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Dephasing time of an electron accelerated by a laser pulse
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The trajectory and dephasing time of an electron accelerated by a circularly polarized laser pulse are
determined analytically. The dephasing time is proportionalﬁtb whereyp is the Lorentz factor associated
with the pulse speed ards the pulse length. The residual dependence of the dephasing time on pulse intensity
and electron injection energy is studied in detgl1063-651X%97)07608-3

PACS numbeps): 52.20.Dq, 42.50.Vk

[. INTRODUCTION For a particle that is in front of the pulse initially and is not
moving transversely

In a recent papdrl] we described the motion of electrons
in the electromagnetic field of a circularly polarized laser v=—a ()
pulse propagating through a plasma. Electrons that are in . ) o
front of the pulse initially can be accelerated to high energieSY USing Ed.(3), one can rewrite the longitudinal compo-
and extracted easily. Although this direct acceleration€nts of Eq(1) as
scheme is less than ideal, because the pulse can generate a
parasitic wake, its simplicity is noteworthy. The wake fields
produced by short pulses have been observed recgh8y
and future experiments will study the interaction of electron
bunches with these wake fields. One would only need to a*=(0,0,acosp,asing)/v2. (5)
change the timing of an electron bunch in these experiments
to test the scientific feasibility of direct acceleration. In thisWe assume that the phage=t—sx, wheres<1 is the in-
paper we study the dephasing time of an electron accelerate@rse phase speed of the pulse, and the amplitude a
by a pulse of infinite width to determine the propagation timefunction of y=t—rx, wherer > 1 is the inverse group speed
and plasma length required to observe direct acceleration. of the pulse. Equation)—(5) were solved ir[1] for a par-

The outline of this paper is as follows. In Sec. Il the ticle that is at rest initially. The solution of these equations
trajectory of a charged particle is determined analytically forfor a particle that is moving initially is similar. Since the
a representative pulse profile. In Sec. Ill the dephasing tim@onderomotive potential?/2 is independent o, it follows
of an accelerated particle is determined and its dependenéem Egs.(4) that
on the speed, length, and intensity of the pulse, and the in-
jection energy of the particle, is studied in detail. The main d.(ry—u)=0. (6)
results of this paper are summarized in Sec. IV.

d,y=0(v?%2), du=—23(v?2). (4

For a circularly polarized field

By combining Eq.(6) with the definition ofy, one can show

that
Il. PARTICLE MOTION IN A PLANAR FIELD
The motion of a particle, of chargg and massn, in an _ r(rVOZ_UO)I“’
electromagnetic field is governed by the equafiéh r—1 ' o
— (r’yO_Uo)Irw
d(u,+a,)=u"d,a,, (1) _ T ,
whereu# is the four-velocity of the particle divided by, 7 where

is the proper time of the particle multiplied lty anda” is
the four-potential of the field multiplied by/mc. The met- w=[(Fyo—Ug)2— (r2—1)(1+0v?)]Y2 @)
ric four-tensorg,,,=diag(1,-1,-1,-1). o 7o

For a planar fielda” hasy andz components that are |n Egs. (7) the minus sign applies to the case in whigh
(two-vecto) component ofa* by a, the transverse compo-  sjowly than the pulse, and the plus sign applies to the case in
nent ofu” by v, and the longitudinal componentswf by ¥ which y<ru, which corresponds to a particle that is moving
gndu. In this notation, the transverse component of 8.  more quickly than the pulse. By using the fact that;‘ké
IS —u2, one can rewrite Eq(8) in the convenient form

d,(v+a)=0. ) w=[(yo—rug)*—(r’~1)v?]*2 €)
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For the case in whichyy=1 anduy=0, Egs.(7) and (9) 2
reduce to the corresponding equationg df A particle that
is moving more slowly than the pulse initially will be re- 1.5
pelled by the pulse ifw=0. For this to happen the pulse o
intensity must equal the repelling intensjti/] § 1

a’=2(yp—rug)?/(r’—1) (10) =~

Yo 0 ) 0.5

in which case the gain in particle enerfj o

8y=2(yo—rug)/(r?—1). (11) 0 02 04 06 08 1 12 14

(@ Time

For completeness, a covariant analysis of particle motion in a
circularly polarized field is given in Appendix A and a brief
description of particle motion in an elliptically polarized 40
field is given in Appendix B.

Equations(3), (7), and(9) defineu* as a function ofi.
By combining the equatiod = y—ru with Egs.(7), one
can show that

Momentum u
N w
(=) o

dr/dy=+ Lw(y), (12)

-
o O

where the plus sign applies to the case in whjchru and 0 02 04 06 08 1 12 14
the minus sign applies to the case in whigh-ru. If the ’ ’ - ’ ’
solution of Eq.(12) can be invertedy# can be expressed as ®) Time
an explicit function ofr.

To illustrate the particle motion we consider the simple
profile

FIG. 1. Particle trajectory for the case in whiglp=30 and
vo=7. The pulse intensitg?=7 is slightly lower than the repelling
intensity (10). (a) Normalized phase)/Ir plotted as a function of

a(y)=esin(myl2r), (13) the normalized time/y3l. (b) Longitudinal momentumu plotted
as a function of the normalized time.
wheree? is the peak intensity of the pulse ahds its full
width at half maximum. For this profile overtakes the particle. As the particle is decelerated by the
back of the pulse, the rate of phase slippage increases. It is
()= (yo—rug)[1-m?sir’(myl2r)]¥2, (14  evident from Fig. 1a) that the deceleration time equals the
acceleration time. In Fig.(b) the longitudinal momentum is
where plotted as a function of the normalized time. Although the
o 2 2 2 particle speed never exceeds the pulse speed, the energy as-
m"=(r"=1)e%/2(yo=ruo) (19 sociated with the transverse particle motion allows the par-
ticle momentum to exceed the pulse momentum. Because the
longitudinal momentum is a symmetric function of time, the
deceleration distance equals the acceleration distance.

Whenm>1 the particle is repelled by the pulse. In this

casey increases from 0 to (2/7)sin (1/m) as the particle
() =[2Ir/7(yo—rug) JF (72l ,m), (16) ascends the ponderomotive potential and decreases from
(2Ir/ar)sin~Y(1/m) to O as the particle descends the pondero-
whereF denotes the incomplete elliptic integral of the first motive potential. The solution of E12) is
kind, of modulusm [5]. It follows from Egs.(7) and(9) that

is the ratio of the pulse intensity to the repelling intensity.

Whenm<1 the pulse overtakes the particle completely.
In this casey varies between 0 andl2 and the solution of
Eq.(12) is

[2Ir/7rm(yg—rug)]F(6,1/m),

(py= Yo~ U T(¥) — ¥ W)= (200 frm( yo— rug) J[ 2K (Lim) — F(8,1/m)],
r2_1 ! (18)
X(§)= (ryo—LrJg)_r(lz,/;)—rg//. 17 where
O(y)=sin" Y msin(wy/2lr)] (19

The particle motion is illustrated in Fig. 1 for the case in

which yp=30, yo=7, ande?=7.[The Lorentz factoryp is  andK denotes the complete elliptic integral of the first kind,
defined in the first of Eq922).] In Fig. 1(a) the phase, nor- of modulusm [5]. The first form of Eq.(18) applies to the
malized tolr, is plotted as a function of time, normalized to ascent and the second form applies to the descent. Equations
yﬁl. As the particle is accelerated by the front of the pulse(17) apply to both the ascent and descent, provided that

the rate of phase slippage decreases. However, since the pedgfined by Egs(18) and(19). The particle motion is illus-
intensity of the pulse is lower than the repelling intensity, thetrated in Fig. 2 for the case in whichp=30, yo=7, and
particle speed never equals the pulse speed and the pulgg=10. In Fig. 28 the normalized phase is plotted as a
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0.8 4lr%(r y5—ug)K(1/m)
- o (20
0.6
o and X=T/r. For future reference, notice that
S04 K (1/m)—log[4/(m?—1)Y?] asm—1 andK(1/m)— /2 as
a m—oo [5].
0.2 Formula (20) for the dephasing time exhibits a compli-
cated dependence on the pulse intensity and speed and the
0 initial particle momentum. One can gain insight into the un-
6 05 1 15 2 25 3 derlying physics by performing a pulse-frame analysis of the
@) Time acceleration process. We follow the notatior] bf, in which
140 a prime denotes a pulse-frame quantity, the subsérige-
notes the initial position of the particle, aml denotes the
;120 position at which the particle is repelled.
g 100 The pulse-frame energy and momentum of the particle are
*E 80 related to the laboratory-frame energy and momentum by the
g 60 equations
2 40 o o
20 Y =vypy—UpU, U'=ypu—Upy, (21)
0 where
0 05 1 156 2 25 3
) Time yp=r/(r’=1)"%  up=1/r?-1)"2 (22

FIG. 2. Particle trajectory for the case in whigh=30 and  IN these equationgp is the Lorentz factor associated with

yo=10. The pulse intensitg?=10 is slightly higher than the re- the pulse speed andup=(y5—1)"2 If one uses the lin-
pelling intensity(10). (a) Normalized phase//Ir plotted as a func-  €ar group speed of the pulse to estimate the Lorentz factor,
tion of the normalized time/y3l. (b) Longitudinal momentunu vp=wqlwe, Wherewy is the carrier frequency of the pulse
plotted as a function of the normalized time. and w, is the electron-plasma frequenfg/.

In the pulse frame? is time independent. It follows from
the first of Egs.(4) thaty’ is constant and hence that'(?

function of the normalized time. Initially, the pulse overtakes 2_ (ul)2. Sincedx'/dt'=u'/y,, it follows that

the particle and the rate of phase slippage is positive. Sincé v

the peak intensity of the pulse is higher than the critical o dx’
intensity, the particle is accelerated until its speed equals the T :27’&[ A — .- (23)
pulse speed and the rate of phase slippage is zero. Subse- s [(Up)“=v=(X")]

guently, the particle overtakes the pulse and the rate of phase

slippage is negative. The descent time is longer than thén Eq. (23) the factor of 2 arises because the pulse-frame
ascent time because the time dilation associated with a pagescent time equals the pulse-frame ascent time. The factor
ticle moving faster than the pulse is larger than that associef y, arises because of the difference between proper time
ated with a particle moving slower than the pulse. In Fig.and pulse-frame time. Provided one ignores the distinction
2(b) the longitudinal momentum is plotted as a function of between momentum and velocity, the integral in E2P)

the normalized time. Since the particle does not reach theepresents the ascent time of a nonrelativistic particle
peak of the pulse, th& component of the ponderomotive in the potential well v?(x’)/2. In the pulse framea
force is always positive and the longitudinal momentum of=esin(—ux'/2"), wherel’ = vypl. For this profile

the particle increases monotonically. Because the longitudi-

nal momentum is an asymmetric function of time, the de- T'=2yp21"7)(V2/e)K(V2uple). (24

scent distance is longer than the ascent distance.
The factor of 2'/7r arises because the ponderomotive force

associated with the pulse is inversely proportional to the
IIl. DEPHASING TIME OF AN ACCELERATED PARTICLE pulse Iength Although EC{24) is Complicated, the Origin of
each factor is well understood.
The analysis of Sec. Il shows how an intense pulse repels |n the pulse frame the particle begins and ends its inter-
a charged particle that is in front of the pulse. The relationaction with the pulse at poimt. SinceX’ =0, it follows that
between the pulse intensity, the particle injection energy, and
the gain in particle energy was studied[i. In this section T=9ypT', X=upT'. (25
the time required for the pulse to catch and repel the particle
and, subsequently, for the particle to outrun the pulse is studNotice thatX=T/r, as stated after E420). It follows from
ied. This time is referred to as the dephasing time and i€gs. (21) and (22) that r(ry,—ug)/(r>—1)=ypy, and
denoted byT. The distance traveled by the particle during 4lr/7m(yg—rug)=2(2l"'/7)(v2/e). Thus Eq.(24) and the
the dephasing time is referred to as the dephasing distandiest of Egs.(25) agree with Eq(20).
and is denoted b¥. It follows from Eqgs.(17) and(18) that It is convenient to define the normalized dephasing time
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FIG. 4. Normalized dephasing tin{@6) plotted as a function of
FIG. 3. Normalized dephasing tini26) plotted as a function of  particle injection energy for the case in whiehh=30. (8 The
pulse intensity for the case in whicfp=30. (a) The particle injec- pulse intensitye?=10. (b) The pulse intensity29) is twice the
tion energyy,=7. (b) The particle injection energ28) ensures  epeliing intensity(10).
that the repelling intensity10) is one-half of the pulse intensity.
_ exact dephasing timé6) and the broken line denotes the
T=(4v2yplme)K(V2uple), (26)  approximate dephasing time/2y,/e. For the chosen values
of yp andy, the approximate dephasing time is @4¥Vhen
which is the dephasing time divided bygl. The factor of  the pulse intensity is close to the repelling intensity the par-
| was due to the inverse dependence of the ponderomotivicle lingers near the peak of the pulse and the dephasing
force on the pulse length. One factor pf was due to the time is long. As the pulse intensity increases, p&nnoves
Lorentz transformation of the pulse length from the laboratoward the front of the pulse and the dephasing time de-
tory frame to the pulse frame and the other factor was due t@reases. In the high-intensity regime this decrease is gradual.
the Lorentz transformation of the dephasing time from theSince the pulse energy located behind pdinis wasted,
pulse frame to the laboratory frame. These factors do nothere is little to be gained by using pulse intensities that
depend on the physical origin or shape of the potential welkxceed the critical intensity by more than a factor of 2. Since
in which the particle moves. Thus it was inevitable that theythe injection energy is constant, so also is the energy gain
should be the same as the factors that control the dephasing?). In Fig. 3b) the injection energy
time of an electron in the laser beat-wave acceleratpor
the laser wake-field acceleratp?,8]. For completeness, a VA= pr—[(yE,—l)(/Lz—l)]l’Z, (28
brief analysis of the particle motion and dephasing time as- ] ] )
sociated with these indirect acceleration schemes is given iyhere u=(1+€%4)*? is a measure of the pulse intensity.
Appendix C. This choice of injection energy ensures that the repelling
Just as a pulse-frame analysis of the acceleration proced¥ensity is one-half of the pulse intensity. For this injection
fosters insight into the dephasing time, so also does it foste@Nergyua=—e/2, yo=(1+e*4)"2 and the saturation time
insight into the energy gain. In the pulse frame the particlds 1.7(1+4/€?)* independent ofys. In the low-intensity
energy is constant and the final particle momentum has theegime the dephasing time is long because the ponderomo-
same magnitude as the initial particle momentum and théve force is weak. In the high-intensity regime the dephasing
opposite sign:6y’ =0 and su’=2|uj|. It follows from time is almost independent of pulse intensity because the

these results and Eq&1) that increase in ponderomotive force that accompanies an in-
crease in pulse intensity is offset by the corresponding de-
Sy=2up|uyl, (27 crease in injection energy. It follows from E(R7) and the
preceding discussion that the energy gain equaés As the
in agreement with Eq11). pulse intensity increases the energy gain increases and the
The normalized dephasing time is plotted as a function ofequired injection energy decreases.
pulse intensity in Fig. 3 for the case in whigh= 30. In Fig. The normalized dephasing time is plotted as a function of

3(a) the injection energyy,=7. The solid line denotes the injection energy in Fig. 4 for the case in whigh=30. In
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Fig. 4(a) the pulse intensitye?=10. The solid line denotes four-potential of a planar field of arbitrary polarization. In
the exact dephasing tin{@6) and the dashed line denotes the the laboratory fram&*=(1,,0,0) and*=(r,1,0,0). By us-
approximate dephasing time’2y,/e. For the chosen values ing these four-vectors, one can write

of yp and e the approximate dephasing time is 0,89
When the injection energy is close to the repelling energy the
partigle lingers near t_he peak of the.pulse and the dephas"Wherey is transverse and=1"x,. In a similar way, one
time is long. As the injection energy increases p@mhoves ., writlé

toward the front of the pulse and the dephasing time de-

creases. In the high-energy regime the dephasing time is al- u,=v,+(k"u,)k, /k’k,+("u)l, /N7, (A2)
most independent of the injection energy becagsge-1.

The energy gain decreases as the injection energy increas#dere v, =dy, /dr is transversek’u,=d.y, and |"u,

In Fig. 4(b) the pulse intensity d.o.
The transverse component of E®) is

X, =Y, YK, KK+ 01, 1171, (A1)

e’=4(up)? 29
(Un) (29 d,(v,+a,)=0, (A3)

is tV\{ice’the repelling intensity an.d the dephasing tim'e isfrom which it follows that

1.7yp|upl. In the low-energy regime the dephasing time

and energy gain are almost independent of the ir|1je(|:tion en- v, (7)=v,(0)+a,0)—a,lr). (A4)

ergy becauseyy~yp andup~—yp. The ratio yp/|u,| is . .

almost independent ofp. In the high-energy regime the Eduation(A4) is the analog of Eq(3). . .

dephasing time is long and the energy gain is small because BY Using Eq.(A4), one can rewrite the right side of Eq.

ya~1 and|uj|<1. (1) as—d,(v"v,/2). Sincev"v, was assumed to be a func-

tion of ¢, 9,=k,d,. It follows from these results that the

longitudinal components of Eql) are
IV. SUMMARY

The motion of an electron in the electromagnetic field d(kFu,) = =k*k,dy(v"0,/2),  d,(1*u,)=0. (A5)
agsociated with a circularly polarized laser pulsg of in_finit_en follows from the second of EqA5) that
width was studied analytically. When the pulse intensity is
lower than the repelling intensijL0) the pulse overtakes the [#u,(7)=1*u,(0). (AB)
electron completely. When the pulse intensity is higher than
the repelling intensity the electron is repelled by the pulséOne way to obtain an expression ffu, is to use the iden-
and eventually outruns it. The time taken for the electron tdity u’u,=1, which can be rewritten as
outrun the pulse is called the dephasing time and is the prod-
uct of two terms. The first term isx,%l, where yp is the
Lorentz factor associated with the pulse speed laiglthe
pulse length. The second terf@6) depends on the pulse
intensity, the pulse shape, and the electron injection energy. [k’u, (1) 2=[1"u,(7)+Kk,[1-v"0 ,(7)]. (A8)
As a rough guideline, the second term is of order unity un-
less the pulse intensity is close to the repelling intensity. FOEquations(A6) and(A8) are the analogs of EqéZ) and(8).
a pulse of finite width, an electron that is not close to theBy using the expression fdt*u,(0) that follows from Eg.
pulse axis initially will be expelled from the pulse by the (A8), and Eq.(A6), one can show that
radial component of the ponderomotive force. Further work
is needed to quantify this “snowplow” effect. [k"u,(7)1?=[k"u,(0)1°+k’k,[v"v,(0)—v"v V(T)]iAQ)
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APPENDIX A: COVARIANT ANALYSIS and(A9) expressu,, as a function ofi. To expressi, as a
OF THE PARTICLE MOTION IN A PLANAR FIELD function of r one must invert the solution of the phase equa-
The resolution of Eq(1) into longitudinal and transverse tion
components is facilitated by the introduction of the four- dr/dy= = 1lw(y), (A11)
vector k#, which is defined by the equation=k"x,, and
the four-vectod#, which is defined by the equatiohd ,= wherew is the square root of the terms on the right side of

-k’k,, 1"k,=0, andl’a,=0, wherea* is the transverse Eq.(A9).
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APPENDIX B: GUIDING-CENTER MOTION d,(k*u,+p)=(k"u,)d,p—(1*u,)d,q. (C2)
IN A PLANAR FIELD g

: - - : Sincek’u,=d. ¢, the p terms in Eq.(C2) cancel, as they
Equation(6) is valid when thev? terms in Eqs.(4) are v Hrrn n " .
independent ofp. To satisfy this condition we assumed that must do_. By substltut_lng decompos_ltltbﬁl) in Eq. (1) and
the field is circularly polarized and the particle is in front of CONtracting the resulting equation with, one can show that
the pulse initially and is not moving transversely. Equations B
(7), (9), and(10) follow from Eq. (6) and the definition ofy, do(1*u,+0a)=0. (€3
which requires that It follows from Eqg. (C3) that
d.(y*—u?-v?)=0. (B1)
I#u,(7)=1*u,(0)+q(0)—q(7). (C9
For the elliptically polarized field
One way to obtain an expression fofu,, is to use the iden-
a*=(0,0,a,cosp,a,cosp), (B2) tity u”u,=1, which can be rewritten as

wherea,=ad anda,=a(1- 6%)"2 thev? terms in Eqs(4) [k"u,(7)12=[1"u,(1)]>—1",. (C5)
are not independent @ and Eq.(6) is not valid. However,

the particle motion is known to consist of a fast oscillation Another way to obtain an expression dtu, is to solve Eq.
about a guiding center and a guiding-center drift that varie$C2) directly. By changing the independent variable frem
slowly. In a vacuum, the guiding-center motion is governedto y, one can rewrite Eq(C2) as

by the equatior9]

dy[(k"u,)2/2]=d,[(I"u,)?/2], C6
4.(u,) = — a,(a%a,)/2, 83 JL(k"u,)2]=d,[(I"u,)/2] (Co)
from which Eq.(C5) follows.

v — _ 12 _

where() denotes ap average anda’a,)=—a /2' We ex Sinceq is a function of#, Egs.(C4) and (C5) express
pec; Eq.(B3) to provide a reasfon;lblf descrlptlonh o; tr;]e u, as a function of/. To expresa,, as a function ofr one
guiding-center motion in a rarefied plasma, in which the : : ;

phase speed of the field is slightly higher than the speed OIPUSt invert the solution of the phase equation

light. Equation(BS) has associated with it the conservation dr/dg= = Lw(), (C7)
equation
d,((u)(u,)+(a"a,)) =0. (B4) \I/Evge(rg;; is the square root of the terms on the right side of
Since the ponderomotive potentii/4 is independent of In the wave frame, =(0J,0,0) and ,=(1,0,0,0), where
&, it follows from Eq. (B3) that I=(r?—1)Y2 It follows from these results that=—Ix’,
k’u,=—Iu’, I"u,=lvy’, andq=I1¢’, where¢ is the elec-
d(r{y)—{(u))=0. (B5)  trostatic potential. Thus EC4) can be rewritten as
Equation(B5) is the analog of Eq(6). Since(v) is constant, Y (1)=7"(0)+¢'(0)—¢'(7)=0, (C8)

Eq. (B4) reduces to

Eqg. (C5) can be rewritten as

d,((y)*—(u)*~a*2)=0. @
’ 214,/ 2_

Equation(B6) is the analog of Eq(B1). Thus, for a particle WD =0y (D)1, (€9

that is in front of the pulse initially(y) and(u) are given by

Egs. (7) and (9), in which v? is replaced bya?/2, and the

repelling conditions are described by Eg0).

and Eq.(C7) can be rewritten as

d7/dx = * 1w (x"), (C10

APPENDIX C: PARTICLE MOTION IN A PLANAR

wherew is the square root of the terms on the right side of
ELECTROSTATIC FIELD

Eqg. (C9). The dephasing time of an accelerated particle can
The four-potential of an electrostatic field can be written0€ determined from EC10 in @ manner similar to that
as described in Sec. lll. In particular, by considering the rela-

tions between laboratory-frame and wave-frame quantities,
a,=pk,/k’k,+ql, /1", (C1 one can show that the dephasing time is proportional to
y\%\,)\, where vy, is the Lorentz factor associated with the
wherek* and|# were defined in Appendix A. We assume phase speed of the wave ands the wavelength.
thata, is a function of¢, from which it follows thatd, The potential associated with a large-amplitude plasma
=k,d,. Since the electrostatic field is unaffected by thewave is described by elliptic functions. Simple formulas for
gauge transformatioa,—a,+ d,b, whereb is an arbitrary ~ the injection energy and energy gain associated with this
function of ¢, p is redundant. In the Lorentz gauge-= 0. potential were determined by Esarey and Pildf®]. The
By substituting decompositiofC1) in Eq. (1) and con- dephasing times associated with this and other potentials
tracting the resulting equation wikt, one can show that  were studied by TeychennBonnaud, and Bobifil1,12.
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