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Fokker-Planck calculations of the viscosities of biaxial fluids
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A Fokker-Planck equation for the orientation distribution function is used to calculate the viscosity coeffi-
cients of the flow-induced biaxial phase. The results correspond to a special case of proposed phenomenologi-
cal expressions for biaxial liquid crystals, but with a reduced number of coefficients, apparently due to
assumptions on the symmetry of particles. In contrast to a previous calculation, our results satisfy the Onsager
relations for the viscosities of biaxial fluids. Sample numerical values indicate that the contribution of flow-
induced biaxiality can be significant in the shear viscosities, produce sign changes in the viscosity differences,
and thus be important for the interpretation of shear flow d&4063-651X%97)05608-0
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I. INTRODUCTION BcksT
sym
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The anisotropy of liquid crystals or suspensions leads to

. . o : _ +{U, U)A,,—2A (U u\u, U
numerous viscosity coefficients in order to characterize the (Ut} A (U Uul))

flow properties. Recently there has been some interest in +Q,,(uu,)+(u,u)Q,,—du,u,)],
calculating these viscosities from microscopic or mesoscopic c

— k
models[1-10. In general these molecular modglsven O-fu\/N:_§[<u,uvuvvext>_<UVVUMVeXI>]' ?)

with rodlike particle$ indicate the presence of a biaxial
phase or some degree of flow-induced biaxiality under sheaggtion || shows how to obtain the moments of alignment.
However, the viscosity calculations have been either répg|eyant scalar order parameters are introduced and the vis-
stricted to the uniaxial phase or involved questionable mathcosities are expressed in terms of them. For the biaxial phase
ematical simplifications. we will obtain a stress tensor in terms of two directors and 11
Here we show how to extend the uniaxial calculations ofdistinct viscosities. In the uniaxial phase they reduce to the
[6,7] to the biaxial phase. We use a Fokker-Planck equatiofive independent viscosities recently calculafé¢’]. These
[11,12 for the one-particle orientation distribution function results correspond to a special case of two phenomenological
f to calculate the viscosities for the biaxial phasithout ~ expressions for biaxial nematic liquid crystals proposed by
approximatingf, as commonly done. The model assumes(l) Chaure[13], which contained 12 independent viscosities,

rigid ellipsoidal particles with a mean-field interaction poten-2nd by (ii) Leslie, Laverty, and Carlssofi4], which con-
tial, thus we have tained 16 viscosity coefficients related by four Onsager rela-

tions, all four Onsager relations being satisfied by our calcu-
lations.

Our results differ, however, from previous calculations on
the number of viscositief®] and on the validity of the On-

of=V,[fD,V,(nf+V/kgT)] sager relation$4]. Additionally our results satisfy only un-
' ' der certain conditionéi.e., highly aligned, rodlike particlg¢s
= Vi [FQu;+ FB( 8 — ujup) AjcUy]. (1)  the proposed inequalities for rodlike biaxial nemati&$§].

Finally, sample numerical values indicate that the effect of
flow induced biaxiality can be significant, even producing
sign changes in the shear viscosity differences. These results
indicate that flow induced biaxiality could be important in
interpreting data on shear flows.

u is the symmetry axis of the ellipsoid, and() are respec-

tively the symmetric and skew symmetric parts of the mac

roscopic velocity gradienty=V+ Vs is the potential of

t_h(_a external gnd mean fields, is the rotary diffusion coef- Il. MEASURES OF BIAXIAL ALIGNMENT

ficient, andB is a particle geometric factor usually taken as

(r?=1)/(r2+1),r being the axis ratio. For this case, rodlike ~ For uniaxial molecules with symmetry axis the sym-

molecules correspond to<0B<1, disclike molecules to metric, tracelesésymbol “r—1") alignment tensor of rank

—1<B<0. two ("uu') has three orthonormal eigenvectorm,| (i.e., di-
The viscous stress tensor for this model consists of a rectorg. Sinces;;=n;n;+mm;+1;l;, we need only two di-

itjs
fluid plus a particle contribution and is given kgf. [2]) rectors(e.g.,n andm). One thus obtains
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where the corotational director times derivativésand M
are defined a®\; : =n;— Q;yny, M;:=m;—Q;:my, and the
viscosities are given explicitly bgwith y:=ckgT/2D,):

(— [ B
<Uin>:(Sz+ b/2)ninj+bmimj, (3)
where the alignment order paramet&sandb are defined
as averages of Legendre polynomialS;=(P,(u-n)),
b=2[(P,(u-n))+2(P,(u-m))]. They range in value by
—3=<S,<1, |b|<%(1—S,)<1. For perfect uniaxial align-
ment in then direction,S,=1 andb=0. Thusb is called the
biaxiality parameter. For perfect uniaxial alignment in the
direction,b=—2S,=1. For random alignmerthence, iso- B2 _ _
tropic) S,=b=0. g =27+ x 35 (14— 105,- 45, 100—4A,— 13Ag),
Similarly, we obtain for the fourth-order alignment tensor

— B -~ - ~
a;=—2xB?S,, as=xB 7(35,+45,+3A3)+ S, |,

a,=—xB(1+G)S,, az=—xB(1-G)S,,

ﬂlz - 2XBZA21
(U uuUy)=(S4— SA+ 7Az)n,n,n,n,

ag= a5—2XB~S'2, Be=Bs—2xBb,

B2=—xB(1+Gy)b, B3=-xB(1-Gy)b,

[ 1 [ 1
+A,m,m,m,m, +Agn, n,m.m,, (4) B
where (using Py:=(P4u-x)), x=nm,d) S,=P,,
Ar= 55[4(Py+P) —3S,], As= 35[ 11P,— 3(Sy+ Pp) 1.
Note that there are three distinct fourth-order scalar measures

of ahgnmen_t. In the uniaxial cask,=A3;=0, so that these . For simplicity we have collected order parameters in the fol-
two can be interpreted as fourth-order measures of the dev'%wing three groups:
tion from uniaxiality. )

For convenience in notation we introduce two parameters
as follows:S,:=S,+b/2, S,:=S,— 2A,+ 3A;. In general, G;:
all equations involving second and fourth moments for the
biaxial case reduce to expressions for the unixial case by
settingb=A,=A;=0, S5,=S,, andS,=S5,.

p1=—p=xBG(1+Ga)b, u3=pus=xB?A;. (6)

B 35S,
B(14+55,+165,— 100—4A,+2A3) |

oo 35
2" B(14+5b+16A,— 1035,—45,+2A;) '

Ill. RESULTS AND DISCUSSION

Inserting the expressions for the alignment ten$8rand
(4) into the stress tensdR) and obtaining the two director

 BS,(3b+4A,—4A)
¥ 0(35,+45,—4Ay)

Y

equations from the second moment, we obtain in terms of the

notation of[14] the following viscous stress tensor of an
incompressible biaxial fluidl16]:

O'ij = alAkpnknpninj + szNinj + 013N]-ni + a4Aij + 0[5Aiknjnk
+ a6A]-knkni +,81Akpmkmpmi m] +ﬂ2Mimj +33Mjmi
+ BsAikm; M+ BeAjmim; + Npmp(wqmin; + wonim;)

+ sMEMpApni N+ ApNieMy(3ming + panim;), - (5)

The viscosity coefficients; ,\; associated with the two
director equations are determined from Eg). through[14]
Yi=az—ap, Yo=ag—as, Y3=pp—p1, Ni=B3— B,
No=Bs— Bs, va=pmas— p3. As they should, the viscosities
have the following invariancew; and B; are exchanged

when'S, with b and’S, with A, are exchanged.

It is easily verified from Eq(6) that the calculated vis-
cosities satisfy the following proposed Onsager relations
[14]:

TABLE I. Numerical values of the dimensionless viscosity coefficientsrénls (B=1) 7} ,= (7.~ 7)/x with a,be{“-" (=shear
direction, “|” (=velocity gradieny, “” (=vorticity), “/, \" (=in shearing plane at 45°, 135° with respect to shear diregtiédnviscosity
nap is measured whenlla, m|b. The last three rows contain all rotational viscosities as defined in the text. For the given values of order
parametersthe left part of the tablethe viscosity coefficients are obtained by evaluating the Leslie coefficients fronfEgsd(8). In the
text, the analytical expressions for the viscosities are given for the general case of ellipsoids of revolution with an arbitréeygshdisés,
spheres where|B|<1.

S S b A Ay 7t Y gl 7 7 7 7% 7% 7 Yn Ym  Yam

1.0 1.0 0.0 00 0.0 0.00 0.00 0.000 0.00 2000 2000 0500 0.000 0.500 2000 0.000 2.000
07 05 00 00 00 0001 0001 0071 0.071 1.401 1.401 0451 0.071 0451 1.345 0.000 1.345
07 05 01 00 00 0001 0015 0.006 0206 1458 1501 0486 0.106 0501 1591 0.140 1.731
07 05 02 01 00 0016 0048 0.000 0400 1591 1.616 0538 0.150 0.584 1.948 0.415 2.363
07 04 02 01 01 0020 0.025 0000 0400 1.611 1.620 0562 0.150 0.614 2.000 0.392 2.392
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a,+az=ag—as, P+ B3=PBe¢—Bs, tensor in terms of the eight parametejsy, B, S,, b, S,

A,, andA;. As discussed ifi14] the u; are viscosities that
represent coupling between the directorandm. Thus the
molecular model indicates a simplified form of coupling, ap-
In this case the expressions proposed for the viscous streparently due to the symmetric ellipsoidal shape of the par-

tensor in[13] and [14] become equivalent, containing 12 ticles. More complex shaped particles could have particle-
independent coefficients. We obtain from our calculationsparticle interactions that lead to more viscosities. Thus

Mit o= pa— p3, us=0. 8

however, the additional relation deviations from Eq(9) could be used as a measure for the
particle biaxiality.
w1t up=0, henceus=pu,. (9) Additional viscosities that represent the effective shear

and rotational viscositieee table captigrhave been intro-
That is, there are at most 11 distinct viscosities for the stresgduced and expressed through the 3;, w; [15] via

2’7} 0O 011010 00 00 00O
27| 0 01 1010-10-10 0101
2. 0 001000 01 01 oooX)
27 0 001000-10 10 0000
29 0 -1 01 10 0 01-101 0
27, 0 -1 01 100 00 00 0 @
47, | 7|1 -2 2 4 2 2 1 -2 2 -2 2 -2 2 11
4k 0 004001-22 22 0000
4nk 1 -2 2 4 2 20 00 0 0 0
e 0 -1 100 0 0 00 000
Yor 0 0000O0O0-11 00 00007
Yo 0 -110000-11 00-11200

X(ay,ap,03,a4,05,06,01,82,83.85,B6 1,12, 13, Ha) -

Table | illustrates sample numerical values of these dito those given previously if6,7]. Alternatively, for the case

mensionless viscosity coefficients for ideal ro®=(1). It of ynjaxial alignment in them direction (i.e., S,

demonstrates that small, but nonzero biaxialiy#(0) can _Z —A—0). th d ish. and th fficient

produce substantial changes. Relationships between all of the =4~ 3. ), the a; and u; vanish, and the coefficients

five order parameters have not yet been established, eith& @nd Gz become identical to the corresponding uniaxial

experimentally nor theoretically, so that we do not introducecoefficients. _ _ _

any decoupling assumption into the model here. The table Our present calculations provide an extension of these

already provides the necessary information about the ordéesults for flow-induced biaxiality. They can provide the ba-

of the viscosities when corrections due to a biaxial distortiorsis for discussing the qualitative flow behavior and the inter-

have to be taken into account. The results predict, as visiblpretation of experimental data as has already been done in

from the table, e.g., a sign change for the differencethe uniaxial case. In the special case of uniaxial phase the

n’i‘— yr_ with increasing biaxiality. More detailed calcula- result(6) and the qualitative flow behavior, which is usually

tions are being presently investigated. expressed in terms &) [see Eq.(7)], have been already
Carlsson, Leslie, and Laverfyl5] proposed, for rodlike compared successfully with experimental findifgsl 7.

biaxial nematics, several inequalities among the viscosities.

Rodlike corresponds to settiig>0 in our model. It is easy

to verify from Eq. (6) that the_m_equalmes are satisfied f_or ACKNOWLEDGMENTS

B~1. However, our result limits the validity to certain

ranges for the order parameters and the shape coefficient. This work was financially supported by the Minerva
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b=A,=A;=0), theB; andu; vanish and the results reduce delle Ricerchgltaly).
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