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Internal anisotropy of collision cascades
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Department of Theoretical Physics, Kossuth Lajos University, P.O. Box 5, H-4010 Debrecen, Hungary

~Received 1 April 1997!

It is shown that for collision cascades the global fractal dimension cannot give an adequate description of the
geometrical structure because it is insensitive to the internal anisotropy of the object arising from the direc-
tionality of cascade branches. In order to give a more elaborate description of the cascade, we introduce an
angular correlation function, which takes into account the direction of the local growth of the branches of the
cascades. It is demonstrated that the angular correlation function gives a quantitative description of the direc-
tionality and the interrelation of branches of the cascade. The power law decay of the angular correlation is
evidenced and characterized by an exponentb and an angular correlation lengthRa different from the radius
of gyration R. It is demonstrated that the overlapping of subcascades has a strong effect on the angular
correlation.@S1063-651X~97!14708-0#

PACS number~s!: 61.43.Hv, 47.53.1n, 47.54.1r
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I. MOTIVATIONS

Collision cascades develop in condensed matter as a
sequence of irradiation with energetic beams of partic
The bombarding particles transfer their kinetic energy in
series of collisions with the target atoms and the energiz
recoiling atoms generate further recoils in their own slowin
down process. The result of this energy sharing process
collision cascade. The cascade can also be considered
far-from equilibrium process leading to structure formati
in the solid target. Recently the geometrical structure of c
lision cascades has been analyzed by means of analy
approaches and Monte Carlo simulations concentrating
the possible fractal and multifractal aspects. These invest
tions have been extended to the study of the self-simila
properties of the cascade@1–3#, to the determination of its
fractal dimension and multifractal spectra for different inte
action potentials@4–9#, and they gave an insight into th
cascade-subcascade transition and into the spike cre
@1,2,7,9#.

Far-from equilibrium processes often create complex g
metrical structures which exhibit fractal properties charac
ized by the fractal dimensionD @10#. However, the fractal
dimension is a global property of a cluster of particles,
does not provide an insight into the structural details of
object. It has been demonstrated in the case of diffusion
ited aggregation~DLA ! that large branching structures ma
be internally anisotropic. This anisotropy results in a tang
tial correlation different from the radial one@11# and it shows
up in the behavior of the three point correlation function
well @12#.

The internal structure of collision cascades, the corre
tion of the vacancies, the interrelation of branches, and
directionality of ion tracks can have an important impact
several physical processes; e.g., ion-beam mixing@13#, radia-
tion enhanced diffusion@13,14#, electric and optical proper
ties of irradiated polymeric materials@15,16#, the develop-
ment of mechanical stress due to ion bombardment,
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crack propagation in the solid from the irradiated zone@17#.
In the case of diffusion, for example, the correlation

vacancies due to the directionality of the cascade branc
can enhance the diffusion process in the irradiated zone
side the cascade the path of the displaced atoms ca
viewed as a conduit, forming a labyrinth in the damag
material @14#. Thus, we are led to de Gennes’s model
‘‘termite diffusion,’’ when the diffusing particles~termites!
meet the conduit labyrinth, they diffuse much more quick
and over much greater distances than they do in the b
@18#.

Further motivations to study the directionality of io
tracks in a solid comes from the earlier studies of system
particles interacting via elastic collisions. A system whe
many particles scatter, interacting elastically with each oth
may be regarded as a model of gas. In such a system
particle is scattered successively, so it walks almost r
domly. Although the velocity autocorrelation of such a pa
ticle was believed to decay exponentially, Alder and Wa
wright discovered a long time tail by computer simulatio
@19,20#:

^vW ~ t !•vW ~0!&;t2d/2, d>2 ~1!

whered is the dimension of the embedding space. Long ti
tails of random walks are also found in a much simpler s
tem called the Lorentz gas model where a classical partic
scattered elastically off randomly located fix scatterers.~This
model was originally introduced as a model of electron m
tion in a metal.! In the case where the scatterers form
regular lattice, it is proven that the velocity autocorrelati
has exponential decay. On the contrary, if the scatterers
distributed at random, forming a fractal with dimensionD,
there is a long time tail for the negative values of the sca
product of the velocities@21#

^vW ~ t !•vW ~0!&;2t2~ [d2D/2]11!. ~2!

Hence the memory effect in the directionality seems to b
common feature of the motion of particles scattered r
domly.
2019 © 1997 The American Physical Society
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Based on the above motivations, in the present paper
want to obtain a more elaborate picture of collision casca
gaining information about the internal branching morph
ogy. The computer simulations have the advantage that
can monitor such quantities, which are hard to measure
are not measurable, but they can help the understanding
physical process. In the study of ion-solid interaction in c
tain cases not only the distribution of the vacancies is
interest but even the path of the moving particles. Obviou
the study of the ions’s paths includes the vacancies as w
the position of the vacancies are the branching points in
cascade tree. Thus, in the present study, not only the va
cies but all the collisional points are included in the analy
of the cascade regardless of the vacancy creation that
easily be done by means of computer simulations. We p
formed Monte Carlo simulations of self-ion collision ca
cades in two and three dimensions. For the three-dimensi
~3D! simulations the scattering cross sectionds
5C(m)E2mT212mdT belonging to the inverse power law
potentialV(r );r 21/m was applied. HereE is the energy of
the bombarding particle,T is the energy transferred to th
target atom in the scattering process, andm denotes the pa
rameter of the interaction potential 0,m<1. In two dimen-
sions ~2D! we established a toy model with the scatteri
cross section ds5KE2m/2T212m/2dT @7#. A two-
dimensional cascade does not have experimental relev
but it can help to reveal the role of the embedding dimens
d in the formation of the cascade structure. For further
tails about computer simulation of ion-solid interaction s
also Ref.@22#.

In the following, at first the structure of cascades gen
ated by Monte Carlo simulations is analyzed in terms of
density-density correlation function. Then an angular cor
lation function is introduced based on the direction of t
local growth of the cascade branches. It is shown that
angular correlation function gives a quantitative descript
of the directionality and the interrelation of branches of c
cades, furthermore, the role of the intersection of branche
enlightened.

II. CORRELATION FUNCTIONS

The usual way of studying the structure of an object co
posed ofN particles in thed-dimensional embedding spac
is in terms of the density-density correlation functionC(r )

C~r !5
1

Nrd21Vddr
(

r 2dr /2,urW i2rW j u,r 1dr /2

r~rW i !r~rW j !, ~3!

wherer(rW) is 1 if there is particle atrW and zero otherwise. In
our case these particles are the points where collisions
curred in the target material during the evolution of the c
cade.Vd denotes the solid angle ind dimension. For struc-
tures of finite size, such as collision cascades, the two p
density-density correlation function depends on the ove
size of the structure described by a characteristic lengthR, as
well as the internal lengthr . In this case the correlation func
tion can be written asC(r ,R). HereC(r ,R) represents the
correlation function averaged over a large number of c
cades of the same sizeR. The characteristic macroscop
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length of the cascade is the radius of gyrationR defined as
the average distance of the particles

R25
1

N2 (i , j urW i2rW j u2;
Vd

N E drr d11C~r !. ~4!

C(r ,R) is normalized by the total number of particlesN

N5VdE drr d21C~r !. ~5!

Assuming thatC(r ,R) is a homogeneous function of its var
ables results in the scaling form

C~r ,R!5r 2ag~x!, x5
r

R
~6!

where g(x) is constant forx!1 and g(x);e2x for x.1.
The functiong(x) is called a scaling function and the exp
nent a is the scaling exponent. The fractal dimensionD of
the object is defined through the behavior of the total num
of particlesN as a function of the radius of gyrationR, i.e.,
N;RD. From Eqs.~5! and ~6! it follows that a5d2D. If
Eq. ~6! provides a valid description of the geometric scali
properties then plots ofr aC(r ,R) vs r /R for structures of
different sizes will fall on a common curve@on the scaling
functiong(x)#. This data collapse provides a reliable way
measuring the scaling exponenta ~and thus the fractal di-
mensionD) by varying the value ofa until the best collapse
is obtained. Representative examples of the density-den
correlation function and its data collapse analysis can be s
in Figs. 1 and 2 for the 2D and 3D models. The excelle
collapse obtained with ten different system sizes proves
validity of the scaling ansatz of Eq.~6! for both model sys-
tems.

However, this way of description based onC(r ,R) cannot
reveal anything about the possible internal anisotropy
cause the density-density correlation function is insensi
to the structural details. In order to obtain information abo
the branching structure we have to take into account so
dynamical features of the growth of the cascade. For
purpose we assign to each particle, i.e., to each point of
collision, with positionrW i the unit vectorpW (rW i) of the linear
momentum of the scattered particle. If there is vacancy c
ation in a collision the unit vector of the recoiled partic
appears at the position of its first collision. With this pr
scription one, and only one, unit vector is assigned to e
point of the object studied. ThepW (rW i) vector characterizes th
direction of the local growth of the corresponding branch
the cascade tree at positionrW i during the cascade evolution
Figure 3 shows the unit vectorspW attached to the particles
Using the vector fieldpW (rW i) an angular correlation function
Ca(r ,R) can be introduced with the following definition:

Ca~r !5
1

Nrd21Vddr
(

r 2dr /2,urW i2rW j u,r 1dr /2

pW ~rW i !•pW ~rW j !.

~7!
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FIG. 1. The density-density correlation function for system sizes fromN5400–N54000 in the 2D model. The parameterm of the
scattering cross section was chosen to bem50.7. The data collapse analysis was performed with ten different curves.
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The form of this equation is similar to Eq.~3!, but in the
summation the scalar product of thepW (rW i) vectors is used
instead of the product of the one particle densitiesr(rW i).

Along a given branch of the cascade the vectorspW (rW i) are
correlated in the sense that they are almost parallel to e
other, hence the scalar product in Eq.~7! has values close to
1. Subbranches appear in the cascade tree as a result o
recoiled particles. In Fig. 3 it can be observed that a h
energy recoil can give rise even to an extended subcas
the branches of which grow independently of the other p
of the cascade, the other subcascades. This implies tha
average value of the scalar product of vectorspW (rW i), belong-
ing to different subcascades, is close to zero or it can eve
negative. In this sense, the angular correlation funct
Ca(r ,R) can measure the directionality of cascade branc
with respect to each other. Representative examples of
absolute value of the angular correlation functionuCa(r ,R)u
of cascades generated in the 2D model are shown in Fig
Figure 4~a! presents a comparison of the angular and
density-density correlation functions belonging to the sa
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system and Fig. 4~b! showsuCa(r ,R)u for different system
sizesR. It can be observed that for a certain length ran
Ca(r ,R) decays according to a power law with an expone
significantly different from the exponent describing the alg
braic decay ofC(r ,R). At a certain value ofr the angular
correlation function becomes negative and it goes to z
through negative values at long distances. LetRa denote the
characteristic length whereCa(r ,R) becomes negative. In
creasing the system sizeR in Fig. 4~b! Ra is also increasing.
The negative part ofCa(r ,R) has a local minimum~i.e.,
uCa(r ,R)u has a local maximum! and it goes to zero expo
nentially due to the finite size cutoff.

Based on the above observations, the same form of s
ing ansatz can be assumed forCa(r ,R) as forC(r ,R), i.e.,
Eq. ~6!

Ca~r ,R!5r 2aaf ~x!, x5
r

R
~8!

where f (x) denotes the scaling function andaa the scaling
exponent belonging toCa(r ,R). At small distances
FIG. 2. The density-density correlation function for system sizes fromN5800–N55000 in the 3D model. The parameterm of the
scattering cross section was chosen to bem50.4. The data collapse analysis was performed with ten different curves.
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2022 56F. KUN AND G. BARDOS
Ca(r ,R) approachesC(r ,R) thus part of the power law de
cay of Ca(r ,R) can be attributed to the power law decay
C(r ,R), therefore the exponentb characterizing the angula
correlation is the difference ofaa anda

Ca~r ,R!

C~r ,R!
;r 2b, b5aa2a. ~9!

Finally, the internal anisotropy of the cascades is determi
by two quantities, by the characteristic lengthRa , where
Ca(r ,R) drops to negative values, and the exponentb de-
scribing the speed of the decay ofCa(r ,R).

In Sec. III we present the results of the analysis of s
tematic Monte Carlo simulations in terms of the correlati
functions introduced above, and we try to give a simple
terpretation of the results obtained.

III. RESULTS AND DISCUSSION

In a recent publication~see Ref.@7#! it has been demon
strated that the parameterm of the interaction potential play
the role of a control parameter from the viewpoint of t

FIG. 3. Collision cascade generated in 2D. The arrows repre

the unit vectorpW (rW i) of the linear momentum of the scattered pa
ticles after the collision.m has the same value as in Fig. 1. Th
circle indicates an extended subcascade resulted from a high en
recoil. The surface of the solid and the direction of the penetra
of the bombarding particle are also shown.
d
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cascade geometry. For decreasingm a structural transition
takes place in the cascade from an open branching struc
to a space filling one. When the upper critical dimensi
du of the cascade exceeds the dimension of the embed
spaced, so called geometrical correlations arise in the c
cade due to the intersection of different branches and
overlapping of subcascades. These geometrical correlat
lead to a fractal dimensionD(m) different from the self-
similarity dimensionDo(m) for m<1 andm< 1

3 in the 2D
and 3D models, respectively@7#. The question naturally
arises how the intersection of branches influences the be
ior of the angular correlation function introduced.

The above analysis in terms of the density-density a
angular correlation functions was performed for cascade
a wide range of the parameterm of the potential~ in the
same range as in Ref.@7#! for both model systems. The sca
ing exponentsa,aa and the characteristic lengthRa were
obtained by means of the data collapse method. Since
results concerning to the fractal dimension of cascades h
already been discussed in Ref.@7# here we restrict ourself to
the discussion of the properties of the angular correlat
function.

Figure 5 shows representative examples of the data
lapse analysis of the angular correlation function in the
and 3D models. It can be observed thatCa(r ,R) exhibits
power law behavior for more than one order of magnitude
length. The good quality of the collapse obtained dem
strates the validity of the scaling ansatz Eq.~8!. Note, that
the positive and negative parts ofCa(r ,R) have the same
scaling properties. The power law behavior ofCa(r ,R) ex-
presses the fact that there is long range angular correla
inside the cascade, which manifests in the directionality
the branches. The negative regime ofCa(r ,R) can be inter-
preted as anticorrelation of the local growth directions
large distances. This implies that the angle of the unit vec
pW (rW i), pW (rW j ) tends to be larger thanp/2 for urW i2rW j u.Ra .
The characteristic lengthRa whereCa(r ,R) drops to nega-
tive values can be considered as an angular correla
length. Let us denoteg the ratio of the angular correlatio
lengthRa to the radius of gyrationR.

From the scaling analysis, the exponentb characterizing
the decay ofCa(r ,R) and the ratiog of the angular correla-
tion lengthRa to the radius of gyrationR can be determined
precisely. From the simulations it was found thatg is be-
tween 0.7 and 0.8 for both model systems and within
accuracy of the calculations we could not reveal any syst
atic dependence ofg on the parameter of the potentialm.

Figure 6 presents the values ofb as a function ofm for
2D and 3D. It is important to note that small value ofb
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FIG. 4. Representative examples of the b
havior of the angular correlation functio
Ca(r ,R) in the same system as in Fig. 1.~a!
Comparison of the absolute value of the angu
correlation functionuCa(r ,R)u and the density-
density correlation functionC(r ,R) belonging to
the same system sizeR, (b) uCa(r ,R)u for differ-
ent system sizes.
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FIG. 5. Data collapse analyzis of the angul
correlation function in the 2D and 3D models
One can observe the good quality of the collap
which demonstrates the validity of the scaling a
satz Eq.~8!. The parameterm of the scattering
cross section was chosen to bem50.7 and
m50.4 in 2D and 3D, respectively. The value o
g5Ra /R is indicated by the dotted lines. It is
0.78 and 0.76 in 2D and 3D.
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corresponds to slow decay of the directionality, i.e., to lo
range angular correlation, while increasingb implies the
weakening of the angular correlation. In Fig. 6~b! one can
observe that in 3D two different regimes ofb can be distin-
guished. Ifm>1/3, when no overlap occurs in the cascadeb
practically coincides with the self-similarity dimensionDo .
In this regionb is increasing for decreasingm. Whenm is
close to one~Coulomb scattering! the probability of creating
a high energy recoil is rather small, therefore dense sub
cades cannot occur, the cascade is strongly directed gi
rise to a small value ofb. Decreasingm gives rise to an
increasing number of subcascades growing independe
which results in weakening of the directionality order. Th
is expressed by the increasing value ofb. At m51/3 the
self-similarity dimensionDo andb reachesd/2, half of the
dimension of the embedding space. Form,1/3 when the
overlap of the branches dominates the cascade structurb
remains practically independent ofm, b5d/2. But this does
not entails that the density-density correlation functi
C(r ,R) and the angular correlation functionCa(r ,R) are in-
dependent ofm. Their exponentsaa and a are decreasing
with decreasingm but in such a way that their differenc
remains constant
g

as-
ing

tly,
s

,

n

b5aa2a5
d

2
. ~10!

This argument is also supported by the two-dimensio
simulations@see Fig. 6~a!#. It has been shown in Ref.@7# that
in the two-dimensional model the overlap effect, the inte
section of branches is always present, in the whole region
m. In Fig. 6~a! it can be seen thatb is equal to 1, i.e.,
b5d/2, as it can be expected from the 3D case, see F
6~b!. The result thatb5d/2 throughout the overlapping re
gime demonstrates that thepW (rW i) vector field does not be-
come isotropic even for high degree of overlap, i.e., for sm
values ofm. In the system there is always a preferred dire
tion, namely, the initial direction of the bombarding particl
This also manifests in the overall shape of the cascade.
overall shape is not spherical but it is always elongated alo
the initial direction of the bombarding particle.

It has been mentioned in the introductory part that t
internal anisotropy of DLA clusters was studied by means
the tangential and the three-point correlation functio
which are essentially special type of density-density corre
tion functions. It is important to mention that, beside the
FIG. 6. The exponentb5aa2a characterizing the decay of the angular correlation functionCa(r ,R) ~a! for 2D and~b! for 3D. In the
3D case the curve of the self-similarity dimension is also shown. The horizontal solid lines indicate the value ofd/2.
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2024 56F. KUN AND G. BARDOS
techniques, Meakin introduced an angular correlation fu
tion of the type of Eq.~7! @23#. He assigned a so-called bon
vector to each particle in the aggregate. The bond vectorbW is
a unit vector pointing in the direction of the bond, which
formed when a new particle is added to the growing clus
Using thebW vectors an angular correlation function could
defined.b50.31 was found in two-dimensional off-lattic
simulations@23# that evidenced the slow decay of the dire
tionality of the cluster branches in DLA processes.

Collision cascades have the advantage that the struc
formation can be easily controlled by varying the parame
of the interaction potentialm. This gives us a rich spectrum
of possibilities to study the internal anisotropy resulted fro
the directionality of the branches of the object and it ma
also possible to gain information about the role of the int
section of branches.

IV. CONCLUSIONS

In the present paper we studied the internal anisotrop
collision cascades arising from the branching structure
was demonstrated that the global fractal dimension can
account for the internal details of the structure. To give
v.
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more elaborate description of the cascade it was necessa
introduce an angular correlation function, which takes in
account the direction of the local growth of the casca
branches. With the help of the angular correlation funct
we could quantify the anisotropy, which manifest in the d
rectionality of the branches. The power law decay of t
angular correlation was evidenced and characterized by
exponentb and an angular correlation lengthRa different
from the radius of gyrationR. The overlapping of subcas
cades has a strong effect on the angular correlation. In
absence of overlapb coincides with the self-similarity di-
mension, while in the presence of overlapb is constant, i.e.,
b5d/2. It is interesting to note that in the presence of ov
lap solely the dimension of the embedding space determ
the speed of the decay of the directionality order. We arg
that this internal anisotropy of growth directions shows up
the overall shape of the cascade as well.
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