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Evaluation of thermodynamic functions of elemental crystals and liquids
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Techniques are summarized for evaluating thermodynamic functions for pure elements in crystal and liquid
phases. An accurate evaluation of the ion-motional free energy is given by quasiharmonic lattice dynamics at
guantum temperatures, and computer simulatieng., molecular dynamigst classical temperatures for both
crystal and liquid. The computer simulations require knowledge of the effective ion-ion potentials, and since
these are not generally available, two approximations for proceeding without them are discussed. First, ne-
glecting anharmonicity in crystals leaves only the quasiharmonic ion-motional free energy, depending almost
entirely on the characteristic temperatukg which is the logarithmic moment of the quasiharmonic phonon
frequencies. Second, identifying in the constant-density entropy of melting a universal disordering contribution
A=0.80Nk provides approximate evaluation of the thermodynamic properties of liquids at melt. The errors of
these approximations are asses$8d.063-651X%97)12008-6

PACS numbdss): 64.70.Dv, 05.70.Ce, 63.76h, 64.10+h

[. INTRODUCTION ture (as metal crystal to metal liguidand anomalous melt-
ing in which thereis a significant change in electronic struc-

For many practical applications, one needs accurate vature (as polar crystal to metal liquid (b) The entropy of
ues of thermodynamic properties of solids and liquids, agnelting at constantlensity and not at constanpressure
functions of temperature and pressure. One such applicatidfovides information on the disordering entropy in going
is the hydrodynamic calculation of high speed deformatiorfrom crystal to liquid.
processes, such as those calculations done at Los Alamos. The information gained from the fusion process is pre-
This application demands the highest accuracy available fovented in Sec. IV. The whole of this analysis provides us
the equilibrium properties of materials, both at modest preswith a simple representation of the thermodynamic proper-
sures where experimental data are available, and at higqﬁes of liquids at melt. Our conclusions are summarized in
pressures where such data are not available. The purpose 9€¢- V.
this paper is to describe the procedures we have developed to
solve this problem, and to summarize the information both ||, EVALUATION OF THE CRYSTAL FREE ENERGY
old and new that justifies these procedures. Our discussion is o ) _
limited to pure elements, where the greatest progress has Ordinarily, a single element presents us with a number of
been made. different crystal phases as temperature and pressure are var-

The theoretical description of a condensed matter systedgd, Where each phase has its characteristic crystal structure
is based on the physical Hamiltonian and exact statistica"d bonding type, for example, metallic or covalent. In spite
mechanicg1,2]. It starts with the adiabatic potential, which of thl_s diversity, the theoretical description of_the partition
is the energy of the system when the ions are fixed at arbif_unctlon_ and free energy of elemental cry;tals is universal in
trary positions and the electrons are in their ground state. Thrm, with only a set of parameters specific to each separate
motion of ions in this potential is resolved into quasihar-elemem ar]d phase. We will outline this universal free energy
monic phonons and anharmonicity, then the excitation of0rm, and its parameter set, for crystals.
electrons from their ground state is described by independent For a system of N-like ions plus their associated electrons,
electron statistics, and finally, electron-phonon interactionglistributed more or less uniformly over a volunw the
are included. This last step accounts for failure of the adiaHelmholtz free energy is
batic approximation, and is important for metals. The free
energy derived from this theoretical description is written F=®o+F +Fg, 1)
and discussed in the following section.

By now we have developed reliable and accurate techwhere®,(V) is the static lattice potential, i.e., it is the en-
niques to evaluate the various contributions to the total fre@rgy of the crystal with ions located at the lattice sites and
energy of crystals, with certain exceptions, and these tecrglectrons in their ground staté,(V,T) is the ion-vibrational
niques are described in Sec. Il. We have long known thafree energy, andg(V,T) is the contribution due to thermal
anharmonicity is generally a small effd@-7], and we can excitation of the electrons from their ground state. The ion-
now provide a quantitative measure of anharmonicity invibrational term is based on a set of harmonic normal modes,
crystals, again with specific exceptions, as described in Se#he phonons, which contribute the quasiharmonic free energy
l1l. Two recent findings have allowed significant progress inF, while the phonon-phonon interactions give rise to the
understanding the fusion procelgs8]: (a) Melting of ele- anharmonic free enerdy,, so
ments is classified into two categories, normal melting in
which there is no significant change in the electronic struc- Fi=Fy+Fa, 2
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where qualitativelyF , is small compared t& . The elec- TABLE I. Phonon characteristic temperatures at denpiy
tronic free energy is separated into a conduction electron pafind Grineisen parameters, for 25 elements. A more extensive
Feona» and @ magnetic paf pag, table, and the data sources, are given in Ré&bkand[7].
Fe=F cond™ Fmag: (3)  Element  py(glen?) 6 (K)  6; (K) 6, (K) y
At low temperatures the thermal free energy for a metal id 0.546 2655 388 400 0.88
dominated byFg, while otherwiseF¢ is small compared to N 1.005 1133 163 166 1.24
Fy. Electron-phonon interactions are supposed to be inK 0.904 68.9 99.4 1021 124
cluded inFg. Rb 1.616 42.2 61.9 63.9 1.26
Generally, thenF, dominates the temperature depen-V 6.1 250 15
dence of the crystal free energy. The behavioFgfis con-  Nb 8.57 198 1.6
veniently expressed in terms of a few phonon characteristida 16.75 162 1.6
temperature®,,, defined by Cr 7.19 338 (1.5
Mo 10.24 273 1.6
In(k6o) =(In(fiw))gz, @ w 19.3 225 16
4 Al 2.731 283.5 399 404 2.25
ké1=5(fiw)pz, G pp 11.55 641 913 934  2.65
Cu 9.018 225.3 315 317 2.02
k6,=[5((fw)*)sz]"2, 6  Ag 10.49 1501 211 213 2.42
- . . Au 19.27 124.5 179.3 184 2.95
where(---)g indicates a Brillouin zone average of a func- Ni 8.90 275 19
tion of the phonon frequencies At T=0, F reduces to the Pd 1205 200 23
honon zero-point energyyo, ' '
P HO Pt 21.56 163.5 2.6
Mg 1.74 229.4 319 320 1.5
Fruo=3> hw=3NK6,. (7)  zn 7.270 161 235 242 22
In 7.43 85.3 128 (138 2.4
The leading low-temperature dependenceFgf is T4/ 63,  5-Sn 7.30 1034 154 172 22
where 6 is the Debye temperature, which depends on thél9 14.46 647 106 (1249 2.5
acoustic phonon velocities. The high-temperature expansiofi 2.34 421 645 685 (0.5
of Fy is Ge 5.32 245 373 396 0.8

Fru=—3NKT[IN(T/80) — 75(0/T)>+---], (8)

The quasiharmonic phonon frequencies depend on den-
where +--- represents terms i 4, T°8, and so on. The sity, but not on temperatuf@]. To evaluate the correspond-
expansion(8) is extremely useful, since only the two terms ing density dependence &, , we introduce the thermody-
shown leave an erros1% for T=6,, and 6, is usually namic Grineisen parametey=VBBs/Cp, Whereg is the
much less than the melting temperatig. thermal expansion coefficierBg is the adiabatic bulk modu-

Currently, one can obtain highly accurate values of thdus, andC; is the constant-pressure specific heat. At tem-
most important free energy contributiond), and Fy. peraturesT= 6,, vy is (to a very good approximatiof2,6])
Diamond-cell measurements give the presdef¥) on the
room-temperature isotherm, to pressures in the Mbar range. y=~d In 6,/d In p. 9
The function®y(V) can be obtained from thiB(V) curve,
self-consistently with the complete free energy, through theédigh-temperature values of are also listed in Table I. An
relation P=—(dF/dV);. Also, electronic band structure approximate relation among the characteristic temperatures,
calculations giveb,(V) directly, at any desired density, and suitable for estimates, is
these calculations steadily become more accuffiéQ].

Phonon frequencies are measured by inelastic neutron scat- 0.~ 0,~e"%0,. (10
tering, and extensive tables of moments of the frequency

distribution have been compilefll1]. The corresponding This implies the useful approximatios Ing,/d In p=" for
characteristic temperaturédg, which are accurate to around n=1 and 2 also. Note the Debye temperatdre is quite

1%, and the densityy at which the neutron scattering mea- different in value fromé,, for n=0,1,2, andF, cannot be
surements were made, are listed in Table | for 25 element&xpressed in terms df, at T=0, or at high temperatures.
When neutron scattering measurements are not available, as The electronic free enerdyg includes a number of com-

is the case for compressed crystals, band structure calculphications. First noteFg=0 at T=0. For the nearly-free-
tions of frozen phonons can be used to construct the phonoglectron elements, one hasT/er<1 for temperatures to
spectrum, and hence the phonon characteristic temperatureselting, whereer is the Fermi energy, so the bare conduc-
As examples of the procedures just mentiondg(V) was tion electron free energy is-z7°N(kT)n(eg), where
obtained from the room temperature isotherm for[Eg], n(e) is the electron density of states per atom. This low-
and frozen-phonon calculations were used inaminitio  temperature expansion is not accurate for the transition met-
calculation for AI[13]. als, so for them one has to calculate the electron density of
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states via band structure theory, then do the appropriate in- TABLE Il. Anharmonic contributions to entropy and energy of
tegral of independent electron statistics over the density ofrystals at melt. The first column is nearly-free-electron elements;
states[6]. In either case, the bare conduction electron freghe second column is transition metals.

energy is renormalized at low temperatures by electron= " — " —
phonon interactions. This renormalization can in principle beElement Sy Uz—Uj, Element  S;  Uxz—Uj
calculated theoreticall{2,14], or extracted fro_m experimen- |, 0.03 0.08 Vv 0.16 0.22
tal data[15], and the effect presumably disappears Tor

=0,. At the present time, no accurate theory exists for th g'fsg 8'(?; 1’}': _8.(1)3 _é)'é)f
magpetic free energy; nevertheless, we were able tq use 0'_08 0'.09 Ccr o;?gb )
Flrg]ewmal representation of this term for ferromagnetic |ronAI 0.04 _0.02 Mo 0.6

We consider finally the anharmonic free enefgy. This Pb —004 - —0.07 W O'SIb
is most important at high temperatures, ay 6,, and here Cu 000  -0.03 NI 0.27
the ion motion is classical, sB, can be evaluated from A9 —-0.07  -0.11 Pd  -0.04 -005
molecular dynamics calculations, if one knows the ion-ion”Y —-0.07  -012 Pt ~ -017 -0.09
interaction potentials. These potentials are well described foM9 0.13 0.06
simple metals by pseudopotential perturbation theory, and o" —-0.05  -0.06
this basis we were able to calculate accurate thermodynami8 000  -0.02
properties of metallic sodiufil6—18, and theoretically ex- 8-Sn 0.02 0.10
tract the anharmonic contributions fep<T<T,, [3,4]. At  Hg 0.08 0.08
quantum temperatures, S&¥ 3 0, F 5 is extremely difficult ~ Si 0.23 0.17
to evaluate, but here it is negligible for most elements. Henc&e 0.20 0.13

the most accurate yet practical treatment of anharmonicity igTo ~void uncertainties in the density correctionsal Cr_ Mo, W
to neglect it in the quantum regime, and evaluate it via com- I\\I’I ;reuanalyzleé ail—pN 1y iondgt Cr, Mo, W,
puter simulation in the classical regime. PTabulated values for Cr and Ni include magnetic contributions.
lll. ON NEGLECTING THE ANHARMONICITY from Eq. (12), with the aid of Eq.(13) to eliminate®,. In

We now ask to what level of accuracy one can neglecsolving Eq.(12) for U, at sayP =1 bar, the density becomes
entirely the anharmonic contributions to thermodynamica variable because of thermal expansion, and the correspond-
functions of elemental crystals. For the classical temperaturéng density dependence b, is accounted for in straightfor-
rangeT= 6,, and for the principal thermodynamic functions, ward ways[7]. Also note thatJ o, cannot be eliminated, so
entropyS, and internal energy, it is possible at last to give Egs. (12) and (13) can only be solved for the quantity 5
a definite answer to this question. We do this by extracting—U ao.
the anharmonic contributions directly from experimental Let us define reduced entrof®*, and reduced energy

data forS andU, at temperature¥=6,. U*, by
The general theoretical expressions $oandU, from the
free energy, are S* =SINKk, (17
S=SytSa+Se, 11 U* =U/NKT. (18)
U=®o+Uy+UatUe. (12 The magnitudes of harmonic and electronic contributions to

At T=0 the energy itJq, these reduced quantities, fo= 6,, are

Ug=®o+gNkb;+U g, (13 Si~4—-10Uf~3,
where the term inf, is Uy(T=0), andU g is Ua(T=0). . . _[0.1 for nearly-free-electron elements
T_he high-temperature expansions of the harmonic contribu- Sg~2Ug= 05-1.0 for transition metals.
tions are 19

_ 1 2
Si=3NK[In(T/6o) +1+35(62/T)*+ -], (14 The relative importance of anharmonic contributions Tor

=6, is revealed in the magnitudes 8f andUx—U3}, at
the melting temperature, and these quantities are listed in
Table 11 for all the elements for which accurate values can be
obtained at present. The first column lists 16 nearly-free-
electron elementl 9], for which the electronic contributions
0,(p)~6,(pn)(plpN)?. (16) are very small, and are evaluated from band structure densi-
ties of states, or from free electron theory. Errors 0105
From Eg.(11), S, can be obtained by subtracting accurateare expected in the anharmonic quantities for the nearly-free-
theoretical harmonic and electronic contributions from theelectron elements; the means and variances for the 16 ele-
experimental entropy. The same can be done for the energments are given bj19]

Up=3NKT[1+ %(6,/T)2+---]. (15)

To evaluated,, at densitiesp not far from the measurement
densitypy (see Table)l, we use
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S’A‘=0.05i 0.09, TABLE Ill. Entropy of melting at constant density for 34 ele-
(20 ments. Melting is normal in the first two columns, anomalous in the
U% —U%,=0.03+0.09. third.

Comparing Eq(20) with Eq. (19) tells us that anharmonicity Element  AS*  Element  AS*  Element  AS®
in the entropy and energy at classical temperatures is very; 0.75 v 0.90 sn 1.48
small for the 16 nearly-frge-electron elements. ~ Na 0.73 Nb 0.97 Ga 237

We have recently.carrled out band structure calculatlo_n§< 0.73 Ta 11 Sb 268
of the electron density of states, and of the correspondin 0.73 Cr 0.9 Bi 262
conduction electron entropy, in order to determine the anharx 073 Mo 1.2 Si 377
monic entropy for 11 transition meta[$]. This analysis 0'90 W (1.1) Ge 3' 85
turns out to be quite informative, especially when combine 0.68 Pd (')74 '
with our analysis of nearly-free-electron elements. Anhar- ' :

; i - : Al 0.88 Pt 0.79

monic quantities for the crystal at melt are listed in the sec- )
ond column of Table Il for nine of these transition metdls Pb 0.68 T 0.70
and Zr will be discussed shorjlyThe data for V are uncer- Cu 0.86 Zr 0.93
tain because of a large discrepancy among primary sourcé¥ 0.73
of experimental entrop§20]. For the magnetic metals we are AU 0.64
not able to separatBy andS,g, S0 only their sum is listed Ni 0.88
in Table Il. The reduced entropy of 0.27 for Ni is consistentMg 0.96
with a small anharmonic contribution; if we estima®,, Z" 0.97
=0.33, thenS; = —0.06 for Ni at melf6]. The three metals C€d 0.93
Cr, Mo, and W are clearly exceptional, in that their anhar-In 0.76
monic entropies aranuch larger than any other element Hg 0.90

listed in Table Il. Again reduced entropy for Cr includes the
magnetic contribution, and Grimva#t al. [21] have esti-

mated thatS,, from spin fluctuations is significant in Cr. wish to separate out the disordering contribution, i.e., the

The qualitative conclusion for V, Nb, Ta, Ni, Pd, and Pt is difference between liquid and crystal entropies at the same

that anharmonicity is about the same magnitude as it is fof€nSity, for example, at densipyy, . We first extrapolate the

the nearly-free-electron elements, while for Cr, Mo, and W itcTYSta! entropy fronp., o pi,, via the Taylor expansion at

is much iarger. constant temperature,

The transition metals Ti and Zr each undergo a phase
.. = —+ + ...

transition, from hcp to bcc, at around T,6. The phonons, S (pim) =S (pem) + 7YCv(pom) ’ (22

as observed by inelastic neutron scattering at high temperggnereC,, is the constant-volume specific heat, and

tures, show considerable softening as the transition is ap-

proached, both from below and from abol22,23. This Pem

means the anharmonicity is significant, and is strongly tem- n=—-1, (23
. Pim

perature dependent. But the phonon frequencies measured at

high temperatures are renormalized, i.e., they include anhagnd where+--- represents terms of ordej? and higher.

monicity, hence they provide renormalized characteristicHence

temperaturesd,,, which are explicitly temperature depen- |

dent. To leading order perturbation, the renormalized har- AS(pim:Tm) =S (pim,Tm) = S*(pim . Tm) = AS(Pr, Try)

monic entropySH=SH(bn) includes anharmonicity cor-

—75yC T+ 24
rectly, that is[2,24], 7YCv(Pem: Tm) 24
- We define the reduced entropy of melting at constant density
SH=SH+SA' (21) aSAS*,
It was pleasing to see that the experimental entropy agrees AS(pimsTin)
with S;;+ St to high accuracy for both phases of Ti and Zr, AS* = Nk (25

from room temperature to the melting po{ii.

For all the elements for which we are currently able to make
IV. INFORMATION FROM THE FUSION PROCESS a reliable estimate oA S*, the result is listed in Table III.

Melting is commonly observed at a fixed vallig, of the
temperature, and a fixed vall®g, of the pressure, where the
crystal and liquid have densitigs.,, and p;,, respectively. Normal melting is defined qualitatively as melting with-
The entropy of meltingAS(P,,,,T,,) is the difference be- out significant change in the electronic structure. It turns out
tween the liquid entropy (pim, Trm) @nd the crystal entropy AS* provides a quantitative identification of melting as nor-
S(pem» Tm), SO this experimental melting entropy containsmal or anomalous. The first column in Table Il lists 18
two contributions, one due to the change in density on meltnormal melting elementg25], with errors inAS* expected
ing, the other due to disordering from crystal to liquid. We to be around+0.05. For these 18 elementsS* has little

A. Normal melting
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variation: the values range from 0.64 to 0.97, and the distri-
bution has mean and variance given &%* =0.80+0.10.
Further, the compression dependence of melting shows that
AS* remains essentially constant for normal melting at any
density[8]. This apparent universality chS* can be ex-
plained by the two-part hypothesi&) Since the electronic
structure changes little on normal melting, the electronic en-
tropies of liquid and crystal are the same, within the experi-
mental scatter oAS*. (b) Since the crystal has long range
order, and the liquid does not, there exists a universal disor-
dering entropyA of the liquid, not present in the crystal, and
of approximate value

A/Nk=A*~0.80. (26)

P

We will continue our analysis in the light of this hypothesis.

The first column of Table Il includes two transition met-
als, Fe and Ni. From continued data analysis, we can add 19,
more transition metals, listed in the second column of Table
lll. Here the errors inAS* are expected to be larger, say
around=0.1, and the experimental values &§(P=1 bar)
are uncertain for Mo and W, while the density correction in
Eqg. (24) is uncertain for Cr. Hence within expected errors,
AS* for these transition metals lies in the distribution of the
first column elements. This confirms the universality of
AS* for normal melting, and supports our hypothesis.

FIG. 1. Representative phase diagram possessing a triple point
the melting curve.

AS* remains constant at the normal value of 0.75 for pres-
sures to 1.4 GPa, thexS* increases dramatically and passes
out of the normal range at 1.9 GPa, and a triple point on the
melting curve follows at 2.3 GPa.

If we consider a material can exist in either of two elec-
tronic structure forms, for example, covalent and metal, and
describe anomalous melting as the equilibrium between the
crystal in one form and the liquid in the other, then we can
B. Anomalous melting write down all the terms that contribute ®S(p;m,Tr)-

In anomalous melting, there is a significant change in theémong these terms we can identify the normal melting
electronic structure, from crystal to liquid. This change isterms, and setting these equal to the disordering entfopy
quite apparent for the two most anomalous elements, Si ande find[7]
Ge, which melt from polar crystal to metallic liquid. It is also
obvious in Sb and Bi, which melt from semimetal to metal,
but the nature of the electronic structure change is not so
obvious in the two least anomalous elements, Sn and GavhereAd, is the(positive difference in static lattice poten-
Nevertheless, for all six elements, which comprise all thelials for the two electronic structure forms, at density,,
anomalous-melting elements we have been able to analyzand the small terms include contributions frddy, from
AS* is very large, far removed from the normal-melting dis- Uno, and a term of ordey,?. An evaluation of Eq(27) for
tribution established above. The anomal&$* are listedin  Si and Ge shows agreement with experimg, and
the third column of Table 1I[7] and are in the range 1.48— strengthens our confidence in the universality of the disor-

AS*=A* +ADF + (small terms, (27

3.85. dering entropyA* of elemental liquids.
To gain insight into anomalous melting, let us consider a
material with the phase diagram in Fig. 1, and generalize an V. SUMMARY

argument that Jayaramaet al. [26] applied to Cs. As the

material is compressed from low pressure, there is a relative Suppose one wants to calculate thermodynamic functions,
shifting of bands near the Fermi energy, hence a change imcluding the phase diagram, of an element in solid and lig-
the electronic structure, which is the underlying reason fowid phases, under conditions where little or no experimental
the presence of two crystal phasesand 8. When the liquid data are available; what techniques can be used, and what
is compressed, the electronic structure change can proce&ithd of accuracies are to be expected? Answering this will
more or less continuously, but the solid is constrained byrovide a summary of the present study.

crystal symmetry, which interferes with the electronic struc- To begin, one needs the static lattice poterdig(V) for

ture change, hence the electronic structure is discontinuowgvery relevant crystal phase, and this is obtainable from iso-
across thea-B phase boundary. This means the electronidhermal compression measurements, or from band structure
structure in the liquid is different froreither crystal phase, calculations. For thermal motion of the ions, an accurate pro-
in the vicinity of the triple point, so we should generally cedure is to use quasiharmonic lattice dynamics at quantum
expect anomalous melting in the vicinity of a triple point. temperaturesT=<3#,), and molecular-dynamic calculations
This conclusion is supported by experiment, since all six ofat classical temperature3 % 3 6,). The electron excitation

the anomalous elements identified in Table Il have triplecontributions require theoretical evaluation, from the elec-
points on the melting curve at modest pressures. An evetron density of states, together with electron-phonon renor-
more striking example is provided by evaluation &5* malization at quantum temperatures. Following these proce-
along the melt curve for CE8]. As pressure is increased, dures, and with the aid of a pseudopotential model for
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sodium fitted to the energy and its first two volume deriva-to the quasiharmonic energy and entropy, and even small
tives atT=0 [27], we have calculated to excellent accuracycompared to the energy and entropy changes on melting
the thermodynamic properties of the crystal to ni2|8] the  (AS*~0.80). Exceptional elements, where the anharmonic-
room-temperature isotherm to high pressurdsthe melting ity is not so small, are Cr, Mo, W, Ti, and Zr. Finally, the
temperature to modest pressufés], and thermodynamic quasiharmonic approximation is also capable of giving the
properties of the liquid to high temperatur6]. Also,  correct shape of the equilibrium boundary betweendiasd
based on no experimental data but the atomic weight ang phases of irori12].
number, we have calculated to excellent accuracy the melt- Together with the thermodynamics of crystals, whether
ing temperature, and the crystal and liquid entropies, of Alaccurate or approximate, a separate approximation will
[13]. specify all the thermodynamic properties of the liquid at
The molecular-dynamic calculations require a knowledgemelt, again to an accuracy of roughty0.1 in the reduced
of the effective ion-ion interactions in every phase of inter-energy and entropy: for crystal and liquid of the same elec-
est. Two approximations, of lesser accuracy but requiringronic structure form, and at the same density, the reduced
much less information, are to neglect anharmonicity in theentropy difference id* ~0.80. Both normal and anomalous
crystal, and to approximate the constant-density entropy Ofnelting are contained in this statement, where to treat
normallmellting by a universal constant. Assessment of thesgnomalous melting it is only necessary to apply the approxi-
approximations follows. mation separately to two different electronic structure forms.

For crystal phases, neglect of anharmonicity leaves onlyn addition, the approximation can be transformed into an
the quasiharmonic free energy for the ion motion, and akstimator for the melting temperatuigl.

classical temperatures this deperalmost entirelyon the
single phonon characteristic temperatukgV), which can

be obtained from inelastic neutron scattering experiments, or
from frozen phonon calculations. Neglecting anharmonicity
introduces errors at classical temperatures of rougdttiyl in The author appreciates helpful and encouraging discus-
the reduced energy and entropy, errors very small comparesions with Galen Straub and John Wills.
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