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Hopf bifurcations in balance equations of glow discharges

B.-P. Koch, N. Goepp, and B. Bruhn
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Starting from the hydrodynamic equations describing the positive column of glow discharges in inert gases,
the instability of the axially homogeneous state is investigated. Dirichlet boundary conditions at the ends of the
positive column are chosen. Stimulated by experiments, the influence of metastable atoms and of the outer
circuit is taken into consideration by additional equations. Center manifold and normal form theories are used
to characterize the codimension-one bifurcations. Depending on the current, the length of the positive column
and the resistance of the outer circuit supercritical and subcritical Hopf bifurcations are found. The importance
of the results with respect to the experiments on the ionization instability in a neon discharge is discussed.
[S1063-651%97)05208-3
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[. INTRODUCTION were based on hydrodynamic equations. From the viewpoint
of kinetic theory the fluid approach describes the electron
The understanding of complex spatiotemporal behavior irdistribution function using three parameters: density, drift
extended dissipative systems far from equilibrium is one ofvelocity, and mean energy. This is justified in the high-
the most challenging problems in physics. Many instabilitiespressure regime, where the electron-electron interaction is
connected with a rich bifurcation structure are observedhe dominant process and the isotropic part of the distribu-
when the system is driven far from equilibriufi,2]. In tion function is nearly Maxwellian. In the low-pressure re-
some fluid systems, e.g., RayleighBed convection or gion, where nonlocal effects are present, a correct investiga-
Taylor-Couette flow, patterns can arise when an externdion has to start with the Boltzmann equation. Initial attempts
stress exceeds a critical value. Also the homogeneous state tof calculate the linear properties of ionization waves by a
the positive column in a glow discharge in certain pressurekinetic description of electrons were made by Rohlena,
current ranges is unstable and the plasma changes intoRuzcka, and Pekarek21,22] and Tsendinf23,24. Never-
spatially inhomogeneous state, i.e., the positive column isheless, because the required calculations are too involved,
formed of bright and dark layers alternating in the longitudi-until now there has been no successful explanation of the
nal direction[3]. These so-called striations, which may be nonlinear properties of ionization waves by means of the
standing or moving, are generated because the destabilizifgnetic theory. Therefore, our studies are based on a fluid
mechanisms, i.e., direct and stepwise ionization by collisiongapproximation, which is useful not only in the high-pressure
of electrons with neutral atoms and collisions between exregime[7]. Most of our data are taken to characterize a low-
cited neutral atoms, surpass the stabilizing recombinatiopressure neon discharge. Our aim is to describe qualitatively
processes. In low-pressure discharges stepwise ionization sdme of the linear and nonlinear phenomena observed in
the dominant instability mechanism. In inert gases movingexperiments.
striations(ionization wavey are produced with a phase ve-  Comparing our paper with the previous ones, the follow-
locity that is directed from the anode to the cathode, whereaig most important extensions are realized. First, nonlinear
the group velocity points at the anode. Beginning in the pasproperties of the traveling waves are calculated. Further-
century there are many experimental results that are dedimore, the influence of metastable atoms and of the outer
cated to the dispersion properties and the instability regionsircuit is taken into account. The importance of these exten-
in parameter space of ionization waves in discharges of inesions is strongly indicated by experimeh26,27]. The bi-
and molecular gases. The most relevant contributions are rédrcations, which are realized if the system goes from a
viewed by Nedospasdw], Pekarel5], Oleson and Cooper stable homogeneous state to a traveling wave state, are dis-
[6], and Landaet al. [7]. In the case of neon discharges cussed. Codimension-one and codimension-two bifurcations
Achterberg and Mich€]8] and Pfauet al.[9] have explored are found in parameter space, but only the former are ana-
the regions of existence of different types of ionizationlyzed. Center manifold theory connected with normal form
waves. transformation is the mathematical method used. The basic
The modern experiments study the nonlinear properties odquations are introduced in Sec. Il. The terms omitted to
ionization waves and ionization turbulence including suchsimplify the calculations are also established. In Sec. Ill the
phenomena as period doubling, torus deformation, chaotitinear stability problem is solved by numerical methods. Ei-
behavior, and pattern formatiga0—15. A review of such genvalues and eigenfunctions and their parameter depen-
papers was published by ORES]. Numerical simulations of dence are calculated. Furthermore, the adjoint problem is
nonlinear behavior were accomplished by Grabec and Mikaalso handled. In Sec. IV the parameter dependence of the
[17,18 using a very truncated hydrodynamic model. Thecubic normal form coefficient that characterizes the type of
theoretical investigations in the past mostly concentrated obifurcation, amplitude, and nonlinear frequency shift of the
the linear behaviof19—25. Almost all of these calculations wave near the stability boundary is analyzed. The results are
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discussed in Sec. V. The Appendix contains data for theatoms through collisions of electrons with gas atomsg,),
collision rates, transport coefficients, and additional con-and the loss of metastable atoms through collisions with gas
stants. atoms ¢,¢) and electrons4,), respectively. The influence
of excited gas atoms on the dynamics of charge carriers is
Il. BASIC EQUATIONS considered by only one density,, which is balanced in Eq.
. o i (2.3). This is only a crude approximation with respect to the
We apply a hydrodynamic description of the positive col-f5¢t that the lowest group of excited levels consists of two

umn. Balance equations for the density of electrons, ionSyetastable levels @,1s;) and two resonance levels

and metastable atonmg ,n; ,ny, are used4]: (1s,,1s,). In our basic equations we have summarized the
an influence of the two metastable levels. The resonance atoms
—¢ +div(nev_;) =P, (2.2 are neglected. In the next step of the approximation the reso-
at nance levels should also be balanced in a proper equation.
an The source term in the energy balance
P -~
at +d|V(n|U|) PI ’ (2.2) H:ng(pel+p0a+ p0x+pw)+nmpaoc (2-12)

Ny . - includes losses by elastip{) and inelastic collisions. The
7+d'v(”mvm): Pm. (23 inelastic ones take excitatiopg,), direct ionization pq..),
stepwise ionizationf,.,), and wall lossesq,,) into account.
The Ve|ocitieSU_;,l;)i,v_;] are obtained from the momentum The ﬂUId mOde| IS based on the first moments of the k|'

balance without the inertia terms, netic Boltzmann equation, which result in balances for the
particle, momentum, and energy densities. At not too low
- - gradng) gradU.n) pressures the inelastic processes can be accounted for by rate
ve= ~heE—De N —Ke Uen (24 coefficients that depend on the local value of the reduced
electric fieldE/py. E and p, are the magnitude of the field
l;)i:biéa (2.5 s_trength and the gas pressure,_r_espectively, i.e., the fl_mc-
tional dependences of the coefficients on the reduced field
_ gradn,,) are supposed to be the same as at equilibrium. The transport

(2.6) coefficients are further input data and can also be calculated
as functions of the reduced electric field. Since in the static

They contain electron motion caused by the electric field?d homogeneous case the mean electron ergggyis an
> L e . . increasing function oE/p,, all the mentioned coefficients
E, diffusion, and thermodiffusion as well as ion drift and

L . : can be expressed as functionslhf,,. A detailed discussion
diffusion Qf.metastable atoms with the corresponding transbf the different ways of estimating the various coefficients is
port coefficientsb,,D.,K¢,b;,D. Moreover, the balance

fih lect given in the paper of Boeuf and Pitchfdr@8]. If the system

of the mean electron enerdyem of equations is supplemented by Maxwell's equations de-
anUen) ) . scribing the quasistatic electric field
————+div(ngUgnW)=—nge - E—nH  (2.7)

Um= " Unm
N

it eodivE:e(ni—ne), rote=0, (2.13

includes on the right-hand side the energy changes by thv?/e obtain a complete set of equations for the variables
electric field and the losses by elastic and inelastic collisions omp q

. . . > Ne,Ni Ny, Uegm, E.
that are contained il The velocity of heat current is To make the set of equations analytically tractable some

given by physically motivated simplifying assumptions are used.
_ R gradny) grad Uy (1) In a neon discharge at low reduced field strength
w=—b3yE-D} —-K3 (2.8 E/pg the calculation of the transport coefficients can be well

e e ]
Me Uem approximated by using the Druyvesteyn distribution as the

isotropic part of the stationary distribution functiofaf.

[29,30). In this approximation there exist simple relations
etween the transport coefficients and the mean energy
em- INtroducing the temperatutd, by

with the transport coefficientb} ,Df ,K% . In the balance

equations of density the source terfds, P;, and P,, de-
scribe the gain and loss of particles by collisions and can b

written as
Pe=Z0.NgNe+ ZyeeNmNe+ ZaN5, (2.9 Uem=eUe,
Pi=2ZguNgNet ZmeoNmNe+ zan2,, 210 One gets
Pm=2ZomNgNe™ ZmgNgNm— ZmdeNm— 2ZaNg . (2.1 De=aUcbe,
Ke=BUcbe,

The collision rates contain the influence of direct and step-
wise ionization ¢,., ,Z,.), the ionization through collisions .
between metastable atong ], the production of metastable be = ¥be,
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D =a*U.b,, the distribution function. In the case of a Druyvesteyn distri-
bution this term gives an energy gain by wall recombination.
K2 = 8% U, This unphysical result arises from the assumption that the
distribution function is independent of the radial coordinate.
with the kinetic coefficient§30] In the following calculations this term is neglected.
(4) The time derivative in the energy balance is neglected.
«=0.842, B=0.281, y=1.476, a*=0.956, It is easy to see that this is possible because the electron
mobility b, is very large in comparison to the ion mobility
B*=1.275, &=1.05. (2.14 b

(5) The diffusion of metastable atoms along the axis is
The collision rates, however, cannot be well approximatedeglected. This assumption considerably reduces the amount
by using a standard distribution function. Therefore, insteadf calculation, i.e., the balance equation for metastable atoms
of the Druyvesteyn distribution the solution of the stationarybecomes an ordinary differential equation. This neglect is not
Boltzmann equation in the spatially homogeneous case igotivated by experiments. One can show that the diffusion
used. This so-called conventional homogeneous approadBm has a remarkable influence on the stability borders and
[31] yields transport and rate coefficients that are indepenfrequencies of wavel2]. In subsequent calculations, which
dent of the radial position in the plasma column. Some colshould improve the quantitative agreement with the experi-
lision rates strongly depend @& p,. The corresponding ex- ments, we hope that we can master this term.
pressions are presented in the Appendix. Of course, the rates (6) The outer circuit, which consists of an external voltage
z, andz,,q do not depend on the electron distribution func-U and an external resistanég,, is taken into account by
tion. Because in the stationary cabe,, also depends on Kirchhoff's rule
E/py, itis possible to express the collision rates as a function L
of Ugy,or as a function otJ,, if a temperature can be defined U=R,l+ f E,dx. (2.15
as above. Alternatively, one can directly express the collision 0
rates as a function df, if one treats as equivalent the value ) ) _
of the characteristic energp,/b, obtained from the men- | is the discharge currgnt and the m?egral determines the
tioned Boltzmann equation solution, i.eD,./be= f(E/py) voltage across the positive column: This means thHads to
(cf. the Appendix, with the generalized Nernst-Einstein- be considered as an adphhonal variable, which deperjds only
Townsend relatioD./b.= aU,. For the calculation of the ©N t. The set of equations becomes a system of integro-
equilibrium solutionsNy,Mg,Uo,Eo,lo the discussed re- differential equations. _ _
placement oE/p, by Uy in the collision rates produces only _ BY considering(2) and (3) with the averaging assump-
small deviations of few percent. In the following it is as- tONS
sumed that the collision rates used in the stationary and ho-
mogeneous case are valid in the low-frequency regime too. n=n(r,x,t)=N(x t)w
Although the different treatment of transport coefficients and o g
collision rates is inconsistent, we use this way because com-
plicated coefficients for the space derivatives in the balance h(r)
equations will be avoided and the bifurcation problem be- m=m(r,x,t)=M(x,t) —,
comes analytically tractable. h

(2) Quasineutrality, i.e.n,=n;, in the positive column is

fulfilled because the wavelength is large in comparison to the =0,

Debye length. The result is that we have only one balance

equation for the density of charge carriers now denoted by o I(t) g(r)

n Jx:Jx(rvt):??: (2.19
0

(3) Radial perturbations of the plasma characteristics as
well as radial dependence of the stationary mean electron
energy are neglected. This allows one to obtain a one-
dimensional approximation by cross-section averaging,
which can be performed if the radial dependences of
n,m,U,,E, are known in the stationary and axially homoge- \nere
neous case. For simplicity, we assume that the Bessel func-
tion Jy as a function of describes the particle densities. In r
fact, Jo is an eigenfunction of the radial problem if only g(r)zh(r)zJo()\lr—),
direct ionization acts as the sole production process. A con- 0
sequent treatment would require the consideration of the
boundary layer, in which quasineutrality is not realized. In 9= 2 J’rog(r)r dr

3o |

Ue=Ue(X1),

E,=E,(x,1),

the approximation used the wall recombination of electrons r

and ions appears as an additional loss term in the charge-

carrier balance. The same assumption is used for the meta- 2 (o

stable atoms. The cross-section averaging of the energy bal- = —Zf h(r)r dr,
ance produces a wall relaxation term, whose sign depends on o~ 0



56 HOPF BIFURCATIONS IN BALANCE EQUATIONS OF ...

one gets the set

IN . baueaN+b U32N+ N
o (atBbi—=— +bi| @ P B

#*Uq

NG

A2 _
— —biaUN+P,
o

(2.17

oM 5 9*M AiD P
J— - = +

m 2 m ms
ot ax% g

(2.18

a(eNU,)

2
PN A
at

- _ _ 27 2
= sbe[(ya cv*)(Ue&X2 r(2)NUe

+(yB—pB*)N

U U\ ?
Ue—ze +( e)
IX IX

+[2(ya—a*)+yB—B*]U

IN U,
€IX X

|
+ —_—
enrs

(2.19

dUq —
E,t+ 'yW —NH,

U,
X

) N
| =emrgbe| NE,+ aUeg + BN

). (2.20

P,P,,H are the averaged source terms

P_: ZOwngN + meaoN M + ZABOM 2,

(2.21

m= ZomNgN = ZmgNgM — ZmetogNM — 22, BoM?,

(2.22
(2.23

H_: ng(pel+ p0a+ p0w+ pw) + pawa'oM .

ag,Bo are averaged quantities given by

gh A
a:—:—,
0 ah

hZ A2
EO:::Z!

h

where\ ;=2.4048. . . is the first zero dfy andr is the tube
radius. According to assumptiort8) and (4) in the energy

2121

N
l‘_z DnMo=Ppo= ZOmngNO_ ngngM 0~ Zme®oNoMg

0

—22,BoM3,
loEo
7~ =Ho=nNg(Pei+ Poat Poxt Pw) + @oPa=Mo,

e7Tr0N0

(2.29
IOZ WrgebeNoEo,
U= Ral O+ EoL

According to the assumptiofil), the rate coefficients are
expressed as functions of,. In the following we investi-
gate the stability and the bifurcations of the calculated solu-
tions. For this reason it is advantageous to describe the sys-
tem with variables that measure the deviation from the
equilibrium:

v= Ue_UeO
1 er 1

-1,
) 1=
Eo lo

. (2.2

Also the independent variables are transformed into a dimen-
sionless form

Eo biE]
=—X, 7= t.
= U, Uwo

(2.26

Introducing these new variables and expanding the source

termsP,P,,H up to third order inu,m,v yields the set of
equations

%(TX) = LX4Np(X,X)+Ng(X, X, X)+ - - -, (2.27)

where

X= . 1= (2.29

s <

o O O -
o O +» O
o O O O
S O O O

balance(2.19 the terms with a time derivative and the un- The jinear terms are given by

realistic energy gain by radial diffusion in the following will

be neglected. Also the axial diffusion term in EG.18) is

omitted in further calculations. For the discussion in Sec. llI

the homogeneous equilibrium of the systéthl17)—(2.20

and (2.195 has to be investigated. From this set we obtain

equilibrium valuesNy,Mq,Uqq,Eq,l as solutions of

2

1 —p.= 2
r_zbiaueoNo— P0=20mngN0+ meaoNoMo“l‘ ZABOMOI

0

Liu+Lov+ psm
Lsm+ n4u+ nsv
Lu+Lgy+i+w—hym

ou ov

—itutwta—+B8—
u aag 'B&f

LX= , (2.29

with the current perturbation
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le dé¢ with R= Bt (B §_ Dm (2.39
i=— w Wi = = =— .
Ra l O UeO biUeO
(2.30 . .
This set of equations has to be supplemented by boundary
L,,L,,L3,L4,L5 are linear operators represented by conditions at the ends of the positive column. According to
Landa[25], we use Dirichlet boundary conditions
d%u
Lu= a&f + U, (2.31) u(0)=u(l)=0,
2 m(0)=m(l)=0, (2.40
+ .
Lo=p a2 T (232 v(0)=0(1)=0.
72m The calculated spatial damping of the eigenfunctions, which
Lsm=D— + 7gm (2.33  lower their amplitudes going from the anode to the cathode
9E? (cf. Sec. lll), yields ana posteriorijustification because the
same spatial behavior is observed in experiments. In confor-
52U mity with assumption5), we neglect the axial diffusion of
Lu=-— 51a—§2_u’ (2.34 metastable atoms, i.e., we €2t 0. In this case the vanish-
ing of m at the boundaries is fulfiled automatically. Those
5 coefficients in Eqs(2.29 and(2.31)—(2.37) that are not de-
Lev=—5,22 9v 87’9” —hw. (2.35  fined in this section are given in the Appendix. The various
> 2582 IE? g€ ! 7,0} ,pk.h are the coefficients in the Taylor series of the

For the quadratic and cubic terms we obtain
N

Y gy

ayv — + u—;

9E? ag 9 9E?
+p1Uv+p2U2+p3um+p4Um+p5m2
p6UU+p7vz+ p8um+pgvm+plom2

5 au Jv v \?
gg2  SoE 9E TP\ oé

_ 7*u v
_251U(9_§2 - 52(U+U)

. . dv 2
+iw+eyi — —huv—h,p°—

29

h,um—hgom

au dv
av—+ﬂu—+uw

23 3
(2.36

and
2 3 2 2
gouMu + o Uv“+ o™+ oM+ osMv

O'5UUZ+ 0'61)3+ 07mv2+ 0'8m2U

vo| 5027 s 5 au du v\ ?
3™ 1V gz ZUU (952 3U(9§ (95 2u &g ’
—hyuv?—hgvi—hsuvm—hgv?m
0

72U %

(2.37
respectively, where

S,=e(yB—B*), 03=26,10,,

(2.38

S1=e(ya—a*),

and

averaged source tern®®, P,,,H. Note that they depend on
the equilibrium state, i.e., they can be calculated as functions
of Io.

lll. LINEAR STABILITY

In the following we study the bifurcations of the equilib-
rium state. Therefore, first of all, the stability of this solution
and its parameter dependence have to be investigated by dis-
cussing the eigenvalue problem

LX10=p1X10. (3.2

p denotes the complex eigenvalue belonging to the vector
eigenfunction

Uio

Myg
X10= . (3.2
UVio

Wig

Also the complex conjugatp* is an eigenvalue with the
eigenfunction Xy,=X3,. The ansatzX;,=Cexp@é+Cy
with complex constant€,C, generates the dispersion rela-
tion

ag®+n—p 73 BA*+ 7, 0
74 76— P 75 0 0
—810°—1  —h; —&0q*+teyq—hy 1 '
1+agq 0 B4 1
(3.3

Equation(3.3) connects the complex eigenvalpe- u+iw

with the complexq. For a givenp there are four values of

g. This enables us to construct the components of the eigen-
vector:
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4 4
Ulozjzl [exp(q;é)+UoK;IC;, Ulo:jgl [Viexp(g;é) +VoK;ICy,
4
4 Wio= 121 [Wjexqué:)‘FWoKJ]C] , (34)
m10=2 [Mexp(q;§) +MoK;]C;,
=1 where
|
B 1 (P m1) (P~ m6) — 7374 o ms(P— ;) 27, _R=RyU,
UO_—1 VO_UO — ) 0o— VYo — ) 0— )
FR+Ra_ 72(P— 16) + 1375 72(P— 16) + 1375 R+R,
2R
510%+ aq; +2)+hy(p— aq®— + ngV, exp(qil)—1
Vj:773( 19 i 9 +2)+hy(p qu 771), M=V - (e gy, K= p(q,l) |
— 13( 8205 — 8405+ h1) +hya(BA} + 72) P— 76 q;

E— (P—76)(h1(P— 71) +272) + 13(2 95— N1 74) + a(7s(P— 71) + 7274)
72(P— 76) + 7375 '

an?ﬁé c?r/npige.xcj (j=1,2,3,4) will be determined by the boundary conditid@s40. The solvability condition for the
homogeneous system gives the secular equation
1+ UK, 1+UgK, 1+UgKs 1+UgK,
e+ UK,  e®'+UgK, B +UK; el +UK,
Vi +VoK, V,+ VoK, V3+VoKs V4 + VoK,
VW + VoK, Voe® + VK, Vae¥'+ VoK, V,e% +VK,

D

=0. (3.5

This equation together with EB.3) fixes the eigenvalues of tion setX{,= (Uyg,019,M10,W10) at the stability boundary is

Eq. (3.1), which, in general, can only be calculated by nu-shown in Fig. 2. Going from the anodkft) to the cathode
merical methods. For the stability investigations the follow-(right) the amplitudes of the components diminish. This is in
ing situation is of particular importance: few eigenvaluesaccordance with the experimental observatipfis Further-
have a vanishing real part, whereas the remaining discrete s&tore, one observes phase shifts between the components.
posseses negative real parts. Graphical methods can be helgiese shifts are responsible for the direction of phase veloc-
ful in realizing this situation. Choosing a path along the -

imaginary axis while going from- o to + o0 and closing this ’ /
path in the right half plane, the corresponding curve in the
D plane leaves the origin on the left-hand side if no eigen-

value with a positive real part exists. Varying the parameters, 1057 | ‘

one can find situations where the curve in bh@lane passes = - “

through the origin. For accurate quantitative results root find- £ 7l “““
ing methods have to be used. In this manner the stability 5 °° 7 "" ”‘
diagram of Fig. 1 is found, where the length of the positive 5 | ‘ﬂ”"””’
columnL and the equilibrium currenit, are considered as oss ] 45”5’5a’5§ﬁ55
parameters. The neutral gas presqugeand the tube radius 27 ‘gg‘g‘gﬁ‘g‘%%g‘%%ﬁ‘g‘%%ﬁ

ro are held constant. We have chospp=200 Pa and
ro=1 cm. The represented curves are the loci of those
points, which possess one eigenvalue with a vanishing real  ©-3 LA R S B S S e R '
part, i.e., these curves mark codimension-one bifurcations. 019 o2 |en§{§5<m) o3 039

At the crossing points of two curves there are codimension-

two bifurcations. The stable side is at lower currents. The FIG. 1. Stability boundaries in parameter space of the modes
bifurcations describe the formation of low-frequency ioniza-18-40. Additional parameters aR,=10> Q, r,=1.0 cm, and
tion waves(so-calledp waves. An example of an eigenfunc- p,=200 Pa.
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o8 (XILY)y=(L"X]Y), 3.7
- where thel , scalar product
0.4 —|
. [
- <x|v>=f XY dé (3.9
. 0
(a) 0.0 —
7 is taken with four-dimensional vectorX! is the transposed
i of the complex conjugate. Now it is a simple task to calcu-
—0.4 —| late the eigenfunctions df'. One obtains
i 4
-0.8 | T L T T T T UIO:Z]_ [exq_qikg)_FUOK]]CJ,
0.0 0.25 0.5 0.75 1.0 .
x/ L 4
~ ~ . ~ o~
3.0 M= _Zl [M;exp(—aF &)+ MoK;IC;,
§ i<
] (3.9
1.5 4 4
i le:jZl [Viexp(—aj €)+VoK|IC;,
(b) 0.0 —_ 4
] W1o= 21 [Wjexp(—qj §) + WoK;]C;,
—1.5 — .
] where
-3.0 T T T [ T T T [ T T T T T 00: US y
0.0 Q.25 0.5 0.75 1.0
x/L .
YRy 7375+ 172(P* — 76)
FIG. 2. Real parts of the components of the eigenfuncigyat 0— %o ha+hy(p* — 76) J
the stability boundary of model=18. The parameters are 75t e
Ry= 10° Q, 1,=0.415 mA,L=0.171 m, and the calculated
eigenfrequencyf=138 s1. (a) Full line, Ref,o); dashed line, Vi-=0 7301 — m2hy
Re(,o). (b) Full line, Refw,g); dashed line, Rex,(). 0— >0 nsha+hy(p* = 7¢)
ity and the mechar_u_sm of |nstab|_I|ty. A temperature rise is ¥y 2R+(R-RyT,
followed by an additional production of charge carriers, i.e., _—
if there is a positive phase shift of the temperature relative to Uog R+R,
the charge density, the wave moves to the cathode. If there is
only a small phase shift between the densities of charge car- _ 7;4(qu?‘2+ 72) + 75(p* — aql*z— 71)
riers and metastable atoms, the instability develops. Al- V= 2 * _ ) * )
though the eigenfunction.4) are the sum of four partial 74(020] "= 840 +Ny) = 75(8107 “+ g +2)
waves, only one dominates. Therefore, a mode nuriioan —~
be defined as the number of maxirfta minima. Likewise, Vi = 73— hgV;
a mean wavelength can be calculated as=L/J. At very J p* — 76 '
low currents a second instability is found, which is charac-
terized by higher frequencies and lower wavelengths. We W.=—V.
plan to study these so-calledwaves in a subsequent paper. ) !
In the calculations of Sec. IV the solution of the adjoint 5 _ Uy exp—q* -1
problem Ki=-V,= !
_ A qf |
Uio
R R ;10 IV. CENTER MANIFOLD REDUCTION
LTY o=p*1Y ith Yi0= 3.6 : : . .
10=P Y10 W Yao Mo 3.8 To discuss the various bifurcations of the homogeneous
- state the basic system has to be reduced to the corresponding
Wio normal form equation. This reduction is only valid for suffi-

_ . _ ciently small deviations from the equilibrium solution. Cen-
is also needed. As usual, the adjdiritof the linear operator  ter manifold reduction and transformation to the normal form
L is defined by the scalar product will be performed in one stef83]. In the case of single Hopf
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bifurcations the local dynamics can be described by the nor- 10.0
mal form equation, which up to third order is given by

. 7.0 .
z=pz+A|z|%z+- - -. 4.2 qi

The complex eigenvalu@, which has been calculated in  , o
Sec. Il, and the third-order nonlinearity constanepend on
the parameters of the system. The calculatiorAofs the
main task in this section. In the case of RgKO

[Re(A)>0] the Hopf bifurcation is supercriticalsubcriti-
cal), i.e., a limit cycle arises on the side where the homoge- il
neous solution is unstablstable in parameter space. This . ;
limit cycle is stable only in the case of supercritical Hopf —2.0 L L L

bifurcations at the first instability. R&) =0 marks a gener- 0.0 0.25 0.5 0.75 1.0
alized Hopf bifurcation, where a fifth-order term in the nor- /L

mal form of Eq.(4.1) has to be added to unfold this singu- FIG. 3. Second-order corrections of the charge-carrier density.

Iarity. This _Codimension-two bifurcation is pla_lnned to be Full line, Re(u,g); dashed liney,,. The parameters are the same as
discussed in a subsequent paper. For the t|me-depenqutFig_ 2.

state vectoX on the center manifold, which is tangential to
the center subspace, we make the following ansatz up to

ordern: numerical calculations or as we have done by analytical
methods. A special solution of E¢4.38 may be found by
i+j=n the ansatz
X(E1)= 2 Xj(6Z(nz*(r) with X;=X .
if7=1
(4.2 4 ‘
Xzo=21 AijeXF[(QiJFqJ')f]JFZl Aiexp(gié) +Aq.

X1o(€) . Xp1(€) are the linear eigenvectofgigenfunctiong ! (4.4

which span the center subspacg;(§) with i+j>1 de-
scribe the deviation of the nonlinear center manifold from
the linear center subspace. The center space coordina
z(7) characterizes the motion on the center manifold. With
view to investigate Hopf bifurcations we claim thatr) ful-
fills Eq. (4.1). To calculateA we insert the expansiof#.2)
into Eq.(2.27. Comparing the coefficients of the terms wit
Z'z*1 gives a sequence of linear systems of ascending ordeF. . _ . .
To first order (+j=1) we obtain the eigenvalue equation 10 third order {+]=3) there exist four inhomogeneous
(3.1) and its conjugate complex, which both were solved aSyStems referring to the coefficients g z°z* ,22°%,2**. To
the stability boundary of the different modes in Sec. II. Toc@lculate the Hopf parametéronly the system correspond-

. 2 . .
second orderi+j=2) three sets of equations have to beind 0 2°Z* has to be discussegf. Eq. (4.1)]. This set of
solved: linear equations has the structure

ith a similar ansatz one obtains a special solution of Eq.
4.3b Generally, these functions do not satisfy the boundary
conditions. Therefore, a special solution of the homogeneous
problem has to be added to obtain the desired solution. An
h example of the second-order correctiang, u;; is shown in
ig. 3.

(L —2i 0)X0= = Np(X10,X10), (4.39 (L i) X2=ATX 15~ N5(X20,X01) =~ No(X11,X10)
—N3(X10,X10,Xo01)- (4.9
LX11= = N2(X10,X01), (4.3b The first term of the inhomogeneity includes the constant

A. Furthermore, there are quadratic and cubic terms. The
L guadratic ones consist of eigenfunctions and second-order
(L+2iw)Xpo=—Na(Xo1,Xo1)- (4.30  functions and their derivatives in the combinations indicated

as arguments dfl,. The cubic term contains only eigenfunc-

The inhomogeneities on the right-hand side consist of eigenjons and their derivatives. The explicit form of these terms
functions and their derivatives, which must be inserted in thgs not given here. It is simple but tedious to write down all

quadratic terms ofN, [cf. Eq. (2.36]. The second-order the terms needed. Apparently, the eigenvectgg is the
functions Xz9,X11,Xo, have to fulfill the boundary condi- ynigue solution of the homogeneous set. Therefore, the sec-
tions (2.40. Furthermore, we haviq,=X5, andX;;=X1;.  ond part of the Fredholm alternative plays a role, i.e., the
In general, 2o and 0, respectively, are not eigenvalues ofinhomogeneity has to be orthogonal with respect to the ei-
the linear operatot_. In this case the inhomogeneous sys-genvectorYq of the adjoint problem. This condition deter-
tems (4.3 have unique solutions, which can be found bymines the value oA by
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I
fOYIo[N2<xzo,xm>+N2<x11,x10>+N3<xlo.xlo.xoo]d§

A= — . (4.6
[idxate

The detailed formula, which shows precisely the dependencsentially better to the experimental resul82]. A correct
of A on all system parameters, actually represents the maicomparison demands the consideration of nonlinear results,
result of this paper. It is too involved to be shown here.i.e., the calculation of the complete regions, where stable
Instead of this, the graphic representation of @g6) willbe  traveling waves are possible.
given in Sec. V. The eigenvectot;y contains an arbitrary For given parameter valugs,,rq,R, the constant in
complex constanK, which also appears in the second-ordergq. (4.1) can be calculated at the stability boundary, which is
correctionsX g, X1, X, asK? KK* K*2. According to EQ.  marked by a characteristic curig=1(L) for a given mode.
(4.6), A includes a factoKK* too. Therefor.e, the solution The sign of the real part o determines the type of the Hopf
z(7) of the normal form of Eq(4.1) comprises the factor i rcation. Figures 4 and 5 show the resuits for two differ-
1K, i.e. the constanK can be eliminated by replacing ont vajyes of the resistance of the outer circuit. Whereas the
z—2z/K. Following the;e_arguments one sees that the Statﬁosition of the border of stability has only a weak depen-
vectorX [c_f._Eq. (4.9]is mdependgnt O.K as It must be_. dence orR,, the type of Hopf bifurcation at a given param-
e e e e s Aol L 5L b changed. The ircatons at e fst 1t
. , <':bility are the most interesting ones because they should be
the origin of the systen(2.27). Until now there has been no . . . )
strong proof, but we hope that we can close this gap in Oupbservable in real or numerlcg! expe.rlmen.ts. Rer1
argumentation. at the boundary only supercritical bifurcations are obs_erved,
whereas foR,=10° () there are both types of bifurcations.
This statement is valid only for the modes represented. At
higherR, the same phenomena will be observed at latger
First of all, the quantitative outcomes of the linear theoryThis can be approximately estimated by the discussion of the
should be compared with experimental results. We haveurrent perturbation=—Eq/(R,l O)IBW dx. In this expres-
found the minima of the stability boundaries at aboutsion larger values oR, can be compensated by a longer
0.4 mA with a weak dependence on the mode number anghtegration length_.
the external resistande,. At these minima the wavelength ~ Going at fixed length to larger values of the current, ad-
and frequency are given approximately by-0.95 cm and ditional modes are generated, but even if the Hopf bifurca-
f=140 s, respectively. On the right branch of the insta- tion is supercritical the developing limit cycle has some un-
bility curves our results are closer to the experimental valuestable directions, i.e., it is unstable. We speculate that there
A~2.9 cm andf~600 st (pp=227 Pa,R,=10° Q)  must be subcritical bifurcations, which stabilize some of the
[8,35. The experimental instability region begins at cycles, so that one or tw@r more are observable in experi-
1o0=3.5 mA for R,=10° Q and at 1,=6.2 mA for ments. Such results were obtained by Tuckerman and Bark-
R,=10° Q [35]. If the diffusion of metastable atoms is ley [34] in the case of stationary solutions of the real
taken into account, the linear calculations approximate essinzburg-Landau equation. Experimental investigations in

V. RESULTS AND DISCUSSION

PR R b bbb,

FIG. 4. Supercriticaltriangles and subcriti-
cal (doty Hopf bifurcations, respectively, at the
stability boundaries of the modes 36—52. The pa-
rameters are Ry= 10 Q, ro=1.0 cm, and
po=200 Pa.

length (m)
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FIG. 5. Supercriticaltriangles and subcriti-
cal (doty Hopf bifurcations, respectively, at the
stability boundaries of the modes 36-52. The pa-
rameters are R,=10° Q, ro=1.0 cm, and
pPo=200 Pa.

0.38 0.45 0.52 0.59 0.66
length (m)

neon show a strong pattern selecti@6], i.e., within the  obtained results. Furthermore, we hope that our calculations

Eckhaus region only one or two modes are stable. This is aill stimulate experimenters to search for supercritical and

considerable difference from the classical Eckhaus resultsubcritical bifurcations and in a second step for the more

where a band of modes is stable at a given parameter set.complicated phenomena connected with codimension-two
There are not only supercritical and subcritical bifurca-bifurcations.

tions but also transitions from one type to the other on a

given bifurcation curve. This codimension-two bifurcation is

a generalized Hopf bifurcation. The unfolding of this singu-

larity yields a stable and an unstable limit cycle on the center We are indebted to Dr. C. Wilke and Professor H.

manifold. But to do this a fifth-order terB|z|*z has to be Deutsch for valuable discussions regarding the physics of

supplemented in Eq4.1). Furthermore, crossings of mode ionization waves. The authors thank H. Leyh for calculating

curves of three different types are observed: there are supdhe stability boundaries of Fig. 1. This work has been sup-

super, sub-sub, and super-sub crossings. Rpr10° ported by the Deutsche Forschungsgemeinschaft through

these phenomena are situated at the stability boundary, i.e‘Sonderforschungsbereich 198: Kinetik Partiell lonisierter

they should be observable in experiments. To unfold thes@lasmen.”

codimension-two bifurcations the calculation of further coef-

ficients in the normal form
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APPENDIX

The following collision rates and transport coefficients for
z,=p1z1+AL|z4]%2,+ By z4 |22+ - - -, a low-pressure neon discharge have been tabulated by
Monke[37] and Frankd38]:

. 5.3694
Zy= PaZy+ Ag| 25|25+ By| 2| %2, + - - - Zp.=6.930x 10_5(p—) cms Y,
0
is needed. Possibly, fifth-order terms have to be included. E | 0.0693
Using periodic boundary conditions, we managed to unfold Zyeo=1.346% 10—7(_) cmd s,
this codimension-two singularity in most ca§&g)]. Po

The results discussed in this paper are only a first step for
the description of the pattern formation in a neon glow dis-
charge. To obtain a better knowledge of the main bifurca- 7,=3.4x10"1° cm® 571,
tions further comprehensive investigations are necessary.
Codimension-two bifurcations, especially at the stability
b_og_ndary, shoulc_i be discussed to understand the_: various pos- Zom=5.294< 10" 13 cm? 571,
sibilities of passing from stable to unstable regions. In the
limit of large length an approximation by means of model
equations of Ginzburg-Landau type should make it possible s 1
to go some steps into the instability region and to find and Zmg=3.86X1071° e’ 577,
understand mild forms of turbulent motions. Numerical cal-
culations with the full set of equations and with Ginzburg-
Landau equations are well on the way to completing the Zme=2.5X10"7 cm® s
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De

E 0.0751
oo

6.6574X (— V,
0

Pei=3.4413< 10~ 11( —] vemds?

0.184
po)

E ) 2.1998

Poa=1.083x 106( o Vem® s
0

Vemd st

Pow = 1.454X 102( —

8.824
po)

8.912
Py=4.362x 102(p—) Vem® st
0

Pae = 6.6335K 107( — Vem® st

)0.0693
Po

be=8.333x10° cn? V! st
bj=2.077x10° cn? V™1 571
Dn,=96.32 cnf s %
To obtain the coefficients and rates in the announced units
the field strengttE has to be inserted in V/cm and the gas
pressureg, in units of Pasca(Pg.

Here we give the definitions of the coefficients that have
been introduced in Eq$2.29 and(2.31)—(2.37):

_ No dP 1
1= ak P_oa_N o_ )
_1),
0

Mo aP“
N3—AK 5 31 y
Po oM |

Ug P
Py U,

o= aK

5 No 9P,
—xp—oZm
T4 Prg N |
SUEO aP—m
— D=2 ,
75 P g Vel
—[ Mg 9P,
7]6—KD P_moa_M 0—1),
P1 Po oNaUg|, )’

uZ, aZT
p2=aK55— ——I|
2Pg gu2 0

po=«D

0= aK

g1=aKk

O3=aK

O4=aK

os=kD

O¢

7=
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_ NoMg #*P
Pe= TP, NaM | !
_ MoUg 7P
R TV F TV

_ =NgUeo 9°Pp,
Pe= KB T 9UNaU,
2
e D Ugo #*Pp
! 2Pmo ﬂUé
_NoM, 7P,

Pe=KD 5= oM

_MoUg 2P,

5 M2 2P,
P1m P e aM2

Pmo dMaU,

0

NoMoUey 3P

0

0

NoU2, &°P
2Py gNgU?2

O2= K UgO (931
2= ~~ . A L]
6Py gu? 0
MoUZ, P
2Py gM U2

MZUg %P
2Py 9M?9U,

_NoU%, &P,
2Pmo gNoU2
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0
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HOPF BIFURCATIONS IN BALANCE EQUATIONS OF ...

2129

?H
MU,

MU
h5= IO-IeO
0

MoUZ, @°H
2Ho aMaU2

he=

where

2 2
AU

K= .
2 2
ro Eo

The derivatives of the averaged source tefmB,, ,H are to
be calculated at equilibrium.
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