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Structure and arrangement of clusters in cluster aggregation

M. D. Haw, W. C. K. Poon, and P. N. Pusey
Department of Physics and Astronomy, The University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh,

EH9 3JZ, United Kingdom
~Received 26 February 1997!

We study cluster structure and the arrangement of clusters in the diffusion-limited cluster-cluster aggregation
~DLCA! simulation model of colloidal aggregation, analyzing our data using techniques that allow direct
comparison with scattering experiments. As is well known, individual clusters in DLCA have a fractal struc-
ture; we compare DLCA results with colloidal aggregation experiments by fitting the Fisher-Burford@Phys.
Rev.156, 583 ~1967!# functional form for the scattering by a fractal object to the average scattering function
or form factor of DLCA clusters. In two-dimensional~2D! simulations the DLCA average form factor deviates
from the Fisher-Burford form, though power-law fits to the data do give fractal dimensions in agreement with
the ‘‘accepted’’ fractal dimension of 2D DLCA clusters previously obtained from the fractal mass-radius
relation. The average form factor in 3D simulations agrees better with the Fisher-Burford form though there
remain indications of some deviation. Near gelation, the average form factor at long length scales begins to
decrease, corresponding to the interpenetration and assembly of the clusters into the system-spanning gel. We
also study the arrangement of clusters or the intercluster structure by computing the cluster center-of-mass
structure factor. The cluster structure factor demonstrates a strong ‘‘excluded-volume’’ interaction between the
clusters. As the aggregation proceeds, while larger clusters are distributed more or less evenly, there is a
marked inhomogeneity in the distribution of thesmallestclusters, especially pronounced at high particle
concentration. Thepolydispersityof the clusters thus has important effects on the cluster arrangement. We find
that the total scattering functioncannotbe factorized into the average form factor and the cluster center-of-
mass structure factor, due at least in part to the size-position correlation thus induced by the cluster polydis-
persity. We also examine the ‘‘mass-weighted’’ cluster structure factor as considered previously by other
authors@F. Sciortino, A. Belloni, and P. Tartaglia, Phys. Rev. E52, 4068~1995!#. @S1063-651X~97!06608-7#

PACS number~s!: 61.43.Hv, 82.70.2y
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I. INTRODUCTION

Recent experiments have demonstrated some surpr
aspects of the structure of aggregating colloidal suspens
@1–9#. While early experiments and computer simulatio
@10–12# concentrated on the fractal structure ofindividual
clusters of colloidal particles, small-angle light-scattering e
periments have demonstrated that the intercluster structu
the system is far from trivial. A growing characteristic leng
scale is indicated by the presence of a strong peak in
scattered intensity at small angles. The peak moves
smaller angle and grows brighter as the aggregation
ceeds. Very similar results have been obtained from the m
recent computer simulations using the diffusion-limited clu
ter aggregation~DLCA! model @13–19#. Similar results are
also seen in other experimental systems, for instance,
system of siloxane polymers studied by Cabane and
workers@20–22#. However, a complete understanding of t
scattering behavior of the aggregating system in terms
definable physical elements of structure has yet to
achieved. In this paper we study the scattering behavio
the DLCA system in more detail than previous analyzes
investigate both the structure of individual clusters and
clusterarrangementor intercluster structure.

The paper is ordered as follows. In the next section
describe briefly the simulation model and the basic meth
of the ‘‘scattering’’ analysis of the simulation results. Ther
after we discuss separately the analysis of cluster struc
and cluster arrangement in the DLCA system. Finally,
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briefly consider the factorization of the ‘‘total’’ scatterin
function of the aggregating system into functions describ
the cluster structure and the cluster arrangement, discus
at the same time similar approaches by other authors@7,23#.

II. METHODS

The DLCA model of aggregating colloidal suspensio
has been the subject of many studies since its introduction
Meakin @10# and by Kolbet al. @11#. We have described ou
own ~standard! implementation of the model in detail else
where@17# and give only brief details here.N colloidal ‘‘par-
ticles’’ are placed at random onto anL3L @in two dimen-
sions ~2D!# or L3L3L ~in 3D! lattice. Periodic boundary
conditions are implemented. Before initiation of aggregat
the particle starting coordinates are further randomized
order that we begin with a ‘‘fluidlike’’ structure. Thence th
particles diffuse by carrying out a random walk on the l
tice. Particles that become nearest neighbors are joine
that they belong to the same cluster; thereafter the clu
diffuses as a whole and may collide and join with other clu
ters or particles. We scale the diffusion coefficient of a clu
ter in inverse proportion to its radius of gyration:

D;Rg
21 , ~1!

in order to simulate the physical slowing of the diffusion
larger clusters.~Note that such a scaling of cluster diffusio
1918 © 1997 The American Physical Society
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56 1919STRUCTURE AND ARRANGEMENT OF CLUSTERS IN . . .
rate, while not always implemented~e.g., @15#!, has impor-
tant consequences for the kinetics of the aggrega
@17,24#.!

In the simulations analyzed here, we have used lattice
L5300 orL5500 in 2D andL570 in 3D. Further, we have
studied a small range of number densitiesr (r50.01, 0.1,
and 0.3 in 2D andr50.01, 0.05, and 0.1 in 3D!. Since
N5rLD, where D52 or 3, we have typicallyN52500
(r50.01 in 2D! to N575 000 (r50.3, L5500 in 2D!.

The scattering function of a system ofN particlesI (Q) is
given by

I ~Q!5
1

N(
j

N

(
k

N

exp@ iQ•~r j2r k!#, ~2!

whereQ is the scattering vector andr j andr k are the particle
coordinates. The above function is sometimes referred t
the structure factor; see e.g.,@13,16–19#. For clarity, since
below we discuss thecluster center-of-massstructure factor
that describes the arrangement of clusters, in this pape
shall call I (Q) the total scattering function. Note that in an
experiment the intensity~of light, x rays, neutrons, etc.! scat-
tered by the system involves a multiplicative factor descr
ing the scattering by an individual particle~the single-
particle form factor!; in the simulations we take this as
constant, independent ofQ, and thus for simplicity leave it
out of our expressions. This is equivalent to treating
simulation particles as ‘‘d functions’’ or point masses.

For a simulation box of sideL the scattering vectors al
lowed by the periodic boundary conditions in each dime
sion are given byQ562np/L, where n is an integer.
Therefore, the reciprocal space represented by the set o
lowed scattering vectors consists of a square~in 2D! or cubic
~in 3D! lattice of points, with lattice spacing 2p/L. For these
lattice-based simulations, the total scattering functions, c
ter form factors, and inter-cluster structure factors~see be-
low! may be evaluated using the discrete fast Fourier tra
form algorithm@25#. The calculated scattering functions a
circularly or spherically averaged in thin annuli of wid
dQ ~typically dQ50.1 reciprocal particle diameters! and
plotted against scattering vector magnitudeQ.

The evolution of the total scattering function of th
DLCA system has been examined and compared with co
dal light scattering experiments by a number of auth
@13,16–19#. Briefly, the DLCA simulation displays feature
in qualitative agreement with experiment:I (Q) develops a
peak at small but nonzeroQ and this peak grows in intensit
and moves to smallerQ as the aggregation proceeds a
larger and larger fractal clusters of particles are formed.
late timegelationmay occur: In any system at finite partic
concentration with irreversible particle ‘‘bonding,’’ th
growth of the fractal clusters results eventually in the filli
of space and the formation of a system-spanning ma
scopic ‘‘gel’’ cluster ~see, e.g.,@9#!. In the simplest mode
the gel is an assembly of fractal clusters whose sizeRgel is
system number-density dependent; thus, in a simulation
tem not substantially bigger thanRgel the gel structure can
not be correctly formed and at the final stage the sys
contains instead a single isolated fractal cluster. In the c
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of our simulations, this means that we are able to exam
the effects of gelation only in systems at high enough nu
ber density.

III. CLUSTER STRUCTURE

At any given time t the simulation system contains
number of clusters of different masses. The intensity sc
tered by a givenisolatedcluster of particles~which we label
clusterk), the single cluster form factor Pk(Q), is obtained
by inserting the set of coordinates of the particles belong
to clusterk into Eq. ~2!:

Pk~Q!5
1

Mk
(

j

Mk

(
l

Mk

exp@ iQ•~r j2r l !#. ~3!

Mk is the total number of particles in the cluster~the cluster
mass!. We compute theaveragecluster form factorP(Q,t)
over the ensemble of clusters in the system from

P~Q,t !5
1

(
k

Nc

Mk

(
k

Nc

MkPk~Q!, ~4!

where the average is taken over theNc(t) clusters in the
system and each individual cluster’s ‘‘normalized’’ form fa
tor Pk(Q) @Eq. ~3!# is weighted by the mass of the clust
Mk . This form of average is equivalent to the scattering t
would be seen from a dilute~polydisperse! system of clusters
in an experiment: Larger clusters scatter more. The an
gous experiment is to measure the scattering by a system
is diluted ~and the aggregation effectively stopped! at time
t, assuming that the dilution process does not affect the st
ture of the clusters themselves. This experimental proced
has been used to study the onset of gelation in polymer
tems@26# and a few similar experiments have been attemp
in systems more akin to colloids@20–22,27#, as is discussed
below.

A. Form factor of a fractal cluster

It has been amply demonstrated that the clusters of
ticles in DLCA have a fractal structure@10,11#. Simple lim-
iting forms are expected for the scattering function of
single circularly or spherically symmetric fractal object~see,
e.g.,@28#!:

P~Q!;Q2df ~Ql,Q!Qu!, ~5!

P~Q!→M ~Q→0!, ~6!

whereM is the cluster mass,df is the fractal dimension of
the cluster, andQl andQu are the lower and upper reciproc
space cutoffs, respectively; 2p/Ql corresponds to a length
scale of the size of the cluster and 2p/Qu approximately to
the size of the ‘‘monomers’’ making up the cluster. A mo
detailed functional form that has been used to fit experim
tal light-scattering data for aggregating colloidal syste
@27#, essentially a combination of the limiting forms in Eq
~5! and ~6!, is given by the Fisher-Burford~FB! expression
~see, e.g.,@22,29#!
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1920 56M. D. HAW, W. C. K. POON, AND P. N. PUSEY
P~Q!5
A

@112Q2Rg
2/3df #

df /2
. ~7!

Rg is a measure of the cluster radius,df is the fractal dimen-
sion, andA is proportional to the cluster mass@7#. This func-
tion includes both the power-law regionP(Q);Q2df at
larger Q and the ‘‘rollover’’ to the Guinier regime asQ
approaches zero:

P~Q→0!→AS 12
Q2Rg

2

3 D . ~8!

Plotting P vs QRg demonstrates that the rollover corr
sponds approximately toQRg51 or Ql'2p/Rg .

‘‘Accepted’’ estimates of the DLCA cluster fractal d
mension have been obtained from plots of cluster mass
sus cluster radius in large-scale simulations@10–12#, giving
df'1.4 in 2D anddf'1.75 in 3D. An estimation of the
power-law exponent from the power-law region inP(Q) is
sometimes used to obtain the fractal dimension of the c
ters @30#. It should be remembered that the estimation
fractal dimension from the average form factor involves a
eraging over clusters whose structures may vary. This
applies to estimates ofdf from mass-radius plots~e.g.,
@31,32#! and of course to most experimental measures of
fractal dimension of real systems, whether obtained by
aging or scattering methods.

B. Results

Plots of the calculated average form factorsP(Q,t) for
various timest in simulations at various number densiti
r, in 2D and 3D, are given in Fig. 1.P is plotted against
Qd, where d is the particle diameter~in these casesd is
equal to one lattice spacing, of course!. Since monomers are
treated asd functions in the scattering equations, for an in
tial system consisting only of monomers we would ha
P(Q,t50)51.0. In fact, on the lattice there are always som
small clusters of particles even at timet50 @17#. As the
aggregation proceeds the scattering by the ‘‘average clus
increases at smallQ, indicating the growth of larger and
larger structures. ForQ.Ql the scattering function is ex
pected to follow a power law inQ as in Eq.~5!. In fact, on
the log-log plots it is clear that through early times the av
age form factor does not show a constant power-law ex
nent. At such early times the system includes a range
small clusters that show little fractal structure.

We consider in detail the results from the tw
dimensional simulations first. In Fig. 2 we show an attem
to fit the Fisher-Burford function~7! to theP(Q) data from
a two-dimensional simulation at number densityr50.01. It
is clear that the fit is not very good at largeQ and becomes
progressively worse at later times. Results from simulati
at higher number densities are similar. The two-dimensio
P(Q) curve seems to consist of three regions. At largeQ we
find a power-law region that extends to smaller and sma
Q at later times as the clusters grow larger. At smallQ we
see the near-flat rollover region inP(Q). However, between
these regions there is a third, with asteeperslope on the
log-log plots than the power-law region at largeQ. The
Fisher-Burford function is not adequate to fit a curve of t
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form. In practice the fit fails at largeQ and the ‘‘fractal
dimension’’ parameter in Eq.~7!, fitted to the steeper slop
of the middle region of theP(Q) curve, is certainly not a
good estimate of the fractal dimension of the clusters.

The reasons for the shape of theP(Q) curve from the
two-dimensional simulations are not clear. Conceivably
marked anisotropy of the clusters~and possibly even an ori
entational correlation between neighboring clusters! might
have significant effects on the average form factor, especi
at later times when there are fewer clusters in the syst
The polydispersity of the clusters may also have effects
are not ‘‘washed out’’ in the averaging over the ensemble
clusters. Alternatively the deviation from the Fisher-Burfo
form may be some effect of the underlying lattice. Howev
calculations using data from anoff-lattice simulation in 2D
@13# show a very similar form for the average cluster for
factor. It is interesting to notice that fitting a simple pow
law, as in Eq.~5!, to the power-law region ofP(Q) at large
Q ~where that region extends over a reasonable range
Q) gives estimates of the cluster fractal dimension in go
agreement with the ‘‘accepted’’ estimate for two
dimensional DLCA @12#, df'1.4 ~Table I!. To verify
whether the effects we observe in our simulatedP(Q) may
yet be artifacts of the simulation model, experiments t
directly measureP(Q) @i.e., P(Q) and not simply the total
scattering functionI (Q)# would be of great value. We dis
cuss possible experiments further in Sec. III C.

Next we consider the results from three-dimensio
simulations. Fisher-Burford fits to the three-dimensional a
erage form factor data seem more satisfactory than the
dimensional results; data and fits are shown in Fig. 3. Ho
ever, the fractal dimension parameters obtained from th
fits, as given in Table II, show a tendency to increase o
time and to reach values higher than the accepted DL
fractal dimension (df'1.75 @12#! at late time, similar to the
results from the two-dimensional simulations. For the lat
times in the simulations atr50.05 andr50.1, where the
rollover region inP(Q) is no longer visible, we have als
fitted a power-law relation to theP(Q) data~Table II!; we
find again that typically the dimension estimated from t
power law is lower than that from the Fisher-Burford fit an
that the power-law estimates are in better agreement with
accepted fractal dimension.

An average fractal dimensiondf for the DLCA simula-
tions may also be estimated from the form factor data
plotting the Fisher-Burford fit parametersA vs Rg . A is pro-
portional toP(Q→0) @Eq. ~8!#, which in turn is proportional
to the weight average of the mass distribution;Rg is propor-
tional to some characteristic radius of the clusters. Thus th
parameters should be related according to the fractal m
radius relation

A;Rg
df . ~9!

The plot is shown in Fig. 4, with estimates ofdf given in
Table III. A power-law relation is observed over a goo
range in bothRg and A. For the lowest density where th
clusters are smaller~at the times used for the fits!, the esti-
mate ofdf is slightly higher, possibly reflecting the fact tha
the underlying lattice structure affects the structure
smaller clusters more strongly.@The fractal dimension as es
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FIG. 1. Circularly or spherically averaged average form factorsP(Q,t) @in units as defined by Eq.~4!# for DLCA simulations in 2D~left
column! and 3D~right column!. r is the number density of the system andL is the system size in particle diameters; timest are indicated
near each curve. The~dimensionless! x axis isQd, whereQ is the scattering vector magnitude in reciprocal particle diameters andd is the
particle diameter.
d
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ith
timated from the total scattering functionI (Q) may also be
somewhat dependent on system density, as demonstrate
results obtained for off-lattice simulations by Hasmy and J
lien @18#.# However, the two higher densities and a fit inclu
by
l-

ing data from all densities give estimates ofdf in good agree-
ment with the accepted fractal dimension of thre
dimensional DLCA clusters.

The above Fisher-Burford analysis may be compared w
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1922 56M. D. HAW, W. C. K. POON, AND P. N. PUSEY
experimental measurements in Ref.@27#. In that study
Carpineti et al. fitted the Fisher-Burford form to scatterin
data from a low-concentration system of aggregating char
colloids. However, it is important to note that the measu
ments were of the total scattered intensity,not the average
cluster form factor@i.e., I (Q) as defined in Eq.~2!, not
P(Q) from Eq. ~4!#. While it might be expected that at low
concentration correlations between clusters should be m
mal, still of course in later work it was found that the sca
tered intensity showed apeak at nonzeroQ even at small
concentrations@1#. Regardless, in Ref.@27# good agreemen
of the scattered intensity with the Fisher-Burford form w

TABLE I. Power-law fits to the average form factor from two
dimensional simulations. The ‘‘accepted’’ 2D DLCA fractal dime
sion from mass-radius plots isdf'1.4 @10–12#. The ‘‘averages’’
give the ‘‘typical’’ dimensiondf with an error bar estimated from
the variation over the different times. At densityr50.3 there ap-
pears to be so much change in the form ofP(Q) over time~see Fig.
1! that it is not reasonable to measure an average.

Density Time Qd range df

0.01 2000 0.3–2.0 1.41
5000 0.3–2.0 1.47
10000 0.3–2.0 1.42
20000 0.3–2.0 1.37
average: 1.426 0.05

0.1 100 0.2–2.0 1.45
300 0.3–2.0 1.43
1000 0.2–2.0 1.38
2000 0.2–2.0 1.39
average: 1.426 0.04

0.3 10 0.3–2.0 1.58
20 0.4–2.0 1.40
30 0.4–2.0 1.28

FIG. 2. Attempted fit of the Fisher-Burford function~7! to av-
erage cluster form factorsP(Q,t) from a two-dimensional simula
tion at number densityr50.01. Three example timest are shown.
Units are as in Fig. 1.
d
-

i-
-

found. The fractal dimension of the clusters was furtherm
found to decrease with increasing concentration, possibly
dicating, as Carpinetiet al. point out, that the system inves
tigated might not correspond to the ‘‘ideal’’ case of DLCA
On the other hand, as already mentioned, there are s
indications from DLCA simulations too thatdf @as measured
from I (Q)# is system density dependent and decreases
increasing concentration@17–19#.

C. Effect of gelation onP„Q…

As a consequence of the space-filling growth of frac
clusters, at the final stage of irreversible aggregation the
tem is filled by a single, spanninggel @9,17,18,31#. It is well
known that the scattering functionI (Q) at this final stage
retains a peak at nonzeroQ ~see, e.g.,@9#!. In the DLCA
model, the gel is usually pictured as a near-homogeneou
possibly percolated@33# assembly of fractal clusters; the siz
of the fractal units in the assembly is strongly dependent
the overall system density and is related to the position of
peak in the scattered intensity@9#.

When there is a single gel cluster left to which all th
particles in the system belong,P(Q) must trivially be equal
to I (Q) @Eqs. ~2! and ~3!#. Therefore, close to gelation, th
magnitude ofP(Q) at smallQ must drop substantially~over
orders of magnitude! asP(Q) changes from the fractal form
@Eqs.~5! and~6!# to a functionpeakedat Q.0. As gelation
is approached, ‘‘fragments’’ of the gel that are not fractal
the largest length scales are beginning to assemble and c
to dominate the average form factor. We can observe th
changes inP(Q) from the DLCA simulations, especially in
the highest number density systems.~As discussed previ-
ously, lower-density systems need to be much larger to pr
erly obtain the long-length-scale structure of the gel, since
the gel assembly the sizeRgel of the fractal units increase
strongly with decreasing system density@9#.! As shown in
Fig. 5, in the two-dimensional,r50.3 system, over times
t5100 @P(Q→0)'3000#, t5200 @P(Q→0)'2000#, and
t5400 @P(Q→0)[I (Q→0)'3, the final gel# the long-
length-scale limit ofP(Q) falls by three orders of magni
tude. Presumably this effect would be observable in an
periment in which the average form factor was measured
dilution of the system at times closer and closer to gelati
~In fact, just this procedure may be used to study gelation
polymersystems where bonds are chemical and dilution d
not break up the clusters@26#.! In the charged polystyrene
colloid system studied by Carpinetiet al. dilution was ob-
served to have substantial effects on cluster structure@27#.
However, interesting results have been obtained for a sys
in some ways intermediate between the typical colloidal s
tem and the chemically bonded polymer system, that is,
siloxane system studied by Cabane and co-workers@20–22#.
In these studies gelation is slow enough that good ‘‘tim
resolution’’ close to gelation can be obtained. Dubois a
Cabane study the effect of increasing dilution on a sam
extracted from the main reaction bath@21#, showing that at
large dilution, where the average form factor is measu
equivalently to our calculations from the simulations, t
small-Q peak in the scattering disappears and an FB-l
form is obtained. As the authors point out, this demonstra
that the small-Q peak observed in the scattering function
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FIG. 3. Fits of the Fisher-Burford function~7! to average form factorsP(Q,t) for simulations in 3D. Units are as in Fig. 1.r is the
number density of the system. The lines drawn are the best fits estimated by least squares; fit parameters are given in Tab
t5100,r50.05, andt520, r50.1, the lines are simple power laws rather than the Fisher-Burford expression; see also Table II.
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due to intercluster interference. In fact, this work predate
the more recent small-angle light scattering studies of, al
in some ways simpler, colloidal systems@1–6,8#. However,
the measured form factors do not seem to have been
lyzed with a view to studying in any more detail the dev
opment of thegel structure as the system nears gelatio
Examination ofP(Q) would seem to be a better way t
study the evolving structure of the gel than study of the to
scattering functionI (Q), since nothing particularly singula
happens toI (Q) at gelation, whereas, as has been discus
P(Q) may fall by orders of magnitude at smallQ over a
short time interval.

IV. CLUSTER ARRANGEMENT

To study the evolution of the arrangement of clusters
the DLCA system, we calculate thecluster center-of-mass
structure factor SCM(Q,t). The center-of-mass coordinate
Rj of the Nc(t) clusters in the system at timet are inserted
into Eq. ~2! to give
it

a-

.

l

d,

n

SCM~Q,t !5
1

Nc
(

j

Nc

(
k

Nc

exp@ iQ•~Rj2Rk!#. ~10!

The center-of-mass vector of clusterj is given by

Rj5
1

M j
(

k

M j

r k , ~11!

where the sum is over all theM j particles in clusterj .
SCM(Q), as the Fourier transform of the cluster position p
correlation function, describes the structure of cluster c
ters, or the arrangement of the clusters in the system. Plo
SCM(Q,t), circularly or spherically averaged as describ
above, are given in Fig. 6.

A. Evolution of SCM„Q…

At very early time,SCM(Q) is approximately equivalen
to I (Q) since the system consists almost entirely of mon
mers ~almost, because, as mentioned already, the rand
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1924 56M. D. HAW, W. C. K. POON, AND P. N. PUSEY
initial starting configuration on the lattice will contain som
small clusters@17#!. At Q greater than an upper limitQc , the
center-of-mass structure factor is approximately constan
unity. Below Qc , SCM(Q) decreases with decreasingQ, to
some limit, at the smallestQ allowed by the system siz
Q0, S(Q0). Analogously to the case of a simple hard-disk

TABLE II. Parameters of fits of the Fisher-Burford expressio
~7! to cluster form factor data from three-dimensional simulatio
~see Fig. 3!. ‘‘Maximum Qd’’ is the maximum value ofQd for
which P(Qd) data were used in the fit;d is the particle diameter
The accepted three-dimensional DLCA fractal dimension fr
mass-radius plots isdf'1.75 @12#.

Density Time A Rg df Maximum Qd

0.01 100 9.35 2.47 1.64 2.0
200 25.20 4.16 1.85 1.5
300 49.30 6.29 1.72 1.0
500 102.60 8.32 2.19 0.8

0.05 5 3.62 1.43 1.33 2.0
10 7.83 2.11 1.90 1.5
20 22.87 3.72 2.04 1.6
100 328.40 16.40 2.26 1.0
100 1.63a

0.1 1 3.00 1.25 1.31 1.5
3 8.33 2.16 1.97 1.5
10 78.90 7.21 2.10 1.0
20 941.20 28.20 2.03 1.0
20 1.89a

aFor the last times at the two higher densities, estimates ofdf from
simple power-law fits to theP(Qd) data, over the range
0.2,Qd,1.0, are also given.

FIG. 4. Fisher-Burford fit amplitude parameterA vs radius pa-
rameterRg ~in particle diameters! @Eq. ~7!#, for Fisher-Burford fits
to average form factor data from various example times dur
three-dimensional simulations. The line is a power-law fit to d
from all number densitiesr; fitted exponents for this and for fits t
each density separately are given in Table III.
at

r

hard-sphere system, the decrease of the cluster cente
mass structure factor with decreasingQ below Qc can be
interpreted as a consequence of the ‘‘confinement’’ of
cluster centers by their immediate environment. As the
gregation proceeds the smallest-Q limit S(Q0) initially de-
creases with time so that the fullSCM curve between
Q5Q0 and Q5Qc steepens. ThatS(Q0) decreases in the
early stages of the aggregation perhaps corresponds to
growth of space-filling structures~fractal clusters! that tends
to increase the effective volume fraction of the system,
sulting in a stronger confinement of cluster centers: Comp
the case of an equilibrium hard-sphere or hard-disk flu
where the structure factor at smallQ decreases for increasin
concentration. As the aggregation continuesQc also de-
creases in time, indicating the growth of the typical interclu
ter length scale; clustercentersare getting further apart a
the clusters grow~cluster surfaces, on the other hand, m
still get closer together!. Interestingly there is no strongpeak
in SCM(Q) nearQc , as is seen in dense monodisperse ha
disk or hard-sphere systems@34#. The lack of a peak nea
Qc indicates the lack of a very strongly preferred interclus
distance. Examination of pictures from the aggregat
shows that there is a marked polydispersity in cluster siz
as will be discussed below~also shown by more quantitativ
analysis of cluster size distributions@24#!, which must also
be involved in the wiping out of a strong peak inSCM(Q)

,
s

TABLE III. Estimates of the average cluster fractal dimensi
df from Fisher-Burford fit parametersA and Rg for three-
dimensional simulations.

Density df

0.01 1.92
0.05 1.84
0.1 1.85
all 1.85

g
a FIG. 5. Effect of gelation on the average form factorP(Q).
Data are from a two-dimensional simulation at number den
r50.3.
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FIG. 6. Structure factors of the center-of-mass positions of clusters in DLCA simulations in 2D and 3D. The simulation system s
L5500 (r50.01) ~2D!, L5300 (r50.1 and 0.3)~2D!, andL570 ~3D!. The~dimensionless! x axis isQd, whereQ is the scattering vector
magnitude in reciprocal particle diameters andd is the particle diameter.
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FIG. 7. Mass-weighted structure factors of the center-of-mass positions of clusters in DLCA simulations in 2D. Units are as in
SMW(Q,t) is calculated from Eq.~12!. The right-hand column shows the same data in a log representation to more clearly demonst
behavior at smallQd.
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FIG. 8. Mass-weighted structure factors of the center-of-mass positions of clusters in DLCA simulations in 3D. Units are as in Fig
right-hand column shows the same data in a logarithmic representation to more clearly demonstrate the behavior at smallQd.
s
ls
r-

tem.
lus-
the
nearQc @35#. Furthermore, one might expect the fractal clu
ters to be somewhat ‘‘interpenetrable’’ objects, which a
would tend to imply the lack of a strongly preferred inte
cluster separation.
-
o

At the latest timesQc approachesQ0, that is, the inter-
cluster length scale approaches the size of the sys
S(Q0) begins to increase as fewer and fewer separate c
ters occupy the system. Of course at the final point of
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simulation when all particles belong to a single clus
SCM(Q) trivially equals 1 at allQ: There is only one cente
of mass left in the system.

B. Size-position correlation

There is a clear rise inSCM(Q) at the smallestQ for the
high-density systems~e.g., r50.3 in 2D, Fig. 6!. We can
show by weighting the calculation ofSCM(Q) that this rise is
caused by thesmallestclusters in the system. Figures 7 an
8 show themass-weighted cluster structure factor SMW(Q)
for the simulations, defined as

SMW~Q!5
1

(
k

Mk
2
(

j

Nc

(
k

Nc

M jMkexp@ iQ•~Rj2Rk!#,

~12!

where againNc is the number of clusters,Mk is the mass of
cluster k, and Rk is the center of mass of clusterk. The
normalizing factor is obtained by requiring thatSMW(Q) ap-
proaches unity at largeQ ~where the ‘‘self-terms’’ j 5k
dominate the sum in the numerator!.

Such a mass-weighted structure factor has been empl
before in studies of DLCA, e.g., Ref.@23#. We will consider
its interpretation further in Sec. V; for now we use it simp
to demonstrate the effect of cluster polydispersity on the
rangement of clusters in the DLCA system. The weighting
Eq. ~12! reduces the contribution ofsmall clusters to the
cluster structure factor. The curve downward in the clus
structure factor betweenQ→0 andQc is noticeably steepe
in SMW(Q), demonstrating that small clusters have sign
cant effects on the center-of-mass structure even at very
length scales. Given that they are small clusters, this i
first rather surprising. The rise in the cluster structure fac
at the smallestQ clearly observed in the highest-density sy
tems is removed completely by the mass-weighting pro
dure. Such a rise in the structure factor at long length sc
is indicative of long-length-scale inhomogeneities in the
rangement of the scatterers. In other words, the compar
of SCM(Q) andSMW(Q) indicates that thesmallestclusters
are not arranged homogeneously in the aggregating sys
The arrangement of center-of-mass positions for ‘‘sma
and ‘‘large’’ clusters is compared at one time step in a tw

FIG. 9. Spatial distribution of the centers of clusters, in a tw
dimensional DLCA simulation with system sizeL5300 and num-
ber densityr50.3, at timet510: ~a! clusters with massm,20 and
~b! clusters with massm>20.
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dimensional simulation atr50.3 in Fig. 9. Here small clus-
ters are those with mass less than 20 particles and large
ters have a mass of 20 or more particles.~For this time step
the numbers of clusters in the two pictures are: 460 w
M,20 and 370 withM>20.! The inhomogeneity in the
distribution of small clusters is striking when compared
the distribution of large clusters.

Such asize-position correlationis in fact familiar from
general models of systems ofpolydisperseparticles ~see,
e.g.,@34#!. Experimentally, Cabaneet al. have discussed the
importance of polydispersity in aggregation in the case
their siloxane polymer system@20#. While the DLCA system
is often described as being composed of nearly monodisp
clusters~which makes theoretical approaches more straig
forward!, clearly the polydispersity of the clusters does ha
substantial effects on the long-length-scale structure of
system.

V. SEPARATION OF SCATTERING

A. P„Q… and SCM„Q…

In experimental scattering studies of colloidal suspensi
the measured scattered intensityI (Q) is often separated into
two factors @34#: the particle form factor P(Q) and the
structure factor S(Q)

I ~Q!5NP~Q!S~Q!. ~13!

N is the total number of scatterers in the system. This f
torization reflects the conceptual separation of two ‘‘e
ments’’ of structure in the suspension:P(Q) describes the
internal structure of the scatterer, andS(Q) the
configurationof the scatterers. Our calculatedcluster form
factors and cluster position structure factors can be see
analogous quantities, if we consider our ‘‘scatterer’’ to be
cluster; our SCM(Q) then measures the configuration of th
clusters. The question arises then whether the total scatte
function in the DLCA simulations is in fact given by th
product of the cluster form factor and the cluster center-
mass structure factor, i.e., whether we can write

I ~Q!5
?

P~Q!SCM~Q!. ~14!

A key assumption involved in such a factorization is th
the scatterers areidentical, so that the form factorP(Q) may
be extracted as a multiplicative factor from the express
for I (Q). While of course it is not true that the clusters in th
DLCA system are identical, still, given that we orientatio
ally averageP(Q) and average over many clusters to obta
P(Q), the averagecluster form factor may be sufficient t
characterize the scattering behavior of the ‘‘typical’’ cluste
such that Eq.~14! is approximately satisfied.

In Figs. 10 and 11 we compare calculated scattering fu
tions I (Q) with the productP(Q)SCM(Q) at various times
for example simulations in 2D and 3D. The results shown
typical of all times at all system densities studied. It is qu
clear that Eq.~14! is not generally satisfied for the DLCA
system. Only at largeQ ~short length scale! and then only at
later times does the relation hold. At largeQ we find that the
cluster structure factorSCM(Q)'1 and I (Q)'P(Q). Not
surprisingly, the total scattering function at largeQ or short

-
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length scales is determined by the internal structure of c
ters and does not depend on the arrangement of clusters
averaging over clusters and over orientations means tha
tailed differences in the structure of different clusters are
observable inP(Q) or in I (Q) at largeQ. The factorisation
becomes betterat later timesat largeQ probably because
there are fewer small clusters and thus most of the scatte
at the given length scale is by clusters that are larger t
that scale. In that case any polydispersity in the sizes of th
clusters will not strongly affectP(Q) on this length scale. At
small Q or long length scale, however, it is clear that t
total scattering function cannot be separated simply into
two factorsP(Q) andSCM(Q).

B. Other approaches

A similar test of the separation ofI (Q) into factors sepa-
rately describing the internal cluster structure and the clu
arrangement in two-dimensional DLCA simulations w
briefly considered by Sciortinoet al. in Ref. @23#. However,
s-
he
e-
t

ng
n

se

e

er

these authors used the mass-weighted structure fa
SMW(Q) as defined in Eq.~12! to test the factorization:

I ~Q!5
?

P~Q!SMW~Q!. ~15!

They found that such a relation is satisfied, but only in s
tems at low number density. In fact, from our data we dr
a similar conclusion, as some example plots show in Fig.
Over a limited time regime in the lower-density simulatio
~e.g.r50.1 in 2D! I (Q)'P(Q)SMW(Q), while in the high-
density simulations~e.g.,r50.3 in 2D! we never observe a
time regime where the mass-weighted factorization wor
Results are similar in both two- and three-dimensional sim
lations. Sciortinoet al. do not consider further the physica
significance ofSMW . Indeed its meaning is not clear: whil
SCM can be reasonably clearly defined in terms of~the Fou-
rier transform of! the cluster position pair correlation func
tion, such a basic relation ofSMW to structure is not imme-
s
l

FIG. 10. Test of the ‘‘separation’’ of the total scattering functionI (Q) into average form factorP(Q) and cluster center-of-mas
structure factorSCM(Q). I (Q), calculated from Eq.~2!, is compared with the productSCM(Q)P(Q) for various times in a two-dimensiona
simulation atr50.1, system sizeL5300.
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FIG. 11. Test of the separation of the scattering functionI (Q) into average form factorP(Q) and cluster center-of-mass structure fac
SCM(Q) for a three-dimensional simulation atr50.05, system sizeL570.
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diately apparent. EffectivelySMW ‘‘mixes’’ the cluster
arrangement with information on thespatial mass distribu
tion. Of course, if all clusters have the same number of p
ticles thenSMW is equal toSCM . But if not, thenSMW does
not so clearly describe the arrangement of the clusters.

Another way of looking at the mass weighting is tha
simply allows the largest clusters to dominate the calcula
structure factor. This might well be expected to improve
factorization ofI (Q) since it will reduce the importance o
cluster polydispersity by strongly reducing the contribut
of small clusters to the calculation. That the mass-weigh
factorization fails in high-density systems is consistent w
the observation that cluster size polydispersity increases
strongly as the system approaches gelation@24,33#; in high-
density systems the effects of gelation are apparent
early on in the aggregation. Additionally, as we have sho
the arrangement of small clusters is not homogeneous, w
may also have important effects on the factorization
I (Q) into form factor and non-mass-weighted struct
factor.

A different approach to the description of the scatter
r-
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n
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behavior of the aggregating system has been followed
Carpineti et al. in their examination of results from small-
angle light-scattering experiments@7#. These authors define
the ‘‘scatterer’’ in the aggregating system not simply as th
fractal cluster but as the fractal clusterplus its surrounding
‘‘depletion zone.’’~The cluster plus depletion zone picture o
the aggregating system has been studied via the pair corr
tion functiong(r ) of the whole system in DLCA simulations
@16–18#.! The approach of Carpinetiet al. seems promising
given that the scattering by such an object does indeed fit
measured scattering data well, at least in low concentrat
systems at times sufficiently before gelation~at later times it
is found necessary to fit the measurements using not sim
the cluster plus depletion zone form factor but the product
the form factor and a calculated hard-sphere structure facto!.
Nevertheless, the direct physical definition of an individu
cluster plus depletion zone object remains problematic@9#.
As pointed out by Carpinetiet al. in Ref. @7#, the roles of the
form factor and structure factor are not so well defined in
system of aggregating fractal objects~compared, for in-
stance, to a suspension of monodisperse hard spheres!. Even



56 1931STRUCTURE AND ARRANGEMENT OF CLUSTERS IN . . .
FIG. 12. Tests of the separation of the scattering functionI (Q) into average form factorP(Q) andmass-weightedcluster center-of-mass
structure factorSMW(Q) for DLCA simulations in 2D and 3D.
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so, especially in simulations it is quite simple to physica
define the form factor, derived from the internal structure
the clusters, and the structure factor, derived from the
rangement of the clusters; this is indeed what we have d
here. As we have shown, contrary to the case of a mono
perse suspension, in the aggregating system these two fa
are not sufficient to completely describe the scattering
havior. In fact, they probably should not be called factors
all since they cannot be extracted as mathematical fac
from the scattering function.

It remains the case that in the DLCA simulations t
structure of clusters and the position of clusters are co
lated if only in terms of the dependence between cluster
and cluster arrangement. That the factorization of the s
tering function using the mass-weighted structure fac
‘‘works’’ at low density does not yet have a clear meaning
interpretation in terms of a correlation between the clus
structure and arrangement. In systems at high density~thus
in any system close to gelation where the clusters fill spa!
there may be other elements of correlation between the s
tures of different clusters. For instance, snapshots of
simulation configurations at high number density~Fig. 13!
are suggestive that thesurface structuresof neighboring
clusters are strongly correlated. We hope to develop qua
tative methods to study this possibility in future work.

VI. CONCLUSION

In this paper we have used methods analogous to sca
ing experiments to analyze in detail the structure of
DLCA simulation system, studying both the structure of
dividual clusters and the arrangement of these clusters in
system. In two-dimensional simulations, theaverage cluster
form factor P(Q) cannot be adequately fitted using the e
pirical Fisher-Burford form for a single, finite, circularly o
spherically symmetric cluster. The reason for this is n

FIG. 13. Snapshot of the two-dimensional DLCA system w
system sizeL5300 and number densityr50.3, at the final ‘‘gel’’
time when all particles belong to a single, connected, space-fil
cluster. Neighboring surface shape correlations appear to gen
channels through the structure.
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clear. The effects on the average cluster form factor of cl
ter anisotropy and of the form of the cluster size distributi
require further investigation. In three-dimensional simu
tions, P(Q) is better fitted by the Fisher-Burford form
though again it seems the fit is not perfect. In particular,
fractal dimensions generated from the Fisher-Burford fits
not agree very well with those estimated from power-law
nor with the accepted estimates from the fractal mass-ra
relation. On the other hand, the mass and radius param
from the three-dimensional Fisher-Burford fits are related
cording to the expected power law with an exponent agr
ing reasonably well with the accepted DLCA fractal dime
sion. Experiments that directly measureP(Q) in both two-
and three-dimensional systems would be of great interes

Near gelation,P(Q) begins to decrease at the smalle
Q ~longest length scales!: P(Q) must approach the final tota
scattering functionI (Q) when the system contains only
single cluster andI (Q) for the gel is peaked atQ.0. Suc-
cessive measurements of the average form factor closer
closer to gelation in an experiment, by dilution, might rep
sent a method of studying the time development of
space-filling gel structure at long length scales.

The cluster center-of-mass structure factorSCM(Q) may
be used to study the arrangement of clusters in the sys
SCM(Q) indicates that there is significant intercluster inte
action in the DLCA system. Growing, near-impenetrab
fractal clusters become increasingly confined by their nei
bors. An important finding is that as the aggregation p
ceeds the arrangement of the surviving smallest cluster
the system becomesinhomogeneous, leading to noticeable
effects inSCM(Q) at long length scales, particularly at hig
number density. This correlation between the size and
rangement of clusters is in fact expected for any system
polydisperse particles: The small particles can get into~or in
this case are left behind in! the gaps between the large pa
ticles. The analysis presented here demonstrates that cl
polydispersity does have effects on the cluster arrangem
despite the common assumption in DLCA studies that
mass distribution is strongly peaked enough that the sys
can be taken as monodisperse. A complete description o
structure of the DLCA system must include these effects
polydispersity on cluster arrangement.

The separation of scattering into an average cluster fo
factor and a center-of-mass structure factor does not ge
ally work for the DLCA system:I (Q)ÞP(Q)SCM(Q). This
might be expected for various reasons. First, the DLCA s
tem certainly does not consist of identical clusters, thou
averaging over a distribution of clusters and over orien
tions ought to reduce the importance of this polydispers
However, the size-position correlation discussed above
will lead to the breakdown of the separation of scatterin
The scattering by a particular cluster~which depends on
cluster size, cluster shape, etc.! is correlated with the clus-
ter’s position, thus the single-particle scattering factors a
the cross-particle interference factors are not independ
andP(Q) cannot be factorized out of the expression for t
total scattering. However, as also demonstrated by other
thors @23#, a factorization of the scattering function into a
erage form factor andmass-weightedstructure factorSMW is
possible in low-density systems far from gelation. This
possibly due at least in part to the dominance of large c
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ters in theSMW function, which tends to reduce the impo
tance of cluster polydispersity. In any case, the phys
interpretation ofSMW is not so straightforward.SCM directly
describes the arrangement of clusters.SMW , on the other
hand, mixes cluster arrangement with cluster size. Fur
work on the meaning ofSMW and more generally on th
nature of cross correlations between different clusters in
DLCA system is clearly required.
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