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Structure and arrangement of clusters in cluster aggregation
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We study cluster structure and the arrangement of clusters in the diffusion-limited cluster-cluster aggregation
(DLCA) simulation model of colloidal aggregation, analyzing our data using techniques that allow direct
comparison with scattering experiments. As is well known, individual clusters in DLCA have a fractal struc-
ture; we compare DLCA results with colloidal aggregation experiments by fitting the Fisher-B{Fbyd.

Rev. 156, 583(1967)] functional form for the scattering by a fractal object to the average scattering function

or form factor of DLCA clusters. In two-dimension@D) simulations the DLCA average form factor deviates

from the Fisher-Burford form, though power-law fits to the data do give fractal dimensions in agreement with
the “accepted” fractal dimension of 2D DLCA clusters previously obtained from the fractal mass-radius
relation. The average form factor in 3D simulations agrees better with the Fisher-Burford form though there
remain indications of some deviation. Near gelation, the average form factor at long length scales begins to
decreasecorresponding to the interpenetration and assembly of the clusters into the system-spanning gel. We
also study the arrangement of clusters or the intercluster structure by computing the cluster center-of-mass
structure factor. The cluster structure factor demonstrates a strong “excluded-volume” interaction between the
clusters. As the aggregation proceeds, while larger clusters are distributed more or less evenly, there is a
marked inhomogeneity in the distribution of tlsenallestclusters, especially pronounced at high particle
concentration. Theolydispersityof the clusters thus has important effects on the cluster arrangement. We find
that the total scattering functiotannotbe factorized into the average form factor and the cluster center-of-
mass structure factor, due at least in part to the size-position correlation thus induced by the cluster polydis-
persity. We also examine the “mass-weighted” cluster structure factor as considered previously by other
authorg[F. Sciortino, A. Belloni, and P. Tartaglia, Phys. Rev5E 4068(1995]. [S1063-651X97)06608-7

PACS numbes): 61.43.Hv, 82.70-y

[. INTRODUCTION briefly consider the factorization of the “total” scattering
function of the aggregating system into functions describing

Recent experiments have demonstrated some surprisirije cluster structure and the cluster arrangement, discussing
aspects of the structure of aggregating colloidal suspensiorf# the same time similar approaches by other authig2s)].
[1-9]. While early experiments and computer simulations
[10-12 concentrated on the fractal structure inélividual
clusters of colloidal particles, small-angle light-scattering ex-
periments have demonstrated that the intercluster structure of The DLCA model of aggregating colloidal suspensions
the system is far from trivial. A growing characteristic length has been the subject of many studies since its introduction by
scale is indicated by the presence of a strong peak in th®eakin[10] and by Kolbet al.[11]. We have described our
scattered intensity at small angles. The peak moves town (standardlimplementation of the model in detail else-
smaller angle and grows brighter as the aggregation prowhere[17] and give only brief details her&l colloidal “par-
ceeds. Very similar results have been obtained from the mosicles” are placed at random onto darnx L [in two dimen-
recent computer simulations using the diffusion-limited clus-sions (2D)] or LXL XL (in 3D) lattice. Periodic boundary
ter aggregatiofDLCA) model[13-19. Similar results are conditions are implemented. Before initiation of aggregation
also seen in other experimental systems, for instance, thge particle starting coordinates are further randomized in
system of siloxane polymers studied by Cabane and cosrder that we begin with a “fluidlike” structure. Thence the
workers[20—-22. However, a complete understanding of the particles diffuse by carrying out a random walk on the lat-
scattering behavior of the aggregating system in terms ofice. Particles that become nearest neighbors are joined so
definable physical elements of structure has yet to behat they belong to the same cluster; thereafter the cluster
achieved. In this paper we study the scattering behavior ofliffuses as a whole and may collide and join with other clus-
the DLCA system in more detail than previous analyzes, taers or particles. We scale the diffusion coefficient of a clus-
investigate both the structure of individual clusters and theer in inverse proportion to its radius of gyration:
clusterarrangemenbr intercluster structure.

The paper is ordered as follows. In the next section we
describe briefly the simulation model and the basic methods
of the “scattering” analysis of the simulation results. There-
after we discuss separately the analysis of cluster structuti@ order to simulate the physical slowing of the diffusion of
and cluster arrangement in the DLCA system. Finally, welarger clusters(Note that such a scaling of cluster diffusion
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rate, while not always implementd@.g.,[15]), has impor-  of our simulations, this means that we are able to examine
tant consequences for the kinetics of the aggregatiothe effects of gelation only in systems at high enough num-

[17,24.) ber density.

In the simulations analyzed here, we have used lattices of
L=300 orL=500 in 2D and.=70 in 3D. Further, we have IIl. CLUSTER STRUCTURE
studied a small range of number densitie¢p=0.01, 0.1, _ _ _ _ _
and 0.3 in 2D andp=0.01, 0.05, and 0.1 in 3D Since At any given timet the simulation system contains a
N=pLP, whereD=2 or 3, we have typicallyN=2500 number of clusters of different masses. The intensity scat-
(p=0.01 in 2D to N=75 000 (p=0.3,L=500 in 2D. tered by a giverisolatedcluster of particlegwhich we label

The scattering function of a system Nfparticlesl (Q) is  clusterk), thesingle cluster form factor {Q), is obtained
given by by inserting the set of coordinates of the particles belonging

to clusterk into Eq. (2):
1 N N My My
Q=12 2 exliQ-(r=r)], ?) Pk(Q):M_k; Z exfiQ-(rj—r)]. &)
]

M, is the total number of particles in the clusténe cluster
whereQ is the scattering vector and andr, are the particle masg. We compute theveragecluster form factoP(Q,t)
coordinates. The above function is sometimes referred to agver the ensemble of clusters in the system from
the structure factor see e.g.[13,16—19. For clarity, since

below we discuss theluster center-of-masstructure factor Ne
that describes the arrangement of clusters, in this paper we P(QH)=x; ; MP(Q), (4)
shall calll (Q) the total scattering functionNote that in an > My

K

experiment the intensitfof light, x rays, neutrons, efcscat-
tered by the system involves a multiplicative factor describ- ) ,
ing the scattering by an individual particléhe single- Where the average is taken over the(t) clusters in the
particle form factoy, in the simulations we take this as a system and each m_chwdugl cluster’'s “normalized” form fac-
constant, independent &, and thus for simplicity leave it " P(Q) [Eq. (3)] is weighted by the mass of the cluster
out of our expressions. This is equivalent to treating theVlk- This form of average is equivalent to the scattering that
simulation particles as 8 functions” or point masses. would be seen from a dilutgpolydispersgsystem of clusters
For a simulation box of sidé the scattering vectors al- N an expe.rlment.: Larger clusters scatter. more. The analo-
lowed by the periodic boundary conditions in each dimen-90US €xperiment is to measure the scattering by a system that
sion are given byQ==2nx/L, wheren is an integer. IS dlluted_ (and the aggrggatlon effectively stoppeat time
Therefore, the reciprocal space represented by the set of 4p-assuming that the dilution process does not affect the struc-
lowed scattering vectors consists of a squémeD) or cubic ture of the clusters themselves. This experimental procedure

(in 3D) lattice of points, with lattice spacing/2L. For these @S been used to study the onset of gelation in polymer sys-

lattice-based simulations, the total scattering functions, cluslems[26] and a few similar experiments have been attempted

ter form factors, and inter-cluster structure fact@ee be- " Systems more akin to colloid20-22,27, as is discussed

low) may be evaluated using the discrete fast Fourier trand2€/0W-
form algorithm[25]. The calculated scattering functions are

circularly or spherically averaged in thin annuli of width A. Form factor of a fractal cluster
6Q (typically 6Q=0.1 reciprocal particle diameterand It has been amply demonstrated that the clusters of par-
plotted against scattering vector magnitu@e ticles in DLCA have a fractal structufd0,11]. Simple lim-

The evolution of the total scattering function of the jting forms are expected for the scattering function of a
DLCA system has been examined and compared with colloisingle circularly or spherically symmetric fractal objésee,
dal light scattering experiments by a number of authors g, [28]):

[13,16-19. Briefly, the DLCA simulation displays features

in qualitative agreement with experimen{Q) develops a P(Q)~Q % (QI<Q<Q), (5)
peak at small but nonzei® and this peak grows in intensity
and moves to smalle® as the aggregation proceeds and P(Q—M (Q—0), (6)

larger and larger fractal clusters of particles are formed. At

late timegelationmay occur: In any system at finite particle whereM is the cluster masgl; is the fractal dimension of
concentration with irreversible particle “bonding,” the the cluster, an®, andQ, are the lower and upper reciprocal
growth of the fractal clusters results eventually in the filling space cutoffs, respectively;n2Q, corresponds to a length
of space and the formation of a system-spanning macrascale of the size of the cluster andrZQ),, approximately to
scopic “gel” cluster (see, e.g.[9]). In the simplest model the size of the “monomers” making up the cluster. A more
the gel is an assembly of fractal clusters whose Bizg is  detailed functional form that has been used to fit experimen-
system number-density dependent; thus, in a simulation sysal light-scattering data for aggregating colloidal systems
tem not substantially bigger thaRy, the gel structure can- [27], essentially a combination of the limiting forms in Egs.
not be correctly formed and at the final stage the systeni5) and (6), is given by the Fisher-Burfor@FB) expression
contains instead a single isolated fractal cluster. In the casgee, e.9.[22,29)
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form. In practice the fit fails at larg® and the “fractal
P " (7)  dimension” parameter in Eq7), fitted to the steeper slope
[1+2Q°Ry/3d¢]™ of the middle region of thé>(Q) curve, is certainly not a
good estimate of the fractal dimension of the clusters.

The reasons for the shape of tR€Q) curve from the
two-dimensional simulations are not clear. Conceivably the
marked anisotropy of the clustefand possibly even an ori-
entational correlation between neighboring clustemsght
have significant effects on the average form factor, especially
QZRé) at later times when there are fewer clusters in the system.

P(Q)=

Ry is a measure of the cluster radiags,is the fractal dimen-
sion, andA is proportional to the cluster magg|. This func-
tion includes both the power-law regioR(Q)~Q 9 at
larger Q and the “rollover” to the Guinier regime a®
approaches zero:

(8)  The polydispersity of the clusters may also have effects that

are not “washed out” in the averaging over the ensemble of

. clusters. Alternatively the deviation from the Fisher-Burford

Elcc))t:ggaP verCiQmRagtetlie%onst_rit%sr (tghitzth/eRrollover COIe- form may be some effect of the underlying lattice. However,
P bp y QRy= |~ e Ry - calculations using data from asff-lattice simulation in 2D

e oo et [ 13 show a very smiar o or e average cluse forr
S | plots - actor. It is interesting to notice that fitting a simple power
sus cluster radius in large-scale simulatiph8—12, giving

- . = : o law, as in Eq(5), to the power-law region oP(Q) at large
di~1.4 in 2D andd;~1.75 in 3D. An estimation of the Q (where that region extends over a reasonable range of

power-law exponent from the power-law regionR{Q) is ) . ) S
sometimes used to obtain the fractal dimension of the cIusQ) gives estimates of the cluster fractal dimension in good

o agreement with the ‘“accepted” estimate for two-
ters [30]: It shpuld be remembered that the estimation Ofdimensional DLCA [12], d;~1.4 (Table ). To verify
fractal dimension from the average form factor involves av-

eraging over clusters whose structures may vary. This als\c')\/hether the effects we observe in our simulaR(@®@) may

applies to estimates ofl, from mass-radius plot<e.g., yet be artifacts of the simulation model, experiments that

; irectly measuréP(Q) [i.e., P(Q) and not simply the total
[31,32) and of course to most experimental measures of thgcattering functiori (Q)] would be of great value. We dis-

fractal dimension of real systems, whether obtained by im- . ) ;
aging or scattering methods. cuss possible expgrlments further in Sec. Il C. _ _

Next we consider the results from three-dimensional
simulations. Fisher-Burford fits to the three-dimensional av-
erage form factor data seem more satisfactory than the two

Plots of the calculated average form fact®6Q,t) for  dimensional results; data and fits are shown in Fig. 3. How-
various timest in simulations at various number densities ever, the fractal dimension parameters obtained from these
p, in 2D and 3D, are given in Fig. 1P is plotted against fits, as given in Table Il, show a tendency to increase over
Qd, whered is the particle diametetin these cases is time and to reach values higher than the accepted DLCA
equal to one lattice spacing, of courssince monomers are fractal dimension ¢;~1.75[12]) at late time, similar to the
treated as’ functions in the scattering equations, for an ini- results from the two-dimensional simulations. For the latest
tial system consisting only of monomers we would havetimes in the simulations gt=0.05 andp=0.1, where the
P(Q,t=0)=1.0. In fact, on the lattice there are always somerollover region inP(Q) is no longer visible, we have also
small clusters of particles even at time=0 [17]. As the fitted a power-law relation to thB(Q) data(Table I); we
aggregation proceeds the scattering by the “average clusterfind again that typically the dimension estimated from the
increases at smal, indicating the growth of larger and power law is lower than that from the Fisher-Burford fit and
larger structures. Fo®>Q, the scattering function is ex- that the power-law estimates are in better agreement with the
pected to follow a power law i as in Eq.(5). In fact, on  accepted fractal dimension.
the log-log plots it is clear that through early times the aver- An average fractal dimensiod; for the DLCA simula-
age form factor does not show a constant power-law expotions may also be estimated from the form factor data by
nent. At such early times the system includes a range aplotting the Fisher-Burford fit parametefsvs Ry . A is pro-
small clusters that show little fractal structure. portional toP(Q—0) [Eq. (8)], which in turn is proportional

We consider in detail the results from the two- to the weight average of the mass distributi®g;is propor-
dimensional simulations first. In Fig. 2 we show an attempttional to some characteristic radius of the clusters. Thus these
to fit the Fisher-Burford functiori7) to the P(Q) data from parameters should be related according to the fractal mass-
a two-dimensional simulation at number dengity 0.01. It ~ radius relation
is clear that the fit is not very good at lar@and becomes d
progressively worse at later times. Results from simulations A~R/'. 9
at higher number densities are similar. The two-dimensional
P(Q) curve seems to consist of three regions. At laggere  The plot is shown in Fig. 4, with estimates df given in
find a power-law region that extends to smaller and smallefrable 1ll. A power-law relation is observed over a good
Q at later times as the clusters grow larger. At sn@live  range in bothRy and A. For the lowest density where the
see the near-flat rollover region Q). However, between clusters are smallg@at the times used for the fjisthe esti-
these regions there is a third, withséeeperslope on the mate ofd; is slightly higher, possibly reflecting the fact that
log-log plots than the power-law region at lar@e The the underlying lattice structure affects the structure of
Fisher-Burford function is not adequate to fit a curve of thissmaller clusters more stronglyThe fractal dimension as es-

P(Q—>0)—>A(1— 3

B. Results
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FIG. 1. Circularly or spherically averaged average form facki®,t) [in units as defined by Ed4)] for DLCA simulations in 2D(left
column and 3D(right column. p is the number density of the system dnds the system size in particle diameters; timese indicated
near each curve. Thiglimensionlessx axis isQd, whereQ is the scattering vector magnitude in reciprocal particle diametersl asithe
particle diameter.

timated from the total scattering functidfQ) may also be ing data from all densities give estimatesigfin good agree-
somewhat dependent on system density, as demonstrated iment with the accepted fractal dimension of three-
results obtained for off-lattice simulations by Hasmy and Jul-dimensional DLCA clusters.

lien [18].] However, the two higher densities and a fitinclud-  The above Fisher-Burford analysis may be compared with
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FIG. 2. Attempted fit of the Fisher-Burford functidid) to av-
erage cluster form facto8(Q,t) from a two-dimensional simula-
tion at number densitp=0.01. Three example timasare shown.
Units are as in Fig. 1.

experimental measurements in R¢R7]. In that study
Carpinetiet al. fitted the Fisher-Burford form to scattering

data from a low-concentration system of aggregating charge!

colloids. However, it is important to note that the measure
ments were of the total scattered intensitgt the average
cluster form factor[i.e., 1(Q) as defined in Eq(2), not
P(Q) from Eq. (4)]. While it might be expected that at low

concentration correlations between clusters should be minf—

mal, still of course in later work it was found that the scat-
tered intensity showed peakat nonzeroQ even at small
concentration$l]. Regardless, in Ref27] good agreement

of the scattered intensity with the Fisher-Burford form was’.

TABLE I. Power-law fits to the average form factor from two-
dimensional simulations. The “accepted” 2D DLCA fractal dimen-
sion from mass-radius plots dx~1.4 [10-12. The “averages”
give the “typical” dimensiond; with an error bar estimated from
the variation over the different times. At densjy=0.3 there ap-
pears to be so much change in the fornP¢f)) over time(see Fig.

1) that it is not reasonable to measure an average.

Density Time Qd range d¢
0.01 2000 0.3-2.0 1.41
5000 0.3-2.0 1.47
10000 0.3-2.0 1.42
20000 0.3-2.0 1.37
average: 1.42t 0.05
0.1 100 0.2-2.0 1.45
300 0.3-2.0 1.43
1000 0.2-2.0 1.38
2000 0.2-2.0 1.39
average: 1.42+ 0.04
0.3 10 0.3-2.0 1.58
20 0.4-2.0 1.40
30 0.4-2.0 1.28

56

found. The fractal dimension of the clusters was furthermore
found to decrease with increasing concentration, possibly in-
dicating, as Carpinetet al. point out, that the system inves-
tigated might not correspond to the “ideal” case of DLCA.
On the other hand, as already mentioned, there are some
indications from DLCA simulations too thal; [as measured
from 1(Q)] is system density dependent and decreases with
increasing concentratigri7—19.

C. Effect of gelation onP(Q)

As a consequence of the space-filling growth of fractal
clusters, at the final stage of irreversible aggregation the sys-
tem is filled by a single, spannirgel[9,17,18,31. It is well
known that the scattering functio{Q) at this final stage
retains a peak at nonzef@ (see, e.g.[9]). In the DLCA
model, the gel is usually pictured as a near-homogeneous or
possibly percolatef33] assembly of fractal clusters; the size
of the fractal units in the assembly is strongly dependent on
the overall system density and is related to the position of the
peak in the scattered intensitg].

When there is a single gel cluster left to which all the
particles in the system belong(Q) must trivially be equal
to 1(Q) [Egs.(2) and(3)]. Therefore, close to gelation, the
magnitude ofP(Q) at smallQ must drop substantiallover
orders of magnitudeasP(Q) changes from the fractal form
BEqs.(S) and(6)] to a functionpeakedat Q>0. As gelation
IS approached, “fragments” of the gel that are not fractal at
the largest length scales are beginning to assemble and come
to dominate the average form factor. We can observe these
changes inP(Q) from the DLCA simulations, especially in
he highest number density systenids discussed previ-
ously, lower-density systems need to be much larger to prop-
erly obtain the long-length-scale structure of the gel, since in
the gel assembly the siZg,, of the fractal units increases
strongly with decreasing system densjif.) As shown in
Fig. 5, in the two-dimensionalp=0.3 system, over times
t=100 [P(Q—0)~300(], t=200 [P(Q—0)~2000], and
t=400 [P(Q—0)=1(Q—0)~3, the final ge] the long-
length-scale limit ofP(Q) falls by three orders of magni-
tude. Presumably this effect would be observable in an ex-
periment in which the average form factor was measured by
dilution of the system at times closer and closer to gelation.
(In fact, just this procedure may be used to study gelation in
polymersystems where bonds are chemical and dilution does
not break up the clustef®6].) In the charged polystyrene
colloid system studied by Carpinett al. dilution was ob-
served to have substantial effects on cluster strudidrg
However, interesting results have been obtained for a system
in some ways intermediate between the typical colloidal sys-
tem and the chemically bonded polymer system, that is, the
siloxane system studied by Cabane and co-workgds-22.

In these studies gelation is slow enough that good “time
resolution” close to gelation can be obtained. Dubois and
Cabane study the effect of increasing dilution on a sample
extracted from the main reaction bdtl], showing that at
large dilution, where the average form factor is measured
equivalently to our calculations from the simulations, the
small-Q peak in the scattering disappears and an FB-like
form is obtained. As the authors point out, this demonstrates
that the smallQ peak observed in the scattering function is
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FIG. 3. Fits of the Fisher-Burford functiof¥) to average form factor®(Q,t) for simulations in 3D. Units are as in Fig. a.is the
number density of the system. The lines drawn are the best fits estimated by least squares; fit parameters are given in Table Il. For
t=100, p=0.05, andt= 20, p=0.1, the lines are simple power laws rather than the Fisher-Burford expression; see also Table II.

due tointerclusterinterference. In fact, this work predates 1 Ne Ne

the more recent small-angle light scattering studies of, albeit Sem(Q.t)= N—E > exdiQ-(Ri—Ry]. (10
in some ways simpler, colloidal systerfis—6,8. However, el K
the measured form factors do not seem to have been an
lyzed with a view to studying in any more detail the devel-
opment of thegel structure as the system nears gelation. M|

Examination of P(Q) would seem to be a better way to R:LE r (11)
study the evolving structure of the gel than study of the total MK K

scattering functiorl (Q), since nothing particularly singular

happens td(Q) at gelation, whereas, as has been discussedyhere the sum is over all th#l; particles in clusterj.
P(Q) may fall by orders of magnitude at sm&ll over a  Scy(Q), as the Fourier transform of the cluster position pair
short time interval. correlation function, describes the structure of cluster cen-
ters, or the arrangement of the clusters in the system. Plots of
Scm(Q,t), circularly or spherically averaged as described
above, are given in Fig. 6.

"il_he center-of-mass vector of clusters given by

IV. CLUSTER ARRANGEMENT

To study the evolution of the arrangement of clusters in
the DLCA system, we calculate thduster center-of-mass
structure factor $y(Q,t). The center-of-mass coordinates At very early time,Sc\y(Q) is approximately equivalent
R; of the N¢(t) clusters in the system at tinteare inserted to 1(Q) since the system consists almost entirely of mono-
into EqQ. (2) to give mers (almost, because, as mentioned already, the random

A. Evolution of Scy(Q)
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TABLE II. Parameters of fits of the Fisher-Burford expression, = TABLE Ill. Estimates of the average cluster fractal dimension
(7) to cluster form factor data from three-dimensional simulationsd; from Fisher-Burford fit parameter# and R, for three-
(see Fig. 3 “Maximum Qd" is the maximum value ofQd for dimensional simulations.
which P(Qd) data were used in the fif} is the particle diameter.

The accepted three-dimensional DLCA fractal dimension from Density d¢
mass-radius plots id;~1.75[12].
0.01 1.92
Density ~ Time A Ry di  MaximumQd 0.05 1.84
0.1 1.85
0.01 100 935 247 164 2.0 all 1.85
200 25.20 4.16 1.85 15
300 49.30 6.29 1.72 1.0
500 102.60 8.32 2.19 0.8 hard-sphere system, the decrease of the cluster center-of-
0.05 5 3.62 1.43 1.33 2.0 mass structure factor with decreasigbelow Q. can be
10 7.83 2.11 1.90 1.5 interpreted as a consequence of the “confinement” of the
20 22.87 3.72 2.04 1.6 cluster centers by their immediate environment. As the ag-
100 328.40 16.40 2.26 1.0 gregation proceeds the small€gtiimit S(Qg) initially de-
100 1.63° creases with time so that the fulb;, curve between
0.1 1 300 125 131 1.5 Q=Qp and Q=Q, steepens. ThaB(Q,) decreases in the
3 8.33 216 1.97 15 early stages of the aggregation perhaps corresponds to the
10 78.90 721 210 1.0 growth of space-filling structuredractal clustersthat tends
20 94120 2820 2.03 1.0 to increase the effective volume fraction of the system, re-
20 1,89 sulting in a stronger confinement of cluster centers: Compare

the case of an equilibrium hard-sphere or hard-disk fluid,
8For the last times at the two higher densities, estimate @fom  where the structure factor at sm@lldecreases for increasing
simple power-law fits to theP(Qd) data, over the range concentration. As the aggregation continu@s also de-
0.2<Qd< 1.0, are also given. creases in time, indicating the growth of the typical interclus-
ter length scale; clusterentersare getting further apart as
initial starting configuration on the lattice will contain some the clusters growcluster surfaces, on the other hand, may
small cluster§17]). At Q greater than an upper lim@., the _stlll get closer together!nterestmgly there is no _strorrgaak
center-of-mass structure factor is approximately constant df Scm(Q) nearQc, as is seen in dense monodisperse hard-
unity. Below Q,, Scy(Q) decreases with decreasi to d|sI§ or hard-sphere systemi34]. The lack of a pgak near
some limit, at the smallesD allowed by the system size Q. indicates the lack of a very strongly preferred intercluster

Qo, S(Qy). Analogously to the case of a simple hard-disk ordistance. Examination of pictures from the aggregation
shows that there is a marked polydispersity in cluster sizes,

as will be discussed belogalso shown by more quantitative

100 E ' oA analysis of cluster size distributioig4]), which must also
E V4 be involved in the wiping out of a strong peak 8 \(Q)
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three-dimensional simulations. The line is a power-law fit to data FIG. 5. Effect of gelation on the average form fact®¢Q).
from all number densitiep; fitted exponents for this and for fits to Data are from a two-dimensional simulation at number density
each density separately are given in Table lIl. p=0.3.
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right-hand column shows the same data in a logarithmic representation to more clearly demonstrate the behavia@ dt small

nearQ. [35]. Furthermore, one might expect the fractal clus- At the latest timedQ. approache®),, that is, the inter-

ters to be somewhat “interpenetrable” objects, which alsocluster length scale approaches the size of the system.
would tend to imply the lack of a strongly preferred inter- S(Q,) begins to increase as fewer and fewer separate clus-
cluster separation. ters occupy the system. Of course at the final point of the
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T dimensional simulation gi=0.3 in Fig. 9. Here small clus-
[N ) ters are those with mass less than 20 particles and large clus-
D err e ters have a mass of 20 or more particlé¢=or this time step

Lo s e the numbers of clusters in the two pictures are: 460 with
M <20 and 370 withM=20) The inhomogeneity in the
distribution of small clusters is striking when compared to
the distribution of large clusters.

Such asize-position correlatioris in fact familiar from
general models of systems gblydisperseparticles (see,
P S . ISCEEA .. e.g.,[34]). Experimentally, Cabanet al. have discussed the
(a) (b) importance of polydispersity in aggregation in the case of
their siloxane polymer systef20]. While the DLCA system
_ FIG._ 9. Spatial di;tributipn of. the centers_ of clusters, in a two-j5 often described as being composed of nearly monodisperse
dimensional DLCA simulation with system size=300 and num-  ¢sters(which makes theoretical approaches more straight-
ber densityp=0.3, at timet=10: (a) clusters with masm<20 and 541 clearly the polydispersity of the clusters does have
(b) clusters with massn=20. substantial effects on the long-length-scale structure of the

system.

simulation when all particles belong to a single cluster

Scm(Q) trivia}lly equals 1 at allQ: There is only one center V. SEPARATION OF SCATTERING
of mass left in the system.
A. P(Q) and Scw(Q)

B. Size-position correlation In experimental scattering studies of colloidal suspensions

There is a clear rise iBcy(Q) at the smallesQ for the  the measured scattered intendifR) is often separated into
high-density systemée.g., p=0.3 in 2D, Fig. 6. We can tWo factors [34]: the particle form factor RQ) and the
show by weighting the calculation &,(Q) that this rise s~ Structure factor £Q)

caused by themallestclusters in the system. Figures 7 and _

8 show themass-weighted cluster structure factoy,g(Q) HQ)=NPQ)S(Q). (13
for the simulations, defined as N is the total number of scatterers in the system. This fac-
Ne Ng torization reflects the conceptual separation of two “ele-

_ . ments” of structure in the suspensioR(Q) describes the
S = M:MexdiQ- (R, —Ry) ], .
uw(Q) > 2; Zk iMexliQ- (R~ Ry)] internal  structure of the scatterer, andS(Q) the
Mi configurationof the scatterers. Our calculatetuster form

(12)  factors and cluster position structure factors can be seen as
analogous quantities, if we consider our “scatterer” to be a
cluster, our Sc(Q) then measures the configuration of the
clusters. The question arises then whether the total scattering
function in the DLCA simulations is in fact given by the
product of the cluster form factor and the cluster center-of-
mass structure factor, i.e., whether we can write

where agair\, is the number of clusterdd, is the mass of
clusterk, and R, is the center of mass of clusté&r The
normalizing factor is obtained by requiring th&w(Q) ap-
proaches unity at larg€ (where the “self-terms” j=k
dominate the sum in the numerator

Such a mass-weighted structure factor has been employed 2
before in studies of DLCA, e.g., Rdi23]. We will consider 1(Q)=P(Q)Scm(Q). (14)
its interpretation further in Sec. V; for now we use it simply
to demonstrate the effect of cluster polydispersity on the ar- A key assumption involved in such a factorization is that
rangement of clusters in the DLCA system. The weighting inthe scatterers aiidentical so that the form factoP(Q) may
Eg. (12) reduces the contribution omall clusters to the be extracted as a multiplicative factor from the expression
cluster structure factor. The curve downward in the clustefor I (Q). While of course it is not true that the clusters in the
structure factor betwee@—0 andQ, is noticeably steeper DLCA system are identical, still, given that we orientation-
in Syw(Q), demonstrating that small clusters have signifi-ally averageP(Q) and average over many clusters to obtain
cant effects on the center-of-mass structure even at very long(Q), the averagecluster form factor may be sufficient to
length scales. Given that they are small clusters, this is atharacterize the scattering behavior of the “typical” cluster,
first rather surprising. The rise in the cluster structure factosuch that Eq(14) is approximately satisfied.
at the smalles® clearly observed in the highest-density sys- In Figs. 10 and 11 we compare calculated scattering func-
tems is removed completely by the mass-weighting procetions I(Q) with the productP(Q)Scw(Q) at various times
dure. Such a rise in the structure factor at long length scalefor example simulations in 2D and 3D. The results shown are
is indicative of long-length-scale inhomogeneities in the artypical of all times at all system densities studied. It is quite
rangement of the scatterers. In other words, the comparisatlear that Eq.(14) is not generally satisfied for the DLCA
of Scw(Q) and Syw(Q) indicates that themallestclusters  system. Only at larg® (short length scaleand then only at
are not arranged homogeneously in the aggregating systerater times does the relation hold. At lar@ewe find that the
The arrangement of center-of-mass positions for “small” cluster structure factoBcy(Q)~1 and1(Q)~P(Q). Not
and “large” clusters is compared at one time step in a two-surprisingly, the total scattering function at larQeor short
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length scales is determined by the internal structure of clusthese authors used the mass-weighted structure factor
ters and does not depend on the arrangement of clusters. TBg,,(Q) as defined in Eq(12) to test the factorization:
averaging over clusters and over orientations means that de-
tailed differences in the structure of different clusters are not ?
observable iP(Q) or in I(Q) at largeQ. The factorisation 1(Q)= P(Q)Suw(Q). (15
becomes betteat later timesat largeQ probably because
there are fewer small clusters and thus most of the scattering
at the given length scale is by clusters that are larger thaithey found that such a relation is satisfied, but only in sys-
that scale. In that case any polydispersity in the sizes of thesems at low number density. In fact, from our data we draw
clusters will not strongly affed®(Q) on this length scale. At  a similar conclusion, as some example plots show in Fig. 12.
small Q or long length scale, however, it is clear that the Over a limited time regime in the lower-density simulations
total scattering function cannot be separated simply into th¢e.g.p=0.1in 2D 1(Q)~P(Q)Suyw(Q), while in the high-
two factorsP(Q) and Scw(Q). density simulationge.g.,p=0.3 in 2D) we never observe a
time regime where the mass-weighted factorization works.
Results are similar in both two- and three-dimensional simu-
lations. Sciortinoet al. do not consider further the physical
A similar test of the separation &{Q) into factors sepa- significance ofS,,,,. Indeed its meaning is not clear: while
rately describing the internal cluster structure and the cluste®.), can be reasonably clearly defined in termgthe Fou-
arrangement in two-dimensional DLCA simulations wasrier transform of the cluster position pair correlation func-
briefly considered by Sciortinet al. in Ref.[23]. However, tion, such a basic relation &, to structure is not imme-

B. Other approaches
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FIG. 10. Test of the “separation” of the total scattering functif®@) into average form factoP(Q) and cluster center-of-mass
structure factoSc(Q). 1(Q), calculated from Eq(2), is compared with the produ&:y(Q)P(Q) for various times in a two-dimensional
simulation atp=0.1, system sizé& = 300.
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diately apparent. EffectivelySy, “mixes” the cluster behavior of the aggregating system has been followed by
arrangement with information on thepatial mass distribu- Carpinetiet al. in their examination of results from small-
tion. Of course, if all clusters have the same number of parangle light-scattering experimenitg]. These authors define
ticles thenSy, is equal toS¢),. But if not, thenS,,y does  the “scatterer” in the aggregating system not simply as the
not so clearly describe the arrangement of the clusters.  fractal cluster but as the fractal clustelus its surrounding

Another way of looking at the mass weighting is that it “depletion zone.”(The cluster plus depletion zone picture of
simply allows the largest clusters to dominate the calculatethe aggregating system has been studied via the pair correla-
structure factor. This might well be expected to improve thetion functiong(r) of the whole system in DLCA simulations
factorization ofl (Q) since it will reduce the importance of [16—18.) The approach of Carpinetit al. seems promising
cluster polydispersity by strongly reducing the contributiongiven that the scattering by such an object does indeed fit the
of small clusters to the calculation. That the mass-weightedneasured scattering data well, at least in low concentration
factorization fails in high-density systems is consistent withsystems at times sufficiently before gelati@ later times it
the observation that cluster size polydispersity increases velig found necessary to fit the measurements using not simply
strongly as the system approaches gelaf@h33; in high-  the cluster plus depletion zone form factor but the product of
density systems the effects of gelation are apparent verihe form factor and a calculated hard-sphere structure factor
early on in the aggregation. Additionally, as we have shownNevertheless, the direct physical definition of an individual
the arrangement of small clusters is not homogeneous, whiatluster plus depletion zone object remains problemi&ic
may also have important effects on the factorization ofAs pointed out by Carpinett al.in Ref.[7], the roles of the
[(Q) into form factor and non-mass-weighted structureform factor and structure factor are not so well defined in a
factor. system of aggregating fractal objectsompared, for in-

A different approach to the description of the scatteringstance, to a suspension of monodisperse hard sph&nen
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%;r ?ﬁf T ‘E;‘? CHLT, clear. The effects on the average cluster form factor of clus-
&Yﬁ . : gf CD%;{‘ ter anisotropy and of the form of the cluster size distribution
i v : require further investigation. In three-dimensional simula-

tions, P(Q) is better fitted by the Fisher-Burford form,
though again it seems the fit is not perfect. In particular, the
fractal dimensions generated from the Fisher-Burford fits do
not agree very well with those estimated from power-law fits
nor with the accepted estimates from the fractal mass-radius
relation. On the other hand, the mass and radius parameters
from the three-dimensional Fisher-Burford fits are related ac-
cording to the expected power law with an exponent agree-
ing reasonably well with the accepted DLCA fractal dimen-
sion. Experiments that directly measur¢Q) in both two-
and three-dimensional systems would be of great interest.
Near gelation,P(Q) begins to decrease at the smallest
_ 4 F 5, B uy Q (longest length scalgsP(Q) must approach the final total
h ' BB % #'_wf P Bl g g A scattering functionl (Q) when the system contains only a
. ¢ = single cluster and(Q) for the gel is peaked &>0. Suc-
FIG. 13. Snapshot of the two-dimensional DLCA system with cessive measurements of the average form factor closer and

system size =300 and number density=0.3, at the final “gel”  Closer to gelation in an experiment, by dilution, might repre-
time when all particles belong to a single, connected, space-filing€nt & method of studying the time development of the

cluster. Neighboring surface shape correlations appear to generad@ace-filling gel structure at long length scales.
channels through the structure. The cluster center-of-mass structure facss,(Q) may

be used to study the arrangement of clusters in the system.

so, especially in simulations it is quite simple to physically Scm(Q) indicates that there is significant intercluster inter-
define the form factor, derived from the internal structure ofaction in the DLCA system. Growing, near-impenetrable
the clusters, and the structure factor, derived from the arfractal clusters become increasingly confined by their neigh-
rangement of the clusters; this is indeed what we have donors. An important finding is that as the aggregation pro-
here. As we have shown, contrary to the case of a monodig€eeds the arrangement of the surviving smallest clusters in
perse suspension, in the aggregating system these two factdhg system becomeshomogeneoysleading to noticeable
are not sufficient to completely describe the scattering beeffects inScy(Q) at long length scales, particularly at high
havior. In fact, they probably should not be called factors anumber density. This correlation between the size and ar-
all since they cannot be extracted as mathematical factor&ngement of clusters is in fact expected for any system of
from the scattering function. polydisperse particles: The small particles can get {otdn

It remains the case that in the DLCA simulations thethis case are left behind)ithe gaps between the large par-
structure of clusters and the position of clusters are correticles. The analysis presented here demonstrates that cluster
lated if only in terms of the dependence between cluster sizgolydispersity does have effects on the cluster arrangement,
and cluster arrangement. That the factorization of the scaglespite the common assumption in DLCA studies that the
tering function using the mass-weighted structure factoimass distribution is strongly peaked enough that the system
“works” at low density does not yet have a clear meaningful can be taken as monodisperse. A complete description of the
interpretation in terms of a correlation between the clusteftructure of the DLCA system must include these effects of
structure and arrangement. In systems at high def#itys ~ polydispersity on cluster arrangement.
in any system close to gelation where the clusters fill space The separation of scattering into an average cluster form
there may be other elements of correlation between the strugactor and a center-of-mass structure factor does not gener-
tures of different clusters. For instance, snapshots of thally work for the DLCA system! (Q) # P(Q)Scm(Q). This
simulation configurations at high number dengiBig. 13 might be expected for various reasons. First, the DLCA sys-
are suggestive that thsurface structuresof neighboring tem certainly does not consist of identical clusters, though
clusters are strongly correlated. We hope to develop quantaveraging over a distribution of clusters and over orienta-
tative methods to study this possibility in future work. tions ought to reduce the importance of this polydispersity.
However, the size-position correlation discussed above also
will lead to the breakdown of the separation of scattering.
The scattering by a particular clustéwhich depends on
cluster size, cluster shape, ¢tis correlated with the clus-

In this paper we have used methods analogous to scatteter's position, thus the single-particle scattering factors and
ing experiments to analyze in detail the structure of thethe cross-particle interference factors are not independent
DLCA simulation system, studying both the structure of in-andP(Q) cannot be factorized out of the expression for the
dividual clusters and the arrangement of these clusters in thietal scattering. However, as also demonstrated by other au-
system. In two-dimensional simulations, theerage cluster thors[23], a factorization of the scattering function into av-
form factor A(Q) cannot be adequately fitted using the em-erage form factor anthass-weightedtructure factoSyy is
pirical Fisher-Burford form for a single, finite, circularly or possible in low-density systems far from gelation. This is-
spherically symmetric cluster. The reason for this is notpossibly due at least in part to the dominance of large clus-

%?’N
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VI. CONCLUSION



56 STRUCTURE AND ARRANGEMENT OF CLUSTERS IN ... 1933
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