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Wave-function method for a waveguide with centered circular diaphragm
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The scattering by a diaphragm of finite thickness with a centered circular hole in a rectangular waveguide is
reinvestigated by using the wave-function method for the propagation of the electromagnetic waves in
waveguides. The susceptance of the diaphragm with a centered circular aperture is readily obtained from the
reflection coefficient. The transmission and the reflection coefficients of the thick circular aperture are com-
puted. A comparison is made with the standard methi@E063-651X97)03407-7

PACS numbes): 42.65.Wi, 84.40.Az

[. INTRODUCTION tions. The advent of powerful digital computers allows other
numerically oriented approaches. In particular for waveguide
It is well known that a small aperture that transmits radia-problems, the mode-matching technique provide multimode
tion is a very useful microwave circuit element. Waveguideequivalent network representations for waveguide disconti-
diaphragms with circular holes are frequently employed innuities[l?]: . . o o
building microwave components such as waveguide filters The difficulty in the study of discontinuities consists in
and an impedance matching system; waveguide-to-cavithe lack of a powerful general analytical method, each prob-
coupling is often accomplished with a circular hole. Variouslem requiring its own type of approximation, especially re-
approaches such as quasistatic theory, conformal mappinted to its own geometry. Recently, a method has been in-
variational theory, singular equation method, and modeiroduced[13-17, that allows one to study the transmission
matching method have been applied to the scattering by @f electromagnetic radiation through waveguides in much the
thick diaphragm with a centered circular hole in a rectanguSame manner as the wave tunneling through a potential bar-
lar waveguide. The study of discontinuities in waveguidingrier- This method is not restricted to radiation wavelengths
structures has always been a subject of great importance aftich shorter than the hole size, and recently it has been
a large number of contributions in this area can be found irfPplied successfully in describing the propagation of the
the literature. In particular we mention in this respect theelectromagnetic waves through waveguides by analogy with
historical work by Schwinger and Saxét] and two review the quantum tunneling phenomend8—20. Apart from be-
works by Leving 2] and Mitra and Le¢3]. Chapters of more ing free of the above-mentioned restriction, this method,
general significance have also been devoted to this subject Byhich may be called the wave-function method, is also use-
Collin [4] and Harringtor[S], and we mention also a more ful because of its SlmpIICIty and ﬂelelllty in dealing with
practically oriented handbook edited by Marcuvig]. All various geometries encounte_red in the physics of the micro-
these works deal essentially with analytical approximate sowave guides. The wave-function method is further developed
lutions to various problems arising in waveguide physics. Inn the present paper with the aim of enlarging its applicabil-
the microwave field theory Lord Rayleidfi] was the first to ity to the analysis of microwave circuit elements. In this
discuss the scattering of electromagnétian) waves by a  Paper we show that a further classical electromagnetic prob-
circular aperture and ellipsoidal obstacles. Lord Rayleigh’dem is tractable by methods inspired by quantum mechanics.
work provided the foundation for highly useful “small- In Sec. Il the wave-function method is briefly outlined. In
aperture” and “small-obstacle” theories, which were re- Sec. Il we apply it to compute the transmission and the
vived and generalized by Betfig@—11]. He developed a vec- reflection coefficient of a circular hole centered in a dia-
torial theory of diffraction of plane electromagnetic wavesPhragm of finite thickness, transverse to the axis of a rectan-
by a circular aperture in an infinite plane conducting screengular waveguide. The susceptance of a thin diaphragm with a
He showed that a wave incident on a small holeaia me- centered circular hole is then readily obtained in Sec. IV. The
tallic wall produces a field in the hole equivalent to the sumresults are graphically compared with the formulas and
of an electric and a magnetic dipole, the polarizabilities ofcurves due to usual approaches such as the quasistatic theory,
which are given to a good approximation by electrostaticvariational technique and mode-matching technique in Sec.
approximations if the hole diameter is small relative to theV-
wavelength and the hole is not near the waveguide wall. The
most complete variational solutions of scattering from a dia- Il. THE WAVE-FUNCTION METHOD

ph_ragm with_a ceptered cireular hole in a rectangular Wave- t is well known [4] that the propagation of electromag-
guide was given in Marcuvit{6]. The results presented in potic waves through a waveguide proceeds by two types of
Ref. [6] have been derived using the so-called single-modg,nsyerse standing modes: TE and TM. In the former case

network representation for waveguide discontinuities, which,q fields are given by thel, component of the magnetic
has always been considered very useful for its Computationqrekj along the guide axis z

efficiency. The strongest limitation of this type of result is _
that it can only take into account fundamental-mode interac- H,=f(x,y)e ke?~@ot), (1)
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where the functionf satisfies the two-dimensional scalar y
Helmholtz equation 4, ,+ kg)f =0, with the boundary con-
dition 4f/an|r=0, n being the vector normal to thé con-

tour of the cross section, the wave veckgralong the guide
axis, andk; being related to the frequeney, by

a)%:CZké-i- wg, (2

where the cutoff frequencw.=ck., with ¢ denoting the
light velocity. Usually, the functionf(x,y) is normalized
over the cross section of the waveguideéf (x,y)|2ds=1.
For the TM modes the magnetic field, is replaced in Eq.
(1) by the electric fieldE, and the boundary condition is
f|1":0

The plane wave along thedirection expressed by E(l)
may be reflected by, absorbed by, or transmitted through FIG. 1. Small centered circular hole in a thick metallic dia-
various small objects or media placed inside the waveguidedhragm transverse to the axis of a rectangular waveguide.
as well as variations of the cross section, which amount to
connecting two or more waveguides, resonant cavities, etc. It ||| THE TRANSMISSION AND THE REFLECTION

may also be scattered by a small circular aperture centered in cOEFFICIENTS OF A CIRCULAR HOLE CENTERED

a metallic plate across the guide in a plane perpendicular to |y A DIAPHRAGM TRANSVERSE TO THE AXIS OF
the guide axis, at a suitable position in the common wall A RECTANGULAR WAVEGUIDE

between two guides, etc. In all these cases we are interested
in the amplitudea, of the plane wave, such that we are ledto  Figure 1 illustrates a perfectly conducting diaphragm of
introduce the wave functiofi5,16|. nonzero thickness with a centered circular hole of radius
r<b, placed in a plane perpendicular to the axis of an ideal
i (kgz— wot) 3) rectangular waveguide with sidesb (a>b), matched at
both ends. Usually the range af\, is such that only the
TE o mode can propagate at frequengy. A wave of unit
by amplitude is incident on the obstacle from the regmnO.
_ 1/2 The TE;o mode is reflected from the diaphragms and some
H=1y)(Bm) ot (2,0) @ of the incident power is transmitted through the aperture. If
for the TE modes, and a similar relationship 5 in the  the operating frequency is below the resonant frequency of
case of TM modes. It has been shofil] in this case that the circular hole, the latter can be considered as a waveguide

z TEw

X2

1
V(z,t)= Wake

the density energy per unit length is given by of cross section equal to the cross section of the hole and the
length equal to the thickness. According to the result in Sec.
wolay?=2w3| ¥ |? (5) I, the diaphragm with the centered circular hole can be re-
) garded as a rectangular-circular-rectangular connection of
and the energy flux is potentials as in Fig. 2, of height$, andU.;,, respectively,

S=cnwy|ay? ©) where the wave numbers are given by

wheren=(1— w?/w3)*?is the refractive index of the wave- Uil
guide, i.e., the energy is transported with the group velocity (Z)!
cn. In addition, the waveguide function given by E®) Uch

satisfies a Klein-Gordon type equation ir-1 dimensions
according to Eq(2),

5 S S
_F—’_W(E —Ug)\lfzo, (7)

whereE is the photon energy and,=hw, is the height of
the rectangular potential barrier representing the uniform
waveguide. The density and current of a “plane wave” of Ugio
positive frequenciesso= (c?k;+ w?)*? can be defined that [
satisfy the continuity equatiofl5]. As one can see, the

whole picture shares many essential features with quantum

physics. In order to illustrate how the methods works, we ) 1

apply it in the next section to computing the transmission o L z

and the reflection coefficients of a centered circular hole in a

metallic diaphragm of finite thickness, transverse to the axis FIG. 2. Rectangular potential barrier for the physical situation
of a rectangular waveguide. from Fig. 1.
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oo 2y kg
kg:R(E —-U9) (8) COSh(ch|—|X—S|nhXch|
Ren= — -1 (12
and coshrenl —i =—sinhy 4l
1 2|(g)(ch
Xch:R(UéﬁEz)m- C)

For the three region&ee Fig. 2 the wave function is given
by

z<0
o<zl

eikgz+ Rche—ikgz,
AeXen! + Be™iXenl

Tere'kd, 1<z,

V(z)= (10

whereR., and T, are the reflection and the transmission
coefficients, respectively, of the potential barrier representing

Since not all the photons coming from+ — arrive on the
surface of the aperture, the equations for the transmission
and the reflection coefficients depend on the geometry of the
system. From the total photon flk; in the cross-section of
the guide in the absence of the obstacle, a gastwill be
reflected by the metallic plate of the diaphragm and the dif-
ference between the two fluxes

Q=D p=d, (13

the evanescent circular waveguide. They will be determined

together withA and B by requiring the continuity of the
wave function atz=0 and z=I|. The calculations are
straightforward and one obtains

eikgl

represents the flux of photons arriving on the surface of the
circular hole. Each flux depends on the distribution function
of the photons in the transverse cross section. For the case of
the TE;; mode the distribution function is given by

Ten= 2 , (1)  W¥(x,y)=(2/a)Y%sinmx/a. Thus one may write for the trans-
_ "9~ Xeh . mission and the reflection coefficients of the circular hole
coshyepl —i sinhycnl .
2KgXch centered on the diaphragm
|
B 27r? coKgl + nsinkgltanhycpl —i(sinkgl — ncokgltanhycyl) 14
¢ ab coshyenl (14 72tantfxcpl) ' (14
|
2mr? 1—iky/ xcntanhyel phragm of thicknesk=10"“m, with a small circular hole of
Ren= — (19  radiusr<7x10 % m, is placed. The wave numbers in the
ab 1—igtanhygpl S . ) )
rectangular and cylindrical waveguides are given by the dis-
where persion relation$4]
k2— x? ( 1 1 )
g ch 2__ 2 _
- _ 16 ke=47°| —— |, (20)
n 2KgXch (16 ¢ AS Agu
The validity of the relationship ) 1 1
Xch:4772<)\_2_ )\—) (21
| Tenl®+[Renl>=1 17 ch Mo

is ensured.
Let us consider the case of a thin diaphragm for which

[
)\—g<1, (18
with a centered circular hole whose diametesatisfies the
condition of the small aperture range

dl
B<.

(19
Both restrictions(18) and (19) are verified for a stand-
ard rectangular waveguide in thé¢ band (with a=2.2%,
b=1.016x10"2 m, and\y=3%x10"2? m) in which a dia-

wherel;10=2a and\.y=pn e are the cutoff wavelength of
the propagation mode in the rectangular waveguide and the
circular waveguide ang,, . is a numerical coefficient de-
pending on the standing mode; the subscrgpendm refer

to the “electric type” for the TM mode and the “magnetic
type” for the TE mode respectively. We assume that the
passage of energy proceeds by three modes excited in the
cylindrical guide, TMy;, TEq,, and TE; for which
pP.=2.6127, p,,=1.6398, andp,,=3.4126 respectivelj4].
Their cutoff frequencieswg ne=2mC/pmf are therefore
much higher thanwy. Assuming that the modes have equal
weights in carrying the e.m. energy and therefpre2, for

the case =i, from Eq.(21) it results that

Xch=10" m™! (22)
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FIG. 3. Equivalent transmission-line representation of the
TE4o mode in the rectangular waveguide with a thin diaphragm
with a centered circular aperture.

and from Eq.(22)
ky=157.079 m™. (23

It is straightforward now to show, using E@L6), that one
may write

Xch
n=— 2_kg (29

In the case of the thin diaphragkgl <1, x.,l=1 and then
coskyl=1, sirkyl=Kgyl, coshxcnl=1, sinhy.=x., and conse- G/ Xo

uently from Eqgs(14) and(15) one obtains
d y as(14) (15 FIG. 4. Susceptance of a thin diaphragm with a centered circular

i 212 hole versusa/\,, with radiusr as a parameter. Solid lines are

Ten=———, (25 calculated using the present method, dashed lines are from the
7 ab Bethe quasistatic theory, circled lines are from the variational
1 2mp2 theory, and dotted lines are from the mode-matching technique.
mr
ch™ - | ab —-1. (26) . . -
n One can see that the transmission and the reflection coeffi-

cients derived in this paper practically coincide with the clas-

Sincekcn<ho, from Eq.(21) it results that sical result, except for the numerical coefficient 5.110 versus

o 5.333. We shall use this result to obtain the susceptance of
Xeh™= —. (270 the diaphragm in the next section.

pr
Introducing Eq.(27) into Eqs.(25) and(26) for the average IV. THE SUSCEPTANCE OF A CIRCULAR HOLE
value p =2.5550 corresponding to the most probable excita- CENTERED IN A THIN DIAPHRAGM TRANSVERSE
tion modes in the circular guide, one obtains TO THE AXIS OF A RECTANGULAR WAVEGUIDE

k.r3 From the reflection coefficient one can determine the nor-
Ten= —i5.1lGag—b, (28)  malized load admittance of discontinuity. A thin metal dia-

phragm with a centered circular hole in a rectangular wave-

K r3 guide exhibits an equivalent circuit consisting of a single

Rch=i5.1lGi—l (29)  inductive shunt susceptan¢B on the equivalent transmis-
ab sion line representation of the dominant jgEmode field,

. . . located precisely at the point of discontinuigj as in Fig. 3.
for the transmission coefficient through the small circular |t .an pe shown that

hole and for the reflection coefficient, respectively. The re-

flection coefficient of an extremely small circular hole o
r—0 is nearly equal to—1. This is a correct result for a —iB
short-circuiting plate across the waveguide. For the same R= >1iB’
case of a centered small circular hole in a transverse thin

diaphragm located in a rectangular waveguide for the domi-

nant TE;; mode according to the standard e.m. field theoryywhere B= B/Y,, is the normalized susceptance avig, is

(32

one has the well-known formuldg] the wave admittance of the JEmode and hence the char-
K3 acteristic admittance of transmissions line. Wiieis large
. g i
Ton= _'5'333ab , (3p)  Onecan write

& aaka” R 2 (33)
Rch:|5-333ﬁ_l- (3D IB_'
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FIG. 5. Amplitude of the transmission coeffi-
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Comparing Eq(29) with Eq. (33) shows that an indefinitely _ 3ab 3 ab,
thin circular small hole is equivalent to a normalized suscep- B=- 8k, 27 a (35
tance 9

originating in the quasistatic theory of Bethe. One can see

o ab 8 ab: that for the average valup =2.5550 corresponding to the
== —a— == . (349  most probable excitation mode in the circular guide, the co-
Prikg 2m7p d efficient of susceptance calculated using the present method
is 3.1373, which agrees well with 3 given by the e.m. field

The minus sign indicates that the susceptance is inductivdNeory-
One can see also that the susceptance is inversely propor-
tional to the cube of radius anB—c whenr—0. This V. NUMERICAL RESULTS AND DISCUSSION

corresponds to a short circuit across the waveguide. On the |n our numerical computational that considers air-filled

contrary, when the waveguide is almost open, the hole occuyyaveguides in theX band, we have selected the frequency
pying almost the whole cross secti@will be numerically  range of practical interest in which only the JEmode is
small. For the same case of the zero-thickness diaphragpropagated. The normalized susceptance for the thin metallic
with a centered small circular hole in a rectangular wave-diaphragm with a centered circular hole placed in a plane
guide, according to the e.m. field theory of microwaves ongerpendicular to the waveguide axis was calculated using the
has the well-known formul§6] wave-function method. The normalized susceptances are




56 WAVE-FUNCTION METHOD FOR A WAVEGUIDE WITH ... 2171

method, but for large holes=hb/2 it gives values that differ

30 ’ from ours by about 10%. This is confirmed by the results
a0 7/ presented in Fig. 4. We note that the agreement between the
L standard aproaches and our solution is quite good even for
s large values of /b. The dependence of the amplitude of the
70 7 transmission coefficieTE ;o mode given by Eq.(14) for a
" /. thick diaphragm with a centered circular hole in a rectangu-
60 ,@“ [~ lar guide versus/\ is plotted in Fig. 5 for four aperture
69‘/ ,// radii and a series of a diaphragm thicknéss, ranging be-
e 50 A = tween 0.01 and 0.08. As one can see, the effect of the thick-
—9 / qug\// § ness of the diaphragm is significant. The thinnest diaphragm
o 40 /’ S = =0 has the largesfT|. The amplitude of the transmission
iy e A 315“3/ coefficient decreases with increasing the diaphragm thick-
9 30 // P ness, the effect being greater for small circular holes
/7 e vl r<b/8. In Fig. 6 the power transmission coeffici€hgiven
20 % 7 T = by Eq. (14) (dashed ling is compared with the classical
41 transmission coefficientsolid line) provided by the varia-
10 P tional calculus[6] for the X-band waveguide. One can see
T that the present results are in good agreement with the clas-
0 0 01 0.2 03 0.4 sical ones ford=0.375-0.30 in. and =0.15-0.35 in. and
for d=0.20 in. andl=0.1-0.25 in., respectively. The dis-
Thickness L (in}) placement between the values obtained using the wave-

. - ) function method and those obtained by the variational calcu-
FIG. 6. Power transmission coefficie(fE,, mode given by lus is below 10% ford=0.375 andg:O.SO in. andt

Eq. (14) of a centered circular hole in a metallic diaphraroken . . .
Iir?eé) a)nd classical power transmisssion coeffici(emri)d Iinge];Das a € 0‘15__0'35 in. and ford=0.20 in. andte0.1-0.25 in.,
function of thickness$ with hole diameted as a parameter. respectively.

plotted in Fig. 4 versua/\ with radiusr as parameter. Our VI CONCLUSION

results (solid lineg are graphically compared with curves  In conclusion, one may say that the diffraction by a cir-
based on the well-known formulé5) given by the quasi- cular hole in a metallic diaphragm transverse to the axis of
static theory of Bethédashed lines[11] with the variational  the waveguide can be described in a very convenient manner
theory (open circleg [6] and with the mode-matching tech- by using well-known guantum-mechanical concepts. Using
nique (dotted lineg [12]. As we can see from Fig. 4, the the model presented in this work, the thick diaphragm with a
normalized susceptance increases as the radius of the circulegntered circular aperture in a rectangular waveguide is
decreases and divergesad.,— 0.5 since the Ty mode’s  treated as a cascaded connection of rectangular potential bar-
admittanceY o vanishes at this point. For small circular rier corresponding to rectangular-circular-rectangular guides.
holesr=<Db/8 the results obtained using quasistatic theory,The availability of this simple equivalent representation al-
mode-matching technique, and results obtained by oulows a fast and accurate analysis. Various applications of the
method practically coincide. Variational calculus suscep-wave-function method, such as the analysis of evanescent
tance gives a lower susceptance than the small-aperturaode waveguide bandpass filter and the waveguide sand-
(Bethe theory, the mode matching technique and the presenwich filter, are in progress.
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