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Evaluation of thermodynamic functions of elemental crystals and liquids

Duane C. Wallace
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 10 February 1997!

Techniques are summarized for evaluating thermodynamic functions for pure elements in crystal and liquid
phases. An accurate evaluation of the ion-motional free energy is given by quasiharmonic lattice dynamics at
quantum temperatures, and computer simulations~e.g., molecular dynamics! at classical temperatures for both
crystal and liquid. The computer simulations require knowledge of the effective ion-ion potentials, and since
these are not generally available, two approximations for proceeding without them are discussed. First, ne-
glecting anharmonicity in crystals leaves only the quasiharmonic ion-motional free energy, depending almost
entirely on the characteristic temperatureu0 , which is the logarithmic moment of the quasiharmonic phonon
frequencies. Second, identifying in the constant-density entropy of melting a universal disordering contribution
D.0.80Nk provides approximate evaluation of the thermodynamic properties of liquids at melt. The errors of
these approximations are assessed.@S1063-651X~97!12008-6#

PACS number~s!: 64.70.Dv, 05.70.Ce, 63.70.1h, 64.10.1h
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I. INTRODUCTION

For many practical applications, one needs accurate
ues of thermodynamic properties of solids and liquids,
functions of temperature and pressure. One such applica
is the hydrodynamic calculation of high speed deformat
processes, such as those calculations done at Los Ala
This application demands the highest accuracy available
the equilibrium properties of materials, both at modest pr
sures where experimental data are available, and at
pressures where such data are not available. The purpo
this paper is to describe the procedures we have develop
solve this problem, and to summarize the information b
old and new that justifies these procedures. Our discussio
limited to pure elements, where the greatest progress
been made.

The theoretical description of a condensed matter sys
is based on the physical Hamiltonian and exact statist
mechanics@1,2#. It starts with the adiabatic potential, whic
is the energy of the system when the ions are fixed at a
trary positions and the electrons are in their ground state.
motion of ions in this potential is resolved into quasiha
monic phonons and anharmonicity, then the excitation
electrons from their ground state is described by indepen
electron statistics, and finally, electron-phonon interacti
are included. This last step accounts for failure of the ad
batic approximation, and is important for metals. The fr
energy derived from this theoretical description is writt
and discussed in the following section.

By now we have developed reliable and accurate te
niques to evaluate the various contributions to the total f
energy of crystals, with certain exceptions, and these te
niques are described in Sec. II. We have long known t
anharmonicity is generally a small effect@3-7#, and we can
now provide a quantitative measure of anharmonicity
crystals, again with specific exceptions, as described in S
III. Two recent findings have allowed significant progress
understanding the fusion process@7,8#: ~a! Melting of ele-
ments is classified into two categories, normal melting
which there is no significant change in the electronic str
561063-651X/97/56~2!/1981~6!/$10.00
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ture ~as metal crystal to metal liquid!, and anomalous melt
ing in which thereis a significant change in electronic stru
ture ~as polar crystal to metal liquid!. ~b! The entropy of
melting at constantdensity, and not at constantpressure,
provides information on the disordering entropy in goi
from crystal to liquid.

The information gained from the fusion process is p
sented in Sec. IV. The whole of this analysis provides
with a simple representation of the thermodynamic prop
ties of liquids at melt. Our conclusions are summarized
Sec. V.

II. EVALUATION OF THE CRYSTAL FREE ENERGY

Ordinarily, a single element presents us with a numbe
different crystal phases as temperature and pressure are
ied, where each phase has its characteristic crystal struc
and bonding type, for example, metallic or covalent. In sp
of this diversity, the theoretical description of the partitio
function and free energy of elemental crystals is universa
form, with only a set of parameters specific to each sepa
element and phase. We will outline this universal free ene
form, and its parameter set, for crystals.

For a system of N-like ions plus their associated electro
distributed more or less uniformly over a volumeV, the
Helmholtz free energyF is

F5F01FI1FE , ~1!

whereF0(V) is the static lattice potential, i.e., it is the en
ergy of the crystal with ions located at the lattice sites a
electrons in their ground state,FI(V,T) is the ion-vibrational
free energy, andFE(V,T) is the contribution due to therma
excitation of the electrons from their ground state. The io
vibrational term is based on a set of harmonic normal mod
the phonons, which contribute the quasiharmonic free ene
FH , while the phonon-phonon interactions give rise to t
anharmonic free energyFA , so

FI5FH1FA , ~2!
1981 © 1997 The American Physical Society
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1982 56DUANE C. WALLACE
where qualitativelyFA is small compared toFH . The elec-
tronic free energy is separated into a conduction electron
Fcond, and a magnetic partFmag,

FE5Fcond1Fmag. ~3!

At low temperatures the thermal free energy for a meta
dominated byFE , while otherwiseFE is small compared to
FH . Electron-phonon interactions are supposed to be
cluded inFE .

Generally, then,FH dominates the temperature depe
dence of the crystal free energy. The behavior ofFH is con-
veniently expressed in terms of a few phonon character
temperaturesun , defined by

ln~ku0!5^ ln~\v!&BZ , ~4!

ku15 4
3 ^\v&BZ , ~5!

ku25@ 5
3 ^~\v!2&BZ#1/2, ~6!

where^•••&BZ indicates a Brillouin zone average of a fun
tion of the phonon frequenciesv. At T50, FH reduces to the
phonon zero-point energyFHO,

FHO5 1
2 ( \v5 9

8 Nku1 . ~7!

The leading low-temperature dependence ofFH is T4/uD
3 ,

whereuD is the Debye temperature, which depends on
acoustic phonon velocities. The high-temperature expan
of FH is

FH523NkT@ ln~T/u0!2 1
40 ~u2 /T!21•••#, ~8!

where1••• represents terms inT24, T26, and so on. The
expansion~8! is extremely useful, since only the two term
shown leave an error&1% for T*u2 , and u2 is usually
much less than the melting temperatureTm .

Currently, one can obtain highly accurate values of
most important free energy contributions,F0 and FH .
Diamond-cell measurements give the pressureP(V) on the
room-temperature isotherm, to pressures in the Mbar ra
The functionF0(V) can be obtained from thisP(V) curve,
self-consistently with the complete free energy, through
relation P52(]F/]V)T . Also, electronic band structur
calculations giveF0(V) directly, at any desired density, an
these calculations steadily become more accurate@9,10#.
Phonon frequencies are measured by inelastic neutron
tering, and extensive tables of moments of the freque
distribution have been compiled@11#. The corresponding
characteristic temperaturesun , which are accurate to aroun
1%, and the densityrN at which the neutron scattering me
surements were made, are listed in Table I for 25 eleme
When neutron scattering measurements are not availabl
is the case for compressed crystals, band structure calc
tions of frozen phonons can be used to construct the pho
spectrum, and hence the phonon characteristic temperat
As examples of the procedures just mentioned,F0(V) was
obtained from the room temperature isotherm for Fe@12#,
and frozen-phonon calculations were used in anab initio
calculation for Al @13#.
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The quasiharmonic phonon frequencies depend on d
sity, but not on temperature@2#. To evaluate the correspond
ing density dependence ofun , we introduce the thermody
namic Grüneisen parameterg5VbBS /CP , whereb is the
thermal expansion coefficient,BS is the adiabatic bulk modu
lus, andCP is the constant-pressure specific heat. At te
peraturesT*u2 , g is ~to a very good approximation@2,6#!

g'd ln u0 /d ln r. ~9!

High-temperature values ofg are also listed in Table I. An
approximate relation among the characteristic temperatu
suitable for estimates, is

u2'u1'e1/3u0 . ~10!

This implies the useful approximationd lnun /d ln r.g for
n51 and 2 also. Note the Debye temperatureuD is quite
different in value fromun for n50,1,2, andFH cannot be
expressed in terms ofuD at T50, or at high temperatures.

The electronic free energyFE includes a number of com
plications. First noteFE50 at T50. For the nearly-free-
electron elements, one haskT/eF!1 for temperatures to
melting, whereeF is the Fermi energy, so the bare condu
tion electron free energy is2 1

6 p2N(kT)2n(eF), where
n(e) is the electron density of states per atom. This lo
temperature expansion is not accurate for the transition m
als, so for them one has to calculate the electron densit

TABLE I. Phonon characteristic temperatures at densityrN ,
and Grüneisen parametersg, for 25 elements. A more extensiv
table, and the data sources, are given in Refs.@5# and @7#.

Element rN(g/cm3) u0 ~K! u1 ~K! u2 ~K! g

Li 0.546 265.5 388 400 0.88
Na 1.005 113.3 163 166 1.24
K 0.904 68.9 99.4 102.1 1.24
Rb 1.616 42.2 61.9 63.9 1.26
V 6.1 250 1.5
Nb 8.57 198 1.6
Ta 16.75 162 1.6
Cr 7.19 338 ~1.5!
Mo 10.24 273 1.6
W 19.3 225 1.6
Al 2.731 283.5 399 404 2.25
Pb 11.55 64.1 91.3 93.4 2.65
Cu 9.018 225.3 315 317 2.02
Ag 10.49 150.1 211 213 2.42
Au 19.27 124.5 179.3 184 2.95
Ni 8.90 275 1.9
Pd 12.05 200 2.3
Pt 21.56 163.5 2.6
Mg 1.74 229.4 319 320 1.5
Zn 7.270 161 235 242 2.2
In 7.43 85.3 128 ~138! 2.4
b-Sn 7.30 103.4 154 172 2.2
Hg 14.46 64.7 106 ~124! 2.5
Si 2.34 421 645 685 ~0.5!
Ge 5.32 245 373 396 0.8
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56 1983EVALUATION OF THERMODYNAMIC FUNCTIONS OF . . .
states via band structure theory, then do the appropriate
tegral of independent electron statistics over the density
states@6#. In either case, the bare conduction electron f
energy is renormalized at low temperatures by electr
phonon interactions. This renormalization can in principle
calculated theoretically@2,14#, or extracted from experimen
tal data @15#, and the effect presumably disappears forT
*u2 . At the present time, no accurate theory exists for
magnetic free energy; nevertheless, we were able to us
empirical representation of this term for ferromagnetic ir
@12#.

We consider finally the anharmonic free energyFA . This
is most important at high temperatures, sayT*u2 , and here
the ion motion is classical, soFA can be evaluated from
molecular dynamics calculations, if one knows the ion-i
interaction potentials. These potentials are well described
simple metals by pseudopotential perturbation theory, and
this basis we were able to calculate accurate thermodyna
properties of metallic sodium@16–18#, and theoretically ex-
tract the anharmonic contributions foru2<T<Tm @3,4#. At
quantum temperatures, sayT& 1

2 u2 , FA is extremely difficult
to evaluate, but here it is negligible for most elements. He
the most accurate yet practical treatment of anharmonicit
to neglect it in the quantum regime, and evaluate it via co
puter simulation in the classical regime.

III. ON NEGLECTING THE ANHARMONICITY

We now ask to what level of accuracy one can negl
entirely the anharmonic contributions to thermodynam
functions of elemental crystals. For the classical tempera
rangeT*u2 , and for the principal thermodynamic function
entropyS, and internal energyU, it is possible at last to give
a definite answer to this question. We do this by extract
the anharmonic contributions directly from experimen
data forS andU, at temperaturesT*u2 .

The general theoretical expressions forS andU, from the
free energy, are

S5SH1SA1SE , ~11!

U5F01UH1UA1UE . ~12!

At T50 the energy isU0 ,

U05F01 9
8 Nku11UA0 , ~13!

where the term inu1 is UH(T50), andUA0 is UA(T50).
The high-temperature expansions of the harmonic contr
tions are

SH53Nk@ ln~T/u0!111 1
40 ~u2 /T!21•••#, ~14!

UH53NkT@11 1
20 ~u2 /T!21•••#. ~15!

To evaluateun at densitiesr not far from the measuremen
densityrN ~see Table I!, we use

un~r!'un~rN!~r/rN!g. ~16!

From Eq.~11!, SA can be obtained by subtracting accura
theoretical harmonic and electronic contributions from
experimental entropy. The same can be done for the ene
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from Eq. ~12!, with the aid of Eq.~13! to eliminateF0 . In
solving Eq.~12! for UA at sayP51 bar, the density become
a variable because of thermal expansion, and the corresp
ing density dependence ofU0 is accounted for in straightfor
ward ways@7#. Also note thatUA0 cannot be eliminated, so
Eqs. ~12! and ~13! can only be solved for the quantityUA
2UA0 .

Let us define reduced entropyS* , and reduced energy
U* , by

S* 5S/Nk, ~17!

U* 5U/NkT. ~18!

The magnitudes of harmonic and electronic contributions
these reduced quantities, forT*u2 , are

SH* '4210,UH* '3,

SE* '2UE* & H0.1 for nearly-free-electron elements
0.5– 1.0 for transition metals.

~19!

The relative importance of anharmonic contributions forT
*u2 is revealed in the magnitudes ofSA* and UA* 2UA0* at
the melting temperature, and these quantities are liste
Table II for all the elements for which accurate values can
obtained at present. The first column lists 16 nearly-fr
electron elements@19#, for which the electronic contributions
are very small, and are evaluated from band structure de
ties of states, or from free electron theory. Errors of60.05
are expected in the anharmonic quantities for the nearly-f
electron elements; the means and variances for the 16
ments are given by@19#

TABLE II. Anharmonic contributions to entropy and energy
crystals at melt. The first column is nearly-free-electron eleme
the second column is transition metals.

Element SA* UA* 2UA0* Element SA* UA* 2UA0*

Li 0.03 0.08 V ~0.16! ~0.22!
Na 0.09 0.07 Nb 20.10 0.04
K 0.15 0.09 Ta 20.09 20.01
Rb 0.08 0.09 Cr 0.8a,b

Al 0.04 20.02 Mo 0.6a

Pb 20.04 20.07 W 0.5a

Cu 0.00 20.03 Ni 0.27a,b

Ag 20.07 20.11 Pd 20.04 20.05
Au 20.07 20.12 Pt 20.17 20.09
Mg 0.13 0.06
Zn 20.05 20.06
In 0.00 20.02
b-Sn 0.02 0.10
Hg 0.08 0.08
Si 0.23 0.17
Ge 0.20 0.13

aTo avoid uncertainties in the density correction ofu0 , Cr, Mo, W,
and Ni are analyzed atr5rN .
bTabulated values for Cr and Ni include magnetic contributions
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1984 56DUANE C. WALLACE
SA* 50.0560.09,
~20!

UA* 2UA0* 50.0360.09.

Comparing Eq.~20! with Eq. ~19! tells us that anharmonicity
in the entropy and energy at classical temperatures is
small for the 16 nearly-free-electron elements.

We have recently carried out band structure calculati
of the electron density of states, and of the correspond
conduction electron entropy, in order to determine the anh
monic entropy for 11 transition metals@6#. This analysis
turns out to be quite informative, especially when combin
with our analysis of nearly-free-electron elements. Anh
monic quantities for the crystal at melt are listed in the s
ond column of Table II for nine of these transition metals~Ti
and Zr will be discussed shortly!. The data for V are uncer
tain because of a large discrepancy among primary sou
of experimental entropy@20#. For the magnetic metals we ar
not able to separateSA andSmag, so only their sum is listed
in Table II. The reduced entropy of 0.27 for Ni is consiste
with a small anharmonic contribution; if we estimateSmag*
50.33, thenSA* 520.06 for Ni at melt@6#. The three metals
Cr, Mo, and W are clearly exceptional, in that their anh
monic entropies aremuch larger than any other elemen
listed in Table II. Again reduced entropy for Cr includes t
magnetic contribution, and Grimvallet al. @21# have esti-
mated thatSmag from spin fluctuations is significant in Cr
The qualitative conclusion for V, Nb, Ta, Ni, Pd, and Pt
that anharmonicity is about the same magnitude as it is
the nearly-free-electron elements, while for Cr, Mo, and W
is much larger.

The transition metals Ti and Zr each undergo a ph
transition, from hcp to bcc, at around 0.6Tm . The phonons,
as observed by inelastic neutron scattering at high temp
tures, show considerable softening as the transition is
proached, both from below and from above@22,23#. This
means the anharmonicity is significant, and is strongly te
perature dependent. But the phonon frequencies measur
high temperatures are renormalized, i.e., they include an
monicity, hence they provide renormalized characteris
temperaturesûn , which are explicitly temperature depen
dent. To leading order perturbation, the renormalized h
monic entropy ŜH5SH( ûn) includes anharmonicity cor
rectly, that is@2,24#,

ŜH5SH1SA . ~21!

It was pleasing to see that the experimental entropy ag
with ŜH1SE to high accuracy for both phases of Ti and Z
from room temperature to the melting point@6#.

IV. INFORMATION FROM THE FUSION PROCESS

Melting is commonly observed at a fixed valueTm of the
temperature, and a fixed valuePm of the pressure, where th
crystal and liquid have densitiesrcm andr lm , respectively.
The entropy of meltingDS(Pm ,Tm) is the difference be-
tween the liquid entropySl(r lm ,Tm) and the crystal entropy
Sc(rcm ,Tm), so this experimental melting entropy contai
two contributions, one due to the change in density on m
ing, the other due to disordering from crystal to liquid. W
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wish to separate out the disordering contribution, i.e.,
difference between liquid and crystal entropies at the sa
density, for example, at densityr lm . We first extrapolate the
crystal entropy fromrcm to r lm , via the Taylor expansion a
constant temperature,

Sc~r lm!5Sc~rcm!1hgCV~rcm!1••• , ~22!

whereCV is the constant-volume specific heat, and

h5
rcm

r lm
21, ~23!

and where1••• represents terms of orderh2 and higher.
Hence

DS~r lm ,Tm![Sl~r lm ,Tm!2Sc~r lm ,Tm!5DS~Pm ,Tm!

2hgCV~rcm ,Tm!1••• . ~24!

We define the reduced entropy of melting at constant den
asDS* ,

DS* 5
DS~r lm ,Tm!

Nk
. ~25!

For all the elements for which we are currently able to ma
a reliable estimate ofDS* , the result is listed in Table III.

A. Normal melting

Normal melting is defined qualitatively as melting with
out significant change in the electronic structure. It turns
DS* provides a quantitative identification of melting as no
mal or anomalous. The first column in Table III lists 1
normal melting elements@25#, with errors inDS* expected
to be around60.05. For these 18 elements,DS* has little

TABLE III. Entropy of melting at constant density for 34 ele
ments. Melting is normal in the first two columns, anomalous in
third.

Element DS* Element DS* Element DS*

Li 0.75 V 0.90 Sn 1.48
Na 0.73 Nb 0.97 Ga 2.37
K 0.73 Ta 1.1 Sb 2.68
Rb 0.73 Cr ~0.9! Bi 2.62
Cs 0.73 Mo ~1.2! Si 3.77
Ba 0.90 W ~1.1! Ge 3.85
Fe 0.68 Pd 0.74
Al 0.88 Pt 0.79
Pb 0.68 Ti 0.70
Cu 0.86 Zr 0.93
Ag 0.73
Au 0.64
Ni 0.88
Mg 0.96
Zn 0.97
Cd 0.93
In 0.76
Hg 0.90
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56 1985EVALUATION OF THERMODYNAMIC FUNCTIONS OF . . .
variation: the values range from 0.64 to 0.97, and the dis
bution has mean and variance given byDS* 50.8060.10.
Further, the compression dependence of melting shows
DS* remains essentially constant for normal melting at a
density @8#. This apparent universality ofDS* can be ex-
plained by the two-part hypothesis:~a! Since the electronic
structure changes little on normal melting, the electronic
tropies of liquid and crystal are the same, within the expe
mental scatter ofDS* . ~b! Since the crystal has long rang
order, and the liquid does not, there exists a universal di
dering entropyD of the liquid, not present in the crystal, an
of approximate value

D/Nk[D* '0.80. ~26!

We will continue our analysis in the light of this hypothes
The first column of Table III includes two transition me

als, Fe and Ni. From continued data analysis, we can ad
more transition metals, listed in the second column of Ta
III. Here the errors inDS* are expected to be larger, sa
around60.1, and the experimental values ofDS(P51 bar)
are uncertain for Mo and W, while the density correction
Eq. ~24! is uncertain for Cr. Hence within expected erro
DS* for these transition metals lies in the distribution of t
first column elements. This confirms the universality
DS* for normal melting, and supports our hypothesis.

B. Anomalous melting

In anomalous melting, there is a significant change in
electronic structure, from crystal to liquid. This change
quite apparent for the two most anomalous elements, Si
Ge, which melt from polar crystal to metallic liquid. It is als
obvious in Sb and Bi, which melt from semimetal to met
but the nature of the electronic structure change is no
obvious in the two least anomalous elements, Sn and
Nevertheless, for all six elements, which comprise all
anomalous-melting elements we have been able to ana
DS* is very large, far removed from the normal-melting d
tribution established above. The anomalousDS* are listed in
the third column of Table III@7# and are in the range 1.48
3.85.

To gain insight into anomalous melting, let us conside
material with the phase diagram in Fig. 1, and generalize
argument that Jayaramanet al. @26# applied to Cs. As the
material is compressed from low pressure, there is a rela
shifting of bands near the Fermi energy, hence a chang
the electronic structure, which is the underlying reason
the presence of two crystal phases,a andb. When the liquid
is compressed, the electronic structure change can pro
more or less continuously, but the solid is constrained
crystal symmetry, which interferes with the electronic stru
ture change, hence the electronic structure is discontinu
across thea-b phase boundary. This means the electro
structure in the liquid is different fromeither crystal phase,
in the vicinity of the triple point, so we should general
expect anomalous melting in the vicinity of a triple poin
This conclusion is supported by experiment, since all six
the anomalous elements identified in Table III have tri
points on the melting curve at modest pressures. An e
more striking example is provided by evaluation ofDS*
along the melt curve for Cs@8#. As pressure is increased
i-
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DS* remains constant at the normal value of 0.75 for pr
sures to 1.4 GPa, thenDS* increases dramatically and pass
out of the normal range at 1.9 GPa, and a triple point on
melting curve follows at 2.3 GPa.

If we consider a material can exist in either of two ele
tronic structure forms, for example, covalent and metal, a
describe anomalous melting as the equilibrium between
crystal in one form and the liquid in the other, then we c
write down all the terms that contribute toDS(r lm ,Tm).
Among these terms we can identify the normal melti
terms, and setting these equal to the disordering entropD
we find @7#

DS* 5D* 1DF0* 1~small terms!, ~27!

whereDF0 is the~positive! difference in static lattice poten
tials for the two electronic structure forms, at densityr lm ,
and the small terms include contributions fromUE , from
UH0 , and a term of orderh2. An evaluation of Eq.~27! for
Si and Ge shows agreement with experiment@7#, and
strengthens our confidence in the universality of the dis
dering entropyD* of elemental liquids.

V. SUMMARY

Suppose one wants to calculate thermodynamic functio
including the phase diagram, of an element in solid and
uid phases, under conditions where little or no experimen
data are available; what techniques can be used, and
kind of accuracies are to be expected? Answering this
provide a summary of the present study.

To begin, one needs the static lattice potentialF0(V) for
every relevant crystal phase, and this is obtainable from
thermal compression measurements, or from band struc
calculations. For thermal motion of the ions, an accurate p
cedure is to use quasiharmonic lattice dynamics at quan
temperatures (T& 1

2 u2), and molecular-dynamic calculation
at classical temperatures (T. 1

2 u2). The electron excitation
contributions require theoretical evaluation, from the ele
tron density of states, together with electron-phonon ren
malization at quantum temperatures. Following these pro
dures, and with the aid of a pseudopotential model

FIG. 1. Representative phase diagram possessing a triple p
on the melting curve.



a
cy

an
e
A

g
er
in
th

e

n
a

,
it

ar

all
lting
ic-

e
the

er
will
at

ec-
ced
s
eat
xi-
s.

an

us-

1986 56DUANE C. WALLACE
sodium fitted to the energy and its first two volume deriv
tives atT50 @27#, we have calculated to excellent accura
the thermodynamic properties of the crystal to melt@2,3# the
room-temperature isotherm to high pressures@4#, the melting
temperature to modest pressures@18#, and thermodynamic
properties of the liquid to high temperatures@16#. Also,
based on no experimental data but the atomic weight
number, we have calculated to excellent accuracy the m
ing temperature, and the crystal and liquid entropies, of
@13#.

The molecular-dynamic calculations require a knowled
of the effective ion-ion interactions in every phase of int
est. Two approximations, of lesser accuracy but requir
much less information, are to neglect anharmonicity in
crystal, and to approximate the constant-density entropy
normal melting by a universal constant. Assessment of th
approximations follows.

For crystal phases, neglect of anharmonicity leaves o
the quasiharmonic free energy for the ion motion, and
classical temperatures this dependsalmost entirelyon the
single phonon characteristic temperatureu0(V), which can
be obtained from inelastic neutron scattering experiments
from frozen phonon calculations. Neglecting anharmonic
introduces errors at classical temperatures of roughly60.1 in
the reduced energy and entropy, errors very small comp
s

ce

s.
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to the quasiharmonic energy and entropy, and even sm
compared to the energy and entropy changes on me
(DS* '0.80). Exceptional elements, where the anharmon
ity is not so small, are Cr, Mo, W, Ti, and Zr. Finally, th
quasiharmonic approximation is also capable of giving
correct shape of the equilibrium boundary between thea and
e phases of iron@12#.

Together with the thermodynamics of crystals, wheth
accurate or approximate, a separate approximation
specify all the thermodynamic properties of the liquid
melt, again to an accuracy of roughly60.1 in the reduced
energy and entropy: for crystal and liquid of the same el
tronic structure form, and at the same density, the redu
entropy difference isD* '0.80. Both normal and anomalou
melting are contained in this statement, where to tr
anomalous melting it is only necessary to apply the appro
mation separately to two different electronic structure form
In addition, the approximation can be transformed into
estimator for the melting temperature@7#.
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