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Fokker-Planck calculations of the viscosities of biaxial fluids
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A Fokker-Planck equation for the orientation distribution function is used to calculate the viscosity coeffi-
cients of the flow-induced biaxial phase. The results correspond to a special case of proposed phenomenologi-
cal expressions for biaxial liquid crystals, but with a reduced number of coefficients, apparently due to
assumptions on the symmetry of particles. In contrast to a previous calculation, our results satisfy the Onsager
relations for the viscosities of biaxial fluids. Sample numerical values indicate that the contribution of flow-
induced biaxiality can be significant in the shear viscosities, produce sign changes in the viscosity differences,
and thus be important for the interpretation of shear flow data.@S1063-651X~97!05608-0#

PACS number~s!: 61.30.Cz, 66.20.1d, 83.70.Jr
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I. INTRODUCTION

The anisotropy of liquid crystals or suspensions leads
numerous viscosity coefficients in order to characterize
flow properties. Recently there has been some interes
calculating these viscosities from microscopic or mesosco
models @1–10#. In general these molecular models~even
with rodlike particles! indicate the presence of a biaxi
phase or some degree of flow-induced biaxiality under sh
However, the viscosity calculations have been either
stricted to the uniaxial phase or involved questionable ma
ematical simplifications.

Here we show how to extend the uniaxial calculations
@6,7# to the biaxial phase. We use a Fokker-Planck equa
@11,12# for the one-particle orientation distribution functio
f to calculate the viscosities for the biaxial phasewithout
approximating f , as commonly done. The model assum
rigid ellipsoidal particles with a mean-field interaction pote
tial, thus we have

] t f 5¹ui
@ f Dr¹ui

~ lnf 1V/kBT!#

2¹ui
@ f V i j uj1 f B~d i j 2uiuj !Ajkuk#. ~1!

u is the symmetry axis of the ellipsoid,A andV are respec-
tively the symmetric and skew symmetric parts of the m
roscopic velocity gradient,V5Vext1Vmf is the potential of
the external and mean fields,Dr is the rotary diffusion coef-
ficient, andB is a particle geometric factor usually taken
(r 221)/(r 211), r being the axis ratio. For this case, rodlik
molecules correspond to 0,B,1, disclike molecules to
21,B,0.

The viscous stress tensors for this model consists of a
fluid plus a particle contribution and is given by~cf. @2#!
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Section II shows how to obtain the moments of alignme
Relevant scalar order parameters are introduced and the
cosities are expressed in terms of them. For the biaxial ph
we will obtain a stress tensor in terms of two directors and
distinct viscosities. In the uniaxial phase they reduce to
five independent viscosities recently calculated@6,7#. These
results correspond to a special case of two phenomenolog
expressions for biaxial nematic liquid crystals proposed
~i! Chauré@13#, which contained 12 independent viscositie
and by ~ii ! Leslie, Laverty, and Carlsson@14#, which con-
tained 16 viscosity coefficients related by four Onsager re
tions, all four Onsager relations being satisfied by our cal
lations.

Our results differ, however, from previous calculations
the number of viscosities@9# and on the validity of the On-
sager relations@4#. Additionally our results satisfy only un
der certain conditions~i.e., highly aligned, rodlike particles!
the proposed inequalities for rodlike biaxial nematics@15#.
Finally, sample numerical values indicate that the effect
flow induced biaxiality can be significant, even produci
sign changes in the shear viscosity differences. These re
indicate that flow induced biaxiality could be important
interpreting data on shear flows.

II. MEASURES OF BIAXIAL ALIGNMENT

For uniaxial molecules with symmetry axisu, the sym-
metric, traceless~symbol ‘‘ ’’ ! alignment tensor of rank

two ^ uu & has three orthonormal eigenvectorsn,m,l ~i.e., di-
rectors!. Sinced i j 5ninj1mimj1 l i l j , we need only two di-
rectors~e.g.,n andm!. One thus obtains
1804 © 1997 The American Physical Society
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^uiuj&5~S21b/2!ninj1bmimj , ~3!

where the alignment order parametersS2 andb are defined
as averages of Legendre polynomials:S25^P2(u–n)&,
b5 2

3 @^P2(u–n)&12^P2(u–m)&#. They range in value by

2 1
2 <S2<1, ubu< 2

3 (12S2)<1. For perfect uniaxial align-
ment in then direction,S251 andb50. Thusb is called the
biaxiality parameter. For perfect uniaxial alignment in them
direction,b522S251. For random alignment~hence, iso-
tropic! S25b50.

Similarly, we obtain for the fourth-order alignment tens

^umunukul&5~S42 3
8 A21 1

2 A3!nmnnnknl

1A2mmmnmkml1A3nmnnmkml, ~4!

where ~using Px :5^P4(u–x)&, x5n,m,l) S45Pn ,

A25 8
35 @4(Pm1Pl)23S4#, A35 8

35 @11Pl23(S41Pm)#.
Note that there are three distinct fourth-order scalar meas
of alignment. In the uniaxial caseA25A350, so that these
two can be interpreted as fourth-order measures of the de
tion from uniaxiality.

For convenience in notation we introduce two paramet

as follows:S̃2 :5S21b/2, S̃4 :5S42 3
8 A21 1

2 A3 . In general,
all equations involving second and fourth moments for t
biaxial case reduce to expressions for the unixial case
settingb5A25A350, S̃25S2, and S̃45S4.

III. RESULTS AND DISCUSSION

Inserting the expressions for the alignment tensors~3! and
~4! into the stress tensor~2! and obtaining the two directo
equations from the second moment, we obtain in terms of
notation of @14# the following viscous stress tensor of a
incompressible biaxial fluid@16#:

s i j 5a1Akpnknpninj1a2Ninj1a3Njni1a4Ai j 1a5Aiknjnk

1a6Ajknkni1b1Akpmkmpmimj1b2Mimj1b3M jmi

1b5Aikmjmk1b6Ajkmkmi1Npmp~m1minj1m2nimj !

1m5mkmpAkpninj1Akpnkmp~m3minj1m4nimj !, ~5!
es
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where the corotational director times derivativesN and M
are defined asNi :5ṅi2V iknk , Mi :5ṁi2V ikmk , and the
viscosities are given explicitly by~with x:5ckBT/2Dr):

a1522xB2S̃4 , a55xBFB

7
~3S̃214S̃413A3!1 S̃2G ,

a252xB~11G1! S̃2 , a352xB~12G1! S̃2 ,

a452h1x
B2

35
~14210S̃224S̃4210b24A2213A3!,

a65a522xB S̃2 , b65b522xBb, b1522xB2A2 ,

b252xB~11G2!b, b352xB~12G2!b,

b55xBFB

7
~3b14A213A3!1bG , m550

m152m25xBG1~11G3!b, m35m45xB2A3 . ~6!

For simplicity we have collected order parameters in the f
lowing three groups:

G1 :5
35S̃2

B~1415S̃2116S̃4210b24A212A3!
,

G2 :5
35b

B~1415b116A2210S̃224S̃412A3!
,

G3 :5
B S̃2~3b14A224A3!

b~3S̃214S̃424A3!
. ~7!

The viscosity coefficientsg i ,l i associated with the two
director equations are determined from Eq.~6! through@14#
g15a32a2 , g25a62a5 , g35m22m1 , l15b32b2 ,
l25b62b5 , g45m42m3 . As they should, the viscositie
have the following invariance:a i and b i are exchanged
when S̃2 with b and S̃4 with A2 are exchanged.

It is easily verified from Eq.~6! that the calculated vis-
cosities satisfy the following proposed Onsager relatio
@14#:
f order

2.000
1.345
1.731
2.363
2.392
TABLE I. Numerical values of the dimensionless viscosity coefficients forrods (B51) ha,b* 5(ha,b2h)/x with a,bP$ ‘‘–’’ ~5shear
direction!, ‘‘ u ’’ ~5velocity gradient!, ‘‘ + ’’ ~5vorticity!, ‘‘/, \ ’’ ~5in shearing plane at 45°, 135° with respect to shear direction!%. A viscosity
ha,b is measured whennia, mib. The last three rows contain all rotational viscosities as defined in the text. For the given values o
parameters~the left part of the table! the viscosity coefficients are obtained by evaluating the Leslie coefficients from Eqs.~7! and~8!. In the
text, the analytical expressions for the viscosities are given for the general case of ellipsoids of revolution with an arbitrary shape~e.g., disks,
spheres!, whereuBu<1.

S2 S4 b A2 A3 h2+
* h2u* h +2* h +u* h u2* h u+* h2/* h\+

* h /\* gn gm gnm

1.0 1.0 0.0 0.0 0.0 0.000 0.000 0.000 0.000 2.000 2.000 0.500 0.000 0.500 2.000 0.000
0.7 0.5 0.0 0.0 0.0 0.001 0.001 0.071 0.071 1.401 1.401 0.451 0.071 0.451 1.345 0.000
0.7 0.5 0.1 0.0 0.0 0.001 0.015 0.006 0.206 1.458 1.501 0.486 0.106 0.501 1.591 0.140
0.7 0.5 0.2 0.1 0.0 0.016 0.048 0.000 0.400 1.591 1.616 0.538 0.150 0.584 1.948 0.415
0.7 0.4 0.2 0.1 0.1 0.020 0.025 0.000 0.400 1.611 1.620 0.562 0.150 0.614 2.000 0.392
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a21a35a62a5 , b21b35b62b5 ,

m11m25m42m3 , m550. ~8!

In this case the expressions proposed for the viscous s
tensor in @13# and @14# become equivalent, containing 1
independent coefficients. We obtain from our calculatio
however, the additional relation

m11m250, hencem35m4 . ~9!

That is, there are at most 11 distinct viscosities for the str
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tensor in terms of the eight parametersh, x, B, S2, b, S4,
A2, andA3. As discussed in@14# the m i are viscosities that
represent coupling between the directorsn andm. Thus the
molecular model indicates a simplified form of coupling, a
parently due to the symmetric ellipsoidal shape of the p
ticles. More complex shaped particles could have partic
particle interactions that lead to more viscosities. Th
deviations from Eq.~9! could be used as a measure for t
particle biaxiality.

Additional viscosities that represent the effective sh
and rotational viscosities~see table caption! have been intro-
duced and expressed through thea i , b i , m i @15# via
1
2h2+

*

2h2u*

2h +2*

2h +u*

2h u2*

2h u+*

4h2/*

4h\+
*

4h /\*

gn

gm

gnm

2 51
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 21 0 21 0 0 1 0 1

0 0 0 1 0 0 0 0 1 0 1 0 0 0 0

0 0 0 1 0 0 0 21 0 1 0 0 0 0 0

0 21 0 1 1 0 0 0 1 0 1 21 0 1 0

0 21 0 1 1 0 0 0 0 0 0 0 0 0 0

1 22 2 4 2 2 1 22 2 22 2 22 2 1 1

0 0 0 4 0 0 1 22 2 2 2 0 0 0 0

1 22 2 4 2 2 0 0 0 0 0 0 0 0 0

0 21 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 21 1 0 0 0 0 0 0

0 21 1 0 0 0 0 21 1 0 0 21 1 0 0

2
3~a1 ,a2 ,a3 ,a4 ,a5 ,a6 ,b1 ,b2 ,b3 ,b5 ,b6 ,m1 ,m2 ,m3 ,m4!†.
s
ial

ese
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Table I illustrates sample numerical values of these
mensionless viscosity coefficients for ideal rods (B51). It
demonstrates that small, but nonzero biaxiality (bÞ0) can
produce substantial changes. Relationships between all o
five order parameters have not yet been established, e
experimentally nor theoretically, so that we do not introdu
any decoupling assumption into the model here. The ta
already provides the necessary information about the o
of the viscosities when corrections due to a biaxial distort
have to be taken into account. The results predict, as vis
from the table, e.g., a sign change for the differen
h2u* 2h +2* with increasing biaxiality. More detailed calcula
tions are being presently investigated.

Carlsson, Leslie, and Laverty@15# proposed, for rodlike
biaxial nematics, several inequalities among the viscosit
Rodlike corresponds to settingB.0 in our model. It is easy
to verify from Eq. ~6! that the inequalities are satisfied fo
B'1. However, our result limits the validity to certai
ranges for the order parameters and the shape coefficie

For the uniaxial phase with directorn ~i.e.,
b5A25A350), theb i andm i vanish and the results reduc
i-
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to those given previously in@6,7#. Alternatively, for the case

of uniaxial alignment in the m direction ~i.e., S̃2

5 S̃45A350), the a i and m i vanish, and the coefficient
b i and G2

0 become identical to the corresponding uniax
coefficients.

Our present calculations provide an extension of th
results for flow-induced biaxiality. They can provide the b
sis for discussing the qualitative flow behavior and the int
pretation of experimental data as has already been don
the uniaxial case. In the special case of uniaxial phase
result~6! and the qualitative flow behavior, which is usual
expressed in terms ofG1

0 @see Eq.~7!#, have been already
compared successfully with experimental findings@7,17#.
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