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Incomplete symmetry breaking and anomolous crystallization kinetics
at close-packed crystal-liquid interfaces
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Stacking faults in close-packed planes are commonly observed during crystallization. In this paper we
demonstrate that this behavior can be described in terms of a simple theoretical description of crystallization
kinetics that couples two structural order parameters. We establish that the packing degeneracy that permits
such faults also gives rise to a striking kinetic effect. The close-packed surface can freeze only when the
symmetry of the two possible in-layer packings is broken, either by fluctuations or longer-range interactions. In
the absence of long-range interactions, growth can take place only once the supercooling exceeds a critical
depinning value, associated with a second-order phase transition in a single surface layer.
[S1063-651X97)05808-X]

PACS numbds): 81.10.Aj, 64.70.Dv

I. INTRODUCTION is a central result of this paper.
The incomplete symmetry breaking of interest here is re-

At small enough deviations from the melting temperature Jated to the sort of degeneracies found, for example, between
the nonequilibrium dynamics of a crystal liquid are governechard-sphere crystals of face-centered culifcc) and
by the kinetics of the structural rearrangements and not thBeéxagonal-close-packed structures. This degeneracy can be
macroscopic transport of heat or impurities. The behavior ofharacterized by the energy equivalence of two possible sets
the interface in this range of small supercoolings therefor@f sites on the close-packedl1l) surface(see Fig. 1. This
provides insight into the complex collective relaxation of the€duivalence is a product of the short range of interaction.
microscopic processes involved in ordering. Two dlst|nc;t crystal packmgs may have thg same numb(_ar of

In this paper we examine a microscopic theory of freezingneareSt neighbors per parti¢ind hence equivalent potential

and melting that incorporates a two-order-parameter descri -hnee:?l}/m\'\ézerno;nﬁg?gtggfaﬁ[enZ?Or:;(r)?g)g?:” V;thliggfe%ne sort
tion of the crystalline structure. Interfacial growth described . : 9 Per p :

) ) . of stacking degeneracies described here can thus be thought
in terms of a single order parameter provides a rather gener

: ST ) : : . . as arising from a lack of coupling of the in-layer order in
p!cture relating interfacial motion with the chemical potential djacent close-packed planes. Such a picture is certainly rel-
difference between the two phases. In the case of cryst

) vant to the case of crystallization in hard-sphere colloidal
growth, we only begin to understand how the complex colg,,spensions. Pusey al.[2] have established with light scat-

lective process of molecular ordering influences the interfageing the presence of a significant density of stacking faults
cial dynamics once we have taken into account the complexp these crystals. In this paper we examine the kinetic con-
ity of the final crystal structure. In theoretical terms, this

translates as incorporating a multiple-order-parameter de-
scription of the crystal phase. Even in situations where we
believe a bulk crystal structure can be successfully described
by a single order parameter defined as the Fourier amplitude
of a set of symmetry-related reciprocal lattice vectors, the
presence of an interface will typically break this symmetry
and hence generate multiple independent order parameters.
In the case of particles with only short-range interactions,
we show that this slight increase in detail is sufficient to
generate a rich range of dynamic behavior, dependent largely
on the basic symmetries rather than the particular model sys-
tem or approximations. In a previous study it was shown
that the close-packed crystal-liquid interface is unable to
freeze in the absence of fluctuations. By way of contrast, a
higher-index surface freezes easily, indicating an extreme an-
isotropy in interfacial kinetics. In this paper we show that £ 1. (3) and (b) Sketches of the two possible sets of sites
crystallization proceeds at the close-packed surface with thgndicated by solid circlesfor the next layer on d111) surface
inclusion of stacking faults, in the presence of fluctuationsindicated by dashed circlesin the case of particle-particle inter-
for temperatures below a depinning temperatligg. The  actions that extend only as far as the nearest neighbors, these two
explanation of the persistence of this pinning in the presencetackings(conventionally labeled® and C) are equivalent in en-
of fluctuations forT 4,<T<T,, (T, being the melting point  ergy.
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sequences of a similar stacking degeneracy found at the The mean-field free energy of the fcc lattice gas can be
(100 interface of a simple cubic crystal in a lattice model. written in terms of four scalar density fiel¢lg,;} correspond-
The kinetic consequences of this lack of complete couing to the density of particles on each of the four interpen-
pling between adjacent planes have been considered trating cubic lattices that constitute the fcc lattice. The or-
Burke, Broughton, and Gilm¢#] with respect to molecular-  dered crystal corresponds to all the particles residing on one
dynamics simulations of growth into the liquid at thiEll)  of these cubic sublattices, while a uniform distribution of
surface of a fcc crystal of Lennard-Jones particles. Theyarticles among all four sublattices represents the liquid
found that, unlike thg100 surface, the(111) growth rate  phase. With a nearest-neighbor interactionJpfand next-

exhibited a temperature dependence suggestive of diffusioRearest-neighbor interactions & we can write the mean-
control. They noted that growth on this surface dependege|d free energy of the uniform systewi, as

upon collective fluctuations in which domains of particles in
the surface plane shifted their registry between the two pos-

sible sets of sites. Wth et al.[3] invoke similar behavior to W 4
explain the crystallization kinetics observed in suspensions _”:kBTE [(1—¢)In(1— ;) + & In(;)]
of charged polystyrene particles. Ns i=1
Deviations away from the planar surface tend to reduce 4 4 4 4
the effective anisotropy of growth rates. In dynamic Monte +4] b +6J 2_ , 1
Carlo simulations of a lattice model exhibiting a crystal- 1;; 121 19, 221 g ’“.21 ¢ M

liquid transition[5], no difference was observed between the

dynamics of the close-packed surface and a high-index sur-

face during freezing. The presence of microfacets of thevhere u is the chemical potential anll is the number of
close-packed planes on the high-indexed surface led the asites on a sublattice.

thors to conclude that growth was dominated by the close- The density field§¢;} can be transformed into a set of

packed(and slowey surface in both cases. Anomalous be- density wave amplitudefsy;} and the total density, defined
havior was still noted, however, in the temperatureags

dependence of growth rate at small supercoolings. In this
case no growth was observed until a temperaturer gf
=0.994T,,, was reached. At this s_upercooling the grov_vt_h rate M= (1t ¢)— (Pp3+ dbs),
appeared to under go a small “jump” and then exhibited a
linear dependence on supercooling as the temperature was
decreased further. The authors presented a qualitative argu- _ _
ment to account for this behavior based on the idea that as 2= ($1F §3) = (b2t da). 2
growth of the uncoupled planes consists of a series of two-
dimensional ordering transition in the surface plane, it was
the critical temperature of this transition rather than the 13=(p1+ ¢a) = (d2+ ¢3),
freezing temperature of the three-dimensional crystal that
governed growth kinetics. The results of molecular dynamics
simulation studies of freezing in $6] suggest similar pin- C=d1t ot dat oy
ning of a supercooled crystal surface.
In the following section we discuss the derivation of the
equations of motion of order parameters for crystalline ordeHere 7, is the mean amplitude of a density wave along the
of a cubiccrystal in a model liquid based on a fcc lattice. It [100] direction, 7, the mean amplitude along tt810] di-
is argued below that many of the results presented in Sec. Ivection, 7»; the mean amplitude along tH&01] direction,
depend on the general symmetries of the model, not on thandc the total density. We restrict our attention to the case
specific nature of the interactions or crystal structure. c=1.
In the case of the bulk crystat; = 7,= 73 by symmetry.
In the presence of an interface normal to 60 direction
Il. THEORY this symmetry is lifted, leaving us with two independent or-

While the qualitative features of the results presented her€! parametersp=17,, the amplitude of the density wave
are not expected to depend significantly on the specifi@'mal to the interface, and=7,= 73, the in-layer order
model liquid and approximate equations of motion for theParameter. The free energy, can be written in terms of
interface, some explicit choices do need to be made in orddP€se two order parameters,
to carry out the numerical analysis. Following our previous
study[1], we shall use a lattice-gas model with crystal and
dense liquid phases on which to base the derivation of the W,
free-energy functional. While our major results are due to the |\|_s
symmetry of the equations of motion rather than the specific
couplings between structural order parameters in the free- — MG, (©)
energy functional, the magnitude of the effects described
here will certainly depend on the details of each specific
system. where theS’s are

4
=kgTY, S+3(J1+3,)c%2— (3,—3,)(p?+20°)/2
]
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S;=|(4—c—p)in +(c—p)in| —— 4 FIG. 2. Free energy,(p,q) for a uniform system characterized
4 4 by order parametens andq at T* = 0.82, the melting temperature.

B Note the “forked valley” topology in going from the disordered
=Sy liquid (0,0) to the two-degenerate-crystal minima(@t464,0.464

For the(111) interface, the symmetry between the orderand(o'464’_0'464'

parameters is retained and the interface is specified by a
single parametemp=7n,=7n,=7n3. All equations for the a_p:_ (16&WU+K(J —8J;)Ap
(111 surface can be obtained from the above equations by ot p 2 '
substitutingp=q.

In connecting the free-energy functional with the time de- &_q
pendence of the order parameter fields we assume the gen- at
eralized Langevin expressigi]

+Ry(z,1), (9

=T

W,
45—q+KJ2Aq +Rq(Z,t). (10)

In the following analysis the temperature is presented in
ddi(z,1) oW units of J; /kg (i.e., the reduced temperatuf& =kgT/J;),
ot =-T 5¢i(z,t) +Ri(zY). ®)  the free energy is in units al;, distance is measured in
lattice spacings, and time is presented in units dfJi/
W is the free-energy functional of the fononuniformden-  Unless otherwise state¢d=1.0 and a time step ofAt
sities and the functional differentiation on the right-hand side=1075 in the reduced units is used.
can be regarded as the chemical potential of thesublattice The stochastic termB(z,t) andRy(z,t) are introduced
of a nonuniform system. At equilibrium this derivative is to model the effect of fluctuations in the dynamics of the
zero and we get stationary profiles. The kinetic coefficiéent order parameters. This noise satisfies
is assumed to be independent of the value of the densities
and theR;’s are random fluctuations with average properties (Ra(z,1))=0, (11)
specified below.
For the case of the planar crystal-liquid interface, the (Ra(Z1,t1)R(22,12))=0O2T* 5,58(21—2,) 8(t1—ty).
chemical potentials can be expressed as a sum of a local and

a nonlocal part Il. RESULTS
oW W, 5 The free energw,(p,q)=W,(p,q)/N, for the uniform
b ag(z) NP () system is plotted in Figs. 2 and 3. The “forked valley”

topology in the space ofpq) is a direct consequence of the
The nonlocal contributions can be written explicitly in presence of two-degenerate-crystal structures. At the coexist-
terms of the spatial variations of the order paramepeasd  ence temperatur€, = 0.82[Fig. 3(b)] the free energy at the
a, liquid minimum at(0,0) is equal to that at the two-crystal
minima (0.464,0.464 and (0.464-0.464. Increasing the
¥1(2)=(J2—8J1)Ap(2)/4+J,A0(2)/2, temperaturéFig. 3(c)] we see the rapid disappearance of the
local minima associated with the superheated solid, while on
v2(2)=(J2—8J1)Ap(2)/4—J,Aq(2)/2, (7)  supercoolingFig. 3(c)] we find that the liquid persists as a
metastable state until a spinodal is reached at arotihd
v3(2)= (2= 8J1)AP(2)/4= va, ~0.76. The symmetry ofv, with respect tay is a reflection
of the symmetry of the two in-layer packings associated with
g<0 andg>0 and is independent of the range of particle
Ap(2)=p(z+1)+p(z—1)—2p(2). (8)  interactions. The nonlocal term W is responsible for the
lifting of this symmetry.
The coefficientx is introduced here to provide a simple scal- We begin with the close-packéd00) surface in the ab-
ing of the characteristic length in the problem. sence of next-nearest-neighbor interactions, dg=0. The
Substituting the chemical potentials into the kinetic equa-equilibrium interface corresponds to the stationary solution
tions leads us to the final form of the equations of motion of Egs.(9) and(10) at T* =0.82 and is plotted in Fig. 4 with

with the difference operation defined as
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FIG. 3. Contour plots of the free energy,(p,q) for a uniform
system calculated dg) T* =0.83, showing the equilibrium liquid
minimum only; (b) T* =0.82, showing the minima corresponding
to the coexisting liquid and solid phases; dodT* =0.81, depict-
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FIG. 4. Interfacial profiles of the order parameterandq for
stationary(100 surfaces at equilibriurf* =0.82 and under super-
cooling T* =0.78. Note the distortion of the latter due to the pin-
ning of theq=0 region of the inlayer order profile.

x=1.0. With J,=0, the time development of the in-layer
orderq, given in Eq.(10), is uncoupled to the in-layer order
in adjacent layers. From the symmetry of the uniform poten-
tial in Fig. 3, it is clear thatw,/dq=0 whenevelg=_0. As

a result

aq(z,t)
ot

=0 Vp wheng=0 (12

and the interface, unable to induce in-layer order in the liquid
in the absence of fluctuations, cannot grow. The role of the
liquid portion of theq profile in pinning the interface is clear
from the supercooled profile a&*=0.78 in Fig. 4. The
steady-state velocity of th€l00) surface, averaged over a
displacement of 15 lattice spacings, is plotted in Fig. 5 as a
function of temperature. The asymmetry between freezing
and melting at this surface is obvious. Timeltinginterface
does not need to induce in-plane order in the liquid and so is
unaffected by the pinning described here.

The equation of motion of thé€l11) surface, at the same
level of structural detail, involves only a single order param-
eter p. This order parameter must retain the coupling be-
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FIG. 5. Interfacial velocity as a function of temperature for the
(100 and(111) surfaces in the absence of fluctuations wita1.0.

ing the two equilibrium solid phases with the liquid minimum now Note the complete arrest of the supercod|®@d0 surface. Velocity
a metastable state.

is in units of (lattice spacing XT"J; .
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FIG. 6. Velocities of the(100 interface as a function of tem-
perature for a range of fluctuation amplitucﬁé with «k=1.0. Ve-
locity is in units of (lattice spacing XT"J;.

FIG. 7. Role of the coefficienk in determining the number of
layers in the interfacial region at equilibriuii* =0.82. Varyingx
between 0.1 and 1.0, we find that the interfaces vary in thickness

tween adjacentl1l) layers and hence does not experienceP&Ween 5 and 15 layers.

the pinning of the supercoolgd00 surface. The result is a . o .

substantial anisotropy of the crystallization rate while leav-11€S€ three results are in qualitative agreement with the
ing the rate of melting isotropic. Note in Fig. 5 that the Simulations of freezing in the lattice mode]. .
nonlineardependence of interface velocity on temperature of 1h€ Persistence of pinning in the presence of fluctuations

the (111 surface is different for melting and for freezing. in this simplg theory, noted as f‘opservati(ﬁ'r),” poses a
This is a reflection of the difference iB?W,/dp? at the puzzle. Consider the crystal-liquid interface as being repre-
crystal and liquid minima. . sented by a “trajectory” in p,q) space. In order for the

In the case of thé100) interface, this asymmetry between interface to freeze or melt an arbitrary volume e_Iement iq the
freezing and melting extends down to the melting point itseHpath 9“ the mterfgce must move qlong the trajectory either
in a singular fashion, with the derivative of the interfacial oM liquid to solid or solid to liquid, respectively. For the
velocity with respect to temperature being discontinuous apuPercooled100 interface without fluctuations, such an ar-
Tm- It has been argueld] that such a singularity would be l:_)ltrary volume eIement_ IS _unable to move _from the-0
unphysical as it would violate microscopic reversibility. This line, hencg the surface IS plnneq. Now the-_ higknd O,f the
argument, however, only excludes a singularity resulting=0 Portion of the pinned interface lies on either a
from an unphysical asymmetry between the rates at whichsglddle ) (9°w,/0q"=0) or the “ridge crest
particles bind and unbind from the surface. The singularit{9”Wu/9g~<0) of the potential surface, (see Figs. 2 and
described here refers only to the steady-state interfacial ved- Fluctuations in they axis will nudge such a precariously
locity and so avoids placing such unphysical constraints offinned point off along the trajectory to the crystal state. The
the microscopic kinetics. fact tha_t_the nudge_ is to the positive or negatqvm_th equal

The asymmetric pinning of theL00) surface is the result pr_oba_b|I|ty results in theé_lOO) stacking faults. So, in I|ght_ of
of the disordered layers “inability” to lift the symmetry of this picture, the puzzle is why do we samy persistent pin-
the two in-layer packings. As the densityof a disordered "iNg when fluctuations are present. _To answer this we need
layer increases, the free enengy changes along thg=0 to consider the effect of the discretization of the order pa-

line from being a local minimum to a local maximum. The rameter field. _ _
latter unstable state should be susceptible to any amplitude of 1he numerical treatment of the equations of motion for
fluctuations in the in-layer ordeg. Interfacial velocities of continuous order parameter fields involves finite differences

the (100 surface withk=1.0 in the presence of a range of &5 & practical necessity. In the case of crystal ofaed

fluctuation amplitude@é are plotted in Fig. 6. Each velocity K_:l'o)' r_\owever, there is a strong case for |deqt|fy|ng the
is obtained from the translation of the surface of at least 1§jlscrete intervals e_llong the surface normal at Wh.ICh the val-
layer spacings. We draw the readers attention to three imporfs of thep andq fields are recorded as the physical crystal

tant features of these results, The surface remains pinned 2Yers themselves. In the latter view it is only the values of

in the presence of the fluctuations for temperatures in théhe qrder parameters at thgse discrete locations that contain
range Ty,<T*<T,. The depinning temperaturéy, is a {:)hh);smallyé reflevagtllniﬁrma;uo?. '!'hle numbgr of sulchr1lay¢r5|
decreasing function of the amplitude of fluctuatiois. The at can be found in the interfacial region Is a rea’ pnysica

(100 surfacedoesfreeze in the presence of fluctuations in characteri_stic of crystal-liquid intgrfaces. Th_e- coefficiant
the in-layer order parameter;, the crystal so grown consist- has been included into our equations of motion to allow the

ing of a random stacking faults. The freezing veloaitys, S|fmp:e '.;tdljulstmernt oé;h?ntT'CknefSS of msrimrt:rfacﬁ In termts
for small supercoolings, of the form ol crystal layers. ampies ~or equ um_surfaces a

T*=0.82 with small and larga are shown in Fig. 7. Note
vocg(eé)(po— T*) for T*<TU%, (13)  the variation in the number of layers in each interface rang-
ing from 5 to 15 layers. By comparison, simulations of the
whereg(x) is an increasing function of. (iii) The melting close-packed11l) surface of a fcc crystal of Lennard-Jones
velocity is not significantly effected by the fluctuations. particles[10] result in an equilibrium surface consisting of
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FIG. 8. Sketch of the interface as a trajectory in the space FIG. 9. Temperature dependence of the velocity of (h@0)
(p.q). The solid curve indicates the loci of points corresponding tointerface at small supercoolings and superheatings in the presence
minimaof w, with respect tag. The squares are thgq) values  of noise ((95:10*6). The depinning temperatufgy, is indicated.
associated with the discrete layers through the equilibrium interfacélote that whileT 4, approached , with increasing« a considerable
with k=0.1 depicted in Fig. 7. The vertical dashed line indicatesasymmetry persists between the behavior of the interface above and
maximaof the potential with respect to the in-layer order parameterbelow Tp,,. Velocity is in units of(lattice spaciny XT'J;.
The interface remains stable with respect to fluctuatiores umtil a
supercooling is reached at which one of the discrete points on th
q=0 line is pushed in the region in whia¥fw,/dq?<0, denoted
by the dashed line.

Below the length of the interface trajectory that corresponds
to unstableq=0 vanishes and along with it goes the prob-
ability of finding one of the discrete crystal layers in that

approximately ten layers while simulations of the close-"€91on: és a r:asult, the mtgrface hgs to be supercpoled n
packed surface of silicofi6] show a narrower interface, order to pugh one of the'd|s:crete d|sordered_ layers into the
roughly five layers in thickness. Higher-index interfacesUnStable region. The depinning temperatligg is the mea-
typically consist of considerably more layers than the closeSUre of the minimum supercooling needed to accomplish this
packed surfaces, simply by virtue of the smaller layer spachecessary distortion of the interface. As the interface ap-
ing. proaches the continuous linfite., largex), the magnitude of
This discrete picture has two important consequences fdhe push required vanishes aig, approachesT,. Con-
interfacial dynamics. First, the discrete steps break the symversely, a narrow crystal-liquid interface with a width of
metry of space resulting, at equilibrium, in only a discreteonly a few layers, found for a smad, exhibits a depinning
periodic set of stable equilibrium positions for the interfacetemperature significantly lower than the melting temperature,
with free-energy barriers between them. Away from equilib-as shown in Fig. 9. We also note the appearance of a small
rium, we find that interfacial motion involves jumps of the region of pinning of the superheated crystal-liquid interface
interfacial position between these long-lived positions. Thigwith decreasingc and hence interfacial width. We shall re-
behavior was discussed by Cahn in the 1960s in terms of thiélrn to this feature and its connection with Cahn's md@g
presence of a periodic set of free-energy barriers to the dign the following section.
placement of the crystal interface and the transition between Including next-nearest-neighbor interactiofnere in the
lateral to continuous growth for a diffuse interfaf@. We  form of nonzero values 08,) lifts the residual symmetry
find it here for both melting and freezing. It is the secondbetween the two possible choices of inlayer order. In Fig. 10
consequence of the discrete layers, discussed below, which\ée show the effect on interfacial velocities of adding a next-
central to the existence of a depinning temperafiye nearest-neighbor interaction. This extra potential-energy
To understand this connection, it is useful to return to thecontribution will shift T, and, more importantly for our
description of the interface as a trajectory ip,§) space. present discussion, introduce a coupling between adjacent
Our arbitrary volume element no longer moves continuouslyayers and so allow the inlayer order in one layer to weight
along this path, but instead it jumps between the discretéhe choice of the in-layer order in the next. The freezing
sites, the number of which corresponds to the number og$urface now exhibits a regular steplike advance in the ab-
layers in the interfacésee Fig. 8 Now, in order for fluctua- sence of fluctuations, the waiting time at each step deter-
tions to depin the surface they must find one of these “sites’mined by the strength of the next-nearest-neighbor interac-
along theq=0 line in a region wher@?w,/9g?><0. Points  tions. The crystal grown in the presence of fluctuations will
for which 92w, /3g%>>0 will be stable with respect to fluc- include stacking faults at a density determined by the relative
tuations ing, the local free-energy curvature ensuring thatmagnitudes ofJ, and ©3. When J,>67, the density of
the interface will act to restore itself following a fluctuation. faults will be small with the choice of in-layer packing,
For a continuous interface there would always be a poinpositive or negative, determined by the state of the crystal at
through the interface at which=0 andd?w,/9q°><0 and the initial time. Aseg increases in magnitude, the growth is
hence fluctuations can depin the surface at any temperatusventually dominated by the fluctuations and the density of
below the melting point. For discrete sites there is no suclstacking faults approaches 0.5, the value found in the crystal
inevitability. In fact, as the temperature approachigsfrom  with nearest-neighbor interactions only.
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o im001 ergy will pin the surface in the absence of fluctuations. This
08 " 81005 “periodic” pinning differs in four significant ways from the

. ‘ pinning due to “incomplete symmetry breaking” described
. in this paper.
d (i) The periodic pinning applies equally to both melting

. | and freezing while the incomplete symmetry breaking
o® mechanism applies principally to freezing alotfeor narrow
. interfaces, welo observe some pinning of the melting inter-
o | face, indicating that the periodic pinning mechanism is
o ® present but of very much smaller amplitude than that due to
! S . the symmetry breaking mechanigm.

. " (i) Even in the absence of fluctuations, periodically

03 ‘ ‘ . pinned surfaces will freeze once a critical supercooling is
R 5 G exceeded. No such freezing occurs at the surface pinned by

FIG. 10. Velocity of the(100 interface as a function of the Incz?_r_r;plsetefsymmetr_y bre.alf[;?g'. let trv break
temperature for a range of second-nearest-neighbor interaction i urtface pinning via the incomplete Symmetry break-

strengthsJ, with «=1.0. Velocity is in units of(lattice spaciny mg mechanism depends sensitively upon the details of cqu-
XTJ,. pling between the various structural order parameters, while

that due to the periodic component of the free energy arises
IV. CONCLUSION from the periodicity of the crystal density along the surface

. : normal alone.
Stacking faults in close-packed planes are commonly ob- (iv) Finally, the incomplete symmetry breaking mecha-

served during crystallization of particles whose interaction . . AL
g cry b ism, unlike the periodic pinning, has been shown to depend

potential is short ranged with respect to the lattice spacin ey O .
[2]. In this paper we have demonstrated that this behavio xphcnly upon the short range of the particle interactions.
. Qualitatively, these results depend only upon general

can be described in terms of a simple theoretical descriptiog mmetry arquments. As such. we present them as a generic
of crystallization kinetics that couples two structural order Y yarg : ' P 9

parameters. As our major result, we establish that the pacfature of interfacial dynamics involving crystalline order.

01 | u

velocity

ing degeneracy that permits such faults also gives rise to hetextlistﬁncg of ? plirrllnlnr?] t(lar?perartnl]'rr;?, 't': tht()arpriisr(lence of d
striking kinetic effect arising from the inability of the spe- uctuations due 1o Incompliete symmetry breaking, as de-

cific crystal surface to fully break the symmetry of the adja_scribed here, is in qualitative agreement with simulations of

cent liquid. The close-packed surface can freeze only whe onequilibrium crystal-liquid int_erfaces in the ch I_attiqe gas
the symmetry of the two possible in-layer packings is bro- ]. Our results suggest that this asymmetric pinning is most

ken, either by fluctuations or longer-range interactions. In théikely to be observed for crystal-liquid interfaces that consist

absence of long-range interactions, growth can take plac f only a few layers, Simglgtion results indicgte _that the
only once the supercooling exceeds a critical depinnin lose-packed surface of silicon meets this criterion. The
value, associated with a second-order phase transition in mulations qf c_rystalllzatlon of silicon to da[@]_ suggest
singlé surface layer that such a pinning may be present. It would be interesting to
This phenomenon differs qualitatively from the interface €&y Out careful long-time molecular-dynamic simulations

dynamics identified by Cahfg] over 30 years ago. Cahn’s of such an interface amall deviations from coexistence in
insight was that the transition between nuclea(ﬂeeire one order to establish whether similar dynamic asymmetries can

can read “fluctuation dependentand continuous growth be observed. Ex_tendlng these results,_we WOL_JId also expect
to observe considerably larger fluctuations of in-layer struc-

could be described for a diffuse interface in terms of thet t the close-packed surf than th found at hiah-
periodic variation of the free energy with interfacial displace-.ure at the close-packed surtaces than those found at hig
ment with respect to the lattice origin. This potential is re—Index interfaces1,5].

sponsible for the possibility of an equilibrium roughening

trans'|t|on,.ev'en for diffuse mterfacéSl,;Z. The amplltude ACKNOWLEDGMENT

of this periodic free energy increases with decreasing surface
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arises naturally in the theory presented here. For smalResearch Council Grant No. A2930072, which is greatly ap-

enough supercoolings or superheatings, this periodic free epreciated.

[1] A. Williams, R. Moss, and P. Harrowell, J. Chem. Ph98, [3] M. Wrth, J. Schwarz, F. Culis, P. Leiderer, and T. Palberg,

3998(1993. Phys. Rev. E52, 6415(1995.
[2] P. N. Pusey, W. van Megen, P. Bartlett, B. J. Ackerson, J. G. [4] E. Burke, J. Q. Broughton, and G. Gilmer, J. Chem. PB@s.
Rarity, and S. M. Underwood, Phys. Rev. Le&3, 2753 1030(1988.

(1989. [5] R. Moss and P. Harrowell, J. Chem. Phg80, 7630(1994.



56 INCOMPLETE SYMMETRY BREAKING AND ANOMOLOLUS . .. 1917

[6] M. D. Kluge and J. R. Ray, Phys. Rev.3®, 1738(1989; U. [9] J. W. Cahn, Acta Metall8, 554 (1960; J. W. Cahn, W. B.
Landamn, W. D. Luedtke, M. W. Ribarsky, R. Barnett, and C. Hillig, and G. W. Searsibid. 12, 1421(1964).

L. Cleveland,ibid. 37, 4637(1988; 37, 4147(1988. [10] J. Q. Broughton, A. Bonissent, and F. F. Abraham, J. Chem.
[7] P. Harrowell and D. W. Oxtoby, J. Chem. Phy&6, 2932 Phys.74, 4029(1981).
(1986. [11] P. Harrowell and D. W. Oxtoby, Phys. Rev. 83, 6293

[8] D. R. Uhlman, D. F. Hayes, and D. Turnbull, Phys. Chem. (1986.
Glassess, 1 (1967. [12] S. T. Chui and J. D. Weeks, Phys. Rev1B 4978(1976.



