,

2
1

r 8 sinw8

]

]q8
cD~qk ,wk ;r 8,q8,w8!U

q85p

5
1

AdA
CD

A~k¢ ,r 8!, ~11!

and close to edgeB, w8→p,

2
1

r 8 sinw8

]

]q8
cD~qk ,wk ;r 8,q8,w8!U

q85p

5
1

AdB
CB

D~k¢ ,r 8!, ~12!

wheredA is the perpendicular distance to edgeA anddB is
the perpendicular distance to edgeB. To find CD

A , we need
to find a relationship between sinw8 anddA. In Appendix A
we find

dA5r 8k8A12k82cos2w82r 8kk8cosw8

and

dB5r 8k8A12k82cos2w81r 8kk8cosw8.

Close to edgeA (w8→0) we expand the above expression
powers of sinw8:
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dA5r 8
k8

2k
sin2w81O~sinw8!4.

By substituting for dA in Eq. ~11! and taking the limit
w8→0, we get

CD
A~k¢ ,r 8!52

1

Ar 8
Ak8

2k

]

]q8
cD~qk ,wk ;r 8,q8,0!U

q85p

.

Using Eq.~8! and noting that for Dirichlet boundary cond
tions the odd solutions vanish on the edges~see Appendix
B!, we find

CD
A~k¢ ,r 8!5 (

n51

`

xD~nen ,men ;qk ,wk ;0!
j nen

~r 8!

Ar 8
,

where we define

xD~nen ,men ;a,b;b0!

524pAk8

2k

1

Ne
~2 i !nenQe~a;k,nen ,men!

3Fe~b;k8,nen ,men!Fe~b0 ;k8,nen ,men!

3
]

]q8
Qe~q8;k,nen ,men!uq85p ,

and the superscript 1 has been suppressed. Similarly,

CD
A~2q¢ ,r 8!5 (

n51

`

xD~nen ,men ;qq ,wq ;0!
j nen

~r 8!

Ar 8
.

Similarly close to edgeB, w8→p,

dB5r 8
k8

2k
sin2w81O„~sinw8!4

….

By substituting for dB in Eq. ~12! and taking the limit
w8→p, we find

CD
B~k¢ ,r 8!52

1

Ar 8
S k8

2k D 1/2 ]

]q8

3cD~qk ,wk ;r 8,q8,p!uq85p ,

or we can write

CD
B~k¢ ,r 8!5 (

n51

`

xD~nen ,men ;qk ,wk ;p!
j nen

~r 8!

Ar 8

and

CD
B~2q¢ ,r 8!5 (

n51

`

xD~nen ,men ;qq ,wq ;p!
j nen

~r 8!

Ar 8
.

Using these expressions, we can calculate
E
0

`

CD
A~k¢ ,r 8!CD

A~2q¢ ,r 8!dr8

5 (
n51

`

(
n851

`

xD~nen ,men ,qk ,wk ;0!

3xD~nen8 ,men8 ,qq ,wq ;0!

3E
0

` j nen
~r 8! j nen8

~r 8!

r 8
dr8.

The above integral can be evaluated to give@12#

I ~n,n8!5E
0

` j n~r 8! j n8~r 8!

r 8
dr8

5
cos„~p/2!~n2n8!…

2~n11/2!~n811/2! H 1

~n2n8!221

2
1

~n1n811!221J . ~13!

If we define

YD
A~k¢ ,q¢ !5 (

n51

`

(
n851

`

xD~nen ,men ,qk ,wk ;0!

3xD~nen8 ,men8 ,qq ,wq ;0!I ~nen ,nen8!

and

YD
B~k¢ ,q¢ !5 (

n51

`

(
n851

`

xD~nen ,men ,qk ,wk ;p!

3xD~nen8 ,men8 ,qq ,wq ;p!I ~nen ,nen8!,

then the scattering amplitude, Eq.~10!, becomes

TD~k¢ ,q!52
2p i

un̂3Q¢ u2
@k8Qx$YD

A~k¢ ,q¢ !2YD
B~k¢ ,q¢ !%

1kQz$YD
A~k¢ ,q¢ !1YD

B~k¢ ,q¢ !%#. ~14!

B. Neumann boundary condition

In this case the scattering amplitude is given by@9#

TN~k¢ ,q¢ !5
22p i

un̂3Q¢ u2
E CN~k¢ ,r 8!CN~2q¢ ,r 8!~ n̂3Q¢ !•d¢r 8,

which as in the Dirichlet case can be written as

TN~k¢ ,q¢ !52
2p i

un̂3Q¢ u2
F2$kQz1k8Qx%E

0

`

CN
A~k¢ ,r 8!

3CN
A~2q¢ ,r 8!dr81$2kQz1k8Qx%

3E
0

`

CN
B~k¢ ,r 8!CN

B~2q¢ ,r 8!dr8G . ~15!
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In the above formulaCN(k¢ ,r 8) andCN(2q¢ ,r 8) are the co-
efficients of the 1/Ad singularity of the tangential gradient
of cN(qk ,wk ;r 8,q8,w8) andcN(qq ,wq ;r 8,q8,w8) normal
to the edge. From Eq.~2!, the component of the gradient o
the plane of the angular sector,q85p, normal to edge is
given by

êwuq85p•“cN~qk ,wk ;r 8,p,w8!

5
A12k82cos2w8

r 8k8sinw8

]

]w8
cN~qk ,wk ;r 8,p,w8!.

On the edges (w850,p), the above quantity is singular
close to edgeA, w8→0, we have

k

r 8k8 sin w8

]

]w8
cN~qk ,wk ;r 8,p,w8!uw8→0

5
1

AdA
CN

A~k¢ ,r 8!.

Substituting fordA, we find

CN
A~k¢ ,q¢ ,r 8!5

1

Ar 8
A k

2k8

]

]w8
cN~qk ,wk ;r 8,p,w8!uw850 .

Using Eq.~9! and noting that for Neumann boundary cond
tions the derivative of the even solutions vanish on the ed
we find ~see Appendix B!
s,

CN
A~k¢ ,r 8!5 (

n51

`

xN~non ,mon ;qk ,wk ;0!
j non

~r 8!

Ar 8
,

where we define

xN~non ,mon ;a,b;b0!

524pA k

2k8

1

No
~2 i !nonQo~a;k,non ,mon!

3Fo~b;k8,non ,mon!Qo~p;k8,non ,mon!

3
]

]w8
Fo~w8;k8,non ,mon!uw85b0

,

and the superscript 2 has been suppressed. Similarly,

CN
A~2q¢ ,r 8!5 (

n51

`

xN~non ,mon ;qq ,wq ;0!
j non

~r 8!

Ar 8
,

CN
B~k¢ ,r 8!5 (

n51

`

xN~non ,mon ;qk ,wk ;p!
j non

~r 8!

Ar 8
,

and

CD
B~2q¢ ,r 8!5 (

n51

`

xN~non ,mon ;qq ,wq ;p!
j non

~r 8!

Ar 8
.

Using these expressions, we can calculate
E
0

`

CN
A~k¢ ,r 8!CN

A~2q¢ ,r 8!dr85 (
n51

`

(
n851

`

xN~non ,mon ,qk ,wk ;0!xN~non8 ,mon8 ,qq ,wq ;0!E
0

` j non
~r 8! j non8

~r 8!

r 8
dr8.

By defining

YN
A~k¢ ,q¢ !5 (

n51

`

(
n851

`

xN~non ,mon ,qk ,wk ;0!xN~non8 ,mon8 ,qq ,wq ;0!I ~non ,non8!,

and

YN
B~k¢ ,q¢ !5 (

n51

`

(
n851

`

xN~non ,mon ,qk ,wk ;p!xN~non8 ,mon8 ,qq ,wq ;p!I ~non,non8!

and using Eq.~15!, we can write the scattering amplitude as

TN~k¢ ,q¢ !5
2p i

un̂3Q¢ u2
@k8Qx$YN

A~k¢ ,q¢ !2YN
B~k¢ ,q¢ !%1kQz$YN

A~k¢ ,q¢ !1YN
B~k¢ ,q¢ !%#. ~16!
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In the expressions forYN
A(k¢ ,q¢) andYN

B(k¢ ,q¢), I (non ,n8on8)
is given by Eq.~13!. Formulas given by Eq.~14! and Eq.
~16! may be used to calculate the cross section of a plate
sharp corners. The problem of scattering of waves fr
plates with sharp corners cannot solved analytically. Ho
ever, there are numerical methods, such as the metho
moments@13#, that can be employed for this purpose.
high frequencies~when the wavelength of the incident fie
is much smaller than the length scale of the plate! these
numerical methods become computationally intensive.
this regime~high frequencies! it is reasonable to assume th
each corner of the plate is a PAS. Formulas~14! or ~16!
could be used to calculate the scattering amplitude for e
corner. The scattering cross section for the plate would t
be the magnitude squared of the coherent sum of the sca
ing amplitude for each corner.

APPENDIX A: CALCULATION OF dA AND dB

Referring to Fig. 4, letP1(z8,x8) be a point on the surfac
of the PAS. Its distance to the pointP2(z18 ,x8) on the edge is

c5z182z8.

According to Eq.~1!, x8 andz8 on the surface of the PAS
q5p, are

x852r 8A12k82cos2w8,

z85r 8k8cosw8.

On edgeA(w50), they become

x852r 8k,

z85r 8k8.

From this we obtain the equation for edgeA, x85
2k/k8z8, or z1852k8/kx8.
We thus write

c52
k8

k
x82z8,

and noting thatdA5c cos«5ck, we find

dA52k8x82kz8

or

dA5r 8k8A12k82cos2w82r 8kk8cosw8,

and we similarly find

dB5r 8k8A12k82cos2w81r 8kk8cosw8.
th

-
of

t

ch
n

er-

APPENDIX B: BOUNDARY CONDITIONS
FOR A PLANE ANGULAR SECTOR

Referring to Fig. 3, we take the boundary surface to be
sector q5p. The coordinate-imposed boundary conditio
on F~w! is that it must be periodic with period 2p:
F(w12p)5F(w), in order to ensure that it is single va
ued. IfF~w! is even i.e.,]F(w)/]wuw50[Fe8(0)50, we can
write

Fe~w12p!5Fe~w!5Fe~2w!

or Fe8~w12p!52Fe8~2w!.

This implies

Fe8~p!50.

On the other hand, ifF~w! is odd,Fo(0)50 and

Fo~w12p!5F0~w!52Fo~2w!,

which implies

Fo~p!50.

Thus for the even and odd periodic cases we must res
tively have

Fe8~0!5Fe8~p!50

and

Fo~0!5Fo~p!50.

The boundary conditions onQ~q! can be any of the follow-
ing:

1. The even Dirichlet boundary condition

In this caseQ~q! is even@Qe8(0)50# and it satisfies the
Dirichlet boundary condition on the boundary surfa
@Qe(p)50#. It has been shown by Kraus and Levine@2#
that the factorsQ~q! and F~w! of the eigenfunction
V(q,w) can only be both even or both odd. SinceQ~q! has
been chosen to be even,F~w! must also be even resulting i
the following boundary conditions

Qe8~0!50,

Fe8~0!50,

Qe~p!50,
Fe8~p!50. ~B1!

2. The odd Neumann boundary condition

In this caseQ~q! is odd @Qo(0)50# and it satisfies the
Neumann boundary condition on the boundary surfa
Qo8(p)50. Then F~w! must also be odd, resulting in th
following boundary conditions:

Qo~0!50,
Fo~0!50,

Qo8~p!50
Fo~p!50.

~B2!
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3. The odd Dirichlet and the even Neumann boundary
conditions

By using the above arguments, for the odd Dirichlet ca
we have

Qo~0!50,
Fo~0!50,

Qo~p!50
Fo~p!50.

By writing

Qo~q!5Q~q!2Q~2q!,

and imposing the boundary conditionQo(p)50, we find

Q~2p!5Q~p!. ~B3!

Similarly for the even Neumann boundary condition we ha
s

i-

An
e

e

Qe8~0!50,

Fe8~0!50,

Qe8~p!50,

Fe8~p!50.

In this case

Qe~q!5Q~q!1Q~2q!

or Qe8~q!5Q8~q!2Q8~2q!.

At the boundary surface the left hand side of the seco
equation in the above vanishes, resulting in

Q8~p!5Q8~2p!. ~B4!

For the odd Dirichlet and the even Neumann boundary c
ditions bothF~w! and Q~q! are periodic with period 2p,
which results in integer eigenvalues.
J.

ev.
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