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Slowly driven sandpile formation with granular mixtures

D. A. Head* and G. J. Rodgers†

Department of Physics, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
~Received 3 March 1997!

We discuss a one-dimensional sandpile model withN different particle types and an infinitesimal driving
rate. The parameters for the model are theN2 critical slopes for one type of particle on top of another. The
model is trivial whenN51, but for N52 we observe four broad classes of sandpile structures in different
regions of the parameter space. We describe and explain the behavior of each of these classes, giving quanti-
tative analysis wherever possible. The behavior of sandpiles withN.2 essentially consists of combinations of
these four classes. We investigate the model’s robustness and highlight the key areas that any experiment
designed to reproduce these results should focus on.@S1063-651X~97!11408-8#

PACS number~s!: 46.10.1z, 05.40.1j, 64.75.1g
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I. INTRODUCTION

Granular materials display a variety of unusual behav
not normally associated with either solids or liquids@1#. One
such example is the segregation that occurs when a mix
of different sized granules is repeatedly shaken, in which
larger particles rise to the top@2–4#. Similarly, a granular
mixture placed inside a rotating cylinder segregates into
ternate bands along the cylinder’s axis@5,6#. Segregation in
the absence of external perturbations has recently been
onstrated for a mixture poured between two vertical pla
separated by a narrow gap@7#. A sandpileforms in which
particles of different sizes tend to remain near the top
bottom. Moreover, certain mixtures alsoself-stratifyinto al-
ternating layers parallel to the surface of the pile. It is t
segregation in sandpiles that this paper seeks to addres

A sandpile is formed by the addition of particles that th
move over the surface of the pile until finding a resti
place. Modeling this process is a highly nontrivial proble
even without the added complication of mixtures of particl
There are two basic approaches to modeling the sur
transport of pure granular media. Firstly, Baket al. @8# intro-
duced a cellular automata model as a paradigm of their m
general concept of self-organized criticality. In this mod
sequentially added particles can initiate a series of loc
defined topples known collectively as anavalanche. The sys-
tem is said to beslowly drivenas the time scale for particl
injection is infinitely slower than that of the subsequent a
lanche @9#. However, experimental evidence@10–12# dis-
agrees with the model’s predicted power-law distribution
avalanche sizes, except possibly in the limit of overdam
particle motion@13#. A second approach treats the sandp
as a continuum with a fluidrolling layer interacting with the
static bulk of the pile. Analysis of the field equations of th
model appears to give a greater correspondence with the
periments@14#.

Variations of both discrete and continuous approac
have been used to try to explain the behavior observed in
sandpile formed by pouring a mixture between two plates
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discrete model, in which the particles are added in gro
and also move down the slope in groups, exhibits s
stratification but gives no insights into the mechanism
sponsible for the formation of the layers. However, exten
ing the continuum rate equations to incorporate mixtu
demonstrates the existence of akink, which backpropagates
up the slope forming two layers at once, giving a possi
explanation of the experimental results@15#.

In this paper, and in contrast to the experiments@7# and
their subsequent analysis@15#, we consider a slowly driven
system in which particles are added individually rather th
being poured. The entire pile is stable between particle a
tions and there is no formation of a rolling layer. The mod
we have chosen to study is a one-dimensional cellular
tomata with mixed particle types, based on the model in@8#,
which has no avalanching in one dimension. For binary m
tures we observe four broad classes of sandpile structure
the relative strengths of the interactions between the parti
are varied. Two of these classes correspond to the s
segregation and self-stratification observed in the roll
layer case.

The algorithm for the model is described in Sec. II. T
four classes of behavior are described and their evolu
explained in Sec. III, and the results for mixtures with mo
than two particle types are also given. In Sec. IV we disc
how experiments to observe these classes might procee

II. THE MODEL

The sandpile profile is described by the set of heig
hi , i>1, where all thehi are initially set to zero. An infinite
wall at i 50 serves as a lower bound fori , whereas there is
no upper bound on the values ofi . At each time step, a
particle is chosen from one ofN possible types, where eac
particle has the same dimensions and is chosen with e
probability. A particle of typeaP@1,N# is then added to the
top of site 1 and subsequently slides to the first sitei>1 that
obeys zi,zab , where zi5hi2hi 11 and b is the type of
particle currently on the surface at sitei . The particle is
added to the top of sitei , hi→hi11, and another particle ca
now be added to the system. An example of this proces
given in Fig. 1.

TheN2 parameterszab correspond to the maximum slop
1976 © 1997 The American Physical Society
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56 1977SLOWLY DRIVEN SANDPILE FORMATION WITH . . .
on which a particle of typea can remain on top of a particl
of type b without sliding off. A pure pile of just typea
particles has uniform slopezaa , so tan21(zaa) can be iden-
tified as theangle of repose. The zab for aÞb are micro-
scopically defined quantities with no obvious macrosco
counterparts. GenerallyzabÞzba , since the critical slope
will depend upon which type of particle is moving on top
the pile, for instance, typesa and b may have different
densities. Due to the complex nature of granular surface
surface interactions it is unclear how much of this parame
space corresponds to physical reality. The labels for e
particle type are just dummy variables, so without loss
generality we choose to fixz11<z22<•••<zNN .

III. RESULTS

For N51 the system reduces to the original model, wh
is trivial in one dimension@8#. For N52 andz11,z22 there
are four classes of solution, which we label I–IV. Each cla
can be identified according to thedomain stabilityof each
particle type, which is defined as follows. A compact regi
of sites with surface composition of particle typea is stable
if it can reach a uniform slopezaa such that particles of type
bÞa will slide through the region—that is, ifzba,zaa .
Unstable regions can only form in instances where ther
no incoming flux of particles of the other type, which ma
occur towards the right-hand side of the sandpile. We n
describe each of the four classes in turn.

Class I : z21.z11 and z12.z22. Neither particle type can
form stable domains and particles will usually come to r
on particles of the other type. We call thisperiodic mixing.
An example of such a sandpile is given in Fig. 2. This b
havior can be demonstrated by the following single-s
analysis. A site with an uppermost particle of typea and
slopezi is represented by (a,zi). Then the transition ampli-

FIG. 1. Example of sandpile evolution forN52, z1151,
z1252, z2153, andz2254. Particles of type 1 are black, and tho
of type 2 are white. For the sandpile shown above, a particle of t
1 added to site 1 will eventually come to rest on site 4.
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tude for a particle of typeb coming to rest on this site
(a,zi)→(b,zi11), is given by the particle addition operato
Pab(zi) defined by

Pab~zi !5u~zab2zi !, ~1!

whereu(x)51 for x.0 andu(x)50 for x<0. Low values
for zi are transitory, but for largezi added particles slide
through, possibly coming to rest on sitei 11 and reducing
zi by 1. Hence the bulk properties of the sandpile will
characterised by the action ofP in the region of largezi . An
example is given in Fig. 3 for the casez11,z22,z12,z21,
which clearly shows periodicity forzi near the maximum

e

FIG. 2. Example of a class I sandpile with the paramet
z1151, z1255, z2157, andz2253, which exhibitsperiodic mixing.
Particles of type 1 are shown as black, particles of type 2 are sh
as white. The pile given here is small, just 35 sites wide at its ba
to show the mixing clearly. In this and all subsequent cases, si
lations have been extended up toO(105) particles without any ob-
served deviation from the characteristic behavior. Note that we h
rescaled they axis to give a roughly square picture.

FIG. 3. Phase portrait of the particle addition operatorPab(zi)
in the casez11,z22,z12,z21, where each arrow corresponds
Pab(zi)51, that is, an allowed particle addition.a denotes the type
of particle on top andzi is the slope.
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1978 56D. A. HEAD AND G. J. RODGERS
slope, which in this case is'z12. Note that forz22.z21 we
do not have strict periodicity as type 2 particles are occas
ally added consecutively.

Class II : z21.z11 and z12,z22. A stable domain of type
2 particles with uniform slopez22 builds up to the left of the
sandpile, and type 1 particles slide through to the right for
ing a domain with uniform slopez11. The result isdiscrete
self-segregation, as the example in Fig. 4 demonstrates. T
boundary between the two domains moves to the righ
particles of type 2 come to rest on sites with slopez11, so if
z12.z11 some periodic mixing may occur. Ifz21.z12, the
mixing remains confined to a narrow layer at the bounda
but if z21,z12 it expands to the bulk of the pile, giving
sandpile similar in appearance to the case of the perio
mixing described previously. The self-segregation a
boundary behavior can also be seen from the phase por
of the particle addition operatorPab(zi). We justify referring
to the casez11,z21,z12,z22 as discrete self-segregation b
the observation that the region of periodic mixing collaps
to a much narrower layer under most small alterations in
dynamical rules. We will return to this point later when w
discuss the robustness of the model.

It is possible to construct a global solution of this class
sandpiles. DefineLB and L to be position of the boundar
and the right-hand edge of the sandpile, respectively, so
hL.0, hL1150, all sites 1< i<LB have a type 2 particle on
top and all sitesLB, i<L have type 1 particles on top. A
type 2 particle added toi 5LB will reduce the slope of site
LB21 by 1, so the next type 2 particle added will stop
LB21, thenLB22, LB23, and so on. Similarly, type 1 par
ticles will be added toL, L21, L22, . . . ,LB11, in that
order.L will move to the right by one step whenhL increases
from 0 to z11, so in the continuum limit

dL

dt
5

1

2z11
S 1

L2LB
D , ~2!

where the time scale has been normalized to one par
addition of either type per unit time. The slope atLB in-

FIG. 4. Example of a class II sandpile withz1151, z1253,
z2155, and z2257, demonstratingdiscrete self-segregation. Par-
ticles of type 1 are black, those of type 2 are white. The base of
pile is 100 sites wide.
n-

-

e
s

,

ic
d
its

s
e

f

at

t

le

creases with each type 2 particle that stops onLB and de-
creases with each type 1 particle that stops onLB11, and
sinceLB increases by one whenever the slope increases f
z11 to z22 we get

dLB

dt
5

1

2~z222z11!
S 1

LB
2

1

L2LB
D . ~3!

A steadily evolving sandpile corresponds to a constant r
LB /L, so

d

dtS LB

L D50. ~4!

Using this together with Eqs.~2! and ~3!, we find

LB

L
5

Az22/z1121

z22/z1121
, ~5!

giving the average slope of the entire pile as

S 12
LB

L D z111
LB

L
z225Az11z22, ~6!

in agreement with simulations@16#.
Class III : z21,z11 and z12.z22. It might be expected

that self-segregation will also occur here, this time with ty
1 particles to the left of the boundary. However, sin
z11,z22 the type 2 particles to the right of the boundary for
steeper slopes than the type 1 particles to the left, and so
the boundary moves up the slope rather than down the sl
creating a double layer of 2’s on top of 1’s. Once the boun
ary reaches the left-hand wall, a thin layer of 1’s quick
covers the surface of the whole sandpile, the boundary
turns to the bottom, and starts propagating upwards o
more. This moving interface corresponds to the kink d
scribed in the rolling layer case@7,15#, and, indeed, the re
gion of parameter space in which it occurs is the same. H
ever, there are three significant differences between
nature of the self-stratification formed by this slowly drive
process and that formed by rolling layers.~i! The slope of the
layers varies betweenz11 andz22, as opposed to the uniform
slope ofz22 observed in the rolling layer case.~ii ! The layers
are narrower, typically just one particle wide.~iii ! The rate at
which the interface moves is no longer a constant but va
according to statistical fluctuations in the types of incomi
particles. It is even possible for the interface to stop mov
altogether, resulting in a vertical build up of particles that
reminiscent of a miniature self-segregated sandpile. Ho
ever, this state is unstable and the interface will eventu
start moving again, either up the slope to continue the lay
ing process or quickly down the slope to the bottom of t
pile. Thus, layers can now start and stop in the bulk of
pile. An example of a self-stratified sandpile is given in F
5.

Class IV : z21,z11 and z12,z22. In this final class, alter-
nating stable domains of 1’s and 2’s form parallel vertic
bands. An example of thisvertical stratificationis given in
Fig. 6. The phase portrait ofPab(zi) for this class demon-
strates the separation of the particle types, but further an
sis requires some knowledge of the global solution. Once

e
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56 1979SLOWLY DRIVEN SANDPILE FORMATION WITH . . .
slope of the site at the right-hand edge of any domain
creases by one, a single layer of particles of similar ty
backpropagates to the left-hand edge, when the adjacen
main will undergo a similar process. Thus the bulk of t
sandpile builds up a layer at a time in this piecewise fash
from the bottom of the pile to the top. The process th
initially generates each domain depends upon the interac
between the bulk of the sandpile and the qualitatively diff
entend regionat the far right-hand side. In the end region
layer of 2’s of thickness'z112z2111 backpropagates to th
first domain of type 2 particles. The domain then broaden
the right, and the process is repeated. Alternatively,
z12.z21 the back-propagating layer of 2’s can be stopp
prematurely by an incoming flux of 1’s, resulting in the fo
mation of a new stable domain of type 1 particles. Since

FIG. 5. Example of a class III sandpile withz1155, z12515,
z2151, andz22510, demonstratingself-stratification. Type 1 par-
ticles are black and type 2 particles are white. The base of the
is 100 sites wide.

FIG. 6. Example of a class IV sandpile withz1155, z1253,
z2151, and z2257, demonstratingvertical stratification. Type 1
particles are white, type 2 particles are white and the base of
pile is 100 sites wide.
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particles that flow into the end region are precisely those
did not stop in the bulk of the pile, the number of domains
each different type tends to remain equal, although the
mains themselves get broader as the end region expand
z12,z21 the formation of new type 1 domains can still occ
when the sandpile is small due to statistical fluctuations,
this rarely occurs for larger piles, which take on a se
segregated appearance.

A diagram of the parameter space showing the region
which each of these classes occurs is given in Fig. 7.
borders between these regions correspond toz215z11 or
z125z22, when domain stability is not well defined. In thes
cases the sandpile behavior is either indeterminate betw
the two classes in question or just reduces to random mix
For z115z22 periodic mixing and vertical stratification ar
unaffected but there is no longer any distinction betwe
discrete self-segregation and self-stratification. Instead, th
two classes are replaced with a hybrid class that exhi
self-segregation with a broad, layered boundary.

Each class is said to berobust if its existence is insensi-
tive to the exact choice of dynamical rules. It is possible
vary the volumes of each particle type added or to introd
an open or closed right-hand boundary condition without a
significant alteration in the resultant sandpile. Similarly, in
tially adding the particles over a range of sites does not af
the sandpile to the right of the range, and introducing
nealed disorder to thezab just increases the noise. Mor
significant is the effect of averaging thezab over adjacent
pairs of sites, corresponding perhaps to the nestling of
upper particle in between the two lower ones, which destr
vertical stratification and instead gives random mixing
discrete self-segregation. Crudely modeling inertia by allo
ing the moving particle to stochastically drift a short distan
further than normal distorts vertical stratification and r
places layering and periodic mixing with random mixin
We conclude that the model is robust except when we
clude displacements in the particle’s horizontal motion.

For N.2 the parameter space forzab becomes too large
to explore systematically. The situation improves somew
if only domain stability is considered, but this still leave
2N(N21) possible combinations, so we have limited ourselv
to a brief survey of all these cases forN53 and a represen
tative sample forN54. The resultant sandpiles are esse
tially just combinations of the four classes identified f
N52, with a significant feature being that periodic mixin
can now occur with periodicity<N. Any particle separation

ile

e

FIG. 7. Schematic diagram ofz212z11 vs z122z22 for N52 and
z11,z22, showing where each class of sandpile solution applies
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1980 56D. A. HEAD AND G. J. RODGERS
and the allowed orders of periodic mixing can be predic
in each case by extending the particle addition opera
Pab(zi) to includea,bP@1,N#. As before, there is no ge
neric way of constructing global solutions but in many ca
known solutions forN21 particle systems can be used i
stead. This is possible when particle typesa andb would by
themselves periodically mix, when to a good approximat
they can be replaced by a single particle typea8 that alter-
nates between the two. A domain is stable toa8 only if it is
stable to botha and b, a domain of typea8 particles is
stable to another type only if botha and b are, and
za8a85min(zab ,zba). This reduced system usually exhibi
the correct qualitative structure of the original but sign
cantly underestimates the amount of noise.

IV. DISCUSSION

The discrete model studied here is perhaps the simp
conceivable model describing slowly driven sandpile form
tion with granular mixtures. Nonetheless it exhibits a wi
variety of nontrivial behavior in one dimension, and we c
only suppose that it will continue to do so in higher dime
sions. The behavior of sandpiles for binary mixtures fa
into one of four classes, two of which have known count
parts in the rolling layer model@7,15#. They are also much
more susceptible to statistical fluctuations in the order
particle types added.

We have recently initiated a series of experiments in
attempt to reproduce these classes with real granular ma
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als @17#. On first inspection, there may appear to be lit
hope that such a simple model could describe real sand
mixtures. For instance, the possibility of particles bounc
or dislodging surface material has not been addressed. H
ever, our numerical investigations into the robustness of
model leads us to suppose that agreement might be pos
in the limit of overdamped particle motion. It is also impo
tant to realize the limit of infinitely slow driving as closely a
possible, to minimize the probability of a rolling layer form
ing, because even a thin rolling layer would displace surf
material along the length of the slope. This would interfe
with the formation of both vertical stratification and period
mixing.

In summary, sandpile formation by granular mixtures e
hibits a greater diversity of behavior in the slowly drive
limit than in the rolling layer case, at least numerically.
toppling were included in this model@18#, more than one
particle would be able to move simultaneously in the form
an avalanche. Similarly, allowing moving particles to d
lodge surface material in some manner might allow
something akin to a rolling layer to form. It would be inte
esting to see if the system diversity was reduced in eithe
these two cases.
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