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Boojums and the shapes of domains in monolayer films
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Domains in certain Langmuir monolayers support a texture that is the two-dimensional version of the feature
known as a boojum. Such a texture has a quantifiable effect on the shape of the domain with which it is
associated. The most noticeable consequence is a cusplike feature on the domain boundary. We report the
results of an experimental and theoretical investigation of the shape of a domain in a Langmuir monolayer. A
further aspect of the investigation is the study of the shape of a ‘‘bubble’’ of gaslike phase in such a monolayer.
This structure supports a texture having the form of aninverseboojum. The distortion of a bubble resulting
from this texture is also studied. The correspondence between theory and experiment, while not perfect,
indicates that a qualitative understanding of the relationship between textures and domain shapes has been
achieved.@S1063-651X~97!06407-6#

PACS number~s!: 68.15.1e, 68.55.Ln, 68.18.1p, 68.60.2p
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I. INTRODUCTION

The direct observation of monolayers at the air-water
terface by the methods of polarized fluorescence microsc
~PFM! @1# and Brewster angle microscopy~BAM ! @2# re-
veals that the films possess complex textures similar to th
observed in liquid crystals. The textures are generally fou
in ‘‘tilted’’ phases, i.e., in phases in which the long axes
the molecules in the film are not perpendicular to the wa
surface but are uniformly tilted with respect to the norm
The textures are the result of the spontaneous organizatio
the molecular tilt azimuth on macroscopic length scal
They can be understood, at least qualitatively, in terms
continuum elastic theories of smectic liquid crystals@3#.

Many striking textures have been found in domains
condensed tilted phases, such as theL2 phase, that are sur
rounded by an isotropic phase, either liquid@often designated
as liquid-expanded (L1)# or gas (G) @4#. Among those tex-
tures are boojums, in which the tilt azimuth varies contin
ously and appears to radiate in some cases from a de
located at the edge of the domain and in others from a ‘‘v
tual’’ defect in the isotropic phase@3,5#. The shapes of do
mains that contain the boojum texture are not round; t
have a cusplike deformation pointing toward the defect.

In essence, the equilibrium shape of a domain contain
a boojum is like the equilibrium shape of a crystal, whi
can be calculated with the use of the Wulff construction@6#.
In that procedure it is assumed that the surface energy o
crystal is determined solely by the anisotropy of the b
energy. For a monolayer domain containing anontrivial tex-
ture this is not the case; the boundary~more properly, line!
energy is comparable to the energy associated with the a
ment of the tilt azimuth, so shape and texture must be ca
lated self-consistently.

Such a calculation has been performed by Rudnick
Bruinsma@7#, who showed that there is a cusp on the dom
boundary, quantified by an ‘‘excluded’’ angleC that varies
with R, the radius of the domain. Their results are display
561063-651X/97/56~2!/1859~10!/$10.00
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concisely in Fig. 1, which contains a pictorial definition
C and a plot ofC versus 1/R. The excluded angle is equal t
zero when the domain is circular and increases as the c
sharpens. Rudnick and Bruinsma predict thatC vanishes in
the limit R→` and that the angle is initially linear inR21.
The excluded angle goes through a maximum and then
creases to zero for sufficiently small domains. Schwa

FIG. 1. ~a! Excluded angleC plotted as a function of 1/R. ~b!
Definition of the excluded angleC.
1859 © 1997 The American Physical Society
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1860 56FANG, TEER, KNOBLER, LOH, AND RUDNICK
et al. @8# made PFM measurements ofC for domains of
pentadecanoic acid ranging in size from 12 to 120mm. They
found that the excluded angle increases with 1/R, but
roughly as a power law with an exponent of 0.3 rather th
unity. There was no evidence of a maximum.

Rivière and Meunier@9# carried out BAM studies of con
densed domains of hexadecanoic acid surrounded by a
eous phase and measured the distanced of the virtual defect
from the domain edge as a function ofR. By assuming that
the deformation of the domain is small, they were able
derive a relation between the quantityr5d1R and the do-
main radius from continuum elastic theory. They compa
the calculated and measured plots ofr versusR and were
able to obtain values for the ratio of the bend-splay ela
constant to the anisotropic part of the line tension. They a
made a qualitative comparison between the measured e
gation of the boojum-containing domains and the elonga
calculated from a generalized Gibbs-Thompson equation
was obtained by Galatola and Fournier@10#, this under the
assumption that the texture is that of an undistorted booj

Experimental tests of the theory have been limited by
small range of domain sizes that could be examined by
tical microscopy. In this paper we report measurements
the excluded angle for much smaller domains. This has b
accomplished by transferring the monolayers to a solid s
port by the Langmuir-Blodgett technique and obtaining i
ages with the use of scanning force microscopy. We a
describe measurements on ‘‘inverse’’ boojums, which oc
when there is a ‘‘bubble’’ of isotropic phase imbedded in
tilted phase. A theoretical analysis of the boojum proble
which is an extension and reformulation of the treatmen
Rudnick and Bruinsma, is then described. Comparisons
made between the experiments and this theory.

II. EXPERIMENT

Monolayers of pentadecanoic acid~Nu-Chek Prep,
>99%! were deposited from chloroform~Fisher spectrana
lyzed! solutions onto water~Millipore Milli-Q, pH 5.5! in a
NIMA Type 611 trough. They were transferred onto mi
substrates that had been freshly cleaved with adhesive
and immediately inserted into the water subphase. The tr
fers were performed by withdrawing the mica from the su
phase at constant speeds ranging from 0.5 to 2 mm/m
Boojums of theL2 phase surrounded by theL1 phase were
obtained in the coexistence region at temperatures betw
15 °C and 25 °C; boojums of theG phase surrounded by th
L2 phase were obtained in transfers at 7 °C.

The transferred monolayers were imaged with a scann
force microscope~SFM! ~Park Scientific Instruments! using
a 100-mm scanner at room temperature in ambient atm
sphere. The instrument was calibrated on the microm
scale by imaging grids with known spacings and on the
nometer scale with mica standards. A microfabrication tri
gular Si3N 4 cantilever with a normal spring constant of 0.0
N/m was used for the measurements. The vertical bend
and lateral torsion of the cantilever were monitored by
flecting a laser beam from the end of the cantilever ont
four-segment photodetector so that the topographic and
tional force images of the samples could be obtained sim
taneously and independently of each other. All images w
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obtained in the constant-force mode. The loading for
ranged from 1 to 5mN.

Brewster angle microscope images of Langmuir monol
ers were obtained with an instrument of our own constr
tion. Details of the instrument and the experimental pro
dures can be found elsewhere@11#.

III. EXPERIMENTAL RESULTS

The key to the success of the experiment is the requ
ment that the boojums survive the transfer process and
their shape on the support be the same as that on the w
surface. It has often been observed that the continuousL1
phase breaks up into small islands when it is transferred
solid support. The behavior has been found in monolayer
stearic acid deposited on thin polyethyleneimine films@12#,
dimyristolyphosphatidic acid deposited on glass@13#, and
octadecyltrichlorosilane deposited on acid-treated mica@14#.
However, as can be seen in Fig. 2~a!, despite the breakup o
the L1 phase, the boojum shapes of theL2 phase survive.
Langmuir-Blodgett transfer is also known to cause flow
monolayers@15,16#, and there is evidence of this in the tran
fers made at 2 mm/min. As is evident in Fig. 2~b!, the do-
mains are elongated in the dipping direction. However, at
mm/min no distortion is evident and the boojums are n
aligned in the dipping direcion.

A plot of the excluded angle against the reciprocal of t
domain diameter is shown in Fig. 3. The same data are
played in a log-log plot in Fig. 4. In the range 10–20mm the
data from the SFM studies agree with those obtained ea
by PFM @8#. We note that the slope of the log-log plot
largeR is less than unity and that there is a nonzero interc
in the C vs 1/R plot. The fact that the intercept is not zer
had been overlooked in the earlier work, in which the d
were presented on a log-log plot. By extending the meas
ments to smaller domains we have observed that there
maximum and that the small domains become circular. Th
is no evidence of a cusp in domains smaller than 2mm in
diameter; see Fig. 2~c!.

The good agreement between the PFM and SFM stu
for the larger domains gives us confidence that the sha
have not been seriously changed during the transfer pro
or greatly affected by the change in substrate. We canno
certain that this is true of the smaller domains, but it do
seem likely that the effect of hydrodynamic flows and var
tions in the substrate will be most serious in the larger
mains.

In the PFM studies@8# it was observed that inclusions o
the L1 phase in theL2 domains also had cusps. When w
examined films at temperatures below theL1-L2-G triple
point at 13 °C@17#, we found similar cusp-shaped regions
the isotropic G phase surrounded by the anisotropicL2
phase. These domains also survive transfer to a solid sup
Figure 5 is a frictional force image of such an inverse bo
jum. The frictional force within the inverse boojum is hig
because the tip images the mica substrate and not the d
G phase. This is also confirmed by the topographic ima
which was obtained simultaneously. The height profi
shows that the inverse boojum extends to the substrate
face.

Measurements of the excluded angles in these inve



he
s
g
n-
M

en
t
le

an

mi-

e-
on-
has
o-

the

ra-
as

pre-
ergy

te
th

ain
the
the
tran-

of
sent
esent

56 1861BOOJUMS AND THE SHAPES OF DOMAINS IN . . .
boojums as a function of their radii are plotted in Fig. 6. T
behavior is similar to that found for the ordinary boojum
the excluded angle has a nonzero intercept, increases rou
as R20.3, goes through a maximum and falls to zero. I
cluded in the figure are three points obtained from BA
studies of inverse boojums in Langmuir monolayers of p
tadecanoic acid. There is reasonable agreement with
SFM experiments for large domains. However, cusp ang
are difficult to measure in small domains by BAM. They c

FIG. 2. Atomic force microscope images of domains associa
with boojums. Monolayers were transferred onto mica from
L2-L1 coexistence region at a speed of~a! and~c! 0.5 mm/min, and
~b! 2 mm/min.
;
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-
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s

be more easily and precisely measured by fluorescence
croscopy, but the precipitation of the probe in theL2-G two-
phase region made this impossible.

IV. THE INVERSE BOOJUM

The boojum texture is an outcome of the competition b
tween bulk and boundary energies in a bounded domain c
taining a condensed phase. When the boundary energy
the particular anisotropic form displayed below and the d
main is a perfect circle, this texture is an exact solution to
energy minimization equations@7#. At the same time that the
XY-like order parameter adjusts in response to the impe
tives of energy minimization, the boundary also distorts so
to accommodate the now inhomogeneous environment
sented by the texture. It has been found that when the en

d
e

FIG. 3. Excluded angle of the cusplike feature on a dom
supporting a boojum texture, plotted against the reciprocal of
domain radius. Filled triangles represent data for domains on
water surface and open squares represent data for domains
ferred onto mica.

FIG. 4. A base-10 log-log plot of the dependence on radius
the excluded angle of the cusplike feature. Filled triangles repre
data for domains on the water surface and open squares repr
data for domains tranferred onto solid support.
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1862 56FANG, TEER, KNOBLER, LOH, AND RUDNICK
is as given by Eqs.~4.1! and~4.4!, a circular domain satisfie
the extremum equations.

This means that the simple version of the energy o
domain in a Langmuir monolayer leads to a liqui
condensed-phase domain supporting a nontrivial tex
whose boundary is perfectly circular. To explain the dom
shapes observed in the experiments reported here and p
ously @8,9# it is necessary to introduce elaborations on
system’s energy. The addition of a higher-order harmo
term to the line tension does give rise to a distortion of
boundary@7# and a feature in the form of a cusp appears. T
theory is in qualitative accord with the experiments, exc
in the limiting large-domain behavior, where it predicts th
the cusp angle vanishes rather than going to a limiting n
zero value as observed for both domains and bubbles.

The shapes of bubbles of an isotropic phase inside
ordered phase were not considered in the theory. When t

FIG. 5. Frictional force image of an inverse boojum consist
of a bubble of the isotropicG phase surrounded by the anisotrop
L2 phase. The monolayer was transferred onto mica from
L2-G coexistence region at a speed of 0.5 mm/min.

FIG. 6. Excluded angle of the cusps in bubbles of the isotro
G phase surrounded by the anisotropicL2 phase, plotted against th
reciprocal of the bubble radius. Filled triangles represent data
domains on the water surface and open squares represent da
domains transferred onto mica. Note the similarity to Fig. 3.
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is a two-dimensional bubble of gas phase inside an exten
region of the liquid-condensed phase, a texture appears in
liquid-condensed phase that is closely related to the vir
boojum observed in two-dimensional liquid-condensed dr
lets. This texture minimizes the total energyH@Q(x,y)#,
given by

H@Q~x,y!#5E
bulk

k

2
u¹W Qu2dx dy

1E
boundary

s„u2Q~x,y!…ds, ~4.1!

whereQ(x,y) is the angle between the vector order para
eter ĉ and thex axis, whileu is the corresponding angle fo
the unit normaln̂. The coefficientk is the Frank or ‘‘spin
stiffness’’ constant. The energy above follows from the a
sumption of equal bend and splay moduli, which is known
represent, at best, an approximation to physical reality. T
functions„u2Q(x,y)… is the surface energy, which depen
on the relative orientations ofĉ and the unit normal to the
boundaryn̂. The extremum equations that arise are

¹2Q~x,y!50, ~4.2!

k
]Q

]n
1s8~u2Q!50. ~4.3!

Equation~4.2! applies outside the bubble and Eq.~4.3! at the
interface. Ifs(f) has the form

s~f!5s01acosf ~4.4!

and the bubble is a perfect circle, then a solution
Q(x,y) that satisfies the extremum equations~4.2! and~4.3!
is

Q~x,y!5
1

i F lnS 12
a

x2 iy D2 lnS 12
a

x1 iy D G . ~4.5!

Given the similarity between the mathematical structure
the right-hand side of Eq.~4.5! and the expression fo
Q(x,y) in the case of the ordinary boojum~see Ref.@7#!, this
solution can be characterized as anINVERSE boojum. It is a
texture with a singularity that lies a distanceRB from the
origin, where

RB

R0
5

a

R0
5

aR0 /k

A11~aR0 /k!211
. ~4.6!

The above relation serves to fix the value of the quan
a. Note thatRB is always less than the radius of the bubb
The singularity lies within the bubble. The texture associa
with an inverse boojum is displayed in Fig. 7.
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56 1863BOOJUMS AND THE SHAPES OF DOMAINS IN . . .
When a boojum exists in a condensed-phase domain
orientation of the director leads to an optical anisotropy t
is observable by Brewster angle microscopy@8,9#. A ‘‘sun-
burst’’ of darker and lighter lines radiates from the point
singularity. Regions of constant intensity on the pattern c
respond to portions of the texture in which the order para
eter points in a fixed direction. In the case of the inve
boojum, there should be an analogous signature of the
ture in the surrounding condensed phase. Using Eq.~4.5! one
finds straightforwardly that the orientation of the order p
rameter is constant along the perimeter of a circle. T
means that points of equal orientation fall on circular cou
tours as shown in Fig. 8. The contours appear to pass thro
two points inside the bubble. One of the points is the locat
of the singularity and the other is the center of the bubb
The optical anisotropy that will be observed by BAM d
pends on the molecular parameters and the orientation o
boojum with respect to the direction of the incident ligh
Qualitative simulations of the images are shown in Fig.
They have been obtained by using the relation between
azimuth and reflectivity calculated by Tsaoet al. @18#. These
images can be compared with the BAM images in Fig.
which show similar variations in the reflectivity. It is inte
esting to note that the boojums appear to align. A sim
alignment of isotropic droplets in a nematically ordered h
phase has been observed@19#. This alignment is attributed to
a long-range interaction produced by distortions in the dir
tor fields.

V. BUBBLE SHAPE: THEORY

In equilibrium a bubble takes on the shape that minimi
the system’s free energy. If the interior is uniform and t
line tension of an element of boundary depends on the
entation of the boundary element, the Wulff construction c

FIG. 7. Texture associated with an inverse boojum and the
sition of the virtual singularity, given by Eqs.~4.5! and ~4.6!. The
distortion of the bubble from a circle, obtained from Eq.~5.24!, is
also indicated on the figure. The parameters used
k/a50.4mm, a/s050.16, andR052.4 mm.
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be utilized to yield the shape. In the case of inhomogen
interior structure, a generalized version of the Wulff co
struction provides an approach to the solution@7#. This
method applies to the bubble in much the same way a
does to a domain. One discovers immediately that a circ
bubble doesnot minimize the system energy of the form
~4.1! with s(f) given by Eq.~4.4!, in contrast to the resul
obtained for a domain@7# for which a circle represents th
minimum-energy domain shape. However, the method c
not be applied directly because the curvature of the bound
changes sign. As a consequence, the radius of curvatur
the boundary may become infinite at points along it, and t
proves awkward in the context of the Wulff constructio
However, a reparametrization allows one to proceed with
analysis. We find that there is no feature that can, stric
speaking, be described as a cusp, in that the slope of
bounding curve has no discontinuity. There is, on the ot
hand, a feature on the boundary whose shape can be qu
fied in terms of an excluded angle.

We have utilized an alternative approach to the deter
nation of the bubble shape, to provide a check on our W
construction analysis. We adopt polar coordinates. This
mulation confirms the results of the analysis based on
Wulff construction, and we are able to obtain explicit resu
for the bubble shape. Cusp angles may then be determ
both analytically and by means of measurements on figu
generated with the use of explicit analytical results, and th
angles provide the basis for comparisons with experimen

The remainder of this section consists of a review of
generalized Wulff construction, the development of the alt
native approach, and a summary of results. Details are
ferred to a future work@20#.

A. Generalized Wulff construction

Following the approach of Rudnick and Bruinsma, w
attempt to apply the generalized Wulff construction@7# to
determine the shape of the bubble. In our application,

o-

re

FIG. 8. Curves along which the order parameter points in a fi
direction in the immediate vicinity of a bubble. The paramete
used arek/a50.4mm, a/s050.16, andR052.4mm.
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FIG. 9. Simulated BAM images of inverse boojums for different orientations with respect to the incident light. The orientation
beam with respect to the symmetry axis of the boojum is specified in the lower corner of each figure.
th
technique is used to minimize the total energy Eq.~4.1! with
respect to the Burton-Cabrera-Frank~BCF! parametrization
of bubble shape, i.e.,R(u) andu @21#.

We rederive the Wulff construction so as to remove
approximation, utilized in earlier work@7#, that the radius of
curvatureR1R9 is constant. We obtain
e

d

dREbulk

k

2
u¹W Qu2dx dy52

k

2
u¹W Qu2@R1R9#. ~5.1!

It can be shown that ifs(f)5s(2f), we have for the
bubble
d

dREboundary
s„u2Q~x,y!…ds5s1s92~R1R9!Fs8S cosu

]

]x
1sinu

]

]yD1s9S 2sinu
]

]x
1cosu

]

]yD GQ. ~5.2!

If we adopt Eqs.~4.4! and ~4.5!, the equation for the shape of the bubble is given by

dH

dR
50⇒r 1r 95

~122acosu1a2!2

2a~a1d!cos2u24a~11a212da!cosu1114a21a41da~116a22a4!
, ~5.3!
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56 1865BOOJUMS AND THE SHAPES OF DOMAINS IN . . .
whered5a/s0, R5R0r , andR0 is the radius of the unper
turbed circle. The denominator of Eq.~5.3! passes through
zero in regimes of interest, and this complicates the analy
It proves useful to reparametrize the system in Cartesian
ordinates.

The relations between the parametrization using Carte
coordinates and the BCF parametrization are

x5rsinu1r 8cosu, ~5.4!

y5rcosu2r 8sinu. ~5.5!

Using Eqs.~5.4! and ~5.5!, we have the following relations
for nearly circular boundaries in the region whereu is small:

1

r 1r 9
52

y9

A11y823 '2y9, ~5.6!

cosu'A12x2'12
x2

2
2

x4

8
. ~5.7!

Substituting Eqs.~5.6! and ~5.7! into Eq. ~5.3!, we obtain

y952
C2~x22k1!~x22k2!

@ax21~12a!2#2 , ~5.8!

FIG. 10. BAM images of inverse boojums in Langmuir mon
layers of pentadecanoic acid at 5 °C.
is.
o-

an

where

k65
2C16AC1

224C0C2

2C2
, ~5.9!

C25
a

2
~11a212da!, ~5.10!

C152a~12a!224da~12a!, ~5.11!

C05~12a!41da~31a!~12a!3. ~5.12!

The integration of Eq.~5.8! is readily performed and yields

y852
C2x

a2

2
C2~12a!42C1a~12a!21C0a2

2a2~12a!2

x

~12a!21ax2

1
3C2~12a!42C1~12a!22C0a2

2~12a!3a5/2 tan21
a1/2x

12a
1Ky8,

~5.13!

and

y52
C2x2

2a2 2
2~12a!21C1a

2a3 ln@ax21~12a!2#

1
3C2~12a!42C1~12a!22C0a2

2~12a!3a5/2 x tan21
a1/2x

12a

1Ky8x1Ky . ~5.14!

The next step is to fix the constants of integrationKy8 and
Ky . Symmetry requiresy8(2x)52y8(x) and yields
Ky850. The bounding curvey(x) will merge into a circle of
radius 1, centered at the origin. The merging po
„x0 ,y(x0)… is taken to be the point at whichy8(x0)
52x0 /A12x0

2. This leads to

Ky5
C2x0

2

2a2 1
2~12a!21C1a

2a3 ln@ax0
21~12a!2#

2
3C2~12a!42C1~12a!22C0a2

2~12a!3a5/2 x0tan21
a1/2x0

12a

1A12x0
2. ~5.15!

The boundary of the bubble~5.14! is smooth in that there
is no discontinuity in the slope of the bounding curve. F
very smallR0, the radius of curvature of the boundary clo
to the singularityb51/y9(0) is approximately equal toR0.
The bubble appears to be circular and the excluded a
C is zero. The ratiob5b/R0 decreases asR0 increases. This
causes the bubble to sharpen at one end. Whenb exceeds a
critical valuebc , this sharper end has properties in comm
with a cusp and one is able to derive an excluded angleC, as
depicted in Fig. 11~a!. It can be shown thatC is given by the
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1866 56FANG, TEER, KNOBLER, LOH, AND RUDNICK
C52 cos21
1

11
h

12b

, ~5.16!

whereh5uy(0)11u is the deviation of the tip of the featur
from a circle. Because there is never a cusp in the strict se
of the term, the choice ofbc is a matter of individual judge-
ment. Based on theoretical bubble shapes obtained in
12, bc is chosen to be 0.45.

WhenR0@k/a, thex2 term in Eq.~5.14! dominates. The
boundary around the cusplike feature is thisx2 term instead
of the unperturbed circle. The new definition of the exclud
angle is as displayed in Fig. 11~b!, and we find thatC can be
expressed as

C'2A2U2~12a!21C1a

a3 ln~12a!U. ~5.17!

In this limit a→12e, where e}r 21!1, we approximate
C1 as

C1'2e~e22d!1O~de2!. ~5.18!

FIG. 11. ~a! The way in whichC is defined where the boundar
is smooth. This method leads to an analytical expression for
excluded angle of a cusplike feature.~b! For R0@k/a, the cusplike
feature shows up differently and requires a new definition ofC.
se

ig.

d

We then have the large-R0 behavior of the excluded angle

C'2A 8k

s0R0
U ln k

aR0
U. ~5.19!

B. Polar coordinates

As an alternative, one can parametrize the domain bou
ary in polar coordinates. In this case, we choose an ori
nominally at the center of the undistorted circular bubb
The Cartesian coordinatesx and y are replaced byr , the
distance from the origin, andf, the angle with respect to th
x axis. In terms ofr andf, the inverse boojum texture ha
the form

Q~r ,f!5
1

i F lnS 12
a

r
eifD2 lnS 12

a

r
e2 ifD G .

~5.20!

The boundary condition~4.3! leads to a previously quote
result for the parametera,

a

R0
5

1

A~k/aR0!2111~k/aR0!
, ~5.21!

where R0 is the radius of the circular bubble. In fact, E
~5.20! is just Eq.~4.5! expressed in polar coordinates and E

e

FIG. 12. ~a! Calculated shapes for bubbles withR050.4, 0.8, 1,
1.2, 1.6, 2, 2.4, and 3.2mm. The bubble that is drawn as the thick
line is the one of the nominal sizeRc51 mm whenbc50.45. ~b!
Calculated shapes for the bubbles ofR053.2, 8, and 16mm . The
parameters used arek/a50.4mm anda/s050.16.
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~5.21! is identical to Eq.~4.6!. The parametera has a simple
interpretation: it is the distance of the singularity associa
with the virtual boojum from the center of the bubble. No
that, according to Eq.~4.6!, the singularity always lies within
the bubble.

We now proceed with a calculation of the distortion of t
bubble from a circle. Our results are the leading-order te
in an expansion in the dimensionless, and presumably sm
combinationa/s0. If one writes

r ~f!5R0ek~f!, ~5.22!

one eventually arrives at

R0s0k9~f!52aaF S eif2
a

R0
DeifY S 12

a

R0
eifD 2

1 S e2 if2
a

R0
De2 ifY S 12

a

R0
e2 ifD 2G

2

2kS a

R0
D 2

S 12
a

r
eifD S 12

a

r
e2 ifD . ~5.23!

Equation~5.23! represents the leading term in an expa
sion in the dimensionless combinationa/s0. This ratio is
small, as the line tension is assumed to be nearly isotrop

The double integration of Eq.~5.23! is relatively straight-
forward. One finds fork(f)

k~f!5
2k

s0R0

3H 2E
2p

f

arctanF a

R0
sinf8Y S 12

a

R0
cosf8D Gdf8

2 lnF11S a

R0
D 2

22
a

R0
cosf G12 lnS 11

a

R0
D J .

~5.24!

In the regimes in which comparisons can be made,
results of the calculation based on the utilization of po
coordinates are in complete accord with those that foll
from the Wulff construction. In addition, an analysis bas
on polar coordinates, in particular Eq.~5.24!, can provide
figures that can be utilized for comparison with experimen
data. Bubbles whose shapes are described by Eqs.~5.22! and
~5.24! are displayed in Fig. 12. These bubbles comprise
results of theoretical modeling that are compared with
data described in earlier sections.

VI. RESULTS AND CONCLUSIONS

We now compare the theoretical excluded angles with
experimental ones. Equation~5.16! provides the basis fo
comparison between experiments and theory. We find
the best fit is achieved when the parameters are chose
k/a50.4 mm and a/s050.16. The comparison betwee
theory and experiment is displayed in Fig. 13. Because th
is never a cusp in the form of a discontinuity in the slope
d

s
ll,

-

.

e
r

l

e
e

e

at
as

re
f

the bounding curve, we are unable to definitively model
‘‘onset’’ of a cusp. However, we do find an apparent rap
dropoff to zero of the~nominal! excluded angle. Further
more, the theory predicts that sufficiently small bubbles w
be nearly circular. With the exercise of a little judgement,
is possible to determine a value of what appears to be
radius of onsetRc . For the parameters of choice, we fin
Rc51mm for bc50.45.

Our theory appears to reproduce fairly well both t
qualitative and the quantitative behavior of the bubble sha
as a function of the bubble size. Small bubbles are ne
circular and the excluded angleC is equal to zero. Cusplike
features are observed for bubbles having radiiR0 greater
than a threshold valueRc . The angleC decreases for
bubbles of larger sizes. However, in the experiments the
cluded angleC tends to a nonzero constant asR0→`. This
limiting behavior is not achievable within the framework
the theory presented here. It is known that thermal fluct
tions will cause the line tension coefficients to depend on
diameter of the bubble or domain@22#. However, prelimi-
nary calculations indicate that this renormalization has
effect on the asymptotic behavior of the excluded angle
large bubbles. A possible source of the discrepancy is
difference between the bend and splay moduli, which
been neglected in the present work.

The ratiok/a for hexadecanoic acid has been obtained
Rivière and Meunier@9#. They find 28mm,k/a,40mm,
which is about two orders of magnitude larger than our b
estimatek/a50.4mm . Studies of other textures in mono
layers such as stripes@23# indicate thatk increases with
chain length. This could account for some of the differen
Another possible reason for this discrepancy is the fact
Rivière and Meunier adoptedk1Þk3 as the basis for texture

FIG. 13. Comparison between experimental and calculated
cluded angles. The experimentally measured excluded angle o
cusps in bubbles are shown as filled triangles and open squares
Fig. 6 and excluded angles measured on the calculated bubble
shown as open diamonds. The solid line represents the ana
expression of the theoretical excluded angle. Note the fundame
difference between the behavior of the theoretical curve
R→0, which tends monotonically to a finite limit, and the me
sured excluded angle of calculated bubbles, which seems to
rapidly from zero as the bubble radius exceeds a ‘‘threshold’’ val
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distortions while we have useda, the anisotropic line ten-
sion, as the mechanism for bubble shape distortions.
comparison between theory and experiment gives an
mate of a/s050.16 for pentadecanoic acid at the liqui
condensed–gas boundary. The line tension anisotropy, w
corresponds to oura/s0, has been estimated for the liquid
condensed–liquid-expanded interface in D-myristoyl alan
from studies of dendritic growth@24#. The value found is
0.005–0.025. Given the fact that the systems are not ide
cal and that these are only estimates of the anisotropy,
difference is not disturbing.

In summary, we have formulated a theory for bubbles
.

an

in

.

C

ur
ti-

ch

e

ti-
he

n

Langmuir monolayers that is an extension and reformulat
of the theory of domain shapes discussed by Rudnick
Bruinsma@7#. Although the current theory predicts a smoo
bubble boundary, there exist cusplike features with we
defined and measurable excluded angles when the radiu
the bubble exceeds a nominal valueRc . Comparing theoret-
ical excluded angles with the results of experiments, we fi
good qualitative and quantitative agreement. However, th
are also discrepancies. Experimental observations and re
work indicate that the difference betweenk1 andk3 cannot
be neglected. The calculation of an equilibrium texture wh
k1Þk3 is currently being performed as a prelude to the d
termination of the shape of a bubble or domain.
s-
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c-
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