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Hopf bifurcations in balance equations of glow discharges

B.-P. Koch, N. Goepp, and B. Bruhn
Institut für Physik, Ernst-Moritz-Arndt-Universita¨t Greifswald, Domstrasse 10a, 17487 Greifswald, Germany

~Received 1 April 1997!

Starting from the hydrodynamic equations describing the positive column of glow discharges in inert gases,
the instability of the axially homogeneous state is investigated. Dirichlet boundary conditions at the ends of the
positive column are chosen. Stimulated by experiments, the influence of metastable atoms and of the outer
circuit is taken into consideration by additional equations. Center manifold and normal form theories are used
to characterize the codimension-one bifurcations. Depending on the current, the length of the positive column
and the resistance of the outer circuit supercritical and subcritical Hopf bifurcations are found. The importance
of the results with respect to the experiments on the ionization instability in a neon discharge is discussed.
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PACS number~s!: 52.35.Py, 52.80.Hc, 05.45.1b
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I. INTRODUCTION

The understanding of complex spatiotemporal behavio
extended dissipative systems far from equilibrium is one
the most challenging problems in physics. Many instabilit
connected with a rich bifurcation structure are observ
when the system is driven far from equilibrium@1,2#. In
some fluid systems, e.g., Rayleigh-Be´nard convection or
Taylor-Couette flow, patterns can arise when an exte
stress exceeds a critical value. Also the homogeneous sta
the positive column in a glow discharge in certain pressu
current ranges is unstable and the plasma changes in
spatially inhomogeneous state, i.e., the positive column
formed of bright and dark layers alternating in the longitu
nal direction@3#. These so-called striations, which may
standing or moving, are generated because the destabil
mechanisms, i.e., direct and stepwise ionization by collisi
of electrons with neutral atoms and collisions between
cited neutral atoms, surpass the stabilizing recombina
processes. In low-pressure discharges stepwise ionizatio
the dominant instability mechanism. In inert gases mov
striations~ionization waves! are produced with a phase ve
locity that is directed from the anode to the cathode, wher
the group velocity points at the anode. Beginning in the p
century there are many experimental results that are d
cated to the dispersion properties and the instability regi
in parameter space of ionization waves in discharges of i
and molecular gases. The most relevant contributions are
viewed by Nedospasov@4#, Pekarek@5#, Oleson and Coope
@6#, and Landaet al. @7#. In the case of neon discharge
Achterberg and Michel@8# and Pfauet al. @9# have explored
the regions of existence of different types of ionizati
waves.

The modern experiments study the nonlinear propertie
ionization waves and ionization turbulence including su
phenomena as period doubling, torus deformation, cha
behavior, and pattern formation@10–15#. A review of such
papers was published by Ohe@16#. Numerical simulations of
nonlinear behavior were accomplished by Grabec and Mi
@17,18# using a very truncated hydrodynamic model. T
theoretical investigations in the past mostly concentrated
the linear behavior@19–25#. Almost all of these calculations
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were based on hydrodynamic equations. From the viewp
of kinetic theory the fluid approach describes the elect
distribution function using three parameters: density, d
velocity, and mean energy. This is justified in the hig
pressure regime, where the electron-electron interactio
the dominant process and the isotropic part of the distri
tion function is nearly Maxwellian. In the low-pressure r
gion, where nonlocal effects are present, a correct invest
tion has to start with the Boltzmann equation. Initial attem
to calculate the linear properties of ionization waves by
kinetic description of electrons were made by Rohle
Ružička, and Pekarek@21,22# and Tsendin@23,24#. Never-
theless, because the required calculations are too invol
until now there has been no successful explanation of
nonlinear properties of ionization waves by means of
kinetic theory. Therefore, our studies are based on a fl
approximation, which is useful not only in the high-pressu
regime@7#. Most of our data are taken to characterize a lo
pressure neon discharge. Our aim is to describe qualitati
some of the linear and nonlinear phenomena observe
experiments.

Comparing our paper with the previous ones, the follo
ing most important extensions are realized. First, nonlin
properties of the traveling waves are calculated. Furth
more, the influence of metastable atoms and of the o
circuit is taken into account. The importance of these ext
sions is strongly indicated by experiments@26,27#. The bi-
furcations, which are realized if the system goes from
stable homogeneous state to a traveling wave state, are
cussed. Codimension-one and codimension-two bifurcati
are found in parameter space, but only the former are a
lyzed. Center manifold theory connected with normal fo
transformation is the mathematical method used. The b
equations are introduced in Sec. II. The terms omitted
simplify the calculations are also established. In Sec. III
linear stability problem is solved by numerical methods. E
genvalues and eigenfunctions and their parameter de
dence are calculated. Furthermore, the adjoint problem
also handled. In Sec. IV the parameter dependence of
cubic normal form coefficient that characterizes the type
bifurcation, amplitude, and nonlinear frequency shift of t
wave near the stability boundary is analyzed. The results
2118 © 1997 The American Physical Society
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56 2119HOPF BIFURCATIONS IN BALANCE EQUATIONS OF . . .
discussed in Sec. V. The Appendix contains data for
collision rates, transport coefficients, and additional c
stants.

II. BASIC EQUATIONS

We apply a hydrodynamic description of the positive c
umn. Balance equations for the density of electrons, io
and metastable atomsne ,ni ,nm are used@4#:

]ne

]t
1div~neve

W !5Pe , ~2.1!

]ni

]t
1div~niv i

W !5Pi , ~2.2!

]nm

]t
1div~nmvm

W !5Pm . ~2.3!

The velocitiesve
W ,v i

W ,vm
W are obtained from the momentum

balance without the inertia terms,

ve
W52beEW 2De

grad~ne!

ne
2Ke

grad~Uem!

Uem
, ~2.4!

v i
W5biEW , ~2.5!

vm
W52Dm

grad~nm!

nm
. ~2.6!

They contain electron motion caused by the electric fi
EW , diffusion, and thermodiffusion as well as ion drift an
diffusion of metastable atoms with the corresponding tra
port coefficientsbe ,De ,Ke ,bi ,Dm . Moreover, the balance
of the mean electron energyUem

]~neUem!

]t
1div~neUemwW !52neve

W
•EW 2neH ~2.7!

includes on the right-hand side the energy changes by
electric field and the losses by elastic and inelastic collisi
that are contained inH. The velocity of heat currentwW is
given by

wW 52be* EW 2De*
grad~ne!

ne
2Ke*

grad~Uem!

Uem
, ~2.8!

with the transport coefficientsbe* ,De* ,Ke* . In the balance
equations of density the source termsPe , Pi , and Pm de-
scribe the gain and loss of particles by collisions and can
written as

Pe5z0`ngne1zm`nmne1zAnm
2 , ~2.9!

Pi5z0`ngne1zm`nmne1zAnm
2 , ~2.10!

Pm5z0mngne2zmgngnm2zmenenm22zAnm
2 . ~2.11!

The collision rates contain the influence of direct and st
wise ionization (z0` ,zm`), the ionization through collisions
between metastable atoms (zA), the production of metastabl
e
-

-
s,

d

s-

he
s

e

-

atoms through collisions of electrons with gas atoms (z0m),
and the loss of metastable atoms through collisions with
atoms (zmg) and electrons (zme), respectively. The influence
of excited gas atoms on the dynamics of charge carrier
considered by only one densitynm , which is balanced in Eq
~2.3!. This is only a crude approximation with respect to t
fact that the lowest group of excited levels consists of t
metastable levels (1s3,1s5) and two resonance level
(1s2,1s4). In our basic equations we have summarized
influence of the two metastable levels. The resonance at
are neglected. In the next step of the approximation the re
nance levels should also be balanced in a proper equa
The source term in the energy balance

H5ng~pel1p0a1p0`1pw!1nmpa` ~2.12!

includes losses by elastic (pel) and inelastic collisions. The
inelastic ones take excitation (p0a), direct ionization (p0`),
stepwise ionization (pa`), and wall losses (pw) into account.

The fluid model is based on the first moments of the
netic Boltzmann equation, which result in balances for
particle, momentum, and energy densities. At not too l
pressures the inelastic processes can be accounted for b
coefficients that depend on the local value of the redu
electric fieldE/p0. E and p0 are the magnitude of the field
strength and the gas pressure, respectively, i.e., the f
tional dependences of the coefficients on the reduced fi
are supposed to be the same as at equilibrium. The trans
coefficients are further input data and can also be calcula
as functions of the reduced electric field. Since in the sta
and homogeneous case the mean electron energyUem is an
increasing function ofE/p0, all the mentioned coefficients
can be expressed as functions ofUem. A detailed discussion
of the different ways of estimating the various coefficients
given in the paper of Boeuf and Pitchford@28#. If the system
of equations is supplemented by Maxwell’s equations
scribing the quasistatic electric field

«0divEW 5e~ni2ne!, rotEW 50W , ~2.13!

we obtain a complete set of equations for the variab
ne ,ni ,nm ,Uem,EW .

To make the set of equations analytically tractable so
physically motivated simplifying assumptions are used.

~1! In a neon discharge at low reduced field streng
E/p0 the calculation of the transport coefficients can be w
approximated by using the Druyvesteyn distribution as
isotropic part of the stationary distribution function~cf.
@29,30#!. In this approximation there exist simple relation
between the transport coefficients and the mean ene
Uem. Introducing the temperatureUe by

Uem5«Ue ,

one gets

De5aUebe ,

Ke5bUebe ,

be* 5gbe ,
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2120 56B.-P. KOCH, N. GOEPP, AND B. BRUHN
De* 5a* Uebe ,

Ke* 5b* Uebe ,

with the kinetic coefficients@30#

a50.842, b50.281, g51.476, a* 50.956,

b* 51.275, «51.05. ~2.14!

The collision rates, however, cannot be well approxima
by using a standard distribution function. Therefore, inste
of the Druyvesteyn distribution the solution of the stationa
Boltzmann equation in the spatially homogeneous cas
used. This so-called conventional homogeneous appro
@31# yields transport and rate coefficients that are indep
dent of the radial position in the plasma column. Some c
lision rates strongly depend onE/p0. The corresponding ex
pressions are presented in the Appendix. Of course, the
zA andzmg do not depend on the electron distribution fun
tion. Because in the stationary caseUem also depends on
E/p0, it is possible to express the collision rates as a funct
of Uem or as a function ofUe if a temperature can be define
as above. Alternatively, one can directly express the collis
rates as a function ofUe if one treats as equivalent the valu
of the characteristic energyDe /be obtained from the men
tioned Boltzmann equation solution, i.e.,De /be5 f (E/p0)
~cf. the Appendix!, with the generalized Nernst-Einstein
Townsend relationDe /be5aUe . For the calculation of the
equilibrium solutionsN0 ,M0 ,Ue0 ,E0 ,I 0 the discussed re
placement ofE/p0 by Ue in the collision rates produces onl
small deviations of few percent. In the following it is a
sumed that the collision rates used in the stationary and
mogeneous case are valid in the low-frequency regime
Although the different treatment of transport coefficients a
collision rates is inconsistent, we use this way because c
plicated coefficients for the space derivatives in the bala
equations will be avoided and the bifurcation problem b
comes analytically tractable.

~2! Quasineutrality, i.e.,ne5ni , in the positive column is
fulfilled because the wavelength is large in comparison to
Debye length. The result is that we have only one bala
equation for the density of charge carriers now denoted
n.

~3! Radial perturbations of the plasma characteristics
well as radial dependence of the stationary mean elec
energy are neglected. This allows one to obtain a o
dimensional approximation by cross-section averagi
which can be performed if the radial dependences
n,m,Ue ,Ex are known in the stationary and axially homog
neous case. For simplicity, we assume that the Bessel f
tion J0 as a function ofr describes the particle densities.
fact, J0 is an eigenfunction of the radial problem if on
direct ionization acts as the sole production process. A c
sequent treatment would require the consideration of
boundary layer, in which quasineutrality is not realized.
the approximation used the wall recombination of electro
and ions appears as an additional loss term in the cha
carrier balance. The same assumption is used for the m
stable atoms. The cross-section averaging of the energy
ance produces a wall relaxation term, whose sign depend
d
d

is
ch
-

l-

tes

n

n

o-
o.
d

-
e
-

e
e
y

s
n

e-
,
f

c-

n-
e

s
e-
ta-
al-
on

the distribution function. In the case of a Druyvesteyn dis
bution this term gives an energy gain by wall recombinatio
This unphysical result arises from the assumption that
distribution function is independent of the radial coordina
In the following calculations this term is neglected.

~4! The time derivative in the energy balance is neglect
It is easy to see that this is possible because the elec
mobility be is very large in comparison to the ion mobilit
bi .

~5! The diffusion of metastable atoms along the axis
neglected. This assumption considerably reduces the am
of calculation, i.e., the balance equation for metastable at
becomes an ordinary differential equation. This neglect is
motivated by experiments. One can show that the diffus
term has a remarkable influence on the stability borders
frequencies of waves@32#. In subsequent calculations, whic
should improve the quantitative agreement with the exp
ments, we hope that we can master this term.

~6! The outer circuit, which consists of an external volta
U and an external resistanceRa , is taken into account by
Kirchhoff’s rule

U5RaI 1E
0

L

Exdx. ~2.15!

I is the discharge current and the integral determines
voltage across the positive column. This means thatI has to
be considered as an additional variable, which depends
on t. The set of equations becomes a system of integ
differential equations.

By considering~2! and ~3! with the averaging assump
tions

n5n~r ,x,t !5N~x,t !
g~r !

ḡ
,

m5m~r ,x,t !5M ~x,t !
h~r !

h̄
,

j r50,

j x5 j x~r ,t !5
I ~ t !

pr 0
2

g~r !

ḡ
, ~2.16!

Ue5Ue~x,t !,

Ex5Ex~x,t !,

where

g~r !5h~r !5J0S l1

r

r 0
D ,

ḡ5
2

r 0
2E0

r 0
g~r !r dr ,

h̄5
2

r 0
2E0

r 0
h~r !r dr ,
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one gets the set

]N

]t
5~a1b!bi

]Ue

]x

]N

]x
1biS aUe

]2N

]x2
1bN

]2Ue

]x2 D
2

l1
2

r 0
2

biaUeN1 P̄, ~2.17!

]M

]t
5Dm

]2M

]x2
2

l1
2

r 0
2

DmM1Pm̄, ~2.18!

]~«NUe!

]t
52«beH ~ga2a* !S Ue

2 ]2N

]x2
2

l1
2

r 0
2

NUe
2D

1~gb2b* !NFUe

]2Ue

]x2
1S ]Ue

]x D 2G
1@2~ga2a* !1gb2b* #Ue

]N

]x

]Ue

]x J
1

I

epr 0
2S Ex1g

]Ue

]x D2NH̄, ~2.19!

I 5epr 0
2beS NEx1aUe

]N

]x
1bN

]Ue

]x D . ~2.20!

P̄,Pm̄,H̄ are the averaged source terms

P̄5z0`ngN1zm`a0NM1zAb0M2, ~2.21!

Pm̄5z0mngN2zmgngM2zmea0NM22zAb0M2,
~2.22!

H̄5ng~pel1p0a1p0`1pw!1pa`a0M . ~2.23!

a0 ,b0 are averaged quantities given by

a05
gh̄

ḡ h̄
5

l1
2

4
,

b05
h̄2

h̄2
5

l1
2

4
,

wherel152.4048 . . . is the first zero ofJ0 andr 0 is the tube
radius. According to assumptions~3! and ~4! in the energy
balance~2.19! the terms with a time derivative and the u
realistic energy gain by radial diffusion in the following wi
be neglected. Also the axial diffusion term in Eq.~2.18! is
omitted in further calculations. For the discussion in Sec.
the homogeneous equilibrium of the system~2.17!–~2.20!
and ~2.15! has to be investigated. From this set we obt
equilibrium valuesN0 ,M0 ,Ue0 ,E0 ,I 0 as solutions of

l1
2

r 0
2

biaUe0N05P0[z0`ngN01zm`a0N0M01zAb0M0
2 ,
I

n

l1
2

r 0
2

DmM05Pm0[z0mngN02zmgngM02zmea0N0M0

22zAb0M0
2 ,

I 0E0

epr 0
2N0

5H0[ng~pel1p0a1p0`1pw!1a0pa`M0 ,

~2.24!

I 05pr 0
2ebeN0E0 ,

U5RaI 01E0L.

According to the assumption~1!, the rate coefficients are
expressed as functions ofUe . In the following we investi-
gate the stability and the bifurcations of the calculated so
tions. For this reason it is advantageous to describe the
tem with variables that measure the deviation from
equilibrium:

u[
N2N0

N0
, m[

M2M0

M0
, v[

Ue2Ue0

Ue0
,

w[
Ex2E0

E0
, i[

I 2I 0

I 0
. ~2.25!

Also the independent variables are transformed into a dim
sionless form

j[
E0

Ue0
x, t[

biE0
2

Ue0
t. ~2.26!

Introducing these new variables and expanding the sou
terms P̄,Pm̄,H̄ up to third order inu,m,v yields the set of
equations

]

]t
~ Î X!5L̂X1N2~X,X!1N3~X,X,X!1•••, ~2.27!

where

X5S u

m

v

w

D , Î 5S 1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D . ~2.28!

The linear terms are given by

L̂X5S L1u1L2v1h3m

L3m1h4u1h5v

L4u1L5v1 i 1w2h4m

2 i 1u1w1a
]u

]j
1b

]v
]j

D , ~2.29!

with the current perturbation
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i 52
R

Ra

1

l E0

l

w dj with R5
E0L

I 0
, l 5

E0

Ue0
L.

~2.30!

L1 ,L2 ,L3 ,L4 ,L5 are linear operators represented by

L1u5a
]2u

]j2
1h1u, ~2.31!

L2v5b
]2v

]j2
1h2v, ~2.32!

L3m5D̃
]2m

]j2
1h6m, ~2.33!

L4u52d1

]2u

]j2
2u, ~2.34!

L5v52d2

]2v

]j2
1«g

]v
]j

2h1v. ~2.35!

For the quadratic and cubic terms we obtain

N2

51
av

]2u

]j2
1~a1b!

]u

]j

]v
]j

1bu
]2v

]j2

1r1uv1r2v21r3um1r4vm1r5m2

r6uv1r7v21r8um1r9vm1r10m
2

22d1v
]2u

]j2
2d2~u1v !

]2v

]j2
2d3

]u

]j

]v
]j

2d2S ]v
]j D 2

1 iw1«g i
]v
]j

2h1uv2h2v22h4um2h5vm

av
]u

]j
1bu

]v
]j

1uw

2
~2.36!

and

N35S s0umv1s1uv21s2v31s3mv21s4m2v

s5uv21s6v31s7mv21s8m2v

2d1v2
]2u

]j2
2d2uv

]2v

]j2
2d3v

]u

]j

]v
]j

2d2uS ]v
]j D 2

2h2uv22h3v32h5uvm2h6v2m

0

D ,

~2.37!

respectively, where

d15«~ga2a* !, d25«~gb2b* !, d352d11d2 ,
~2.38!

and
D̃5
Dm

biUe0
. ~2.39!

This set of equations has to be supplemented by boun
conditions at the ends of the positive column. According
Landa@25#, we use Dirichlet boundary conditions

u~0!5u~ l !50,

m~0!5m~ l !50, ~2.40!

v~0!5v~ l !50.

The calculated spatial damping of the eigenfunctions, wh
lower their amplitudes going from the anode to the catho
~cf. Sec. III!, yields ana posteriori justification because the
same spatial behavior is observed in experiments. In con
mity with assumption~5!, we neglect the axial diffusion o
metastable atoms, i.e., we setD̃50. In this case the vanish
ing of m at the boundaries is fulfilled automatically. Thos
coefficients in Eqs.~2.29! and~2.31!–~2.37! that are not de-
fined in this section are given in the Appendix. The vario
h i ,s j ,rk ,hl are the coefficients in the Taylor series of th
averaged source termsP̄,P̄m ,H̄. Note that they depend on
the equilibrium state, i.e., they can be calculated as functi
of I 0.

III. LINEAR STABILITY

In the following we study the bifurcations of the equilib
rium state. Therefore, first of all, the stability of this solutio
and its parameter dependence have to be investigated by
cussing the eigenvalue problem

L̂X105pÎX10. ~3.1!

p denotes the complex eigenvalue belonging to the ve
eigenfunction

X105S u10

m10

v10

w10

D . ~3.2!

Also the complex conjugatep* is an eigenvalue with the
eigenfunction X015X10* . The ansatzX105Cexp(qj)1C0

with complex constantsC,C0 generates the dispersion rel
tion

Uaq21h12p h3 bq21h2 0

h4 h62p h5 0

2d1q221 2h4 2d2q21«gq2h1 1

11aq 0 bq 1

U50.

~3.3!

Equation~3.3! connects the complex eigenvaluep5m1 iv
with the complexq. For a givenp there are four values o
q. This enables us to construct the components of the eig
vector:



56 2123HOPF BIFURCATIONS IN BALANCE EQUATIONS OF . . .
u105(
j 51

4

@exp~qjj!1U0K j #Cj ,

m105(
j 51

4

@M jexp~qjj!1M0K j #Cj ,
f
u
w
es
e
h
he
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er
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h
a
-

v105(
j 51

4

@Vjexp~qjj!1V0K j #Cj ,

w105(
j 51

4

@Wjexp~qjj!1W0K j #Cj , ~3.4!

where
U05
1

F
R1Ra

2R
21

, V05U0

~p2h1!~p2h6!2h3h4

h2~p2h6!1h3h5
, M05U0

h5~p2h1!1h2h4

h2~p2h6!1h3h5
, W05

R2RaU0

R1Ra
,

Vj5
h3~d1qj

21aqj12!1h4~p2aqj
22h1!

2h3~d2qj
22d4qj1h1!1h4~bqj

21h2!
, M j5

h41h5Vj

p2h6
, Wj5212~a1bVj !qj , K j5

exp~qj l !21

qj l
,

F5
~p2h6!~h1~p2h1!12h2!1h3~2h52h1h4!1h4~h5~p2h1!1h2h4!

h2~p2h6!1h3h5
,

andd45«g2b.
The complexCj ( j 51,2,3,4) will be determined by the boundary conditions~2.40!. The solvability condition for the

homogeneous system gives the secular equation

D[U 11U0K1 11U0K2 11U0K3 11U0K4

eq1l1U0K1 eq2l1U0K2 eq3l1U0K3 eq4l1U0K4

V11V0K1 V21V0K2 V31V0K3 V41V0K4

V1eq1l1V0K1 V2eq2l1V0K2 V3eq3l1V0K3 V4eq4l1V0K4

U50. ~3.5!
in

ents.
loc-

des
This equation together with Eq.~3.3! fixes the eigenvalues o
Eq. ~3.1!, which, in general, can only be calculated by n
merical methods. For the stability investigations the follo
ing situation is of particular importance: few eigenvalu
have a vanishing real part, whereas the remaining discret
posseses negative real parts. Graphical methods can be
ful in realizing this situation. Choosing a path along t
imaginary axis while going from2` to 1` and closing this
path in the right half plane, the corresponding curve in
D plane leaves the origin on the left-hand side if no eig
value with a positive real part exists. Varying the paramet
one can find situations where the curve in theD plane passes
through the origin. For accurate quantitative results root fi
ing methods have to be used. In this manner the stab
diagram of Fig. 1 is found, where the length of the posit
column L and the equilibrium currentI 0 are considered a
parameters. The neutral gas pressurep0 and the tube radius
r 0 are held constant. We have chosenp05200 Pa and
r 051 cm. The represented curves are the loci of th
points, which possess one eigenvalue with a vanishing
part, i.e., these curves mark codimension-one bifurcatio
At the crossing points of two curves there are codimensi
two bifurcations. The stable side is at lower currents. T
bifurcations describe the formation of low-frequency ioniz
tion waves~so-calledp waves!. An example of an eigenfunc
-
-

set
elp-

e
-
s,

-
ty

e
al
s.
-

e
-

tion setX10
T 5(u10,v10,m10,w10) at the stability boundary is

shown in Fig. 2. Going from the anode~left! to the cathode
~right! the amplitudes of the components diminish. This is
accordance with the experimental observations@7#. Further-
more, one observes phase shifts between the compon
These shifts are responsible for the direction of phase ve

FIG. 1. Stability boundaries in parameter space of the mo
18–40. Additional parameters areRa5105 V, r 051.0 cm, and
p05200 Pa.
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ity and the mechanism of instability. A temperature rise
followed by an additional production of charge carriers, i.
if there is a positive phase shift of the temperature relative
the charge density, the wave moves to the cathode. If the
only a small phase shift between the densities of charge
riers and metastable atoms, the instability develops.
though the eigenfunctions~3.4! are the sum of four partia
waves, only one dominates. Therefore, a mode numberJ can
be defined as the number of maxima~or minima!. Likewise,
a mean wavelengthl can be calculated asl5L/J. At very
low currents a second instability is found, which is chara
terized by higher frequencies and lower wavelengths.
plan to study these so-calledr waves in a subsequent pape

In the calculations of Sec. IV the solution of the adjoi
problem

L̂†Y105p* Î Y10 with Y105S ũ10

ṽ 10

m̃10

w̃10

D ~3.6!

is also needed. As usual, the adjointL̂† of the linear operator
L̂ is defined by the scalar product

FIG. 2. Real parts of the components of the eigenfunctionX10 at
the stability boundary of modeJ518. The parameters ar
Ra5105 V, I 050.415 mA,L50.171 m, and the calculate
eigenfrequencyf 5138 s21. ~a! Full line, Re(u10); dashed line,
Re(v10). ~b! Full line, Re(w10); dashed line, Re(m10).
s
,
o
is
r-

l-

-
e

^XuL̂Y&5^L̂†XuY&, ~3.7!

where theL2 scalar product

^XuY&5E
0

l

X†Y dj ~3.8!

is taken with four-dimensional vectors.X† is the transposed
of the complex conjugate. Now it is a simple task to calc
late the eigenfunctions ofL†. One obtains

ũ105(
j 51

4

@exp~2qj* j!1Ũ0K̃ j #C̃j ,

m̃105(
j 51

4

@M̃ jexp~2qj* j!1M̃0K̃ j #C̃j ,

~3.9!

ṽ 105(
j 51

4

@Ṽjexp~2qj* j!1Ṽ0K̃ j #C̃j ,

w̃105(
j 51

4

@W̃jexp~2qj* j!1W̃0K̃ j #C̃j ,

where

Ũ05U0* ,

Ṽ05Ũ0

h3h51h2~p* 2h6!

h5h41h1~p* 2h6!
,

M̃05Ũ0

h3h12h2h4

h5h41h1~p* 2h6!
,

W̃05
Ṽ0

Ũ0

2R1~R2Ra!Ũ0

R1Ra
,

Ṽj5
h4~bqj*

21h2!1h5~p* 2aqj*
22h1!

h4~d2qj*
22d4qj* 1h1!2h5~d1qj*

21aqj* 12!
,

M̃ j5
h32h4Ṽj

p* 2h6

,

W̃j52Ṽj ,

K̃ j52Ṽj

Ũ0

Ṽ0

exp~2qj* l !21

qj* l
.

IV. CENTER MANIFOLD REDUCTION

To discuss the various bifurcations of the homogene
state the basic system has to be reduced to the correspon
normal form equation. This reduction is only valid for suffi
ciently small deviations from the equilibrium solution. Ce
ter manifold reduction and transformation to the normal fo
will be performed in one step@33#. In the case of single Hop
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bifurcations the local dynamics can be described by the n
mal form equation, which up to third order is given by

ż5pz1Auzu2z1•••. ~4.1!

The complex eigenvaluep, which has been calculated i
Sec. II, and the third-order nonlinearity constantA depend on
the parameters of the system. The calculation ofA is the
main task in this section. In the case of Re(A),0
@Re(A).0# the Hopf bifurcation is supercritical~subcriti-
cal!, i.e., a limit cycle arises on the side where the homo
neous solution is unstable~stable! in parameter space. Thi
limit cycle is stable only in the case of supercritical Ho
bifurcations at the first instability. Re(A)50 marks a gener-
alized Hopf bifurcation, where a fifth-order term in the no
mal form of Eq.~4.1! has to be added to unfold this sing
larity. This codimension-two bifurcation is planned to b
discussed in a subsequent paper. For the time-depen
state vectorX on the center manifold, which is tangential
the center subspace, we make the following ansatz u
ordern:

X~j,t!5 (
i 1 j 51

i 1 j 5n

Xi j ~j!zi~t!z* j~t! with Xi j 5Xji* .

~4.2!

X10(j),X01(j) are the linear eigenvectors~eigenfunctions!,
which span the center subspace.Xi j (j) with i 1 j .1 de-
scribe the deviation of the nonlinear center manifold fro
the linear center subspace. The center space coord
z(t) characterizes the motion on the center manifold. Wit
view to investigate Hopf bifurcations we claim thatz(t) ful-
fills Eq. ~4.1!. To calculateA we insert the expansion~4.2!
into Eq.~2.27!. Comparing the coefficients of the terms wi
ziz* j gives a sequence of linear systems of ascending or
To first order (i 1 j 51) we obtain the eigenvalue equatio
~3.1! and its conjugate complex, which both were solved
the stability boundary of the different modes in Sec. II.
second order (i 1 j 52) three sets of equations have to
solved:

~ L̂22iv!X2052N2~X10,X10!, ~4.3a!

L̂X1152N2~X10,X01!, ~4.3b!

~ L̂12iv!X0252N2~X01,X01!. ~4.3c!

The inhomogeneities on the right-hand side consist of eig
functions and their derivatives, which must be inserted in
quadratic terms ofN2 @cf. Eq. ~2.36!#. The second-orde
functions X20,X11,X02 have to fulfill the boundary condi
tions ~2.40!. Furthermore, we haveX025X20* andX115X11* .
In general, 2iv and 0, respectively, are not eigenvalues
the linear operatorL̂. In this case the inhomogeneous sy
tems ~4.3! have unique solutions, which can be found
r-

-

ent

to

ate
a

er.

t

n-
e

f
-

numerical calculations or as we have done by analyt
methods. A special solution of Eq.~4.3a! may be found by
the ansatz

X205 (
i , j 51

4

Ai j exp@~qi1qj !j#1(
i 51

4

Aiexp~qij!1A0 .

~4.4!

With a similar ansatz one obtains a special solution of E
~4.3b! Generally, these functions do not satisfy the bound
conditions. Therefore, a special solution of the homogene
problem has to be added to obtain the desired solution.
example of the second-order correctionsu20,u11 is shown in
Fig. 3.

To third order (i 1 j 53) there exist four inhomogeneou
systems referring to the coefficients ofz3,z2z* ,zz* 2,z* 3. To
calculate the Hopf parameterA only the system correspond
ing to z2z* has to be discussed@cf. Eq. ~4.1!#. This set of
linear equations has the structure

~ L̂2 iv!X215AÎX102N2~X20,X01!2N2~X11,X10!

2N3~X10,X10,X01!. ~4.5!

The first term of the inhomogeneity includes the const
A. Furthermore, there are quadratic and cubic terms.
quadratic ones consist of eigenfunctions and second-o
functions and their derivatives in the combinations indica
as arguments ofN2. The cubic term contains only eigenfunc
tions and their derivatives. The explicit form of these term
is not given here. It is simple but tedious to write down
the terms needed. Apparently, the eigenvectorX10 is the
unique solution of the homogeneous set. Therefore, the
ond part of the Fredholm alternative plays a role, i.e.,
inhomogeneity has to be orthogonal with respect to the
genvectorY10 of the adjoint problem. This condition dete
mines the value ofA by

FIG. 3. Second-order corrections of the charge-carrier dens
Full line, Re(u20); dashed line,u11. The parameters are the same
in Fig. 2.
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A5

E
0

l

Y10
† @N2~X20,X01!1N2~X11,X10!1N3~X10,X10,X01!#dj

E
0

l

Y10
† Î X10dj

. ~4.6!
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The detailed formula, which shows precisely the depende
of A on all system parameters, actually represents the m
result of this paper. It is too involved to be shown he
Instead of this, the graphic representation of Eq.~4.6! will be
given in Sec. V. The eigenvectorX10 contains an arbitrary
complex constantK, which also appears in the second-ord
correctionsX20,X11,X02 asK2,KK* ,K* 2. According to Eq.
~4.6!, A includes a factorKK* too. Therefore, the solution
z(t) of the normal form of Eq.~4.1! comprises the facto
1/K, i.e., the constantK can be eliminated by replacin
z→z/K. Following these arguments one sees that the s
vectorX @cf. Eq. ~4.2!# is independent ofK as it must be.

The validity of the results obtained in this section is e
sentially based on the existence of the center manifold n
the origin of the system~2.27!. Until now there has been n
strong proof, but we hope that we can close this gap in
argumentation.

V. RESULTS AND DISCUSSION

First of all, the quantitative outcomes of the linear theo
should be compared with experimental results. We h
found the minima of the stability boundaries at abo
0.4 mA with a weak dependence on the mode number
the external resistanceRa . At these minima the wavelengt
and frequency are given approximately byl50.95 cm and
f 5140 s21, respectively. On the right branch of the inst
bility curves our results are closer to the experimental val
l'2.9 cm and f '600 s21 (p05227 Pa, Ra5105 V)
@8,35#. The experimental instability region begins
I 053.5 mA for Ra5105 V and at I 056.2 mA for
Ra5106 V @35#. If the diffusion of metastable atoms i
taken into account, the linear calculations approximate
ce
in
.

r

te

-
ar

r

e
t
d

s

s-

sentially better to the experimental results@32#. A correct
comparison demands the consideration of nonlinear res
i.e., the calculation of the complete regions, where sta
traveling waves are possible.

For given parameter valuesp0 ,r 0 ,Ra the constantA in
Eq. ~4.1! can be calculated at the stability boundary, which
marked by a characteristic curveI 05I 0(L) for a given mode.
The sign of the real part ofA determines the type of the Hop
bifurcation. Figures 4 and 5 show the results for two diffe
ent values of the resistance of the outer circuit. Whereas
position of the border of stability has only a weak depe
dence onRa , the type of Hopf bifurcation at a given param
eter set may be changed. The bifurcations at the first in
bility are the most interesting ones because they should
observable in real or numerical experiments. ForRa5104 V
at the boundary only supercritical bifurcations are observ
whereas forRa5105 V there are both types of bifurcations
This statement is valid only for the modes represented.
higherRa the same phenomena will be observed at largerL.
This can be approximately estimated by the discussion of
current perturbationi 52E0 /(RaI 0)*0

Lw dx. In this expres-
sion larger values ofRa can be compensated by a long
integration lengthL.

Going at fixed length to larger values of the current, a
ditional modes are generated, but even if the Hopf bifur
tion is supercritical the developing limit cycle has some u
stable directions, i.e., it is unstable. We speculate that th
must be subcritical bifurcations, which stabilize some of t
cycles, so that one or two~or more! are observable in experi
ments. Such results were obtained by Tuckerman and B
ley @34# in the case of stationary solutions of the re
Ginzburg-Landau equation. Experimental investigations
e
a-
FIG. 4. Supercritical~triangles! and subcriti-
cal ~dots! Hopf bifurcations, respectively, at th
stability boundaries of the modes 36–52. The p
rameters are Ra5104 V, r 051.0 cm, and
p05200 Pa.
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FIG. 5. Supercritical~triangles! and subcriti-
cal ~dots! Hopf bifurcations, respectively, at th
stability boundaries of the modes 36–52. The p
rameters are Ra5105 V, r 051.0 cm, and
p05200 Pa.
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neon show a strong pattern selection@36#, i.e., within the
Eckhaus region only one or two modes are stable. This
considerable difference from the classical Eckhaus res
where a band of modes is stable at a given parameter s

There are not only supercritical and subcritical bifurc
tions but also transitions from one type to the other on
given bifurcation curve. This codimension-two bifurcation
a generalized Hopf bifurcation. The unfolding of this sing
larity yields a stable and an unstable limit cycle on the cen
manifold. But to do this a fifth-order termBuzu4z has to be
supplemented in Eq.~4.1!. Furthermore, crossings of mod
curves of three different types are observed: there are su
super, sub-sub, and super-sub crossings. ForRa5105 V
these phenomena are situated at the stability boundary,
they should be observable in experiments. To unfold th
codimension-two bifurcations the calculation of further co
ficients in the normal form

ż15p1z11A1uz1u2z11B1uz1u2z21•••,

ż25p2z21A2uz2u2z21B2uz2u2z11•••

is needed. Possibly, fifth-order terms have to be includ
Using periodic boundary conditions, we managed to unf
this codimension-two singularity in most cases@32#.

The results discussed in this paper are only a first step
the description of the pattern formation in a neon glow d
charge. To obtain a better knowledge of the main bifur
tions further comprehensive investigations are necess
Codimension-two bifurcations, especially at the stabil
boundary, should be discussed to understand the various
sibilities of passing from stable to unstable regions. In
limit of large length an approximation by means of mod
equations of Ginzburg-Landau type should make it poss
to go some steps into the instability region and to find a
understand mild forms of turbulent motions. Numerical c
culations with the full set of equations and with Ginzbur
Landau equations are well on the way to completing
a
ts,
.
-
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r

er-
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e
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d
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ry.

os-
e
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obtained results. Furthermore, we hope that our calculat
will stimulate experimenters to search for supercritical a
subcritical bifurcations and in a second step for the m
complicated phenomena connected with codimension-
bifurcations.
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APPENDIX

The following collision rates and transport coefficients f
a low-pressure neon discharge have been tabulated
Mönke @37# and Franke@38#:

z0`56.93031025S E

p0
D 5.3694

cm3 s21,

zm`51.34631027S E

p0
D 0.0693

cm3 s21,

zA53.4310210 cm3 s21,

z0m55.294310213 cm3 s21,

zmg53.86310215 cm3 s21,

zme52.531027 cm3 s21,
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De

be
56.65743S E

p0
D 0.0751

V,

pel53.4413310211S E

p0
D 0.184

V cm3 s21,

p0a51.08331026S E

p0
D 2.1998

V cm3 s21,

p0`51.4543102S E

p0
D 8.824

V cm3 s21,

pw54.3623102S E

p0
D 8.912

V cm3 s21,

pa`56.633531027S E

p0
D 0.0693

V cm3 s21,

be58.3333105 cm2 V21 s21,

bi52.0773103 cm2 V21 s21,

Dm596.32 cm2 s21.

To obtain the coefficients and rates in the announced u
the field strengthE has to be inserted in V/cm and the g
pressurep0 in units of Pascal~Pa!.

Here we give the definitions of the coefficients that ha
been introduced in Eqs.~2.29! and ~2.31!–~2.37!:

h15akS N0

P0

] P̄

]N
U

0

21D ,

h25akS Ue0

P0

] P̄

]Ue
U

0

21D ,

h35ak
M0

P0

] P̄

]M
U

0

,

h45kD̃
N0

Pm0

] P̄m

]N
U

0

,

h55kD̃
Ue0

Pm0

] P̄m

]Ue
U

0

,

h65kD̃S M0

Pm0

] P̄m

]M
U

0

21D ,

r15akS N0Ue0

P0

]2P̄

]N]Ue
U

0

21D ,

r25ak
Ue0

2

2P0

]2P̄

]Ue
2U

0

,

its

e

r35ak
N0M0

P0

]2P̄

]N]M
U

0

,

r45ak
M0Ue0

P0

]2P̄

]M]Ue
U

0

,

r55ak
M0

2

2P0

]2P̄

]M2U
0

,

r65kD̃
N0Ue0

Pm0

]2P̄m

]N]Ue
U

0

,

r75kD̃
Ue0

2

2Pm0

]2P̄m

]Ue
2 U

0

,

r85kD̃
N0M0

Pm0

]2P̄m

]N]M
U

0

,

r95kD̃
M0Ue0

Pm0

]2P̄m

]M]Ue
U

0

,

r105kD̃
M0

2

2Pm0

]2P̄m

]M2 U
0

,

s05ak
N0M0Ue0

P0

]3P̄

]N]M]Ue
U

0

,

s15ak
N0Ue0

2

2P0

]3P̄

]N]Ue
2U

0

,

s25ak
Ue0

3

6P0

]3P̄

]Ue
3U

0

,

s35ak
M0Ue0

2

2P0

]3P̄

]M]Ue
2U

0

,

s45ak
M0

2Ue0

2P0

]3P̄

]M2]Ue
U

0

,

s55kD̃
N0Ue0

2

2Pm0

]3P̄m

]N]Ue
2U

0

,

s65kD̃
Ue0

3

6Pm0

]3P̄m

]Ue
3 U

0

,

s75kD̃
M0Ue0

2

2Pm0

]3P̄m

]M]Ue
2U

0

,
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s85kD̃
M0

2Ue0

2Pm0

]3P̄m

]M2]Ue
U

0

,

h15
Ue0

H0

]H̄

]Ue
U

0

,

h25
Ue0

2

2H0

]2H̄

]Ue
2U

0

,

h35
Ue0

3

6H0

]3H̄

]Ue
3U

0

,

h45
M0

H0

]H̄

]M
U

0

,

ce

ys

iz

.

s.

v.

s.
h55
M0Ue0

H0

]2H̄

]M]Ue
U

0

,

h65
M0Ue0

2

2H0

]3H̄

]M]Ue
2U

0

,

where

k5
l1

2

r 0
2

Ue0
2

E0
2

.

The derivatives of the averaged source termsP̄,P̄m ,H̄ are to
be calculated at equilibrium.
.
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