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Dephasing time of an electron accelerated by a laser pulse

C. J. McKinstrie and E. A. Startsev
Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627

and Laboratory for Laser Energetics, 250 East River Road, Rochester, New York 14623
~Received 10 February 1997!

The trajectory and dephasing time of an electron accelerated by a circularly polarized laser pulse are
determined analytically. The dephasing time is proportional togP

2 l , wheregP is the Lorentz factor associated
with the pulse speed andl is the pulse length. The residual dependence of the dephasing time on pulse intensity
and electron injection energy is studied in detail.@S1063-651X~97!07608-3#

PACS number~s!: 52.20.Dq, 42.50.Vk
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I. INTRODUCTION

In a recent paper@1# we described the motion of electron
in the electromagnetic field of a circularly polarized las
pulse propagating through a plasma. Electrons that ar
front of the pulse initially can be accelerated to high energ
and extracted easily. Although this direct accelerat
scheme is less than ideal, because the pulse can gene
parasitic wake, its simplicity is noteworthy. The wake fiel
produced by short pulses have been observed recently@2,3#
and future experiments will study the interaction of electr
bunches with these wake fields. One would only need
change the timing of an electron bunch in these experim
to test the scientific feasibility of direct acceleration. In th
paper we study the dephasing time of an electron acceler
by a pulse of infinite width to determine the propagation tim
and plasma length required to observe direct acceleratio

The outline of this paper is as follows. In Sec. II th
trajectory of a charged particle is determined analytically
a representative pulse profile. In Sec. III the dephasing t
of an accelerated particle is determined and its depend
on the speed, length, and intensity of the pulse, and the
jection energy of the particle, is studied in detail. The m
results of this paper are summarized in Sec. IV.

II. PARTICLE MOTION IN A PLANAR FIELD

The motion of a particle, of chargeq and massm, in an
electromagnetic field is governed by the equation@4#

dt~um1am!5un]man , ~1!

whereum is the four-velocity of the particle divided byc, t
is the proper time of the particle multiplied byc, andam is
the four-potential of the field multiplied byq/mc2. The met-
ric four-tensorgmn5diag(1,21,21,21).

For a planar fieldam has y and z components that are
functions oft andx. It is convenient to denote the transver
~two-vector! component ofam by a, the transverse compo
nent ofum by v, and the longitudinal components ofum by g
andu. In this notation, the transverse component of Eq.~1!
is

dt~v1a!50. ~2!
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For a particle that is in front of the pulse initially and is n
moving transversely

v52a. ~3!

By using Eq.~3!, one can rewrite the longitudinal compo
nents of Eq.~1! as

dtg5] t~v2/2!, dtu52]x~v2/2!. ~4!

For a circularly polarized field

am5~0,0,acosf,asinf!/&. ~5!

We assume that the phasef5t2sx, wheres,1 is the in-
verse phase speed of the pulse, and the amplitudea is a
function ofc5t2rx, wherer .1 is the inverse group spee
of the pulse. Equations~3!–~5! were solved in@1# for a par-
ticle that is at rest initially. The solution of these equatio
for a particle that is moving initially is similar. Since th
ponderomotive potentialv2/2 is independent off, it follows
from Eqs.~4! that

dt~rg2u!50. ~6!

By combining Eq.~6! with the definition ofg, one can show
that

g5
r ~rg02u0!7v

r 221
,

~7!

u5
~rg02u0!7rv

r 221
,

where

v5@~rg02u0!22~r 221!~11v2!#1/2. ~8!

In Eqs. ~7! the minus sign applies to the case in whichg
.ru, which corresponds to a particle that is moving mo
slowly than the pulse, and the plus sign applies to the cas
which g,ru, which corresponds to a particle that is movin
more quickly than the pulse. By using the fact that 15g0

2

2u0
2, one can rewrite Eq.~8! in the convenient form

v5@~g02ru0!22~r 221!v2#1/2. ~9!
2130 © 1997 The American Physical Society
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56 2131DEPHASING TIME OF AN ELECTRON ACCELERATED . . .
For the case in whichg051 and u050, Eqs. ~7! and ~9!
reduce to the corresponding equations of@1#. A particle that
is moving more slowly than the pulse initially will be re
pelled by the pulse ifv50. For this to happen the puls
intensity must equal the repelling intensity@1#

a252~g02ru0!2/~r 221!, ~10!

in which case the gain in particle energy@1#

dg52~g02ru0!/~r 221!. ~11!

For completeness, a covariant analysis of particle motion
circularly polarized field is given in Appendix A and a brie
description of particle motion in an elliptically polarize
field is given in Appendix B.

Equations~3!, ~7!, and ~9! defineum as a function ofc.
By combining the equationdtc5g2ru with Eqs. ~7!, one
can show that

dt/dc561/v~c!, ~12!

where the plus sign applies to the case in whichg,ru and
the minus sign applies to the case in whichg.ru. If the
solution of Eq.~12! can be inverted,um can be expressed a
an explicit function oft.

To illustrate the particle motion we consider the simp
profile

a~c!5esin~pc/2lr !, ~13!

wheree2 is the peak intensity of the pulse andl is its full
width at half maximum. For this profile

v~c!5~g02ru0!@12m2sin2~pc/2lr !#1/2, ~14!

where

m25~r 221!e2/2~g02ru0!2 ~15!

is the ratio of the pulse intensity to the repelling intensity
When m,1 the pulse overtakes the particle complete

In this casec varies between 0 and 2lr and the solution of
Eq. ~12! is

t~c!5@2lr /p~g02ru0!#F~pc/2lr ,m!, ~16!

whereF denotes the incomplete elliptic integral of the fir
kind, of modulusm @5#. It follows from Eqs.~7! and~9! that

t~c!5
r ~rg02u0!t~c!2c

r 221
,

x~c!5
~rg02u0!t~c!2rc

r 221
. ~17!

The particle motion is illustrated in Fig. 1 for the case
which gP530, g057, ande257. @The Lorentz factorgP is
defined in the first of Eqs.~22!.# In Fig. 1~a! the phase, nor-
malized tolr , is plotted as a function of time, normalized
gP

2 l . As the particle is accelerated by the front of the pul
the rate of phase slippage decreases. However, since the
intensity of the pulse is lower than the repelling intensity, t
particle speed never equals the pulse speed and the
a

.

,
eak
e
lse

overtakes the particle. As the particle is decelerated by
back of the pulse, the rate of phase slippage increases.
evident from Fig. 1~a! that the deceleration time equals th
acceleration time. In Fig. 1~b! the longitudinal momentum is
plotted as a function of the normalized time. Although t
particle speed never exceeds the pulse speed, the energ
sociated with the transverse particle motion allows the p
ticle momentum to exceed the pulse momentum. Because
longitudinal momentum is a symmetric function of time, th
deceleration distance equals the acceleration distance.

When m.1 the particle is repelled by the pulse. In th
casec increases from 0 to (2lr /p)sin21(1/m) as the particle
ascends the ponderomotive potential and decreases
(2lr /p)sin21(1/m) to 0 as the particle descends the ponde
motive potential. The solution of Eq.~12! is

t~c!5 H @2lr /pm~g02ru0!#F~u,1/m!,
@2lr /pm~g02ru0!#@2K~1/m!2F~u,1/m!#,

~18!

where

u~c!5sin21@msin~pc/2lr !# ~19!

andK denotes the complete elliptic integral of the first kin
of modulusm @5#. The first form of Eq.~18! applies to the
ascent and the second form applies to the descent. Equa
~17! apply to both the ascent and descent, provided thatt is
defined by Eqs.~18! and ~19!. The particle motion is illus-
trated in Fig. 2 for the case in whichgP530, g057, and
e2510. In Fig. 2~a! the normalized phase is plotted as

FIG. 1. Particle trajectory for the case in whichgP530 and
g057. The pulse intensitye257 is slightly lower than the repelling
intensity ~10!. ~a! Normalized phasec/ lr plotted as a function of
the normalized timet/gP

2 l . ~b! Longitudinal momentumu plotted
as a function of the normalized time.
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2132 56C. J. McKINSTRIE AND E. A. STARTSEV
function of the normalized time. Initially, the pulse overtak
the particle and the rate of phase slippage is positive. S
the peak intensity of the pulse is higher than the criti
intensity, the particle is accelerated until its speed equals
pulse speed and the rate of phase slippage is zero. Su
quently, the particle overtakes the pulse and the rate of ph
slippage is negative. The descent time is longer than
ascent time because the time dilation associated with a
ticle moving faster than the pulse is larger than that ass
ated with a particle moving slower than the pulse. In F
2~b! the longitudinal momentum is plotted as a function
the normalized time. Since the particle does not reach
peak of the pulse, thex component of the ponderomotiv
force is always positive and the longitudinal momentum
the particle increases monotonically. Because the longit
nal momentum is an asymmetric function of time, the d
scent distance is longer than the ascent distance.

III. DEPHASING TIME OF AN ACCELERATED PARTICLE

The analysis of Sec. II shows how an intense pulse re
a charged particle that is in front of the pulse. The relat
between the pulse intensity, the particle injection energy,
the gain in particle energy was studied in@1#. In this section
the time required for the pulse to catch and repel the part
and, subsequently, for the particle to outrun the pulse is s
ied. This time is referred to as the dephasing time and
denoted byT. The distance traveled by the particle durin
the dephasing time is referred to as the dephasing dist
and is denoted byX. It follows from Eqs.~17! and~18! that

FIG. 2. Particle trajectory for the case in whichgP530 and
g0510. The pulse intensitye2510 is slightly higher than the re
pelling intensity~10!. ~a! Normalized phasec/ lr plotted as a func-
tion of the normalized timet/gP

2 l . ~b! Longitudinal momentumu
plotted as a function of the normalized time.
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4lr 2~rg02u0!K~1/m!

pm~r 221!~g02ru0!
~20!

and X5T/r . For future reference, notice tha
K(1/m)→ log@4/(m221)1/2# as m→1 andK(1/m)→p/2 as
m→` @5#.

Formula ~20! for the dephasing time exhibits a compl
cated dependence on the pulse intensity and speed an
initial particle momentum. One can gain insight into the u
derlying physics by performing a pulse-frame analysis of
acceleration process. We follow the notation of@1#, in which
a prime denotes a pulse-frame quantity, the subscriptA de-
notes the initial position of the particle, andB denotes the
position at which the particle is repelled.

The pulse-frame energy and momentum of the particle
related to the laboratory-frame energy and momentum by
equations

g85gPg2uPu, u85gPu2uPg, ~21!

where

gP5r /~r 221!1/2, uP51/~r 221!1/2. ~22!

In these equationsgP is the Lorentz factor associated wit
the pulse speed 1/r anduP5(gP

2 21)1/2. If one uses the lin-
ear group speed of the pulse to estimate the Lorentz fac
gP5v0 /ve , wherev0 is the carrier frequency of the puls
andve is the electron-plasma frequency@6#.

In the pulse framev2 is time independent. It follows from
the first of Eqs.~4! that g8 is constant and hence that (u8)2

1v25(uA8 )2. Sincedx8/dt85u8/gA8 , it follows that

T852gA8 E
xB8

xA8 dx8

@~uA8 !22v2~x8!#1/2. ~23!

In Eq. ~23! the factor of 2 arises because the pulse-fra
descent time equals the pulse-frame ascent time. The fa
of gA8 arises because of the difference between proper t
and pulse-frame time. Provided one ignores the distinct
between momentum and velocity, the integral in Eq.~23!
represents the ascent time of a nonrelativistic part
in the potential well v2(x8)/2. In the pulse framea
5esin(2px8/2l 8), wherel 85gPl . For this profile

T852gA8 ~2l 8/p!~&/e!K~&uA8 /e!. ~24!

The factor of 2l 8/p arises because the ponderomotive for
associated with the pulse is inversely proportional to
pulse length. Although Eq.~24! is complicated, the origin of
each factor is well understood.

In the pulse frame the particle begins and ends its in
action with the pulse at pointA. SinceX850, it follows that

T5gPT8, X5uPT8. ~25!

Notice thatX5T/r , as stated after Eq.~20!. It follows from
Eqs. ~21! and ~22! that r (rg02u0)/(r 221)5gPgA8 and
4lr /pm(g02ru0)52(2l 8/p)(&/e). Thus Eq.~24! and the
first of Eqs.~25! agree with Eq.~20!.

It is convenient to define the normalized dephasing tim
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56 2133DEPHASING TIME OF AN ELECTRON ACCELERATED . . .
T̄5~4&gA8 /pe!K~&uA8 /e!, ~26!

which is the dephasing time divided bygP
2 l . The factor of

l was due to the inverse dependence of the ponderomo
force on the pulse length. One factor ofgP was due to the
Lorentz transformation of the pulse length from the labo
tory frame to the pulse frame and the other factor was du
the Lorentz transformation of the dephasing time from
pulse frame to the laboratory frame. These factors do
depend on the physical origin or shape of the potential w
in which the particle moves. Thus it was inevitable that th
should be the same as the factors that control the depha
time of an electron in the laser beat-wave accelerator@7# or
the laser wake-field accelerator@7,8#. For completeness,
brief analysis of the particle motion and dephasing time
sociated with these indirect acceleration schemes is give
Appendix C.

Just as a pulse-frame analysis of the acceleration pro
fosters insight into the dephasing time, so also does it fo
insight into the energy gain. In the pulse frame the parti
energy is constant and the final particle momentum has
same magnitude as the initial particle momentum and
opposite sign:dg850 and du852uuA8 u. It follows from
these results and Eqs.~21! that

dg52uPuuA8 u, ~27!

in agreement with Eq.~11!.
The normalized dephasing time is plotted as a function

pulse intensity in Fig. 3 for the case in whichgP530. In Fig.
3~a! the injection energygA57. The solid line denotes th

FIG. 3. Normalized dephasing time~26! plotted as a function of
pulse intensity for the case in whichgP530. ~a! The particle injec-
tion energygA57. ~b! The particle injection energy~28! ensures
that the repelling intensity~10! is one-half of the pulse intensity.
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exact dephasing time~26! and the broken line denotes th
approximate dephasing time 2&gA8 /e. For the chosen value
of gP andgA the approximate dephasing time is 6.4/e. When
the pulse intensity is close to the repelling intensity the p
ticle lingers near the peak of the pulse and the depha
time is long. As the pulse intensity increases, pointB moves
toward the front of the pulse and the dephasing time
creases. In the high-intensity regime this decrease is grad
Since the pulse energy located behind pointB is wasted,
there is little to be gained by using pulse intensities t
exceed the critical intensity by more than a factor of 2. Sin
the injection energy is constant, so also is the energy g
~27!. In Fig. 3~b! the injection energy

gA5gPm2@~gP
2 21!~m221!#1/2, ~28!

wherem5(11e2/4)1/2 is a measure of the pulse intensit
This choice of injection energy ensures that the repell
intensity is one-half of the pulse intensity. For this injectio
energyuA852e/2, gA85(11e2/4)1/2, and the saturation time
is 1.7(114/e2)1/2, independent ofgP . In the low-intensity
regime the dephasing time is long because the pondero
tive force is weak. In the high-intensity regime the dephas
time is almost independent of pulse intensity because
increase in ponderomotive force that accompanies an
crease in pulse intensity is offset by the corresponding
crease in injection energy. It follows from Eq.~27! and the
preceding discussion that the energy gain equalsuPe. As the
pulse intensity increases the energy gain increases and
required injection energy decreases.

The normalized dephasing time is plotted as a function
injection energy in Fig. 4 for the case in whichgP530. In

FIG. 4. Normalized dephasing time~26! plotted as a function of
particle injection energy for the case in whichgP530. ~a! The
pulse intensitye2510. ~b! The pulse intensity~29! is twice the
repelling intensity~10!.
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2134 56C. J. McKINSTRIE AND E. A. STARTSEV
Fig. 4~a! the pulse intensitye2510. The solid line denotes
the exact dephasing time~26! and the dashed line denotes t
approximate dephasing time 2&gA8 /e. For the chosen value
of gP and e the approximate dephasing time is 0.89gA8 .
When the injection energy is close to the repelling energy
particle lingers near the peak of the pulse and the depha
time is long. As the injection energy increases pointB moves
toward the front of the pulse and the dephasing time
creases. In the high-energy regime the dephasing time i
most independent of the injection energy becausegA8'1.
The energy gain decreases as the injection energy incre
In Fig. 4~b! the pulse intensity

e254~uA8 !2 ~29!

is twice the repelling intensity and the dephasing time
1.7gA8 /uuA8 u. In the low-energy regime the dephasing tim
and energy gain are almost independent of the injection
ergy becausegA8'gP and uA8'2gP . The ratiogA8 /uuA8 u is
almost independent ofgP . In the high-energy regime th
dephasing time is long and the energy gain is small beca
gA8'1 anduuA8 u!1.

IV. SUMMARY

The motion of an electron in the electromagnetic fie
associated with a circularly polarized laser pulse of infin
width was studied analytically. When the pulse intensity
lower than the repelling intensity~10! the pulse overtakes th
electron completely. When the pulse intensity is higher th
the repelling intensity the electron is repelled by the pu
and eventually outruns it. The time taken for the electron
outrun the pulse is called the dephasing time and is the p
uct of two terms. The first term isgP

2 l , where gP is the
Lorentz factor associated with the pulse speed andl is the
pulse length. The second term~26! depends on the puls
intensity, the pulse shape, and the electron injection ene
As a rough guideline, the second term is of order unity u
less the pulse intensity is close to the repelling intensity.
a pulse of finite width, an electron that is not close to t
pulse axis initially will be expelled from the pulse by th
radial component of the ponderomotive force. Further w
is needed to quantify this ‘‘snowplow’’ effect.
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APPENDIX A: COVARIANT ANALYSIS
OF THE PARTICLE MOTION IN A PLANAR FIELD

The resolution of Eq.~1! into longitudinal and transvers
components is facilitated by the introduction of the fou
vector km, which is defined by the equationc5knxn , and
the four-vectorl m, which is defined by the equationsl nl n5
2knkn , l nkn50, and l nan50, wheream is the transverse
e
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four-potential of a planar field of arbitrary polarization. I
the laboratory framekm5(1,r ,0,0) andl m5(r ,1,0,0). By us-
ing these four-vectors, one can write

xm5ym1ckm /knkn1u l m / l nl n , ~A1!

whereym is transverse andu5 l nxn . In a similar way, one
can write

um5vm1~knun!km /knkn1~ l nun!l m / l nl n , ~A2!

where vm5dym /dt is transverse,knun5dtc, and l nun

5dtu.
The transverse component of Eq.~1! is

dt~vm1am!50, ~A3!

from which it follows that

vm~t!5vm~0!1am~0!2am~t!. ~A4!

Equation~A4! is the analog of Eq.~3!.
By using Eq.~A4!, one can rewrite the right side of Eq

~1! as2]m(vnvn/2). Sincevnvn was assumed to be a func
tion of c, ]m5kmdc . It follows from these results that th
longitudinal components of Eq.~1! are

dt~kmum!52kmkmdc~vnvn/2!, dt~ l mum!50. ~A5!

It follows from the second of Eqs.~A5! that

l mum~t!5 l mum~0!. ~A6!

One way to obtain an expression forknun is to use the iden-
tity unun51, which can be rewritten as

vnvn1~knun!2/knkn1~ l nun!2/ l nl n51. ~A7!

It follows from Eq. ~A7! that

@knun~t!#25@ l nun~t!#21knkn@12vnvn~t!#. ~A8!

Equations~A6! and~A8! are the analogs of Eqs.~7! and~8!.
By using the expression forknun(0) that follows from Eq.
~A8!, and Eq.~A6!, one can show that

@knun~t!#25@knun~0!#21knkn@vnvn~0!2vnvn~t!#.
~A9!

Equation~A9! is the analog of Eq.~9!. Another way to ob-
tain an expression forknun is to change the independen
variable in the first of Eqs.~A5! from t to c. Since dtc
5knun , the first of Eqs.~A5! becomes

dc@~knun!2/2#52kmkmdc~vnvn/2!, ~A10!

from which Eq.~A9! follows.
Finally, sincevnvn is a function ofc, Eqs. ~A4!, ~A6!,

and ~A9! expressum as a function ofc. To expressum as a
function oft one must invert the solution of the phase equ
tion

dt/dc561/v~c!, ~A11!

wherev is the square root of the terms on the right side
Eq. ~A9!.
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APPENDIX B: GUIDING-CENTER MOTION
IN A PLANAR FIELD

Equation~6! is valid when thev2 terms in Eqs.~4! are
independent off. To satisfy this condition we assumed th
the field is circularly polarized and the particle is in front
the pulse initially and is not moving transversely. Equatio
~7!, ~9!, and~10! follow from Eq. ~6! and the definition ofg,
which requires that

dt~g22u22v2!50. ~B1!

For the elliptically polarized field

am5~0,0,aycosf,azcosf!, ~B2!

whereay5ad andaz5a(12d2)1/2, thev2 terms in Eqs.~4!
are not independent off and Eq.~6! is not valid. However,
the particle motion is known to consist of a fast oscillati
about a guiding center and a guiding-center drift that va
slowly. In a vacuum, the guiding-center motion is govern
by the equation@9#

dt^um&52]m^anan&/2, ~B3!

where^ & denotes af average and̂anan&52a2/2. We ex-
pect Eq. ~B3! to provide a reasonable description of t
guiding-center motion in a rarefied plasma, in which t
phase speed of the field is slightly higher than the spee
light. Equation~B3! has associated with it the conservati
equation

dt~^u
n&^un&1^anan&!50. ~B4!

Since the ponderomotive potentiala2/4 is independent of
f, it follows from Eq. ~B3! that

dt~r ^g&2^u&!50. ~B5!

Equation~B5! is the analog of Eq.~6!. Since^v& is constant,
Eq. ~B4! reduces to

dt~^g&22^u&22a2/2!50. ~B6!

Equation~B6! is the analog of Eq.~B1!. Thus, for a particle
that is in front of the pulse initially,̂g& and^u& are given by
Eqs. ~7! and ~9!, in which v2 is replaced bya2/2, and the
repelling conditions are described by Eq.~10!.

APPENDIX C: PARTICLE MOTION IN A PLANAR
ELECTROSTATIC FIELD

The four-potential of an electrostatic field can be writt
as

am5pkm /knkn1qlm / l nl n , ~C1!

wherekm and l m were defined in Appendix A. We assum
that am is a function ofc, from which it follows that]m
5kmdc . Since the electrostatic field is unaffected by t
gauge transformationam→am1]mb, whereb is an arbitrary
function of c, p is redundant. In the Lorentz gaugep50.

By substituting decomposition~C1! in Eq. ~1! and con-
tracting the resulting equation withkm, one can show that
s

s
d

of

dt~kmum1p!5~knun!dcp2~ l nun!dcq. ~C2!

Since knun5dtc, the p terms in Eq.~C2! cancel, as they
must do. By substituting decomposition~C1! in Eq. ~1! and
contracting the resulting equation withl m, one can show tha

dt~ l mum1q!50. ~C3!

It follows from Eq. ~C3! that

l mum~t!5 l mum~0!1q~0!2q~t!. ~C4!

One way to obtain an expression forknun is to use the iden-
tity unun51, which can be rewritten as

@knun~t!#25@ l nun~t!#22 l nl n . ~C5!

Another way to obtain an expression forknun is to solve Eq.
~C2! directly. By changing the independent variable fromt
to c, one can rewrite Eq.~C2! as

dc@~knun!2/2#5dc@~ l nun!2/2#, ~C6!

from which Eq.~C5! follows.
Sinceq is a function ofc, Eqs. ~C4! and ~C5! express

um as a function ofc. To expressum as a function oft one
must invert the solution of the phase equation

dt/dc561/v~c!, ~C7!

wherev is the square root of the terms on the right side
Eq. ~C5!.

In the wave framekm8 5(0,l ,0,0) andl m8 5( l ,0,0,0), where
l 5(r 221)1/2. It follows from these results thatc52 lx8,
knun52 lu8, l nun5 lg8, andq5 lf8, wheref is the elec-
trostatic potential. Thus Eq.~C4! can be rewritten as

g8~t!5g8~0!1f8~0!2f8~t!50, ~C8!

Eq. ~C5! can be rewritten as

@u8~t!#25@g8~t!#221, ~C9!

and Eq.~C7! can be rewritten as

dt/dx8571/v~x8!, ~C10!

wherev is the square root of the terms on the right side
Eq. ~C9!. The dephasing time of an accelerated particle c
be determined from Eq.~C10! in a manner similar to tha
described in Sec. III. In particular, by considering the re
tions between laboratory-frame and wave-frame quantit
one can show that the dephasing time is proportional
gW

2 l, where gW is the Lorentz factor associated with th
phase speed of the wave andl is the wavelength.

The potential associated with a large-amplitude plas
wave is described by elliptic functions. Simple formulas f
the injection energy and energy gain associated with
potential were determined by Esarey and Piloff@10#. The
dephasing times associated with this and other poten
were studied by Teychenne´, Bonnaud, and Bobin@11,12#.



C.

C.
e

s

ys.

2136 56C. J. McKINSTRIE AND E. A. STARTSEV
@1# C. J. McKinstrie and E. A. Startsev, Phys. Rev. E54, R1070
~1996!.

@2# J. R. Marque`s, J. P. Geindre, F. Amiranoff, P. Audebert, J.
Gauthier, A. Antonetti, and G. Grillon, Phys. Rev. Lett.76,
3566 ~1996!.

@3# C. W. Siders, S. P. LeBlanc, D. Fisher, T. Tajima, M.
Downer, A. Babine, A. Stepanov, and A. Sergeev, Phys. R
Lett. 76, 3570~1996!.

@4# H. Goldstein,Classical Mechanics, 2nd ed.~Addison-Wesley,
New York, 1980!, pp. 21–24 and 303–309.

@5# P. F. Byrd and M. D. Friedman,Handbook of Elliptic Integrals
for Scientists and Engineers, 2nd ed.~Springer-Verlag, New
York, 1969!.
v.

@6# W. L. Kruer, The Physics of Laser Plasma Interaction
~Addison-Wesley, Redwood City, CA, 1988!.

@7# T. Tajima and J. M. Dawson, Phys. Rev. Lett.43, 267
~1979!.

@8# P. Sprangle, E. Esarey, A. Ting, and G. Joyce, Appl. Ph
Lett. 53, 2146~1988!.

@9# E. A. Startsev and C. J. McKinstrie, Phys. Rev. E55, 7527
~1997!.

@10# E. Esarey and M. Piloff, Phys. Plasmas2, 1432~1995!.
@11# D. Teychenne´, G. Bonnaud, and J. L. Bobin, Phys. Rev. E49,

3253 ~1994!.
@12# D. Teychenne´, G. Bonnaud, and J. L. Bobin, Physica D82,

205 ~1995!.


