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Incomplete symmetry breaking and anomolous crystallization kinetics
at close-packed crystal-liquid interfaces

Rita Khanna and Peter Harrowell
School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia

~Received 3 March 1997!

Stacking faults in close-packed planes are commonly observed during crystallization. In this paper we
demonstrate that this behavior can be described in terms of a simple theoretical description of crystallization
kinetics that couples two structural order parameters. We establish that the packing degeneracy that permits
such faults also gives rise to a striking kinetic effect. The close-packed surface can freeze only when the
symmetry of the two possible in-layer packings is broken, either by fluctuations or longer-range interactions. In
the absence of long-range interactions, growth can take place only once the supercooling exceeds a critical
depinning value, associated with a second-order phase transition in a single surface layer.
@S1063-651X~97!05808-X#

PACS number~s!: 81.10.Aj, 64.70.Dv
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I. INTRODUCTION

At small enough deviations from the melting temperatu
the nonequilibrium dynamics of a crystal liquid are govern
by the kinetics of the structural rearrangements and not
macroscopic transport of heat or impurities. The behavio
the interface in this range of small supercoolings theref
provides insight into the complex collective relaxation of t
microscopic processes involved in ordering.

In this paper we examine a microscopic theory of freez
and melting that incorporates a two-order-parameter desc
tion of the crystalline structure. Interfacial growth describ
in terms of a single order parameter provides a rather gen
picture relating interfacial motion with the chemical potent
difference between the two phases. In the case of cry
growth, we only begin to understand how the complex c
lective process of molecular ordering influences the inte
cial dynamics once we have taken into account the comp
ity of the final crystal structure. In theoretical terms, th
translates as incorporating a multiple-order-parameter
scription of the crystal phase. Even in situations where
believe a bulk crystal structure can be successfully descr
by a single order parameter defined as the Fourier ampli
of a set of symmetry-related reciprocal lattice vectors,
presence of an interface will typically break this symme
and hence generate multiple independent order paramet

In the case of particles with only short-range interactio
we show that this slight increase in detail is sufficient
generate a rich range of dynamic behavior, dependent lar
on the basic symmetries rather than the particular model
tem or approximations. In a previous study@1# it was shown
that the close-packed crystal-liquid interface is unable
freeze in the absence of fluctuations. By way of contras
higher-index surface freezes easily, indicating an extreme
isotropy in interfacial kinetics. In this paper we show th
crystallization proceeds at the close-packed surface with
inclusion of stacking faults, in the presence of fluctuatio
for temperatures below a depinning temperatureTdp. The
explanation of the persistence of this pinning in the prese
of fluctuations forTdp,T,Tm ~Tm being the melting point!
561063-651X/97/56~2!/1910~8!/$10.00
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is a central result of this paper.
The incomplete symmetry breaking of interest here is

lated to the sort of degeneracies found, for example, betw
hard-sphere crystals of face-centered cubic~fcc! and
hexagonal-close-packed structures. This degeneracy ca
characterized by the energy equivalence of two possible
of sites on the close-packed~111! surface~see Fig. 1!. This
equivalence is a product of the short range of interacti
Two distinct crystal packings may have the same numbe
nearest neighbors per particle~and hence equivalent potentia
energy when interactions are short ranged!, but will differ in
the number of more distant neighbors per particle. The s
of stacking degeneracies described here can thus be tho
of as arising from a lack of coupling of the in-layer order
adjacent close-packed planes. Such a picture is certainly
evant to the case of crystallization in hard-sphere colloi
suspensions. Puseyet al. @2# have established with light sca
tering the presence of a significant density of stacking fa
in these crystals. In this paper we examine the kinetic c

FIG. 1. ~a! and ~b! Sketches of the two possible sets of sit
~indicated by solid circles! for the next layer on a~111! surface
~indicated by dashed circles!. In the case of particle-particle inter
actions that extend only as far as the nearest neighbors, these
stackings~conventionally labeledB and C! are equivalent in en-
ergy.
1910 © 1997 The American Physical Society
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56 1911INCOMPLETE SYMMETRY BREAKING AND ANOMOLOUS . . .
sequences of a similar stacking degeneracy found at
~100! interface of a simple cubic crystal in a lattice mode

The kinetic consequences of this lack of complete c
pling between adjacent planes have been considered
Burke, Broughton, and Gilmer@4# with respect to molecular
dynamics simulations of growth into the liquid at the~111!
surface of a fcc crystal of Lennard-Jones particles. Th
found that, unlike the~100! surface, the~111! growth rate
exhibited a temperature dependence suggestive of diffu
control. They noted that growth on this surface depen
upon collective fluctuations in which domains of particles
the surface plane shifted their registry between the two p
sible sets of sites. Wu¨rth et al. @3# invoke similar behavior to
explain the crystallization kinetics observed in suspensi
of charged polystyrene particles.

Deviations away from the planar surface tend to red
the effective anisotropy of growth rates. In dynamic Mon
Carlo simulations of a lattice model exhibiting a crysta
liquid transition@5#, no difference was observed between t
dynamics of the close-packed surface and a high-index
face during freezing. The presence of microfacets of
close-packed planes on the high-indexed surface led the
thors to conclude that growth was dominated by the clo
packed~and slower! surface in both cases. Anomalous b
havior was still noted, however, in the temperatu
dependence of growth rate at small supercoolings. In
case no growth was observed until a temperature ofTdp
50.994Tm was reached. At this supercooling the growth ra
appeared to under go a small ‘‘jump’’ and then exhibited
linear dependence on supercooling as the temperature
decreased further. The authors presented a qualitative a
ment to account for this behavior based on the idea tha
growth of the uncoupled planes consists of a series of t
dimensional ordering transition in the surface plane, it w
the critical temperature of this transition rather than
freezing temperature of the three-dimensional crystal
governed growth kinetics. The results of molecular dynam
simulation studies of freezing in Si@6# suggest similar pin-
ning of a supercooled crystal surface.

In the following section we discuss the derivation of t
equations of motion of order parameters for crystalline or
of a cubic crystal in a model liquid based on a fcc lattice.
is argued below that many of the results presented in Sec
depend on the general symmetries of the model, not on
specific nature of the interactions or crystal structure.

II. THEORY

While the qualitative features of the results presented h
are not expected to depend significantly on the spec
model liquid and approximate equations of motion for t
interface, some explicit choices do need to be made in o
to carry out the numerical analysis. Following our previo
study @1#, we shall use a lattice-gas model with crystal a
dense liquid phases on which to base the derivation of
free-energy functional. While our major results are due to
symmetry of the equations of motion rather than the spec
couplings between structural order parameters in the f
energy functional, the magnitude of the effects describ
here will certainly depend on the details of each spec
system.
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The mean-field free energy of the fcc lattice gas can
written in terms of four scalar density fields$f i% correspond-
ing to the density of particles on each of the four interpe
etrating cubic lattices that constitute the fcc lattice. The
dered crystal corresponds to all the particles residing on
of these cubic sublattices, while a uniform distribution
particles among all four sublattices represents the liq
phase. With a nearest-neighbor interaction ofJ1 and next-
nearest-neighbor interactions ofJ2 we can write the mean
field free energy of the uniform systemWu as

Wu

Ns
5kBT(

i 51

4

@~12f i !ln~12f i !1f i ln~f i !#

14J1(
iÞ j

4

(
j 51

4

f if j16J2(
i 51

4

f i
22m(

i 51

4

f i , ~1!

wherem is the chemical potential andNs is the number of
sites on a sublattice.

The density fields$f i% can be transformed into a set o
density wave amplitudes$h i% and the total densityc, defined
as

h15~f11f2!2~f31f4!,

h25~f11f3!2~f21f4!,
~2!

h35~f11f4!2~f21f3!,

c5f11f21f31f4 .

Hereh1 is the mean amplitude of a density wave along t
@100# direction,h2 the mean amplitude along the@010# di-
rection, h3 the mean amplitude along the@001# direction,
andc the total density. We restrict our attention to the ca
c51.

In the case of the bulk crystal,h15h25h3 by symmetry.
In the presence of an interface normal to the@100# direction
this symmetry is lifted, leaving us with two independent o
der parameters:p5h1 , the amplitude of the density wav
normal to the interface, andq5h25h3 , the in-layer order
parameter. The free energyWu can be written in terms of
these two order parameters,

Wu

Ns
5kBT(

i

4

Si13~J11J2!c2/22~J123J2!~p212q2!/2

2mc, ~3!

where theSi ’s are
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1912 56RITA KHANNA AND PETER HARROWELL
S15F ~42c2p22q!lnS 42c2p22q

4 D
1~c1p12q!lnS c1p12q

4 D G Y 4,

S25F ~42c2p12q!lnS 42c2p12q

4 D ~4!

1~c1p22q!lnS c1p22q

4 D Y 4,

S35F ~42c2p!lnS 42c2p

4 D1~c2p!lnS c2p

4 D G Y 4

5S4 .

For the~111! interface, the symmetry between the ord
parameters is retained and the interface is specified b
single parameterp5h15h25h3 . All equations for the
~111! surface can be obtained from the above equations
substitutingp5q.

In connecting the free-energy functional with the time d
pendence of the order parameter fields we assume the
eralized Langevin expression@7#

]f i~z,t !

]t
52G

dW

df i~z,t !
1Ri~z,t !. ~5!

W is the free-energy functional of the fournonuniformden-
sities and the functional differentiation on the right-hand s
can be regarded as the chemical potential of thei th sublattice
of a nonuniform system. At equilibrium this derivative
zero and we get stationary profiles. The kinetic coefficienG
is assumed to be independent of the value of the dens
and theRi ’s are random fluctuations with average propert
specified below.

For the case of the planar crystal-liquid interface, t
chemical potentials can be expressed as a sum of a loca
a nonlocal part

dW

df i~z!
5

]Wu

]f i~z!
1kg i~z!. ~6!

The nonlocal contributions can be written explicitly
terms of the spatial variations of the order parametersp and
q,

g1~z!5~J228J1!Dp~z!/41J2Dq~z!/2,

g2~z!5~J228J1!Dp~z!/42J2Dq~z!/2, ~7!

g3~z!5~J228J1!Dp~z!/45g4 ,

with the difference operation defined as

Dp~z!5p~z11!1p~z21!22p~z!. ~8!

The coefficientk is introduced here to provide a simple sca
ing of the characteristic length in the problem.

Substituting the chemical potentials into the kinetic eq
tions leads us to the final form of the equations of motio
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]p

]t
52GS 16

]Wu

]p
1k~J228J1!DpD1Rp~z,t !, ~9!

]q

]t
52GS 4

dWu

dq
1kJ2DqD1Rq~z,t !. ~10!

In the following analysis the temperature is presented
units of J1 /kB ~i.e., the reduced temperatureT* 5kBT/J1),
the free energy is in units ofJ1 , distance is measured i
lattice spacings, and time is presented in units of 1/GJ1 .
Unless otherwise statedk51.0 and a time step ofDt
51025 in the reduced units is used.

The stochastic termsRp(z,t) and Rq(z,t) are introduced
to model the effect of fluctuations in the dynamics of t
order parameters. This noise satisfies

^Ra~z,t !&50,
~11!

^Ra~z1 ,t1!Rb~z2 ,t2!&5Ua
2T* dabd~z12z2!d~ t12t2!.

III. RESULTS

The free energywu(p,q)5Wu(p,q)/N, for the uniform
system is plotted in Figs. 2 and 3. The ‘‘forked valley
topology in the space of (p,q) is a direct consequence of th
presence of two-degenerate-crystal structures. At the coe
ence temperatureTm* 50.82 @Fig. 3~b!# the free energy at the
liquid minimum at ~0,0! is equal to that at the two-crysta
minima ~0.464,0.464! and ~0.464,20.464!. Increasing the
temperature@Fig. 3~c!# we see the rapid disappearance of t
local minima associated with the superheated solid, while
supercooling@Fig. 3~c!# we find that the liquid persists as
metastable state until a spinodal is reached at aroundT*
'0.76. The symmetry ofwu with respect toq is a reflection
of the symmetry of the two in-layer packings associated w
q,0 andq.0 and is independent of the range of partic
interactions. The nonlocal term inW is responsible for the
lifting of this symmetry.

We begin with the close-packed~100! surface in the ab-
sence of next-nearest-neighbor interactions, i.e.,J250. The
equilibrium interface corresponds to the stationary solut
of Eqs.~9! and~10! at T* 50.82 and is plotted in Fig. 4 with

FIG. 2. Free energyvu(p,q) for a uniform system characterize
by order parametersp andq at T* 50.82, the melting temperature
Note the ‘‘forked valley’’ topology in going from the disordere
liquid ~0,0! to the two-degenerate-crystal minima at~0.464,0.464!
and ~0.464,20.464!.
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56 1913INCOMPLETE SYMMETRY BREAKING AND ANOMOLOUS . . .
FIG. 3. Contour plots of the free energywu(p,q) for a uniform
system calculated at~a! T* 50.83, showing the equilibrium liquid
minimum only; ~b! T* 50.82, showing the minima correspondin
to the coexisting liquid and solid phases; and~c! T* 50.81, depict-
ing the two equilibrium solid phases with the liquid minimum no
a metastable state.
k51.0. With J250, the time development of the in-laye
orderq, given in Eq.~10!, is uncoupled to the in-layer orde
in adjacent layers. From the symmetry of the uniform pote
tial in Fig. 3, it is clear that]wu /]q50 wheneverq50. As
a result

]q~z,t !

]t
50 ;p when q50 ~12!

and the interface, unable to induce in-layer order in the liq
in the absence of fluctuations, cannot grow. The role of
liquid portion of theq profile in pinning the interface is clea
from the supercooled profile atT* 50.78 in Fig. 4. The
steady-state velocity of the~100! surface, averaged over
displacement of 15 lattice spacings, is plotted in Fig. 5 a
function of temperature. The asymmetry between freez
and melting at this surface is obvious. Themelting interface
does not need to induce in-plane order in the liquid and s
unaffected by the pinning described here.

The equation of motion of the~111! surface, at the same
level of structural detail, involves only a single order para
eter p. This order parameter must retain the coupling b

FIG. 4. Interfacial profiles of the order parametersp andq for
stationary~100! surfaces at equilibriumT* 50.82 and under super
cooling T* 50.78. Note the distortion of the latter due to the pi
ning of theq50 region of the inlayer order profile.

FIG. 5. Interfacial velocity as a function of temperature for t
~100! and~111! surfaces in the absence of fluctuations withk51.0.
Note the complete arrest of the supercooled~100! surface. Velocity
is in units of ~lattice spacing! 3GJ1 .
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1914 56RITA KHANNA AND PETER HARROWELL
tween adjacent~111! layers and hence does not experien
the pinning of the supercooled~100! surface. The result is a
substantial anisotropy of the crystallization rate while lea
ing the rate of melting isotropic. Note in Fig. 5 that th
nonlineardependence of interface velocity on temperature
the ~111! surface is different for melting and for freezing
This is a reflection of the difference in]2Wu /]p2 at the
crystal and liquid minima.

In the case of the~100! interface, this asymmetry betwee
freezing and melting extends down to the melting point its
in a singular fashion, with the derivative of the interfac
velocity with respect to temperature being discontinuous
Tm . It has been argued@8# that such a singularity would b
unphysical as it would violate microscopic reversibility. Th
argument, however, only excludes a singularity result
from an unphysical asymmetry between the rates at wh
particles bind and unbind from the surface. The singula
described here refers only to the steady-state interfacial
locity and so avoids placing such unphysical constraints
the microscopic kinetics.

The asymmetric pinning of the~100! surface is the resul
of the disordered layers ‘‘inability’’ to lift the symmetry o
the two in-layer packings. As the densityp of a disordered
layer increases, the free energywu changes along theq50
line from being a local minimum to a local maximum. Th
latter unstable state should be susceptible to any amplitud
fluctuations in the in-layer orderq. Interfacial velocities of
the ~100! surface withk51.0 in the presence of a range
fluctuation amplitudesUq

2 are plotted in Fig. 6. Each velocit
is obtained from the translation of the surface of at least
layer spacings. We draw the readers attention to three im
tant features of these results.~i! The surface remains pinne
in the presence of the fluctuations for temperatures in
range Tdp,T* ,Tm . The depinning temperatureTdp is a
decreasing function of the amplitude of fluctuations.~ii ! The
~100! surfacedoesfreeze in the presence of fluctuations
the in-layer order parameterq, the crystal so grown consist
ing of a random stacking faults. The freezing velocityv is,
for small supercoolings, of the form

v}g~Uq
2!~Tdp2T* ! for T* <Tdp, ~13!

whereg(x) is an increasing function ofx. ~iii ! The melting
velocity is not significantly effected by the fluctuation

FIG. 6. Velocities of the~100! interface as a function of tem
perature for a range of fluctuation amplitudesUq

2 with k51.0. Ve-
locity is in units of ~lattice spacing! 3GJ1 .
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These three results are in qualitative agreement with
simulations of freezing in the lattice model@5#.

The persistence of pinning in the presence of fluctuati
in this simple theory, noted as ‘‘observation~i!,’’ poses a
puzzle. Consider the crystal-liquid interface as being rep
sented by a ‘‘trajectory’’ in (p,q) space. In order for the
interface to freeze or melt an arbitrary volume element in
path of the interface must move along the trajectory eit
from liquid to solid or solid to liquid, respectively. For th
supercooled~100! interface without fluctuations, such an a
bitrary volume element is unable to move from theq50
line, hence the surface is pinned. Now the high-p end of the
q50 portion of the pinned interface lies on either
‘‘saddle’’ (]2wu /]q250) or the ‘‘ridge crest’’
(]2wu /]q2,0) of the potential surfacewu ~see Figs. 2 and
3!. Fluctuations in theq axis will nudge such a precariousl
pinned point off along the trajectory to the crystal state. T
fact that the nudge is to the positive or negativeq with equal
probability results in the~100! stacking faults. So, in light of
this picture, the puzzle is why do we seeany persistent pin-
ning when fluctuations are present. To answer this we n
to consider the effect of the discretization of the order p
rameter field.

The numerical treatment of the equations of motion
continuous order parameter fields involves finite differen
as a practical necessity. In the case of crystal order~and
k51.0!, however, there is a strong case for identifying t
discrete intervals along the surface normal at which the v
ues of thep andq fields are recorded as the physical crys
layers themselves. In the latter view it is only the values
the order parameters at these discrete locations that co
physically relevant information. The number of such laye
that can be found in the interfacial region is a real physi
characteristic of crystal-liquid interfaces. The coefficientk
has been included into our equations of motion to allow
simple adjustment of the thickness of the interface in ter
of crystal layers. Examples of equilibrium surfaces
T* 50.82 with small and largek are shown in Fig. 7. Note
the variation in the number of layers in each interface ra
ing from 5 to 15 layers. By comparison, simulations of t
close-packed~111! surface of a fcc crystal of Lennard-Jone
particles@10# result in an equilibrium surface consisting o

FIG. 7. Role of the coefficientk in determining the number o
layers in the interfacial region at equilibriumT* 50.82. Varyingk
between 0.1 and 1.0, we find that the interfaces vary in thickn
between 5 and 15 layers.
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56 1915INCOMPLETE SYMMETRY BREAKING AND ANOMOLOUS . . .
approximately ten layers while simulations of the clos
packed surface of silicon@6# show a narrower interface
roughly five layers in thickness. Higher-index interfac
typically consist of considerably more layers than the clo
packed surfaces, simply by virtue of the smaller layer sp
ing.

This discrete picture has two important consequences
interfacial dynamics. First, the discrete steps break the s
metry of space resulting, at equilibrium, in only a discre
periodic set of stable equilibrium positions for the interfa
with free-energy barriers between them. Away from equil
rium, we find that interfacial motion involves jumps of th
interfacial position between these long-lived positions. T
behavior was discussed by Cahn in the 1960s in terms o
presence of a periodic set of free-energy barriers to the
placement of the crystal interface and the transition betw
lateral to continuous growth for a diffuse interface@9#. We
find it here for both melting and freezing. It is the seco
consequence of the discrete layers, discussed below, whi
central to the existence of a depinning temperatureTdp.

To understand this connection, it is useful to return to
description of the interface as a trajectory in (p,q) space.
Our arbitrary volume element no longer moves continuou
along this path, but instead it jumps between the disc
sites, the number of which corresponds to the numbe
layers in the interface~see Fig. 8!. Now, in order for fluctua-
tions to depin the surface they must find one of these ‘‘site
along theq50 line in a region where]2wu /]q2,0. Points
for which ]2wu /]q2.0 will be stable with respect to fluc
tuations inq, the local free-energy curvature ensuring th
the interface will act to restore itself following a fluctuatio
For a continuous interface there would always be a po
through the interface at whichq50 and]2wu /]q2,0 and
hence fluctuations can depin the surface at any tempera
below the melting point. For discrete sites there is no s
inevitability. In fact, as the temperature approachesTm from

FIG. 8. Sketch of the interface as a trajectory in the sp
(p,q). The solid curve indicates the loci of points corresponding
minimaof wu with respect toq. The squares are the (p,q) values
associated with the discrete layers through the equilibrium inter
with k50.1 depicted in Fig. 7. The vertical dashed line indica
maximaof the potential with respect to the in-layer order parame
The interface remains stable with respect to fluctuations inq until a
supercooling is reached at which one of the discrete points on
q50 line is pushed in the region in which]2wu /]q2,0, denoted
by the dashed line.
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below the length of the interface trajectory that correspo
to unstableq50 vanishes and along with it goes the pro
ability of finding one of the discrete crystal layers in th
region. As a result, the interface has to be supercooled
order to ‘‘push’’ one of the discrete disordered layers into t
unstable region. The depinning temperatureTdp is the mea-
sure of the minimum supercooling needed to accomplish
necessary distortion of the interface. As the interface
proaches the continuous limit~i.e., largek!, the magnitude of
the push required vanishes andTdp approachesTm . Con-
versely, a narrow crystal-liquid interface with a width o
only a few layers, found for a smallk, exhibits a depinning
temperature significantly lower than the melting temperatu
as shown in Fig. 9. We also note the appearance of a s
region of pinning of the superheated crystal-liquid interfa
with decreasingk and hence interfacial width. We shall re
turn to this feature and its connection with Cahn’s model@9#
in the following section.

Including next-nearest-neighbor interactions~here in the
form of nonzero values ofJ2! lifts the residual symmetry
between the two possible choices of inlayer order. In Fig.
we show the effect on interfacial velocities of adding a ne
nearest-neighbor interaction. This extra potential-ene
contribution will shift Tm and, more importantly for our
present discussion, introduce a coupling between adja
layers and so allow the inlayer order in one layer to weig
the choice of the in-layer order in the next. The freezi
surface now exhibits a regular steplike advance in the
sence of fluctuations, the waiting time at each step de
mined by the strength of the next-nearest-neighbor inte
tions. The crystal grown in the presence of fluctuations w
include stacking faults at a density determined by the rela
magnitudes ofJ2 and Uq

2. When J2@Uq
2, the density of

faults will be small with the choice of in-layer packing,q
positive or negative, determined by the state of the crysta
the initial time. AsUq

2 increases in magnitude, the growth
eventually dominated by the fluctuations and the density
stacking faults approaches 0.5, the value found in the cry
with nearest-neighbor interactions only.

e

e
s
r.

he

FIG. 9. Temperature dependence of the velocity of the~100!
interface at small supercoolings and superheatings in the pres
of noise (Uq

251026). The depinning temperatureTdp is indicated.
Note that whileTdp approachesTm with increasingk a considerable
asymmetry persists between the behavior of the interface above
below Tm . Velocity is in units of~lattice spacing! 3GJ1 .



ob
io
in
vi
tio
e

ac
to
-

ja
he
ro
th
la
in
in

ce
s

th
e
e
g

fa
a
a
e

his

d

g
ng

r-
is
to

lly
is

d by

k-
ou-
hile
ises
ce

a-
end
.
ral

neric
r.

de-
of

as
ost
ist
he
he

to
ns

can
pect
uc-
igh-

n
ap-

cti
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IV. CONCLUSION

Stacking faults in close-packed planes are commonly
served during crystallization of particles whose interact
potential is short ranged with respect to the lattice spac
@2#. In this paper we have demonstrated that this beha
can be described in terms of a simple theoretical descrip
of crystallization kinetics that couples two structural ord
parameters. As our major result, we establish that the p
ing degeneracy that permits such faults also gives rise
striking kinetic effect arising from the inability of the spe
cific crystal surface to fully break the symmetry of the ad
cent liquid. The close-packed surface can freeze only w
the symmetry of the two possible in-layer packings is b
ken, either by fluctuations or longer-range interactions. In
absence of long-range interactions, growth can take p
only once the supercooling exceeds a critical depinn
value, associated with a second-order phase transition
single surface layer.

This phenomenon differs qualitatively from the interfa
dynamics identified by Cahn@9# over 30 years ago. Cahn’
insight was that the transition between nucleated~here one
can read ‘‘fluctuation dependent’’! and continuous growth
could be described for a diffuse interface in terms of
periodic variation of the free energy with interfacial displac
ment with respect to the lattice origin. This potential is r
sponsible for the possibility of an equilibrium roughenin
transition, even for diffuse interfaces@11,12#. The amplitude
of this periodic free energy increases with decreasing sur
width @11# and so is identical with the steplike dynamics th
arises naturally in the theory presented here. For sm
enough supercoolings or superheatings, this periodic free

FIG. 10. Velocity of the~100! interface as a function of the
temperature for a range of second-nearest-neighbor intera
strengthsJ2 with k51.0. Velocity is in units of~lattice spacing!
3GJ1 .
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ergy will pin the surface in the absence of fluctuations. T
‘‘periodic’’ pinning differs in four significant ways from the
pinning due to ‘‘incomplete symmetry breaking’’ describe
in this paper.

~i! The periodic pinning applies equally to both meltin
and freezing while the incomplete symmetry breaki
mechanism applies principally to freezing alone.~For narrow
interfaces, wedo observe some pinning of the melting inte
face, indicating that the periodic pinning mechanism
present but of very much smaller amplitude than that due
the symmetry breaking mechanism.!

~ii ! Even in the absence of fluctuations, periodica
pinned surfaces will freeze once a critical supercooling
exceeded. No such freezing occurs at the surface pinne
incomplete symmetry breaking.

~iii ! Surface pinning via the incomplete symmetry brea
ing mechanism depends sensitively upon the details of c
pling between the various structural order parameters, w
that due to the periodic component of the free energy ar
from the periodicity of the crystal density along the surfa
normal alone.

~iv! Finally, the incomplete symmetry breaking mech
nism, unlike the periodic pinning, has been shown to dep
explicitly upon the short range of the particle interactions

Qualitatively, these results depend only upon gene
symmetry arguments. As such, we present them as a ge
feature of interfacial dynamics involving crystalline orde
The existence of a pinning temperatureTdp in the presence of
fluctuations due to incomplete symmetry breaking, as
scribed here, is in qualitative agreement with simulations
nonequilibrium crystal-liquid interfaces in the fcc lattice g
@5#. Our results suggest that this asymmetric pinning is m
likely to be observed for crystal-liquid interfaces that cons
of only a few layers. Simulation results indicate that t
close-packed surface of silicon meets this criterion. T
simulations of crystallization of silicon to date@6# suggest
that such a pinning may be present. It would be interesting
carry out careful long-time molecular-dynamic simulatio
of such an interface atsmall deviations from coexistence in
order to establish whether similar dynamic asymmetries
be observed. Extending these results, we would also ex
to observe considerably larger fluctuations of in-layer str
ture at the close-packed surfaces than those found at h
index interfaces@1,5#.
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