
PHYSICAL REVIEW E AUGUST 1997VOLUME 56, NUMBER 2
Magnetic flux tube tunneling
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We present numerical simulations of the collision and subsequent interaction oforthogonalmagnetic flux
tubes. The simulations were carried out using a parallelized spectral algorithm for compressible magnetohy-
drodynamics. It is found that, under a wide range of conditions, the flux tubes can ‘‘tunnel’’ through each
other, a behavior not previously seen in studies of either vortex tube or magnetic flux tube interactions. Two
conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line
pitch @1, and the Lundquist number must be somewhat large,>2880. An examination of magnetic field lines
suggests that tunneling is due to a double-reconnection mechanism. Initially orthogonal field lines reconnect at
two specific locations, exchange interacting sections, and ‘‘pass’’ through each other. The implications of these
results for solar and space plasmas are discussed.@S1063-651X~97!02008-4#

PACS number~s!: 52.30.Jb, 52.55.Dy, 52.65.Kj, 95.30.Qd
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INTRODUCTION

Models of magnetic reconnection in the Sun’s interior a
atmosphere usually begin with a purely two-dimensional
ometry. However, the magnetic field at the solar photosph
is observed to be organized into isolated flux bundles@1#, a
structure which must continue into the corona. In additi
photospheric motions are likely to ‘‘wind up’’ this magnet
field, producing twisted flux tubes@2,3#. Interaction between
twisted flux tubes has been proposed as a mechanism
coronal heating@4–6# and might be the origin of the fine
scale temporal variability of hard x-ray and microwave em
sion observed in two-ribbon flares@7,8#. Flux tubes also are
widely believed to be the dominant magnetic structure in
convection zone@9#. Coronal mass ejections have been ide
tified in the interplanetary medium as flux ropes@10#, which
are thought to be essential ingredients for reconnection a
magnetopause@11# and magnetotail@12#. Therefore, a key
issue for understanding many important phenomena in s
and space physics is the nature of flux tube interaction.

We are using numerical simulations to investigate the
sic physics of magnetic flux tube collision and reconnecti
Our explicit, Fourier collocation algorithm, which is de
scribed in detail elsewhere@13,14#, solves the three-
dimensional ~3D!, compressible, dissipative magnetoflu
equations in a dimensionless form@14#. The geometry used
is that of a triply periodic cube with sides equal to 2p, mak-
ing a Fourier spectral method the optimal choice for spa
discretization. The results described here were compute
a parallelized version of our code implemented on the 2
processor NRL TMC CM5E@15#. A typical resolution for
the runs in this paper is 1283 Fourier modes, requiring ap
proximately 5 s per time step and 1.05 GB of parall
memory.

The initial conditions consist of two orthogonal flux tub
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of finite radiusR, and a flow field which drives them to
gether. Each of the tubes is initialized using the Gold-Ho
model of a uniformly twisted, cylindrical, force-free mag
netic field @B5(Bx ,By ,Bz)# @16#, viz.,

Bx5
B0br sinf

11b2r 2
; By52

B0br cosf

11b2r 2
; Bz52

B0

11b2r 2
,

~1!

whereB054, andrand f are the radial and cylindrical co
ordinates of the flux tube. The parameterb measures the field
line pitch, i.e.,b5df/dz. In order to maintain ideal equilib-
rium, the uniform gas pressure (p) outside the tube is set to
p5p012B0

2/(11b2R2), wherep0 is the gas pressure insid
the tube~520/3!, andR is the flux tube radius~511p/48!.
To ameliorate the Gibbs phenomenon due to the Fourier
ries discretization of the sharp cutoff atr 5R, we pass these
initial conditions through a raised cosine filter@17#. The ini-
tial density is uniform~r51!. The values forB0 andp0 yield
a plasmab50.42 at the flux tube axis.

Our simulation box consists of a cube with the dime
sions: 0<x<2p, 0<y<2p, 0<z<2p. This cube is shown
in Fig. 1. One tube is initially horizontal with its central ax
located at (x55p/4, z5p), the other is vertical with its
axis located at (x53p/4, y53p/4) in order to break the
symmetry.@We have performed a symmetric simulation wi
the second flux tube centered at (x53p/4, y5p) which
also exhibits tunneling.# We note from these numbers th
the flux tubes are separated initially by a finite gap of fie
free plasma of widthp/24.

There are four physically distinct relative orientations f
the flux tubes, depending on the choice of the axial and
muthal magnetic field in each of the tubes. In all our sim
2094 © 1997 The American Physical Society
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56 2095MAGNETIC FLUX TUBE TUNNELING
FIG. 1. ~Color!. Structure of the magnetic field att57.8. The simulation cube is outlined by black lines and the bottom grid~at z50! is
represented by the light gray lines~only every 8th grid line is plotted!. The viewpoint has been chosen so that thez axis is in the vertical
direction,x is to the right andy is into the figure. Note that the viewpoint is inside the simulation box, the origin~0,0,0! is located at the
bottom left-hand corner slightly behind the viewer and, hence, is not visible in the figure. Five contours ofuBu from uBumax to 0.75uBumax are
plotted on the plane nearest the viewery50, and on bottom grid. Five black~green! field lines indicate the central region of the vertic
~horizontal! flux tube. These field lines originate from the center and the corners of a 434 grid-point square that is centered on the point
uBumax. Also shown is a field line~red! at the boundary of the vertical tube and two windings of a field line~blue! at the boundary of the
horizontal tube.
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lations the twist and orientation are chosen so as to maxim
the possibility of reconnection—the axial~azimuthal! field of
the horizontal tube is directed opposite to the azimut
~axial! field of the vertical tube in the collision region. It i
evident in Fig. 1 that in the region between the flux tubes,
blue azimuthal field line of the horizontal tube is direct
upwards, whereas the black axial field line of the verti
tube is directed downward. Similarly, the red azimuthal fie
line of the vertical tube is directed opposite to the green a
line of the horizontal tube.

The two flux tubes are driven together by an initial velo
ity field given by
ze

l

e

l

l

-

v~x,y,z,t50!5Av@2sin x~cosy1cosz!êx

1cosx~sin yêy1sin zêz!#. ~2!

The velocity amplitude is chosen to be 2.5% of the Alfv´n
speed at tube center, i.e.,Av50.1, which is equivalent to
4.25% of the sound speed outside the tubes. It should
emphasized that we do not impose any subsequent drive
the system, so that the flux tubes evolve freely. Uniform a
isotropic resistivity~h! and viscosity~m! are used, and are
chosen so that the resistive and viscous Lundquist num
(S5VAL0 /h andSv5VAL0 /m) are equal. In the above defi
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2096 56R. B. DAHLBURG, S. K. ANTIOCHOS, AND D. NORTON
nitions,VA is the initial Alfvén speed at the flux tube cente
(r 50) and L0 is a characteristic distance set equal to
initial flux tube radius. The two parameters that are varied
our system are the field line pitch or twistb, and the Lun-
dquist numberS. Low and high twist (b51and 10!, and low
and high Lundquist number (S5576 and 2880! runs have
been performed.

RESULTS

Since the collision of orthogonal flux tubes is inheren
3D and nonlinear, there are no analytic solutions to this pr
lem and, to our knowledge, this paper presents the first
merical simulations. From simulations of antiparallel ma
netic flux tubes @14# and of orthogonal vortex tube
interactions@18#, we would expect the flux tubes to reco
nect readily. The well-known ‘‘slow’’ reconnection mode
such as Sweet-Parker@9# and the tearing mode@7# yield a
maximum reconnection velocityVr;S21/2VA . For our low
Lundquist number case (S5576), we find that Vr
50.042VA. In this caseVr exceeds the initial collision ve
locity so that the reconnection should easily be able to k
up with the motions. For the high Lundquist number ca
Vr50.019VA and Vr is slightly less than the collision ve
locity. Of course, if ‘‘fast’’ Petschek reconnection@19# @Vr
;(lnS)VA# occurs, then there should be no difficulty for th
field lines to reconnect as fast as they are pushed togeth

The arguments above lead us to conclude that for the
Lundquist number case, reconnection should dominate
collision process, so that two initially straight orthogon
tubes exchange halves to form two tubes bent at right ang
The bent tubes then straighten out and, thereby, decreas
total magnetic energy. In contrast to previous results, h
ever, we find that for low twist, reconnection between t
flux tubes is not substantial, even for low Lundquist numb
@20#. It should be emphasized that a simulation with identi
parameters but with the flux tubesantiparallel resulted in the
rapid merging of the tubes@21#. The evolution fororthogo-
nal tubes, on the other hand, is primarily an elastic collis
with little magnetic energy transfer to the plasma. This res
is important to models of solar activity, because coronal fl
tubes are believed to have low twist. Our results demonst
that for small collision velocities, flux tube reconnection b
tween initially orthogonal tubes is much more difficult
accomplish than is generally assumed. Unlike the situatio
a neutral sheet, for example, reconnection does not o
spontaneously in orthogonal flux tubes. Of course, if the fl
tubes are driven together by a continuously imposed ve
ity, they would necessarily reconnect. Also, if the initial co
lision velocity is much higher than the value we assumed,
reconnection would be more effective.

For the same initial velocity, we then attempted to obt
more reconnection by increasing the twist of the flux tubes
b510 and by using a low Lundquist number (S5576).
There are, at least, two reasons for expecting enhance
connection with higher twist. First, the magnetic energy
the Gold-Hoyle flux tubes in our model, see Eq.~1!, de-
creases with larger twist. Hence, for the same collision
locity the deformation of the flux tubes increases. We n
from Eq. ~1! that at the flux tube axis the magnetic fie
strength is equal toB0 , independent of the twist, but at th
e
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tube boundaryBR5B0 /A11b2R2. Thus the field strength a
the boundary varies considerably withb. We find that
BR /B050.811 for b51 andBR /B050.138 for b510. We
can estimate the deformation of the flux tubes by equa
the impulse exerted by the magnetic pressure at the flux
boundary to the initial momentum of the tube. The mome
tum is given by r(pR2L)Vc , where L52p is the tube
length andVc is the average collision velocity of the tub
plasma. The impulse is given by the force exerted by
magnetic field of one flux tube on the other tube multipli
by the collision timetc . The force is given byABR

2/8p,
whereA is the area of contact of the two tubes. Let us a
sume that the collision causes a flattening of the tube so
the radius is decreased by a depthd. Then tc'd/Vc , and
A5p@R22(R2d)2#'2Rd, where we assume that the co
tact area is circular and the deformation is small. Equat
the momentum change to the impulse yields the follow
relation:

d

R
5

B0

BR

Vc

VA
S L

RD 1/2

. ~3!

We noted above that the maximum initial velocity is 2.5
VA ; hence taking the average collision velocityV
'0.01VA , we find from Eq.~3! thatd/R50.037 for the low
twist case andd/R50.22 for the high twist case. These r
sults indicate that the tubes in the low twist case will unde
a minor deformation as a result of collision, but in the hi
twist case the deformation will be substantial, in fact, t
large for the approximations used in derivingd to remain
valid. Therefore, reconnection should be much more p
nounced in the high twist case.

Another reason for expecting enhanced reconnection
the high twist case is the coalescence instability. It is instr
tive to examine field line reconnection for the limiting cas
of zero twist, so that all the field lines are initially straigh
and for infinite twist, so that all the field lines are close
circles. As is sketched in Fig. 2~a!, we expect reconnection
between a straight vertical and a straight horizontal field l
to result in two new field lines each of which is vertic
along half its length and horizonal along the other ha
These bent field lines will simply pull away from each oth
due to the magnetic tension at the bend and, thereby, cr
the so-called reconnection jets. Depending on how quic
the field lines move away, they may not hinder any sub
quent reconnection at the collision point; on the other ha
they will not enhance it, either.

Now consider the reconnection of two circular field line
one lying in a horizontal plane and the other in a vertic
plane, Fig. 2~b!. Reconnection results in a single new clos
loop that is initially half vertical and half horizontal. In thi
case, magnetic tension produces three distinct effects. As
fore, reconnection jets form due to magnetic tension at
reconnection site. Another effect is that the new loop w
tend to contract to a circular shape and thereby decreas
length. This is also analogous to the previous case. The
connected line in 2~b! will tend to recover its original shape
by ‘‘circularizing,’’ just as the reconnected lines in 2~a! will
try to straighten out again. But now the contraction of t
reconnected loop will cause more field lines to
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56 2097MAGNETIC FLUX TUBE TUNNELING
squeezed into the collision region and, thereby, will enha
subsequent reconnection. This process is simply the w
known coalescence instability. Increasing the twist of
flux tubes will increase the presence of the coalescence
stability and will, therefore, enhance reconnection.

The third effect is not present in the straight field lin
case, and is due to the fact that the reconnected line in 2~b! is

FIG. 2. ~a! An illustration of two initially straight, orthogona
field lines that have just reconnected.~b! Two initially circular,
orthogonal field lines that have just reconnected.
e
ll-
e
n-

truly 3D and does not lie on a plane. One half is in a verti
plane and the other horizontal. Since the lowest energy s
for a closed flux loop is a circle, the two halves will rotate
as to bring the loop onto a plane that is inclined at 45°
both the horizontal and vertical. The rotational motion c
clearly be seen in the results presented below. Reconne
outer field lines exert a torque on the whole flux tube, ca
ing both tubes to rotate by 45° and to line up in the collisi
region. To our knowledge, this rotation is a new effect th
only appears in configurations like ours which involve no
planar 3D flux tubes.

We find that the high-b, low-S case does, indeed, underg
much more reconnection than the low-b case. In fact, the
evolution in this case closely resembles the standard vor
tube reconnection picture described above—the initia
straight tubes exchange halves to form two bent tu
@15,20#. We conclude that for sufficiently high twist and low
Lundquist numbers, orthogonal flux tubes reconnect co
pletely, just like antiparallel ones.

Since low Lundquist numbers generally are not relev
to space plasmas, however, we then considered the effe
increasingS.We speculated that, for sufficiently highS, the
reconnection rate would decrease to the point that the tu
behave like the low twist case and simply bounce off ea
other. The actual evolution was a complete surprise—
S52880 the tubes apparently pass right through each ot

We do not yet have a rigorous theory for this tunneli
phenomenon, but it is straightforward to see how tunnel
would occur if each field line undergoes a double reconn
tion process. Consider the two lines sketched in Fig. 3~a!.
The horizontal line is in the foreground and corresponds
an outer field line of the horizontal tube in our simulatio
and the vertical line is in the background. Note that in ad
tion to the bottom horizontal grid surface, we also show
two vertical side grid surfaces aty50 andy52p. Suppose
that as a result of collision, the two lines are pressed aga
each other and that they reconnect twice, at diagonally
posite locations as shown in Fig. 3~b!. By following any one
nt of
FIG. 3. ~a! An illustration of two helical, orthogonal field lines before reconnection. The horizontal line is in the foreground, in fro
the vertical line.~b! An illustration of the same field lines after two, diagonally opposite reconnections.
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FIG. 4. ~Color!. A reconnected field line~red! at t516.6, that begins as a vertical twisted line, but then bends to become a horizonta
All the other objects in the scene, including the viewpoint, have been selected as in Fig. 1. Note that the central field lines are beg
exhibit a helical topology.
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of the reconnected field lines, it can be seen that due to
reconnections, the tubes have exchanged their central
tions so that now the vertical line passes in front of the ho
zontal one.

A close inspection of the field line connectivity in ou
numerical simulations supports this double reconnec
model as the explanation for the tunneling. Figure 1 sho
two representative outer field lines~red and blue! before re-
connection. Figure 4 shows the effect of the reconnection
two such lines~for clarity only one of the reconnected fiel
lines is shown!. The lines exchange halves to form two righ
angle lines, which are wrapped around both flux tubes
tend to pull the tubes together via the coalescence instab
Figure 5 shows the effects of the reconnection of two rig
angle lines~again only one line is shown!. We note that the
vertical field line passesaround the horizontal tube. A cor-
he
ec-
i-
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of
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responding horizontal field line passes around the vert
tube. Such field lines are now free to continue on their init
trajectory without further interaction. This is the bas
mechanism of magnetic tunneling: two reconnections at
proximately fixed, diagonally opposite points in the collisio
region allow orthogonal field lines to exchange colliding se
tions and thereby pass through each other, as show
Fig. 6.

The tunneling is most clearly seen in Fig. 7, which sho
isosurfaces of the magnetic field magnitude at six times d
ing the run. The isosurfaces are taken at half the maxim
field magnitude valueat each time. The viewpoint is along
the x direction, so that the vertical flux tube is initially be
hind the horizontal flux tube. The effect of the first reco
nections becomes clear as the reconnected field lines ex
torque on the tubes, as discussed above, causing the
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56 2099MAGNETIC FLUX TUBE TUNNELING
FIG. 5. ~Color!. A doubly reconnected field line~red! at t521.1, that begins and ends as a vertical twisted line, but also wraps ar
the horizontal central line. All the other objects in the scene, including the viewpoint, have been selected as in Fig. 1. Note that th
field lines are almost intersecting.
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rotate and become parallel in the interacting region. Initia
the singly reconnected field lines dominate, and the tu
begin to exchange halves. Then the doubly reconnected
dominates, with the central field lines pulling along the r
of the field lines. At the final time, the vertical tube is now
front of the horizontal tube, in complete contrast to the init
state.

The double reconnection explanation for the tunnel
clearly requires a specific geometry for the reconnection
gion, in particular, the existence of two well-defined loc
tions, where reconnection occurs or at least is strongly p
ferred. There are reasons to expect that such locations w
arise naturally during the collision of the flux tubes in o
model. Two areas can occur in the collision region where
opposing field lines from the two flux tubes are near antip
allel. It is evident from Fig. 1 that at the top of the horizon
,
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e
r-
l

tube, the blue field is oriented primarily toward the positi
x direction, whereas at the near side of the vertical tube,
red field line is oriented toward the negativex direction. If
the flux tubes wrap around each other sufficiently as th
collide, one null area will be produced at the near upp
corner of the collision region, along with a correspondi
one in the far lower corner. It is widely believed that rap
reconnection is favored at magnetic null points@22#. In our
case, it is not clear whether the field vanishes at isola
points in the collision region, or is simply much weaker
certain small areas. There is also the complication that s
the initial field is confined to a finite volume of our system
null-field volumes are present throughout the simulation,
that conclusions based on analysis of isolated 3D null po
may not apply.

We show in Fig. 8 one isosurface of strong electric c
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FIG. 6. ~Color!. Structure of the magnetic field at the end of the simulation (t582.5!, showing that the vertical flux tube now passes
the right of the horizontal one, and that the field lines have acquired a much more complex internal pattern than in Fig. 1. All the o
the scene, including the viewpoint, have been selected as in Fig. 1.
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rent density at a time during the simulation when reconn
tion is most dominant. Note that the current is concentra
in the collision region between the two flux tubes, and ha
structure that runs from the upper corner to the lower corn
in agreement with the expected structure of the null are
Reconnection should proceed faster at these areas if fo
other reason than that the magnitude of the magnetic fi
component that changes sign is maximum here. Figur
again illustrates the difference between a truly 3D geome
and the usual configurations, such as 2D current sheet
the 2D case the vanishing field component is constant o
the reconnection region, whereas in a highly 3D curr
sheet the reconnection rate may vary strongly across
sheet, which could change the form of the whole reconn
tion process. This explains the dramatic difference betw
the evolution seen in the lowS and highS cases. For high
S the reconnection is confined to two spots, whereas for
-
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S multiple reconnection occurs throughout the collision
gion so that the field can drop down to the lower-ener
bent flux tube state.

DISCUSSION

Several interesting issues and unanswered questions
been raised by our results. One important finding, eviden
Figs. 6 and 7, is that the postreconnection flux tubes h
very complex internal structure. In the initial Gold-Hoy
model, all field lines lie on well-defined cylindrical flux sur
faces~Fig. 1!, in fact, the Gold-Hoyle field is actually only
one dimensional. Some of the initial twist of the flux tubes
lost during the double reconnection process—at least
winding. Since for highS magnetic helicity is expected to b
approximately conserved@23#, the helicity in the twist must
transfer to internal wrappings of field lines about each oth
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FIG. 7. ~Color!. Isosurfaces ofuBuat several times during the run. The left upper corner shows the result fort57.8. To the right are the
results for t521.1 and 30.6. The left lower corner shows the result fort540.8. To its right are the results fort552.2 and 64.2. The
isosurfaces are chosen to equaluBumax/2 at each time.
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We conclude that, as in the case of 2.5D studies@24#, recon-
nection tends to produce a final field topology that is mu
more filamentary than the initial one. These results im
that magnetic flux tubes which erupt through the solar s
face also are likely to have a fine-scale internal structu
which has important implications for coronal heating a
activity @25#.

An intriguing aspect of tunneling is the process by whi
the central field lines near the tube axis pass through e
other. The double reconnection mechanism described ab
would seem to be inapplicable to them, since these field li
have vanishing twist. In fact, they also undergo a dou
reconnection similar to the highly twisted lines. Figure
shows that, during the height of the reconnection phase,
flux tubes are rotated so that they run diagonally through
reconnection sites. This rotation is due to field lines such
those in Fig. 4, which have already tunneled and exe
torque on the remaining field. The central field lines beco
parallel in the interaction region and are pulled toward
two reconnection regions by the coalescence effect, wh
they also reconnect and exchange central portions.

It should be noted that, for the high twist case, the ene
in the azimuthal magnetic field 2p*Bf

2 r dr , is over three
times the axial magnetic field energy. This is another rea
for expecting tunneling to require a large twist. Unless
twist component dominates, it cannot deform the axial co
ponent sufficiently for that component also to under
double reconnection. Due to the high twist, the kink instab
ity also may be playing a role in the rotation of the ax
magnetic field and its subsequent tunneling. Since the G
Hoyle model is metastable to first order, the kink mo
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growth rate is small@26#, but it may be contributing to the
helical deformation evident in Figs. 4–6. It would be instru
tive to repeat our simulations with a variety of initial flu
tubes that have different distributions of axial and azimut
field.

An interesting point to note is that the tunneling proce
may be nonreversible, because tubes prefer to tunnel in
direction only. This can be seen from Fig. 1. As stated in
Introduction, the tubes are positioned so as to maximize
connection. On the side where they face each other the
muthal component of the horizontal tube opposes the lon
tudinal component of the vertical tube and vice ver
Suppose the horizontal tube moves to the left and tunn
through, ending up to the left of the vertical tube. The re
tive orientation of the tubes is now different. If they collid
again, the azimuthal component of the horizontal now re
forces the vertical longitudinal component. It may be that
this case the tubes cannot tunnel, but simply bounce. If s
would imply that orthogonal flux tubes tend to have a p
ferred relative orientation. Simulations of collisions betwe
flux tubes of different orientation are clearly needed in ord
to resolve this issue.

Another unanswered question is the importance of
symmetries in the system. The initial flux tubes are exac
orthogonal and have exactly the same flux and twist.
believe that the tunneling process described above sh
still occur for nonorthogonal, but large inclination, flux tub
and with differing magnetic structure, but this remains to
verified.

In the context of solar and space plasmas, the most
portant issue is the range of applicability of our results to
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FIG. 8. ~Color!. Structure of the electric current density and magnetic field near the time of maximum flux tube interaction,t535.4.
Shown in red is the current magnitude isosurface at 75% of maximum. The field lines in the scene have been selected as in Fig.
better viewing of the current structure, the scene has been rotated by 90° from that in Fig. 1, so thatx is into the figure and the viewer is
directly behind the collision region. Note that the tubes are completely entangled at this time and that the current structure runs
upper right to lower left diagonal.
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very large Lundquist number regime. We have two m
conclusions—for modest collision velocities, low twist o
thogonal tubes bounce and high twist tubes tunnel. The
result should be even more valid at higherS; hence, flux tube
reconnection is unlikely to be common in the solar coro
unless the tubes are driven together, or are nearly antip
lel. We believe that the second result also holds for hig
S because as long as the expected deformation is large
rate of reconnection depends weakly onS, but this is only a
conjecture.

It is clear that the work described above has produ
numerous questions requiring further numerical and theo
ical work. It may even be possible to reproduce some of
results in the laboratory. We look forward to many futu
n

st

a
al-
r

the

d
t-
e

investigations on this curious phenomenon of flux tube t
neling.
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