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Wave-function method for a waveguide with centered circular diaphragm

N. Marinescu
Department of Physics, University of Bucharest, P.O. Box MG-11, Magurele, Bucharest, Romania

~Received 22 November 1996!

The scattering by a diaphragm of finite thickness with a centered circular hole in a rectangular waveguide is
reinvestigated by using the wave-function method for the propagation of the electromagnetic waves in
waveguides. The susceptance of the diaphragm with a centered circular aperture is readily obtained from the
reflection coefficient. The transmission and the reflection coefficients of the thick circular aperture are com-
puted. A comparison is made with the standard methods.@S1063-651X~97!03407-7#

PACS number~s!: 42.65.Wi, 84.40.Az
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I. INTRODUCTION

It is well known that a small aperture that transmits rad
tion is a very useful microwave circuit element. Wavegui
diaphragms with circular holes are frequently employed
building microwave components such as waveguide filt
and an impedance matching system; waveguide-to-ca
coupling is often accomplished with a circular hole. Vario
approaches such as quasistatic theory, conformal mapp
variational theory, singular equation method, and mo
matching method have been applied to the scattering b
thick diaphragm with a centered circular hole in a rectan
lar waveguide. The study of discontinuities in waveguidi
structures has always been a subject of great importance
a large number of contributions in this area can be found
the literature. In particular we mention in this respect t
historical work by Schwinger and Saxon@1# and two review
works by Levine@2# and Mitra and Lee@3#. Chapters of more
general significance have also been devoted to this subje
Collin @4# and Harrington@5#, and we mention also a mor
practically oriented handbook edited by Marcuvitz@6#. All
these works deal essentially with analytical approximate
lutions to various problems arising in waveguide physics
the microwave field theory Lord Rayleigh@7# was the first to
discuss the scattering of electromagnetic~e.m.! waves by a
circular aperture and ellipsoidal obstacles. Lord Rayleig
work provided the foundation for highly useful ‘‘smal
aperture’’ and ‘‘small-obstacle’’ theories, which were r
vived and generalized by Bethe@8–11#. He developed a vec
torial theory of diffraction of plane electromagnetic wav
by a circular aperture in an infinite plane conducting scre
He showed that a wave incident on a small hole in a a me-
tallic wall produces a field in the hole equivalent to the su
of an electric and a magnetic dipole, the polarizabilities
which are given to a good approximation by electrosta
approximations if the hole diameter is small relative to t
wavelength and the hole is not near the waveguide wall.
most complete variational solutions of scattering from a d
phragm with a centered circular hole in a rectangular wa
guide was given in Marcuvitz@6#. The results presented i
Ref. @6# have been derived using the so-called single-m
network representation for waveguide discontinuities, wh
has always been considered very useful for its computatio
efficiency. The strongest limitation of this type of result
that it can only take into account fundamental-mode inter
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tions. The advent of powerful digital computers allows oth
numerically oriented approaches. In particular for wavegu
problems, the mode-matching technique provide multimo
equivalent network representations for waveguide disco
nuities @12#.

The difficulty in the study of discontinuities consists
the lack of a powerful general analytical method, each pr
lem requiring its own type of approximation, especially r
lated to its own geometry. Recently, a method has been
troduced@13–17#, that allows one to study the transmissio
of electromagnetic radiation through waveguides in much
same manner as the wave tunneling through a potential
rier. This method is not restricted to radiation waveleng
much shorter than the hole size, and recently it has b
applied successfully in describing the propagation of
electromagnetic waves through waveguides by analogy w
the quantum tunneling phenomenon@18–20#. Apart from be-
ing free of the above-mentioned restriction, this meth
which may be called the wave-function method, is also u
ful because of its simplicity and flexibility in dealing with
various geometries encountered in the physics of the mi
wave guides. The wave-function method is further develop
in the present paper with the aim of enlarging its applicab
ity to the analysis of microwave circuit elements. In th
paper we show that a further classical electromagnetic p
lem is tractable by methods inspired by quantum mechan
In Sec. II the wave-function method is briefly outlined.
Sec. III we apply it to compute the transmission and t
reflection coefficient of a circular hole centered in a d
phragm of finite thickness, transverse to the axis of a rec
gular waveguide. The susceptance of a thin diaphragm wi
centered circular hole is then readily obtained in Sec. IV. T
results are graphically compared with the formulas a
curves due to usual approaches such as the quasistatic th
variational technique and mode-matching technique in S
V.

II. THE WAVE-FUNCTION METHOD

It is well known @4# that the propagation of electromag
netic waves through a waveguide proceeds by two type
transverse standing modes: TE and TM. In the former c
the fields are given by theHz component of the magneti
field along the guide axis

Hz5 f ~x,y!ei ~kgz2v0t !, ~1!
2166 © 1997 The American Physical Society
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56 2167WAVE-FUNCTION METHOD FOR A WAVEGUIDE WITH . . .
where the functionf satisfies the two-dimensional scal
Helmholtz equation (Dx,y1kc

2) f 50, with the boundary con-
dition ] f /]nuG50, n being the vector normal to theG con-
tour of the cross section, the wave vectorkg along the guide
axis, andkc being related to the frequencyv0 by

v0
25c2kg

21vc
2 , ~2!

where the cutoff frequencyvc5ckc , with c denoting the
light velocity. Usually, the functionf (x,y) is normalized
over the cross section of the waveguide,* u f (x,y)u2ds51.
For the TM modes the magnetic fieldHz is replaced in Eq.
~1! by the electric fieldEz and the boundary condition i
f uG50.

The plane wave along thez direction expressed by Eq.~1!
may be reflected by, absorbed by, or transmitted thro
various small objects or media placed inside the wavegu
as well as variations of the cross section, which amoun
connecting two or more waveguides, resonant cavities, et
may also be scattered by a small circular aperture centere
a metallic plate across the guide in a plane perpendicula
the guide axis, at a suitable position in the common w
between two guides, etc. In all these cases we are intere
in the amplitudeak of the plane wave, such that we are led
introduce the wave function@15,16#.

C~z,t !5
1

~2v0!1/2ake
i ~kgz2v0t ! ~3!

by

Hz5 f ~x,y!~8p!1/2vcC~z,t ! ~4!

for the TE modes, and a similar relationship forEz in the
case of TM modes. It has been shown@15# in this case that
the density energy per unit length is given by

v0uaku252v0
2uCu2 ~5!

and the energy flux is

S5cnv0uaku2 ~6!

wheren5(12vc
2/v0

2)1/2 is the refractive index of the wave
guide, i.e., the energy is transported with the group velo
cn. In addition, the waveguide function given by Eq.~3!
satisfies a Klein-Gordon type equation in 111 dimensions
according to Eq.~2!,

2
]2C

]z2 1
1

h2c2 ~E22Ug
2!C50, ~7!

whereE is the photon energy andUg5hvc is the height of
the rectangular potential barrier representing the unifo
waveguide. The density and current of a ‘‘plane wave’’
positive frequenciesv05(c2kg

21vc
2)1/2 can be defined tha

satisfy the continuity equation@15#. As one can see, th
whole picture shares many essential features with quan
physics. In order to illustrate how the methods works,
apply it in the next section to computing the transmiss
and the reflection coefficients of a centered circular hole
metallic diaphragm of finite thickness, transverse to the a
of a rectangular waveguide.
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III. THE TRANSMISSION AND THE REFLECTION
COEFFICIENTS OF A CIRCULAR HOLE CENTERED
IN A DIAPHRAGM TRANSVERSE TO THE AXIS OF

A RECTANGULAR WAVEGUIDE

Figure 1 illustrates a perfectly conducting diaphragm
nonzero thicknesst with a centered circular hole of radiu
r ,b, placed in a plane perpendicular to the axis of an id
rectangular waveguide with sidesa,b (a.b), matched at
both ends. Usually the range ofa/l0 is such that only the
TE10 mode can propagate at frequencyv0. A wave of unit
amplitude is incident on the obstacle from the regionz,0.
The TE10 mode is reflected from the diaphragms and so
of the incident power is transmitted through the aperture
the operating frequency is below the resonant frequency
the circular hole, the latter can be considered as a waveg
of cross section equal to the cross section of the hole and
length equal to the thickness. According to the result in S
II, the diaphragm with the centered circular hole can be
garded as a rectangular-circular-rectangular connection
potentials as in Fig. 2, of heightsUg andUch , respectively,
where the wave numbers are given by

FIG. 1. Small centered circular hole in a thick metallic di
phragm transverse to the axis of a rectangular waveguide.

FIG. 2. Rectangular potential barrier for the physical situat
from Fig. 1.
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kg5
1

hc
~E22U2!1/2 ~8!

and

xch5
1

hc
~Uch

2 2E2!1/2. ~9!

For the three regions~see Fig. 2! the wave function is given
by

C~z!5H eikgz1Rche
2 ikgz, z,0

Aexchl1Be2 ixchl , 0,z, l

Tche
ikgl , l ,z,

~10!

where Rch and Tch are the reflection and the transmissi
coefficients, respectively, of the potential barrier represen
the evanescent circular waveguide. They will be determi
together withA and B by requiring the continuity of the
wave function at z50 and z5 l . The calculations are
straightforward and one obtains

Tch5
eikgl

coshxchl 2 i
kg

22xch
2

2kgxch
sinhxchl

, ~11!
h

-

g
d

Rch5

coshxchl 2 i
kg

xch
sinhxchl

coshxchl 2 i
kg

22xch
2

2kgxch
sinhxchl

21. ~12!

Since not all the photons coming fromz52` arrive on the
surface of the aperture, the equations for the transmis
and the reflection coefficients depend on the geometry of
system. From the total photon fluxF t in the cross-section o
the guide in the absence of the obstacle, a partFm will be
reflected by the metallic plate of the diaphragm and the
ference between the two fluxes

F t2Fm5Fch ~13!

represents the flux of photons arriving on the surface of
circular hole. Each flux depends on the distribution functi
of the photons in the transverse cross section. For the cas
the TE10 mode the distribution function is given b
C(x,y)5(2/a)1/2sinpx/a. Thus one may write for the trans
mission and the reflection coefficients of the circular ho
centered on the diaphragm
Tch5
2pr 2

ab

coskgl 1hsinkgl tanhxchl 2 i ~sinkgl 2hcoskgl tanhxchl !

coshxchl ~11h2tanh2xchl !
. ~14!
e
is-

f
the

-

c
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al
Rch5
2pr 2

ab

12 ikg /xchtanhxchl

12 ihtanhxchl
. ~15!

where

h5
kg

22xch
2

2kgxch
. ~16!

The validity of the relationship

uTchu21uRchu251 ~17!

is ensured.
Let us consider the case of a thin diaphragm for whic

l

lg
!1, ~18!

with a centered circular hole whose diameterd satisfies the
condition of the small aperture range

d

b
!1. ~19!

Both restrictions~18! and ~19! are verified for a stand
ard rectangular waveguide in theX band ~with a52.25b,
b51.01631022 m, and l0.331022 m! in which a dia-
phragm of thicknessl 51024m, with a small circular hole of
radiusr !p31024 m, is placed. The wave numbers in th
rectangular and cylindrical waveguides are given by the d
persion relations@4#

kg
254p2S 1

l0
2 2

1

lc10
2 D , ~20!

xch
2 54p2S 1

lch
2 2

1

l0
2D , ~21!

wherelc1052a andlch5pm,er are the cutoff wavelength o
the propagation mode in the rectangular waveguide and
circular waveguide andpm,e is a numerical coefficient de
pending on the standing mode; the subscriptse andm refer
to the ‘‘electric type’’ for the TM mode and the ‘‘magneti
type’’ for the TE mode respectively. We assume that t
passage of energy proceeds by three modes excited in
cylindrical guide, TM01, TE10, and TE11 for which
pe52.6127, pm51.6398, andpm53.4126 respectively@4#.
Their cutoff frequenciesvc,me52pc/pm,er are therefore
much higher thanv0. Assuming that the modes have equ
weights in carrying the e.m. energy and thereforep.2, for
the caser .p l , from Eq. ~21! it results that

xch5104 m21 ~22!
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56 2169WAVE-FUNCTION METHOD FOR A WAVEGUIDE WITH . . .
and from Eq.~22!

kg5157.079 m21. ~23!

It is straightforward now to show, using Eq.~16!, that one
may write

h.2
xch

2kg
. ~24!

In the case of the thin diaphragmkgl !1, xchl 51 and then
coskgl.1, sinkgl.kgl, coshxchl.1, sinhxchl.xchl, and conse-
quently from Eqs.~14! and ~15! one obtains

Tch.
i

h

2pr 2

ab
, ~25!

Rch.
1

2 ih

2pr 2

ab
21. ~26!

Sincelch!l0, from Eq. ~21! it results that

xch.
2p

pr
. ~27!

Introducing Eq.~27! into Eqs.~25! and ~26! for the average
value p̄52.5550 corresponding to the most probable exc
tion modes in the circular guide, one obtains

Tch52 i5.110
kgr 3

ab
, ~28!

Rch5 i5.110
kgr 3

ab
21 ~29!

for the transmission coefficient through the small circu
hole and for the reflection coefficient, respectively. The
flection coefficient of an extremely small circular ho
r→0 is nearly equal to21. This is a correct result for a
short-circuiting plate across the waveguide. For the sa
case of a centered small circular hole in a transverse
diaphragm located in a rectangular waveguide for the do
nant TE10 mode according to the standard e.m. field theo
one has the well-known formulas@4#

Tch52 i5.333
kgr 3

ab
, ~30!

Rch5 i5.333
kgr 3

ab
21. ~31!

FIG. 3. Equivalent transmission-line representation of
TE10 mode in the rectangular waveguide with a thin diaphra
with a centered circular aperture.
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One can see that the transmission and the reflection co
cients derived in this paper practically coincide with the cla
sical result, except for the numerical coefficient 5.110 ver
5.333. We shall use this result to obtain the susceptanc
the diaphragm in the next section.

IV. THE SUSCEPTANCE OF A CIRCULAR HOLE
CENTERED IN A THIN DIAPHRAGM TRANSVERSE
TO THE AXIS OF A RECTANGULAR WAVEGUIDE

From the reflection coefficient one can determine the n
malized load admittance of discontinuity. A thin metal di
phragm with a centered circular hole in a rectangular wa
guide exhibits an equivalent circuit consisting of a sing
inductive shunt susceptanceiB on the equivalent transmis
sion line representation of the dominant TE10 mode field,
located precisely at the point of discontinuity@4# as in Fig. 3.

It can be shown that

R5
2 i B̄

21 i B̄
, ~32!

where B̄5B/Y10 is the normalized susceptance andY10 is
the wave admittance of the TE10 mode and hence the cha
acteristic admittance of transmissions line. WhenB is large
one can write

R.212
2

i B̄
. ~33!

e

FIG. 4. Susceptance of a thin diaphragm with a centered circ
hole versusa/l0, with radius r as a parameter. Solid lines ar
calculated using the present method, dashed lines are from
Bethe quasistatic theory, circled lines are from the variatio
theory, and dotted lines are from the mode-matching technique
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FIG. 5. Amplitude of the transmission coeffi
cient ~TE10 mode! given by Eq.~14! for a thick
diaphragm with a centered circular hole vs fr
quency for aperture radii and diaphragm thic
ness as parameters.
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Comparing Eq.~29! with Eq. ~33! shows that an indefinitely
thin circular small hole is equivalent to a normalized susc
tance

B̄52
ab

pr3kg
52

8

2pp

ablg

d3 . ~34!

The minus sign indicates that the susceptance is induc
One can see also that the susceptance is inversely pro
tional to the cube of radius andB̄→` when r→0. This
corresponds to a short circuit across the waveguide. On
contrary, when the waveguide is almost open, the hole oc
pying almost the whole cross sectionB̄ will be numerically
small. For the same case of the zero-thickness diaphr
with a centered small circular hole in a rectangular wa
guide, according to the e.m. field theory of microwaves o
has the well-known formula@6#
-

e.
or-

he
u-
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-
e

B̄52
3ab

8r 3kg
52

3

2p

ablg

d3 , ~35!

originating in the quasistatic theory of Bethe. One can
that for the average valuep̄52.5550 corresponding to th
most probable excitation mode in the circular guide, the
efficient of susceptance calculated using the present me
is 3.1373, which agrees well with 3 given by the e.m. fie
theory.

V. NUMERICAL RESULTS AND DISCUSSION

In our numerical computational that considers air-fill
waveguides in theX band, we have selected the frequen
range of practical interest in which only the TE10 mode is
propagated. The normalized susceptance for the thin met
diaphragm with a centered circular hole placed in a pla
perpendicular to the waveguide axis was calculated using
wave-function method. The normalized susceptances
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56 2171WAVE-FUNCTION METHOD FOR A WAVEGUIDE WITH . . .
plotted in Fig. 4 versusa/l0 with radiusr as parameter. Ou
results ~solid lines! are graphically compared with curve
based on the well-known formula~35! given by the quasi-
static theory of Bethe~dashed lines! @11# with the variational
theory ~open circles! @6# and with the mode-matching tech
nique ~dotted lines! @12#. As we can see from Fig. 4, th
normalized susceptance increases as the radius of the cir
decreases and diverges asa/l0→0.5 since the TE10 mode’s
admittanceY10 vanishes at this point. For small circula
holes r<b/8 the results obtained using quasistatic theo
mode-matching technique, and results obtained by
method practically coincide. Variational calculus susce
tance gives a lower susceptance than the small-ape
~Bethe! theory, the mode matching technique and the pres

FIG. 6. Power transmission coefficient~TE10 mode! given by
Eq. ~14! of a centered circular hole in a metallic diaphragm~broken
lines! and classical power transmisssion coefficient~solid line!, as a
function of thicknessl with hole diameterd as a parameter.
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method, but for large holesr 5b/2 it gives values that differ
from ours by about 10%. This is confirmed by the resu
presented in Fig. 4. We note that the agreement between
standard aproaches and our solution is quite good even
large values ofr /b. The dependence of the amplitude of th
transmission coefficient~TE10 mode! given by Eq.~14! for a
thick diaphragm with a centered circular hole in a rectan
lar guide versusa/l0 is plotted in Fig. 5 for four aperture
radii and a series of a diaphragm thicknessl /a, ranging be-
tween 0.01 and 0.08. As one can see, the effect of the th
ness of the diaphragm is significant. The thinnest diaphra
l 50 has the largestuTu. The amplitude of the transmissio
coefficient decreases with increasing the diaphragm th
ness, the effect being greater for small circular ho
r<b/8. In Fig. 6 the power transmission coefficientT given
by Eq. ~14! ~dashed line! is compared with the classica
transmission coefficient~solid line! provided by the varia-
tional calculus@6# for the X-band waveguide. One can se
that the present results are in good agreement with the c
sical ones ford50.37520.30 in. andl 50.1520.35 in. and
for d50.20 in. andl 50.120.25 in., respectively. The dis
placement between the values obtained using the wa
function method and those obtained by the variational ca
lus is below 10% ford50.375 andd50.30 in. and t
P0.1520.35 in. and ford50.20 in. andtP0.120.25 in.,
respectively.

VI. CONCLUSION

In conclusion, one may say that the diffraction by a c
cular hole in a metallic diaphragm transverse to the axis
the waveguide can be described in a very convenient ma
by using well-known quantum-mechanical concepts. Us
the model presented in this work, the thick diaphragm wit
centered circular aperture in a rectangular waveguide
treated as a cascaded connection of rectangular potential
rier corresponding to rectangular-circular-rectangular guid
The availability of this simple equivalent representation
lows a fast and accurate analysis. Various applications of
wave-function method, such as the analysis of evanes
mode waveguide bandpass filter and the waveguide s
wich filter, are in progress.
ry
@1# J. Schwinger and D. Saxon,Discontinuities in Waveguide
~Gordon and Breach, New York, 1968!.

@2# L. Levin, Theory of Waveguides~Newnes-Butterworth, Lon-
don, 1975!.

@3# R. Mitra and S.W. Lee,Analytical Techniques in Theory o
Guides Waves~Macmillan, New York, 1971!.

@4# R. E. Collin, Field Theory of Guides Waves~McGraw-Hill,
New York, 1960!.

@5# F. R. Harrington, Time Harmonic Electromagnetic Field
~McGraw-Hill, New York, 1961!.

@6# N. Marcuvitz,The Waveguide Handbook~MacGraw-Hill, New
York, 1951!, Vol. 10.

@7# Lord Rayleigh, Philos. Mag44, 28 ~1897!.
@8# H. A. Bethe, MIT Rad. Lab. Rep. No. 43-22~1943!.
@9# H. A. Bethe, MIT Rad. Lab. Rep. No. 43-27~1943!.
@10# H. A. Bethe, MIT Rad. Lab. Rep. No. 43-30~1943!.
@11# H. A. Bethe, Phys. Rev.66, 163 ~1944!.
@12# J. Douglas and R. Macphie, IEEE Trans. Microwave Theo

Tech.11, 1085~1986!.
@13# N. Marinescu and R. Nistor, Can. J. Phys.68, 10 ~1990!.
@14# N. Marinescu, R. Nistor, and M. Duma, Arch. Elektrotech.75,

155 ~1992!.
@15# N. Marinescu and M. Apostol Z. Naturforsch. Teil A47, 935

~1992!.
@16# N. Marinescu, Prog. Quantum Electron.16, 3 ~1992!.
@17# N. Marinescu, Phys. Rev. E54, 2931~1996!.
@18# T. Martin and R. Landauer, Phys. Rev. A45, 2611~1992!.
@19# A. Raufagni, D. Mugnai, and A. Agresti, Phys. Lett. A175,

334 ~1993!.
@20# A. Enders and G. Nimitz, Phys. Rev. E48, 632 ~1993!.


