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Boojums and the shapes of domains in monolayer films
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Domains in certain Langmuir monolayers support a texture that is the two-dimensional version of the feature
known as a boojum. Such a texture has a quantifiable effect on the shape of the domain with which it is
associated. The most noticeable consequence is a cusplike feature on the domain boundary. We report the
results of an experimental and theoretical investigation of the shape of a domain in a Langmuir monolayer. A
further aspect of the investigation is the study of the shape of a “bubble” of gaslike phase in such a monolayer.
This structure supports a texture having the form ofirarerseboojum. The distortion of a bubble resulting
from this texture is also studied. The correspondence between theory and experiment, while not perfect,
indicates that a qualitative understanding of the relationship between textures and domain shapes has been
achieved[S1063-651X97)06407-6

PACS numbdss): 68.15+€, 68.55.Ln, 68.18:p, 68.60—p

[. INTRODUCTION concisely in Fig. 1, which contains a pictorial definition of
¥ and a plot of## versus 1R. The excluded angle is equal to

The direct observation of monolayers at the air-water inzero when the domain is circular and increases as the cusp

terface by the methods of polarized fluorescence microscopgharpens. Rudnick and Bruinsma predict tifavanishes in
(PFM) [1] and Brewster angle microscogBAM) [2] re-  the limit R—o and that the angle is initially linear iR™L.
veals that the films possess complex textures similar to thosEhe excluded angle goes through a maximum and then de-
observed in liquid crystals. The textures are generally foungreases to zero for sufficiently small domains. Schwartz
in “tilted” phases, i.e., in phases in which the long axes of
the molecules in the film are not perpendicular to the water (a)
surface but are uniformly tilted with respect to the normal.
The textures are the result of the spontaneous organization ¢ 0.08
the molecular tilt azimuth on macroscopic length scales.
They can be understood, at least qualitatively, in terms of
continuum elastic theories of smectic liquid crysti@8$

Many striking textures have been found in domains of
condensed tilted phases, such aslthephase, that are sur-
rounded by an isotropic phase, either ligiadten designated
as liquid-expandedLl(;)] or gas G) [4]. Among those tex-
tures are boojums, in which the tilt azimuth varies continu-
ously and appears to radiate in some cases from a defec
located at the edge of the domain and in others from a *“vir- 0.00 : : : : . ;
tual” defect in the isotropic phasgs,5]. The shapes of do- 000 002 004 006 008 010 012 014
mains that contain the boojum texture are not round; they .
have a cusplike deformation pointing toward the defect. I/R (arb. units)

In essence, the equilibrium shape of a domain containing
a boojum is like the equilibrium shape of a crystal, which (b)
can be calculated with the use of the Wulff construc{i6h
In that procedure it is assumed that the surface energy of th
crystal is determined solely by the anisotropy of the bulk
energy. For a monolayer domain containingatrivial tex-
ture this is not the case; the bounddryore properly, ling
energy is comparable to the energy associated with the align
ment of the tilt azimuth, so shape and texture must be calcu:
lated self-consistently.

Such a calculation has been performed by Rudnick and
Bruinsma[ 7], who showed that there is a cusp on the domain
boundary, quantified by an “excluded” angle that varies FIG. 1. (a) Excluded angle¥ plotted as a function of R. (b)
with R, the radius of the domain. Their results are displayedefinition of the excluded angh#.
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et al. [8] made PFM measurements & for domains of obtained in the constant-force mode. The loading forces
pentadecanoic acid ranging in size from 12 to }28. They ranged from 1 to SuN.

found that the excluded angle increases withR,1but Brewster angle microscope images of Langmuir monolay-
roughly as a power law with an exponent of 0.3 rather tharers were obtained with an instrument of our own construc-
unity. There was no evidence of a maximum. tion. Details of the instrument and the experimental proce-

Riviere and Meunief9] carried out BAM studies of con- dures can be found elsewhdrEl].
densed domains of hexadecanoic acid surrounded by a gas-
eous phase and measured the distahoéthe virtual defect
from the domain edge as a function Rf By assuming that
the deformation of the domain is small, they were able to The key to the success of the experiment is the require-
derive a relation between the quantjiy-d+ R and the do-  ment that the boojums survive the transfer process and that
main radius from continuum elastic theory. They comparedheir shape on the support be the same as that on the water
the calculated and measured plotspofersusR and were  surface. It has often been observed that the continliqus
able to obtain values for the ratio of the bend-splay elastiphase breaks up into small islands when it is transferred to a
constant to the anisotropic part of the line tension. They als@olid support. The behavior has been found in monolayers of
made a qualitative comparison between the measured eloBtearic acid deposited on thin polyethyleneimine filihg],
gation of the boojum-containing domains and the elongatiorjimyristolyphosphatidic acid deposited on gld4s], and
calculated from a generalized Gibbs-Thompson equation thajctadecyltrichlorosilane deposited on acid-treated rfilea
was obtained by Galatola and Fournj@0], this under the  However, as can be seen in Figa? despite the breakup of
assumption that the texture is that of an undistorted boojumthe L, phase, the boojum shapes of the phase survive.

Experimental tests of the theory have been limited by tha angmuir-Blodgett transfer is also known to cause flow in
small range of domain sizes that could be examined by opmonolayerg15,16), and there is evidence of this in the trans-
tical microscopy. In this paper we report measurements ofers made at 2 mm/min. As is evident in Figb® the do-
the excluded angle for much smaller domains. This has beemains are elongated in the dipping direction. However, at 0.5
accomplished by transferring the monolayers to a solid supmm/min no distortion is evident and the boojums are not
port by the Langmuir-Blodgett technique and obtaining im-aligned in the dipping direcion.
ages with the use of scanning force microscopy. We also A plot of the excluded angle against the reciprocal of the
describe measurements on “inverse” boojums, which occugomain diameter is shown in Fig. 3. The same data are dis-
when there is a “bubble” of isotropic phase imbedded in aplayed in a log-log plot in Fig. 4. In the range 10—2én the
tilted phase. A theoretical analysis of the boojum problemdata from the SFM studies agree with those obtained earlier
which is an extension and reformulation of the treatment oby PFM [8]. We note that the slope of the log-log plot at
Rudnick and Bruinsma, is then described. Comparisons amgrgeR is less than unity and that there is a nonzero intercept
made between the experiments and this theory. in the ¥ vs 1R plot. The fact that the intercept is not zero
had been overlooked in the earlier work, in which the data
were presented on a log-log plot. By extending the measure-
ments to smaller domains we have observed that there is a

Monolayers of pentadecanoic aci@Nu-Chek Prep, maximum and that the small domains become circular. There
=99%) were deposited from chloroforrfFisher spectrana- is no evidence of a cusp in domains smaller thapr in
lyzed) solutions onto wate(Millipore Milli-Q, pH 5.5 ina  diameter; see Fig.(2).

NIMA Type 611 trough. They were transferred onto mica The good agreement between the PFM and SFM studies
substrates that had been freshly cleaved with adhesive tafer the larger domains gives us confidence that the shapes
and immediately inserted into the water subphase. The tran&rave not been seriously changed during the transfer process
fers were performed by withdrawing the mica from the sub-or greatly affected by the change in substrate. We cannot be
phase at constant speeds ranging from 0.5 to 2 mm/mircertain that this is true of the smaller domains, but it does
Boojums of thel, phase surrounded by thg phase were seem likely that the effect of hydrodynamic flows and varia-
obtained in the coexistence region at temperatures betwedions in the substrate will be most serious in the larger do-
15 °C and 25 °C; boojums of th® phase surrounded by the mains.

L, phase were obtained in transfers at 7 °C. In the PFM studie$8] it was observed that inclusions of

The transferred monolayers were imaged with a scanninthe L, phase in theL, domains also had cusps. When we
force microscopéSFM) (Park Scientific Instrumentaising examined films at temperatures below the-L,-G triple
a 100um scanner at room temperature in ambient atmo+oint at 13 °C[17], we found similar cusp-shaped regions in
sphere. The instrument was calibrated on the micrometethe isotropic G phase surrounded by the anisotropig
scale by imaging grids with known spacings and on the naphase. These domains also survive transfer to a solid support.
nometer scale with mica standards. A microfabrication trianFigure 5 is a frictional force image of such an inverse boo-
gular SizN 4 cantilever with a normal spring constant of 0.05 jum. The frictional force within the inverse boojum is high
N/m was used for the measurements. The vertical bendingecause the tip images the mica substrate and not the dilute
and lateral torsion of the cantilever were monitored by re-G phase. This is also confirmed by the topographic image,
flecting a laser beam from the end of the cantilever onto avhich was obtained simultaneously. The height profile
four-segment photodetector so that the topographic and fricshows that the inverse boojum extends to the substrate sur-
tional force images of the samples could be obtained simulface.
taneously and independently of each other. All images were Measurements of the excluded angles in these inverse

Ill. EXPERIMENTAL RESULTS

Il. EXPERIMENT
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FIG. 3. Excluded angle of the cusplike feature on a domain
supporting a boojum texture, plotted against the reciprocal of the
domain radius. Filled triangles represent data for domains on the
water surface and open squares represent data for domains tran-
ferred onto mica.

be more easily and precisely measured by fluorescence mi-
croscopy, but the precipitation of the probe in theG two-
phase region made this impossible.

IV. THE INVERSE BOOJUM

The boojum texture is an outcome of the competition be-
tween bulk and boundary energies in a bounded domain con-
taining a condensed phase. When the boundary energy has
the particular anisotropic form displayed below and the do-
main is a perfect circle, this texture is an exact solution to the
energy minimization equatiori3]. At the same time that the
XY-like order parameter adjusts in response to the impera-
tives of energy minimization, the boundary also distorts so as
to accommodate the now inhomogeneous environment pre-
sented by the texture. It has been found that when the energy

100 | §
— B qjabgn
() = g APA
o [m} [m]m]
FIG. 2. Atomic force microscope images of domains associated > DA‘

with boojums. Monolayers were transferred onto mica from the o0 o Aﬂﬁl
L,-L, coexistence region at a speed(afand(c) 0.5 mm/min, and = Aa A
(b) 2 mm/min. ¥
boojums as a function of their radii are plotted in Fig. 6. The
behavior is similar to that found for the ordinary boojums; . )
the excluded angle has a honzero intercept, increases roughly 1 10
as R %3 goes through a maximum and falls to zero. In- log [R (um)]

cluded in the figure are three points obtained from BAM

studies of inverse boojums in Langmuir monolayers of pen- F|G. 4. A base-10 log-log plot of the dependence on radius of
tadecanoic acid. There is reasonable agreement with thfie excluded angle of the cusplike feature. Filled triangles represent
SFM experiments for large domains. However, cusp anglegdata for domains on the water surface and open squares represent
are difficult to measure in small domains by BAM. They candata for domains tranferred onto solid support.
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is a two-dimensional bubble of gas phase inside an extended
region of the liquid-condensed phase, a texture appears in the
liquid-condensed phase that is closely related to the virtual
boojum observed in two-dimensional liquid-condensed drop-
lets. This texture minimizes the total energf ®(x,y)],
given by

K
HIB(y)I= [ ZI76]%x dy

+j o(6—0(x,y))ds, 4.1
b

oundary

where®(x,y) is the angle between the vector order param-

FIG. 5. Frictional force image of an inverse boojum consistingeterc and thex axis, while ¢ is the corresponding angle for

of a bubble of the isotropiG phase surrounded by the anisotropic the unit normaln. The coefficientx is the Frank or “spin

L, phase. The monolayer was transferred onto mica from thétiffness” constant. The energy above follows from the as-

L,-G coexistence region at a speed of 0.5 mm/min. sumption of equal bend and splay moduli, which is known to
represent, at best, an approximation to physical reality. The

is as given by Eqs4.1) and(4.4), a circular domain satisfies [UNctiona(9—@(x.y)) is the surface energy, which depends

the extremum equations. on the relative orientations af and the unit normal to the

This means that the simple version of the energy of soundaryn. The extremum equations that arise are
domain in a Langmuir monolayer leads to a liquid-
condensed-phase domain supporting a nontrivial texture
whose boundary is perfectly circular. To explain the domain V20(x,y)=0, (4.2
shapes observed in the experiments reported here and previ-
ously [8,9] it is necessary to introduce elaborations on the
system’s energy. The addition of a higher-order harmonic
term to the line tension does give rise to a distortion of the Kot o'(6-0)=0. (4.3
boundary[ 7] and a feature in the form of a cusp appears. The
theory is in qualitative accord with the experiments, except } ] ]
in the limiting large-domain behavior, where it predicts thatEquation(4.2) applies outside the bubble and E4.3) at the
the cusp angle vanishes rather than going to a limiting noninterface. Ifo(¢) has the form
zero value as observed for both domains and bubbles.

The shapes of bubbles of an isotropic phase inside an
ordered phase were not considered in the theory. When there o(¢)=0o+acosp 4.4

and the bubble is a perfect circle, then a solution for
0 (x,y) that satisfies the extremum equatigd<?) and (4.3

600 | %§ % is
4o.oi§§ %§ ®(X,y)=%ln(1—$)—m 1

Given the similarity between the mathematical structure of
the right-hand side of Eq(4.5 and the expression for
200 O(x,y) in the case of the ordinary boojufsee Ref[7]), this
T solution can be characterized as IBKERSE boojum. It is a
texture with a singularity that lies a distan&y from the

. T origin, where
0 . . : . o
000 020 040 060 080  1.00

/R (1/pm)

. (4.9

X+iy

W(deg)

RB _ o . aRolK
Ro Ro Ji+(aRy/k)2+1
FIG. 6. Excluded angle of the cusps in bubbles of the isotropic

G phase surrounded by the anisotropicphase, plotted against the The above relation serves to fix the value of the quantity
reciprocal of the bubble radius. Filled triangles represent data fort. Note thatRg is always less than the radius of the bubble.
domains on the water surface and open squares represent data fdie singularity lies within the bubble. The texture associated
domains transferred onto mica. Note the similarity to Fig. 3. with an inverse boojum is displayed in Fig. 7.

(4.6
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FIG. 8. Curves along which the order parameter points in a fixed
FIG. 7. Texture associated with an inverse boojum and the podirection in the immediate vicinity of a bubble. The parameters
sition of the virtual singularity, given by Eq$4.5 and(4.6). The used arex/a=0.4um, al0y=0.16, andRy=2.4 um.
distortion of the bubble from a circle, obtained from E§.24), is
also indicated on the figure. The parameters used are
kla=0.4um, a/loy=0.16, andRy=2.4 um. be utilized to yield the shape. In the case of inhomogenous
interior structure, a generalized version of the Wulff con-
struction provides an approach to the solutipfi. This
When a boojum exists in a condensed-phase domain, th@ethod applies to the bubble in much the same way as it
orientation of the director leads to an optical anisotropy thatoes to a domain. One discovers immediately that a circular
is observable by Brewster angle microscdByd]. A “sun-  pupple doesnot minimize the system energy of the form
burst” of darker and lighter lines radiates from the point of (4.1) with o() given by Eq.(4.4), in contrast to the result
singularity. Regions of constant intensity on the pattern corpptained for a domaii7] for which a circle represents the
respond to portions of the texture in which the order paraMminimum-energy domain shape. However, the method can-
eter points in a fixed direction. In the case of the inverseyot be applied directly because the curvature of the boundary
boojum, there should be an analogous signature of the texhanges sign. As a consequence, the radius of curvature of
ture in the surrounding condensed phase. Using46) one  the boundary may become infinite at points along it, and this
finds straightforwardly that the orientation of the order pa-proves awkward in the context of the Wulff construction.
rameter is constant along the perimeter of a circle. Thigyowever, a reparametrization allows one to proceed with the
means that points of equal orientation fall on circular coun-znalysis. We find that there is no feature that can, strictly
tours as shown in Fig. 8. The contours appear to pass throutpeaking, be described as a cusp, in that the slope of the
two points inside the bubble. One of the points is the locatiomyounding curve has no discontinuity. There is, on the other
of the singularity and the other is the center of the bubblenand, a feature on the boundary whose shape can be quanti-
The optical anisotropy that will be observed by BAM de- fied in terms of an excluded angle.
pends on the molecular parameters and the orientation of the \we have utilized an alternative approach to the determi-
boojum with respect to the direction of the incident light. nation of the bubble shape, to provide a check on our Wulff
Qualitative simulations of the images are shown in Fig. 9.construction analysis. We adopt polar coordinates. This for-
They have been obtained by using the relation between tifylation confirms the results of the analysis based on the
azimuth and reflectivity calculated by Tsabal.[18]. These  \wuylff construction, and we are able to obtain explicit results
images can be compared with the BAM images in Fig. 104or the bubble shape. Cusp angles may then be determined
Wh|Ch ShOW Similar Variations in the reﬂectiVity. It iS inter- both analytica”y and by means Of measurements on figures
esting to note that the boojums appear to align. A similaigenerated with the use of explicit analytical results, and these
alignment of isotropic droplets in a nematically ordered hosingles provide the basis for comparisons with experiment.
phase has been obserjdd)]. This alignment is attributed to  The remainder of this section consists of a review of the
a long-range interaction produced by distortions in the direcyeneralized Wulff construction, the development of the alter-
tor fields. native approach, and a summary of results. Details are de-
ferred to a future work20].
V. BUBBLE SHAPE: THEORY

In equilibrium a bubble takes on the shape that minimizes A. Generalized Wulff construction

the system’s free energy. If the interior is uniform and the Following the approach of Rudnick and Bruinsma, we
line tension of an element of boundary depends on the oriattempt to apply the generalized Wulff constructigf] to
entation of the boundary element, the Wulff construction cardetermine the shape of the bubble. In our application, this
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FIG. 9. Simulated BAM images of inverse boojums for different orientations with respect to the incident light. The orientation of the
beam with respect to the symmetry axis of the boojum is specified in the lower corner of each figure.

technique is used to minimize the total energy &ql) with S5 P P
respect to the Burton-Cabrera-Fra(BCF) parametrization R §|V®|2dX dy=— §|V®|Z[R+ R']. (5.0
of bubble shape, i.eR(6) and 6 [21]. bulk

We rederive the Wulff construction so as to remove the
approximation, utilized in earlier worl], that the radius of It can be shown that itr(¢) = o (— ¢), we have for the
curvatureR+R” is constant. We obtain bubble

+o”

) g 9 9 J
ﬁjb (60— 0(x,y))ds=oc+d"—(R+R")| o (CO%&"‘S”‘]&W —S|n0a—x+coa95)}®. (5.2

oundary

If we adopt Egs(4.4) and(4.5), the equation for the shape of the bubble is given by

6H (1—2acosf+ a?)?
—=0:>I’+I’"= 2 7 7 2 N (53)
OoR 2a(a+ 6)cos20—4a(l+a+28a)cobh+1+4a+ a”+ Sa(l+6a‘— )




56 BOOJUMS AND THE SHAPES OF DOMAINS IN ... 1865

where

—C,=/C?-4C,C,

t: 2C2 ) (59)

o
C2=§(1+a2+26a), (5.10
Ci=2a(l-a)’>*-48a(1—a), (5.11
Co=(1—a)*+ a(3+a)(1—a). (5.12

The integration of Eq(5.8) is readily performed and yields

, Cox
y =772
Cz(l—a)4—C1a(1—a)2+Coa2 X
2a%(1— a)? (1— @)’ + ax?
3C,(1—a)*—Cy(1— @)?—Cya? at’?x
+ 2l ) 1(3 5,2) O tant +Kyr,
2(1-a)’a l-«a
(5.13
and
Cx*> 2(1—a)?+Cia ) )
y=— 50 503 InN[ax“+(1—a)”]
200 pm
—— 3C,(1— a)*—Cy(1—a)?>—Cya? - atx
2(1—a)3a®? x tan 1-
FIG. 10. BAM images of inverse boojums in Langmuir mono-
layers of pentadecanoic acid at 5 °C. + Ky x+K,. (5.19
where §=al oy, R=Rgr, andRy is the radius of the unper- The next step is to fix the constants of integratign and

turbed circle. The denominator of E(5.3) passes through K,. Symmetry requiresy’(—x)=-y’(x) and yields

zero in regimes of interest, and this complicates the analysisKy, =0. The bounding curvg(x) will merge into a circle of

It proves useful to reparametrize the system in Cartesian cqadius 1, centered at the origin. The merging point

ordinates. (Xo,Y(Xp)) is taken to be the point at whicly’(x)
The relations between the parametrization using Cartesian — /. /1—on- This leads to

coordinates and the BCF parametrization are

_CXg  2(1-a)*+Cha

X=rsind+r’cod, (5.9 K,= 5zt 53 In[ ax2+(1— a)?]
y=rcos#—r'sing. (5.5 3C,(1— a)*—Cy(1— a)2— Coa? _1011/2X0
- : : - 3 512 Xotan
Using Egs.(5.4) and (5.5), we have the following relations 2(1-a)’a 1-
for nearly circular boundaries in the region wheérés small:
y g +V1-x3. (5.15
1 "
e Y —3~-Y" (5.6 The boundary of the bubbl®.14) is smooth in that there
Vity is no discontinuity in the slope of the bounding curve. For

very smallR,, the radius of curvature of the boundary close
to the singularityp=1//"(0) is approximately equal t&,.
The bubble appears to be circular and the excluded angle
W is zero. The ratigB=b/R, decreases dg, increases. This
Substituting Eqs(5.6) and (5.7) into Eq. (5.3), we obtain causes the bubble to sharpen at one end. Whemnceeds a
critical value .., this sharper end has properties in common
with a cusp and one is able to derive an excluded a¥glas
depicted in Fig. 1@a). It can be shown tha¥ is given by the

2 X4

X
cod~ 1—x2%1—?—§. (5.7

Co(P =k )(x*—k_)
 [aX+(1—a)??

" _

(5.9
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(a)

(b)
(b)

FIG. 12. (a) Calculated shapes for bubbles wi3=0.4, 0.8, 1,
1.2,1.6, 2, 2.4, and 3.2m. The bubble that is drawn as the thicker
line is the one of the nominal siZ/R.,=1 um when B.,=0.45. (b)
Calculated shapes for the bubblesRy=3.2, 8, and 16um . The
parameters used arda=0.4 um anda/oy=0.16.

FIG. 11. (a) The way in which¥ is defined where the boundary
is smooth. This method leads to an analytical expression for thdVe then have the large, behavior of the excluded angle
excluded angle of a cusplike featufb) For Ry> «/a, the cusplike

feature shows up differently and requires a new definitiodof 8k K
P y a T~2 \/ In—|. (5.19
ooRo| aRy
_l 1
V=2cos  ——, (5.19 .
14 h B. Polar coordinates
1-b As an alternative, one can parametrize the domain bound-

] o ) ary in polar coordinates. In this case, we choose an origin,
whereh=|y(0)+1] is the deviation of the tip of the feature nominally at the center of the undistorted circular bubble.
from a circle. Because there is never a cusp in the strict sensghe Cartesian coordinates and y are replaced by, the
of the term, the choice g8 is a matter of individual judge- distance from the origin, and, the angle with respect to the
ment. Based on theoretical bubble shapes obtained in Fig. axis. In terms off and ¢, the inverse boojum texture has

12, B. is chosen to be 0.45. the form
WhenRy> «/a, thex? term in Eq.(5.14) dominates. The
boundary around the cusplike feature is tkisterm instead 1 a iy a iy
of the unperturbed circle. The new definition of the excluded O(r,¢)=+{In| 1-—€?/—In[1—- e :
angle is as displayed in Fig. (8, and we find that’ can be (5.20

expressed as
The boundary conditiori4.3) leads to a previously quoted

2(1- a)?+Cia result for the parameter,
V=22 ——5——h(l-a| (519

o 1
o . —= , 5.2
In this limit «—1—¢€, where exr “1<1, we approximate Ro (K/aRO)2+ 1+ (klaRy) (521

C, as

where R, is the radius of the circular bubble. In fact, Eq.
Ci~2e(e—258)+0O(5€?). (5.18 (5.20 is just Eq.(4.5 expressed in polar coordinates and Eq.
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(5.27) is identical to Eq(4.6). The parametew has a simple
interpretation: it is the distance of the singularity associated
with the virtual boojum from the center of the bubble. Note
that, according to Eq4.6), the singularity always lies within
the bubble.

We now proceed with a calculation of the distortion of the
bubble from a circle. Our results are the leading-order terms 40.0

60.0

in an expansion in the dimensionless, and presumably small, '50
combinationa/o. If one writes ;S:
r(¢)=Roe“?, (5.22 200 &

one eventually arrives at

i6 o i6 (2% 6 2 0.0 . . L . —'::o—v-
e = e 1_R_e 0.0 0.2 0.4 0.6 0.8 1.0

0 0

Roook’(¢)=—aa

) 1/R (1/um)
+ e_i(ﬁ_i e_i¢ 1_ie_i¢ . .
R, R, FIG. 13. Comparison petween experimental and calculated ex-
cluded angles. The experimentally measured excluded angle of the
a\? cusps in bubbles are shown as filled triangles and open squares as in
ZK(R_O) Fig. 6 and excluded angles measured on the calculated bubbles are

- (5.23 shown as open diamonds. The solid line represents the analytic
(1_ fei¢> ( 1— Ee—iqs) expression of the theoretical excluded angle. Note the fundamental
p p difference between the behavior of the theoretical curve for
R—0, which tends monotonically to a finite limit, and the mea-
Equation(5.23 represents the leading term in an expan-sured excluded angle of calculated bubbles, which seems to rise
sion in the dimensionless combinati@io,. This ratio is  rapidly from zero as the bubble radius exceeds a “threshold” value.
small, as the line tension is assumed to be nearly isotropic.
The double integration of E45.23 is relatively straight-  the bounding curve, we are unable to definitively model the
forward. One finds fok(¢) “onset” of a cusp. However, we do find an apparent rapid
dropoff to zero of the(nomina) excluded angle. Further-
K(¢b) = ek more, the 'Fheory pre_dicts that su_fficiently_smgll bubbles will
ooRg be nearly circular. With the exercise of a little judgement, it
is possible to determine a value of what appears to be the

X[2f¢ arcta+ﬁsin¢’/ (1_ ico&ﬁ/”d(ﬁr radius of onseR,. For the parameters of choice, we find
. Ro

Ro R.=1um for B,=0.45.

Our theory appears to reproduce fairly well both the
qualitative and the quantitative behavior of the bubble shapes
as a function of the bubble size. Small bubbles are nearly

(5.24 circular and the excluded angte is equal to zero. Cusplike
' features are observed for bubbles having r&jji greater

In the regimes in which comparisons can be made, théhan a threshold valu®k.. The angle¥ decreases for
results of the calculation based on the utilization of polarubbles of larger sizes. However, in the experiments the ex-
coordinates are in complete accord with those that followcluded angle¥ tends to a nonzero constantRg—. This
on polar coordinates, in particular E¢5.24), can provide the theory presented here. It is known that thermal fluctua-
figures that can be utilized for comparison with experimentafions will cause the line tension coefficients to depend on the
data. Bubbles whose shapes are described by(B@2 and ~ diameter of the bubble or doma[22]. However, prelimi-
(5.24) are displayed in Fig. 12. These bubbles comprise th&ary calculations indicate that this renormalization has no

results of theoretical modeling that are compared with theffect on the asymptotic behavior of the excluded angle for
data described in earlier sections. large bubbles. A possible source of the discrepancy is the

difference between the bend and splay moduli, which has
been neglected in the present work.

The ratiok/a for hexadecanoic acid has been obtained by

We now compare the theoretical excluded angles with th&iviere and Meunie{9]. They find 28um< x/a<40 um,
experimental ones. Equatiof®.16 provides the basis for which is about two orders of magnitude larger than our best
comparison between experiments and theory. We find thagstimatex/a=0.4um . Studies of other textures in mono-
the best fit is achieved when the parameters are chosen kgers such as stripg3] indicate thatx increases with
k/la=0.4 um and a/op=0.16. The comparison between chain length. This could account for some of the difference.
theory and experiment is displayed in Fig. 13. Because ther&nother possible reason for this discrepancy is the fact that
is never a cusp in the form of a discontinuity in the slope ofRiviere and Meunier adoptesh, # x5 as the basis for texture

—In| 1+ +2In

o 2 > o
R_o R—OCOS(ls

14+ 2
Ry
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distortions while we have used, the anisotropic line ten- Langmuir monolayers that is an extension and reformulation
sion, as the mechanism for bubble shape distortions. Owf the theory of domain shapes discussed by Rudnick and
comparison between theory and experiment gives an estPruinsma[7]. Although the current theory predicts a smooth
mate of a/o,=0.16 for pentadecanoic acid at the liquid- Pubble boundary, there exist cusplike features with well-
condensed—gas boundary. The line tension anisotropy, whiciffined and measurable excluded angles when the radius of
corresponds to oua/ o, has been estimated for the liquid- f[he bubble exceeds a r_10m|nal vallg. Comparing theoret-_

- : . . . _ical excluded angles with the results of experiments, we find
condensed—I|qU|d-exp§1r1ded interface in D-myristoyl al"’_‘n'negood gualitative and quantitative agreement. However, there
from studies of dendritic growth24]. The value found is  3re 4150 discrepancies. Experimental observations and related
cal and that these are only estimates of the anisotropy, thge neglected. The calculation of an equilibrium texture when
difference is not disturbing. K17 k3 IS currently being performed as a prelude to the de-

In summary, we have formulated a theory for bubbles intermination of the shape of a bubble or domain.
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