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Internal anisotropy of collision cascades

F. Kur* and G. Bardos
Department of Theoretical Physics, Kossuth Lajos University, P.O. Box 5, H-4010 Debrecen, Hungary
(Received 1 April 199y

It is shown that for collision cascades the global fractal dimension cannot give an adequate description of the
geometrical structure because it is insensitive to the internal anisotropy of the object arising from the direc-
tionality of cascade branches. In order to give a more elaborate description of the cascade, we introduce an
angular correlation function, which takes into account the direction of the local growth of the branches of the
cascades. It is demonstrated that the angular correlation function gives a quantitative description of the direc-
tionality and the interrelation of branches of the cascade. The power law decay of the angular correlation is
evidenced and characterized by an exporg@aind an angular correlation leng®y, different from the radius
of gyration R. It is demonstrated that the overlapping of subcascades has a strong effect on the angular
correlation.[S1063-651X97)14708-0

PACS numbd(s): 61.43.Hv, 47.53tn, 47.54+r

I. MOTIVATIONS crack propagation in the solid from the irradiated zohé].
In the case of diffusion, for example, the correlation of
Collision cascades develop in condensed matter as a comacancies due to the directionality of the cascade branches
sequence of irradiation with energetic beams of particlescan enhance the diffusion process in the irradiated zone. In-
The bombarding particles transfer their kinetic energy in aSide the cascade the path of the displaced atoms can be
series of collisions with the target atoms and the energizedjiewed as a conduit, forming a labyrinth in the damaged
recoiling atoms generate further recoils in their own slowing-material [14]. Thus, we are led to de Gennes’s model of
down process. The result of this energy sharing process is ‘dermite diffusion,” when the diffusing particlegtermites
collision cascade. The cascade can also be considered agnget the conduit labyrinth, they diffuse much more quickly
far-from equilibrium process leading to structure formationand over much greater distances than they do in the bulk
in the solid target. Recently the geometrical structure of col{18].
lision cascades has been analyzed by means of analytical Further motivations to study the directionality of ion
approaches and Monte Carlo simulations concentrating offacks in a solid comes from the earlier studies of system of
the possible fractal and multifractal aspects. These investigaarticles interacting via elastic collisions. A system where
tions have been extended to the study of the self-similaritynany particles scatter, interacting elastically with each other,
properties of the cascad@—3], to the determination of its may be regarded as a model of gas. In such a system each
fractal dimension and multifractal spectra for different inter-particle is scattered successively, so it walks almost ran-
action potentiald4—9], and they gave an insight into the domly. Although the velocity autocorrelation of such a par-
cascade-subcascade transition and into the spike creatidile was believed to decay exponentially, Alder and Wain-
[1,2,7.9. wright discovered a long time tail by computer simulation
Far-from equilibrium processes often create complex geok19,20:
metrical structures which exhibit fractal properties character- _
ized by the fractal dimensio® [10]. However, the fractal (v(t)-0(0))~t~92  d=2 (1)
dimension is a global property of a cluster of particles, it
does not provide an insight into the structural details of thewhered is the dimension of the embedding space. Long time
object. It has been demonstrated in the case of diffusion limtails of random walks are also found in a much simpler sys-
ited aggregatior{DLA) that large branching structures may tem called the Lorentz gas model where a classical particle is
be internally anisotropic. This anisotropy results in a tangenscattered elastically off randomly located fix scatterérhis
tial correlation different from the radial oné1] and it shows model was originally introduced as a model of electron mo-
up in the behavior of the three point correlation function astion in a metal. In the case where the scatterers form a
well [12]. regular lattice, it is proven that the velocity autocorrelation
The internal structure of collision cascades, the correlahas exponential decay. On the contrary, if the scatterers are
tion of the vacancies, the interrelation of branches, and thdistributed at random, forming a fractal with dimensibn
directionality of ion tracks can have an important impact onthere is a long time tail for the negative values of the scalar
several physical processes; e.g., ion-beam miklidj, radia-  product of the velocitie§21]
tion enhanced diffusiofl3,14], electric and optical proper-
ties of irradiated polymeric materia[45,16], the develop- (v(t)-v(0))~ —t~[d-D2I+D), 2)
ment of mechanical stress due to ion bombardment, and
Hence the memory effect in the directionality seems to be a
common feature of the motion of particles scattered ran-
*Electronic address: feri@dtp.atomki.hu domly.
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Based on the above motivations, in the present paper wiength of the cascade is the radius of gyrat®rdefined as
want to obtain a more elaborate picture of collision cascadethe average distance of the particles
gaining information about the internal branching morphol-
ogy. The computer simulations have the advantage that one 1 Q
can monitor such quantities, which are hard to measure or RZ=—> |Fi—Fj|2~ —df drrd*ic(r). (4)
are not measurable, but they can help the understanding of a N2 77 N
physical process. In the study of ion-solid interaction in cer-
tain cases not only the distribution of the vacancies is ofC(r,R) is normalized by the total number of particlis
interest but even the path of the moving particles. Obviously,
the study of the ions’s paths includes the vacancies as well,
the position of the vacancies are the branching points in the N=QdJ drrd=1C(r). 5)
cascade tree. Thus, in the present study, not only the vacan-
cies but all the collisional points are included in the analysis . . . . .
of the cascade regardless of the vacancy creation that cdipsuming that:(r,R) ISa homogeneous function of its vari-
easily be done by means of computer simulations. We per20!€s results in the scaling form
formed Monte Carlo simulations of self-ion collision cas-
cades in two and three dimensions. For the three-dimensional
(3D) simulations the scattering cross sectiodo
=C(m)E"™T 1 MdT belonging to the inverse power law
potential V(r)~r ~*M was applied. Her€& is the energy of whereg(x) is constant forx<1 andg(x)~e * for x>1.
the bombarding particleT is the energy transferred to the The functiong(x) is called a scaling function and the expo-
target atom in the scattering process, amdienotes the pa- nentq is the scaling exponent. The fractal dimensrof
rameter of the interaction potentiakin<1. In two dimen-  the object is defined through the behavior of the total number
sions (2D) we established a toy model with the scatteringof particlesN as a function of the radius of gyratid, i.e.,
cross section do=KE™™?T"+"™2dT [7]. A two- N~RP. From Egs.(5) and (6) it follows thata=d—D. If
dimensional cascade does not have experimental relevanggy (6) provides a valid description of the geometric scaling
but it can help to reveal the role of the embedding dimensionygperties then plots of*C(r,R) vs r/R for structures of
d in the formation of the cascade structure. For further deyjifferent sizes will fall on a common cunjen the scaling
tails about computer simulation of ion-solid interaction seefynctiong(x)]. This data collapse provides a reliable way of
also Ref[22]. _ measuring the scaling exponemnt(and thus the fractal di-

In the following, at first the structure of cascades generyensionD) by varying the value of until the best collapse
ated by Monte Carlo simulations is analyzed in terms of th&g optained. Representative examples of the density-density
de_nS|ty—den_S|ty'co'rrelanon function. Then an .angtjlar COMe¢orrelation function and its data collapse analysis can be seen
lation function is introduced based on the direction of the;, Figs. 1 and 2 for the 2D and 3D models. The excellent
local growth of the cascade branches. It is shown that theg|japse obtained with ten different system sizes proves the

angular.corr.elatic.)n function .gives a quantitative descriptior\,a"dity of the scaling ansatz of E@6) for both model sys-
of the directionality and the interrelation of branches of casygmg.

cades, furthermore, the role of the intersection of branches is However, this way of description based 6fr,R) cannot

enlightened. reveal anything about the possible internal anisotropy be-
cause the density-density correlation function is insensitive
Il. CORRELATION FUNCTIONS to the structural details. In order to obtain information about

. ) the branching structure we have to take into account some
The usual way of studying the structure of an object cOom-ynamical features of the growth of the cascade. For this

posed ofN particles in thed-dimensional embedding space rpose we assign to each particle, i.e., to each point of the
is in terms of the density-density correlation functiofr) - . L > . > - _
collision, with positionr; the unit vectorp(r;) of the linear

momentum of the scattered particle. If there is vacancy cre-
ation in a collision the unit vector of the recoiled particle
appears at the position of its first collision. With this pre-
scription one, and only one, unit vector is assigned to each

point of the object studied. Thg(r;) vector characterizes the

wherep(F) is 1 if there is particle at and zero otherwise. In =" ;
our case these particles are the points where collisions oc(:j—Irectlon of the local growth of the corresponding branch of

curred in the target material during the evolution of the casthe cascade tree at positionduring the cascade evolution.
cade.Q 4 denotes the solid angle ih dimension. For struc- Figure 3 shows the unit vectogs attached to the particles.
tures of finite size, such as collision cascades, the two poinsing the vector fielcﬁ(f)i) an angular correlation function
density-density correlation function depends on the overalC,(r,R) can be introduced with the following definition:
size of the structure described by a characteristic leRgts

well as the internal length. In this case the correlation func-

tion can be written a€(r,R). HereC(r,R) represents the Cur)=——— 5(Fi).5(Fj)_
correlation function averaged over a large number of cas- Nrd=1Q46r r—or/2<|r;—rj|<r+eor/2

cades of the same siZR. The characteristic macroscopic (7)

C(r,R)=r"%g(x), x= '

R (6)

C(r)= p(r)p(r)), (3)

-1 1 -
Nrd Qdér r—éori2<|ri—rj|<r+éri2
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FIG. 1. The density-density correlation function for system sizes fhosd400-N=4000 in the 2D model. The parameter of the
scattering cross section was chosen tarbe0.7. The data collapse analysis was performed with ten different curves.

The form of this equation is similar to E¢3), but in the  system and Fig. @) shows|C,(r,R)| for different system

summation the scalar product of ﬂp}éf’i) vectors is used SizesR. It can be observed that for a certain length range

instead of the product of the one particle densifiés). Ca(r,R) decays according to a power law with an exponent

Along a given branch of the cascade the vecﬁz(rr%) are Efnmcantly different from the exponent describing the alge-

; aic decay ofC(r,R). At a certain value of the angular
g?r:;erlageeﬂég ttﬁg 55;}2? t?:éjgf%%ﬁgo\zlgggagﬂsz tgac rrelation function becomes negative and it goes to zero
1 SL;bbranches appearpin the cascade tree as a result of through n_eg_ative values at long distances. IRg'deno_te the
récoiled particles. In Fig. 3 it can be observed that a high araptensﬂc length vyhgr@a(r,R) becqmes nggatlve: In-
energy recaoil can' give riée even to an extended subcasca goasing th_e system sifein Fig. 4b) Ra is alsp Increasing.
the branches of which grow independently of the other part e negative part of%,(r,R) has a local minimumi.e.,

of the cascade, the other subcascades. This implies that ticea(r’R” has a Ioca_l r_nam_mubnand It goes to zero expo-
néntially due to the finite size cutoff.

average value of the scalar product of vectofs;), belong- Based on the above observations, the same form of scal-

ing to different subcascades, is close to zero or it can even t]ﬁg ansatz can be assumed fox(r,R) as forC(r,R), i.e.
negative. In this sense, the angular correlation functiorEq_(G)

C.(r,R) can measure the directionality of cascade branches

with respect to each other. Representative examples of the r

absolute value of the angular correlation functj@y(r,R)| Ca(r,R)=r"%f(x), x=g ®
of cascades generated in the 2D model are shown in Fig. 4.

Figure 4a) presents a comparison of the angular and thavheref(x) denotes the scaling function amg, the scaling
density-density correlation functions belonging to the samexponent belonging toC,(r,R). At small distances
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FIG. 2. The density-density correlation function for system sizes fldbm800-N=5000 in the 3D model. The parameter of the
scattering cross section was chosen tatbe0.4. The data collapse analysis was performed with ten different curves.
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Yo cascade geometry. For decreasimga structural transition
takes place in the cascade from an open branching structure
to a space filling one. When the upper critical dimension
d, of the cascade exceeds the dimension of the embedding
spaced, so called geometrical correlations arise in the cas-
cade due to the intersection of different branches and the
overlapping of subcascades. These geometrical correlations

7 lead to a fractal dimensio®(m) different from the self-

»-w\;\L} similarity dimensionD,(m) for m=<1 andm=<3 in the 2D

and 3D models, respectivell7]. The question naturally
arises how the intersection of branches influences the behav-
ior of the angular correlation function introduced.

The above analysis in terms of the density-density and
angular correlation functions was performed for cascades in
a wide range of the parameter of the potential( in the
same range as in Rgf7]) for both model systems. The scal-
ing exponentsa,«, and the characteristic lengtR, were
obtained by means of the data collapse method. Since the
results concerning to the fractal dimension of cascades have
already been discussed in RET] here we restrict ourself to

FIG. 3. Collision cascade generated in 2D. The arrows represerif'® discussion of the properties of the angular correlation
the unit vectorf;(ﬂ) of the linear momentum of the scattered par- func_tlon. .
ticles after the collisionm has the same value as in Fig. 1. The Figure 5 shows representative examples of the data col-

circle indicates an extended subcascade resulted from a high enerlPS€ analysis of the angular correlation function in the 2D
recoil. The surface of the solid and the direction of the penetratio?nd 3D models. It can be observed ti@&i(r,R) exhibits
of the bombarding particle are also shown. power law behavior for more than one order of magnitude in

length. The good quality of the collapse obtained demon-
Ca(r,R) approacheg(r,R) thus part of the power law de- Strates the validity of the scaling ansatz Ea). Note, that
cay of C,(r,R) can be attributed to the power law decay of the positive and negative parts 6f(r,R) have the same
C(r,R), therefore the exponertt characterizing the angular Scaling properties. The power law behavior@f(r,R) ex-

correlation is the difference af, and presses the fact that there is long range angular correlation
inside the cascade, which manifests in the directionality of
Ci(r,R) i the branches. The negative regime@f(r,R) can be inter-
WNY , B=ag—a. (9 preted as anticorrelation of the local growth directions at

large distances. This implies that the angle of the unit vectors

Finally, the internal anisotropy of the cascades is determine®(ri), p(r;) tends to be larger tham/2 for [ri—rj|>R,.
by two quantities, by the characteristic leng®, where The characteristic lengtR, whereC,(r,R) drops to nega-
C.(r,R) drops to negative values, and the expongnde- tive values can be considered as an angular correlation
scribing the speed of the decay Gf(r,R). length. Let us denote the ratio of the angular correlation

In Sec. lll we present the results of the analysis of syslengthR, to the radius of gyratioR.
tematic Monte Carlo simulations in terms of the correlation ~From the scaling analysis, the exponghtharacterizing
functions introduced above, and we try to give a simple inthe decay ofC,(r,R) and the ratioy of the angular correla-

terpretation of the results obtained. tion lengthR, to the radius of gyratioR can be determined
precisely. From the simulations it was found thatis be-
IIl. RESULTS AND DISCUSSION tween 0.7 and 0.8 for both model systems and within the

accuracy of the calculations we could not reveal any system-
In a recent publicatiorisee Ref[7]) it has been demon- atic dependence of on the parameter of the potential
strated that the parameterof the interaction potential plays Figure 6 presents the values gfas a function ofm for
the role of a control parameter from the viewpoint of the2D and 3D. It is important to note that small value 6f

10° T T — 10° v T T

C(tR) FIG. 4. Representative examples of the be-

havior of the angular correlation function
C,(r,R) in the same system as in Fig. (a)
Comparison of the absolute value of the angular
correlation function|C,(r,R)| and the density-
density correlation functio(r,R) belonging to
the same system si& (b) |C4(r,R)| for differ-

ent system sizes.

IC,(r.R)!
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ok ] % s FIG. 5. Data collapse analyzis of the angular
4=2 correlation function in the 2D and 3D models.
F N 10 One can observe the good quality of the collapse,
" ° which demonstrates the validity of the scaling an-
satz Eq.(8). The parametem of the scattering
o' ’ " : cross section was chosen to me=0.7 and
o'f “ m=0.4 in 2D and 3D, respectively. The value of
_"r §w.‘, v=R,/R is indicated by the dotted lines. It is
2r =’ 0.78 and 0.76 in 2D and 3D.
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corresponds to slow decay of the directionality, i.e., to long d

range angular correlation, while increasimyimplies the B=ag—a=3. (10
weakening of the angular correlation. In Figbpone can

observe that in 3D two different regimes Bfcan be distin-

guished. Ifm=1/3, when no overlap occurs in the cascggle, This argument is also supported by the two-dimensional
practically coincides with the self-similarity dimensién,. ~ simulationgsee Fig. €)]. It has been shown in Ref7] that

In this regionlg is increasing for decreasing_ Whenm is in the two-dimensional model the Overlap effect, the inter-
close to ongCoulomb scatteringthe probability of creating ~Section of branches is always present, in the whole region of
a high energy recoil is rather small, therefore dense subca&?- In Fig. 6@) it can be seen thaB is equal to 1, i.e,,
cades cannot occur, the cascade is strongly directed giving=d/2, as it can be expected from the 3D case, see Fig.
rise to a small value of3. Decreasingm gives rise to an 6(b). The result thag=d/2 throughout the overlapping re-
increasing number of subcascades growing independentlgime demonstrates that tk&(ﬂ) vector field does not be-
which results in weakening of the directionality order. This come isotropic even for high degree of overlap, i.e., for small
is expressed by the increasing value @f At m=1/3 the values ofm. In the system there is always a preferred direc-
self-similarity dimensiorD, and 8 reachesd/2, half of the  tion, namely, the initial direction of the bombarding patrticle.
dimension of the embedding space. For 1/3 when the This also manifests in the overall shape of the cascade. The
overlap of the branches dominates the cascade strugiure, overall shape is not spherical but it is always elongated along
remains practically independent of, 3=d/2. But this does the initial direction of the bombarding particle.

not entails that the density-density correlation function It has been mentioned in the introductory part that the
C(r,R) and the angular correlation functi@y(r,R) are in-  internal anisotropy of DLA clusters was studied by means of
dependent ofn. Their exponentsy, and « are decreasing the tangential and the three-point correlation functions,
with decreasingm but in such a way that their difference which are essentially special type of density-density correla-

remains constant tion functions. It is important to mention that, beside these
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FIG. 6. The exponen8= a,— « characterizing the decay of the angular correlation fund@g¢r,R) (a) for 2D and(b) for 3D. In the
3D case the curve of the self-similarity dimension is also shown. The horizontal solid lines indicate the vélRe of
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techniques, Meakin introduced an angular correlation funcmore elaborate description of the cascade it was necessary to
tion of the type of Eq(7) [23]. He assigned a so-called bond introduce an angular correlation function, which takes into

vector to each particle in the aggregate. The bond vérter ~account the direction of the local growth of the cascade
a unit vector pointing in the direction of the bond, which is branches. With the help of the angular correlation function
formed when a new particle is added to the growing clusterwe could quantify the anisotropy, which manifest in the di-

Using theb vectors an angular correlation function could be rectionality of the branches. The power law decay of the
defined. 8=0.31 was found in two-dimensional off-lattice angular correlation was evidenced and characterized by an

simulations[23] that evidenced the slow decay of the direc- exponentj a_nd an angglar correlation Ienth different

tionality of the cluster branches in DLA processes. from the radius of gyratiorR. The overlapping of s_ubcas—
Collision cascades have the advantage that the structu des has a strong efft_ect_on the_ angular cor_rel_anc_)n. 'T‘ the

formation can be easily controlled by varying the parametefPSence of overlag coincides with the self-similarity di-

of the interaction potentiah. This gives us a rich spectrum mension, \_Nh_'le n th_e presence of oyerl,aps constant, I.e.,

of possibilities to study the internal anisotropy resulted from/ = d/2. Itis interesting to note that in the presence of over-

the directionality of the branches of the object and it makedaP Solely the dimension of the embedding space determines

also possible to gain information about the role of the inter{N€ speed of the decay of the directionality order. We argued
section of branches. that this internal anisotropy of growth directions shows up in

the overall shape of the cascade as well.

IV. CONCLUSIONS
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