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Dynamics of cylindrical domain walls in nematic liquid crystals

Joachim Stelzer and Henryk Arodz´
Instytut Fizyki, Uniwersytet Jagiellon´ski, Reymonta 4, 30-059 Krako´w, Poland

~Received 4 February 1997!

Analytical calculations of the dynamics of a curved domain wall in a nematic liquid crystal are performed.
The core of the wall is assumed to form a cylinder whose axis coincides with the direction of an external
magnetic field. The equation of motion for the nematic director field is solved in a comoving coordinate frame
by applying a polynomial expansion of the tilt angle with respect to the radial distance from the wall core.
Starting from a cylindrical domain wall at rest as the initial condition, the shrinking of the cylinder and the
change of the wall width are analyzed in detail. In particular, we find that the Ne´el wall decays faster than the
Bloch wall, in agreement with energy considerations.@S1063-651X~97!03208-X#

PACS number~s!: 61.30.Jf, 11.27.1d
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I. INTRODUCTION

It is a well-known fact that nematic liquid crystals reve
a large variety of defect structures. Such defects are v
interesting from the theoretical point of view@1–3#. More-
over, they are important for applications, e.g., they pla
crucial role in the switching mechanisms in modern liqu
crystal display devices ~surface-stabilized ferroelectri
liquid-crystal cells! @4–7#. Therefore, a quantitative invest
gation of defect dynamics is desirable.

The types of defects in the nematic director field cov
zero- and one-dimensional objects~point and line defects
respectively! that arise due to the presence of impurities
surfaces@3,8#. Two-dimensional sheets, i.e., walls, are u
stable in an isolated nematic. They can be stabilized, h
ever, by imposing an external magnetic field@9#. The situa-
tion is similar to domain walls in a ferromagnetic mater
where regions of different spin orientations are separated
a thin boundary layer@10#. In a nematic liquid crystal, the
director can align parallel or antiparallel to the external m
netic field. Due to fact that the director has no arrowhe
these two situations are energetically equivalent. It may h
pen that two spatial regions of antiparallel director orien
tion will form, with a domain wall between them@9#.

Domain walls in nematic liquid crystals due to the ex
tence of an external field are static in a planar geometry@9#.
A qualitatively different behavior occurs when the shape
the wall is curved. In this case the wall becomes a dynam
object, i.e., its core starts to move and the wall width
changing. The present paper is devoted to a quantita
study of the dynamics of domain walls in a cylindrical g
ometry. We consider the case of director reorientat
through Bloch and Ne´el walls @11,12#. From a methodologi-
cal point of view, in our calculations we use the so-call
polynomial approximation, which has turned out to be ver
fruitful in studies of defect dynamics in relativistic scal
field theories@13#. Due to the cylindrical symmetry, we ca
find explicit analytical solutions to equations of motion o
tained within that approximation.

The organization of the paper is as follows. In Sec. II t
equation of motion for the director field is derived on t
basis of the Ericksen-Leslie theory@14,15# for the case of a
cylindrical domain wall of Bloch or Ne´el type in a nematic
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liquid crystal. Section III develops the polynomial expansi
as an analytical method to solve approximately the dynam
of the director field. Within this approach, we obtain clos
expressions for the dynamics of the wall core and width.
Sec. IV some selected results together with their discuss
are presented. Section V contains an outlook on poss
extensions of our investigations.

II. DIRECTOR EQUATIONS OF MOTION
FOR CYLINDRICAL DOMAIN WALLS

A. Comoving polar coordinates

For all calculations we restrict ourselves to the cylindric
geometry as pointed out in Figs. 1 and 2. The cylinder axi
determined by the orientation of the external magnetic fi
H , which coincides with thez axis of our coordinate frame
i.e., H 5H0ẑ. (ẑ denotes the unit vector alongz.! As already
mentioned above, a domain wall occurs for parallel and
tiparallel director orientations with respect to the extern
field in different spatial regions. In the case of axial geo
etry, we assume the director to be aligned along the posi

FIG. 1. Geometry and coordinates for a cylindrical Bloch wa
The projection is onto a plane perpendicular to the cylinder axi
1784 © 1997 The American Physical Society
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56 1785DYNAMICS OF CYLINDRICAL DOMAIN WALLS I N . . .
or negativez axis ~up and down! inside or outside the cylin-
der, respectively. Now the director can reorient fromup to
down in either thef̂-ẑ plane orr̂-ẑ plane, where (r,f,z)
are cylindrical coordinates. We refer to these two cases
Bloch ~Fig. 1! andNéel ~Fig. 2! walls, taking the nomencla
ture from planar domain walls in ferromagnetic substan
@10# and nematic liquid crystals@9#.

For our calculations it will be advantageous to wo
within a comoving cylindrical coordinate frame. The rad
coordinate consists of the wall radiusr(t) and the radial
distancej from the wall. These are related to Cartesian c
ordinates according to

x5@r~ t !1j#cosf, y5@r~ t !1j#sinf. ~1!

The nabla operator, expressed in the comoving coordina
reads

¹5 ĵ
]

]j
1f̂

1

r1j

]

]f
1 ẑ

]

]z
. ~2!

The ‘‘spatial’’ time derivative]/]t is related to the ‘‘mate-
rial’’ ~i.e., comoving! time derivativeD/Dt by the chain rule
between the coordinate setsxi5(x,y,z) and ja5(j,f,z)
~laboratory and comoving coordinates!:

]

]t
5

D

Dt
2

]xi

]t U
ja

]ja

]xi

]

]ja
. ~3!

The relation above is simplified for cylindrical geometry

]

]t
5

D

Dt
2 ṙ

]

]j
. ~4!

For the Bloch and Ne´el walls we can describe the directo
orientation by thetilt angle fieldQ(j,t), which measures the
angle between the local director and thez axis. In terms of
the comoving frame, the director is in thef̂-ẑ plane for the
Bloch wall and in theĵ-ẑ plane for the Ne´el wall:

FIG. 2. Geometry and coordinates for a cylindrical Ne´el wall.
The projection is onto a plane perpendicular to the cylinder axi
as
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nB5sinQ~j,t !f̂~f,t !1cosQ~j,t !ẑ ~Bloch wall!, ~5!

nN5sinQ~j,t !ĵ~f,t !1cosQ~j,t !ẑ ~Néel wall!. ~6!

B. Free-energy density

In the framework of the Ericksen-Leslie theory@14,15#
the dynamics of the director field follows from the balan
between elastic, magnetic, and viscous torques. The latte
determined by the temporal change in the director, wher
elastic and magnetic torques are obtained as a variati
derivative from a free-energy densityF. Thus the equation of
motion for the director components generally reads

g1

]ni

]t
52

dF
dni

[] j

]F
]~] jni !

2
]F
]ni

. ~7!

In Eq. ~7! g1 is the rotational viscosity of the liquid crysta
It is the only one among the six Leslie viscosity coefficien
@14,15# that enters the equation of motion~7!. This is due to
the neglect of hydrodynamic flow in our approach. In fa
Eq. ~7! should contain an additional termlni , with the
Lagrange multiplierl, accounting for the constraint ofn
being a unit vector. In the cylindrical geometry under co
sideration, however, it turns out that this constraint can
incorporated much more easily by starting from Eq.~7! ~i.e.,
without the Lagrange multiplier!. Later on we shall eliminate
the variation of the length of the director by taking approp
ate projections, as will be demonstrated below.

The free-energy densityF consists of an elastic and
magnetic part (F5Felast1Fmag). For the elastic free-energ
density we take the Oseen-Zo¨cher-Frank expression@16–18#,
which containssplay, twist, and bend deformations of the
director field:

Felast5
1
2 K11~divn !21 1

2 K22~n•curln !21 1
2 K33~n3curln !2.

~8!

In Eq. ~8! K11, K22, andK33 denote elastic constants of th
nematic liquid crystal.

The magnetic free-energy density couples the directon
to the magnetic fieldH via the anisotropy of the magneti
susceptibilityDx (m0 means the magnetic field constant!:

Fmag52 1
2 m0Dx~n•H !2. ~9!

For a cylindrical Bloch or Ne´el wall we can express the
free-energy density explicitly in comoving coordinates,

FB5
1

2
K22S Q81

cosQsinQ

r1j D 2

1
1

2
K33

sin4Q

~r1j!2

2
1

2
m0DxH0

2cos2Q ~Bloch wall!, ~10!

FN5
1

2
K11S Q8cosQ1

sinQ

r1j D 2

1
1

2
K33Q82sin2Q

2
1

2
m0DxH0

2cos2Q ~Néel wall!. ~11!
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1786 56JOACHIM STELZER AND HENRYK ARODŹ
In Eqs. ~10! and ~11! Q8 stands for the radial derivativ
]Q/]j.

C. Director equation of motion

Returning to Eq.~7! we now have to account for the con
straint of the director normalization (unu51). To this aim we
write the left-hand side~LHS! of Eq. ~7! explicitly in comov-
ing coordinates

~LHS!B52g1~Q̇2 ṙQ8!~ ĵ3n ! ~Bloch wall!, ~12!

~LHS!N5g1~Q̇2 ṙQ8!~f̂3n ! ~Néel wall!. ~13!

HereQ̇ denotes the material time derivativeDQ/Dt.
For further considerations we express the right-hand s

~RHS! of Eq. ~7! in Cartesian coordinates. Its componen
read

~RHS!i5K11] i~divn !2K22~n •curln !~curln ! i

2K22$curl@~n •curln !n#% i2K33$~nk]knj !] inj

2]k@nk~nj] jni !#%1m0Dx~n•H !Hi . ~14!

The constraint of the director normalizationunu51 means
that we have to discard the~infinitesimal! variation of the
length of the directordn5e(r )n. @e(r ) is a small number
everywhere.# The corresponding variation of the total fre
energyF ~which is the volume integral over the free ener
densityF) reads

dF5E d3r
dF
dn

•dn5E d3r e~r !n•
dF
dn

50. ~15!

From Eq.~15! it is obvious thatthe variation of the direc-
tor length is related to the projection of the variational d
rivative of the free-energy density@i.e., of the RHS~14!# onto
the director. Moreover, from Eqs.~12! and ~13! we recog-
nize that the LHS, projected onto the director, yields ze
Thus we conclude that by discarding the projection of Eq.~7!
onto the director we properly take into account the direc
constraint.

Additionally, after some lengthy calculations we find th
for the Bloch and Ne´el walls the projection ontoĵ and f̂,
respectively, yield identically zero. Thus the scalar equat
of motion for the tilt angle fieldQ(j,t) can be obtained by
projecting Eq.~7! onto the third linearly independent direc
tion, which is ĵ3n for the Bloch wall andf̂3n for the
Néel wall. After performing the projections and changing f
the comoving coordinates, we obtain the equations of mo
for the tilt angle field:

g1~Q̇2 ṙQ8!5K22Q91K22

Q8

r1j
2K22

sinQcosQ

~r1j!2

22~K332K22!
cosQsin3Q

~r1j!2

2m0DxH0
2sinQcosQ ~Bloch wall!,

~16!
e

.

r

t

n

n

g1~Q̇2 ṙQ8!5K11cosQ
]

]jH 1

r1j

]

]j
@~r1j!sinQ#J

2K33sinQ
]

]jH 1

r1j

]

]j
@~r1j!cosQ#J

2K33

sinQcosQ

~r1j!2

2m0DxH0
2sinQcosQ ~Néel wall!. ~17!

In agreement with the pictorial visualization of Figs. 1 and
the cylindrical Bloch wall contains nosplay deformations,
whereas in the Ne´el wall twist deformations are absent.

III. SOLUTION FOR THE DIRECTOR DYNAMICS

A. Polynomial expansion

The method to construct an approximate solution of
equations of motion~16! and ~17! is thepolynomial expan-
sion of the field, which has been developed in previous p
pers@13#. We shall specify it here to the case of cylindric
domain walls in nematic liquid crystals.

The key idea is to take the spatial dependence of the
angle fieldQ(j,t) as a Taylor-like expansion with respect
the wall distancej around its ‘‘core’’ valueQ(j50,t). The
wall core corresponds to the radius of the cylinder~i.e.,
j50), where the director is oriented perpendicular to thez
axis; thusQ(j50,t)5p/2 ;t. The temporal evolution of
the field is governed by the expansion coefficients

Q~j,t !5
p

2
1a~ t !j1

1

2
b~ t !j21

1

6
c~ t !j3. ~18!

The polynomial expansion cannot be truncated at arbitr
order because we have to glue the bulk solution forQ(j,t)
smoothly to the boundary conditions. This is not always p
sible. However, it has been demonstrated for the case
cylindrical domain walls in a relativistic field theory~where
the same symmetry considerations are valid as in our c!
that the third-order polynomial expansion~18! guarantees the
compatibility of the bulk solution with the boundary cond
tions @13#. Of course, for higher order of the Taylor expa
sion the accuracy of the calculations will increase.

From Eq.~18! we can easily obtain the spatial and tem
poral derivatives of the tilt angle fieldQ(j,t). The trigono-
metric and fractional expressions that occur in the equati
of motion ~16! and ~17! are expanded as well up to thir
order in the wall distancej. All these expansions are the
inserted into Eqs.~16! and ~17!. By a comparison of the
coefficients of subsequent orders inj we obtain a set of
ordinary differential equations for the expansion coefficie
a(t), b(t), andc(t). For the third-order polynomial expan
sion ~18! such a comparison yields meaningful results
zeroth and first order inj. Thus, from our calculations we
obtain two equations

g1ṙa52K22b2K22

a

r
~Bloch wall!, ~19!
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56 1787DYNAMICS OF CYLINDRICAL DOMAIN WALLS I N . . .
g1~ ȧ2 ṙb!5K22c1K22

b

r
12~K332K22!

a

r2

1m0DxH0
2a ~Bloch wall!, ~20!

g1ṙa52K33b2K33

a

r
~Néel wall!, ~21!

g1~ ȧ2 ṙb!5K33c1K33

b

r
2~K332K11!

a

r2 2~K332K11!a
3

1m0DxH0
2a ~Néel wall!. ~22!

B. Boundary conditions

Next we have to incorporate the boundary conditio
These are determined by the director alignment parallel
antiparallel to the external magnetic field inside and outs
the wall, respectively. The~instantaneous! wall thickness is
given asj0(t)1j1(t), where j0(t) measures the outwar
distance from the core to the outer edge of the wall a
j1(t) means the core-to-edge distance towards the cylin
axis. Therefore, the boundary conditions read

Q~j0 ,t !5p, Q~2j1 ,t !50, ~23!

Q8~j0 ,t !50, Q8~2j1 ,t !50. ~24!

Equations~23! determine the director orientation at the ed
of the wall and Eqs.~24! are the conditions for the smooth
ness of the solution.

We can immediately express the boundary conditions
terms of the polynomial expansion for the tilt angle fie
~18!:

aj01
1

2
bj0

21
1

6
cj0

35
p

2
, ~25!

a1bj01
1

2
cj0

250, ~26!

2aj11
1

2
bj1

22
1

6
cj1

352
p

2
, ~27!

a2bj11
1

2
cj1

250. ~28!

Equations~25!–~28! form a set of inhomogeneous linea
equations for the expansion coefficientsa(t),b(t),c(t). The
solubility conditions yield relations between the expans
coefficients and the wall partial widthsj0(t) andj1(t),

j05j1 , a5
3p

4j0
, ~29!

b50, c52
3p

2j0
3 52

32

9p2 a3. ~30!

We note that the partial widths of the wall have turned ou
be identical and there is no quadratic term in the polynom
expansion.
.
d
e

d
er

n

n

o
l

These relations must hold also in the bulk equations~19!–
~22! in order to fulfill the boundary conditions. Introducin
them, Eqs.~19!–~22! become simplified:

g1ṙ52
K22

r
~Bloch wall!, ~31!

g1ȧ52
32

9p2 K22a
312~K332K22!

a

r2

1m0DxH0
2a ~Bloch wall!, ~32!

g1ṙ52
K33

r
~Néel wall!, ~33!

g1ȧ52S 32

9p2K331K332K11Da32~K332K11!
a

r2

1m0DxH0
2a ~Néel wall!. ~34!

Equations~31! and ~33! describe the time evolution of th
wall core, i.e., the cylinder radius, whereas Eqs.~32! and
~34! govern the dynamics of the wall half-width for th
Bloch and Ne´el wall, respectively.

C. Solution for the wall dynamics

The coupled equations of motion~31!–~34! can be solved
analytically. First we solve Eqs.~31! and~33! for the dynam-
ics of the wall core. It obeys a square root law:

r~ t !5Ar0
222

K22

g1
t ~Bloch wall!, ~35!

r~ t !5Ar0
222

K33

g1
t ~Néel wall!. ~36!

Qualitatively, starting from a wall radiusr0, the cylindri-
cal domain wall will shrink. This behavior is similar to wha
has been found for relativistic field theories@13#. For usual
nematic liquid crystalsK22 is the smallest of the elastic con
stants. Therefore, Eqs.~35! and ~36! indicate that the decay
time of the Bloch wall is larger than that of the Ne´el wall.

Now we can use the solutions~35! and ~36! to eliminate
the r dependence from the equations of motion for the w
width ~32! and ~34!. The latter then read

ȧ5A~ t !a2Ba3, ~37!

where the abbreviations stand for

A~ t !5
2~K332K22!

g1r0
222K22t

1
m0Dx

g1
H0

2 ~Bloch wall!, ~38!

B5
32

9p2

K22

g1
~Bloch wall!, ~39!

A~ t !52
~K332K11!

g1r0
222K33t

1
m0Dx

g1
H0

2 ~Néel wall!, ~40!
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B5
32

9p2

K33

g1
1

K332K11

g1
~Néel wall!. ~41!

Equation ~37! is an ordinary differential equation of Ber

noulli type. By the substitutiona51/Aã it can be trans-
formed into an inhomogeneous linear differential equatio

ȧ̃12A~ t ! ã52B, ~42!

whose general solution is obtained from a twofold integ
tion:

ã~ t !5
1

M ~ t !
@2BN~ t !1 ã0#, ~43!

M ~ t !5expS E
0

t

dt82A~ t8! D , ~44!

N~ t !5E
0

t

dt8M ~ t8!. ~45!

ã0 is the initial value for the auxiliary variableã(t). This
variable is related closely to the wall half-widthj0(t) @Eq.
~51! below#.

For our case of the cylindrical domain walls all integra
can be solved analytically:

M ~ t !5eat~12bt !d, ~46!

N~ t !5
ea/b

b S b

a D d11FgS d11,
a

b D2gS d11,
a

b
2at D G ,

~47!

where additional abbreviations are introduced:

a5
2m0Dx

g1
H0

2 , b5
2K22

g1r0
2 ,

d522
K33

K22
12 ~Bloch wall!, ~48!

a5
2m0Dx

g1
H0

2 , b5
2K33

g1r0
2 ,

d512
K11

K33
~Néel wall!. ~49!

In Eq. ~47! g(n,x) stands for the incomplete gamma fun
tion, whose integral representation is

g~n,x!5E
0

x

dte2ttn21. ~50!

From the solution for the auxiliary variableã(t) the time
evolution of the wall half-widthj0(t) is obtained by simple
back substitution

j0~ t !5
3p

4a~ t !
5

3p

4
Aã~ t !. ~51!
- IV. QUANTITATIVE RESULTS

The analytical results for the dynamics of cylindrical d
main walls in nematic liquid crystals that have been obtain
in the preceding section can be specified to real mater
For further considerations we choose the parameters tha
ter the solutions according to the nematic phase
p-azoxyanisole ~PAA! at 120 °C @1,2# ~Table I!. The
magnetic-field strengthH0 has been chosen to be 500 O
according to a magnetic flux densityB0[m0H050.05 T.

The initial configuration is a cylindrical domain wall a
rest. At zero time the cylinder radius is larger than the w
half-width by two or three orders of magnitude
r0[r(t50)50.1 mm, with j̃ 0[j0(t50)51 mm or
0.1 mm.

Figure 3 shows the shrinking of the wall according to t
square-root law~35! and ~36!. The actual decay time is th
moment when the cylinder radius touches the edge of
wall. However, from the temporal evolution of the wa
width ~see below! it is obvious that the decay time is onl
slightly overestimated when taking the time for which t
cylinder has shrunk to zero:

tdecay5
g1r0

2

2K22
~Bloch wall!, ~52!

tdecay5
g1r0

2

2K33
~Néel wall!. ~53!

TABLE I. Material constants of PAA at 120 °C.

Splay elastic constantK11 7.0310212 N
Twist elastic constantK22 4.3310212 N
Bend elastic constantK33 1.7310211 N
Rotational viscosityg1 6.731023 Nm/s
Magnetic anisotropym0Dx 1.2131027

FIG. 3. Temporal evolution of the radius of a cylindrical doma
wall in PAA at 120 °C. The initial wall radiusr(t50)50.1 mm.
Solid line, Bloch wall; dashed line, Ne´el wall.
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56 1789DYNAMICS OF CYLINDRICAL DOMAIN WALLS I N . . .
The main feature of the Bloch wall are twist deformation
whereas the Ne´el wall consists rather of bend deformation
The decay times~52! and ~53! depend on the elastic con
stantsK33 and K22: the Néel wall decays about four time
faster than the Bloch wall.

Interestingly, the dynamics of the wall width reveals tw
separate processes on different time scales. First a r
change occurs from the initial half-width to a metasta
state that does not depend on the initial condition~Figs. 4
and 5!. The metastable half-width can be related to the m
netic coherence lengthjmag. For planar geometry the direc
tor would reorient in an external magnetic field by atwist
deformation on a length scale@19# of

jmag5A K22

m0Dx

1

H0
. ~54!

FIG. 4. Temporal evolution of the half-width of a cylindrica
domain wall in PAA at 120 °C. The initial wall half-width
r(t50)51 mm. Solid line, Bloch wall; dashed line, Ne´el wall.

FIG. 5. Temporal evolution of the half-width of a cylindrica
domain wall in PAA at 120 °C. The initial wall half-width
r(t50)50.1 mm. Solid line, Bloch wall; dashed line, Ne´el wall.
,
.

id

-

Introducing the parameters given at the beginning of t
section, we obtainjmag50.15 mm for the half-width of a
planar Bloch wall. However, according to Figs. 4 and 5, t
metastable value for the half-width of the cylindrical Bloc
wall is jBloch50.21 mm. The discrepancy is due to the cu
vature that gives rise to additionalbenddeformations. As-
suming that a similar law to Eq.~54! also holds for the
curved wall, we can extract an effective elastic const
KBloch58.4310212 N. For the curved Ne´el wall the coher-
ence length~Figs. 4 and 5! is jNéel50.68 mm, corresponding
to an effective elastic constant ofKNéel58.85310211 N. This
means that the elastic energy content of cylindrical dom
walls is about one order of magnitude larger for the N´el
geometry than for the Bloch-like reorientation.

As already stated above, the effective coherence len
jBloch or jNeel denotes a metastable state. After several s
onds, when the cylinder has shrunk so that its radiusr(t) is
of the orderj0(t), our solution for the wall half-width breaks
down. Formally, our expressions for the Bloch wall reveal

FIG. 6. Catastrophic behavior of the width of a cylindric
Bloch wall in PAA at 120 °C.

FIG. 7. Catastrophic behavior of the width of a cylindrical Ne´el
wall in PAA at 120 °C.
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1790 56JOACHIM STELZER AND HENRYK ARODŹ
implosion ~Fig. 6!, whereas for the Ne´el wall we obtain an
explosion~Fig. 7! of the wall width. This is due to the op
posite sign of the quantityd in Eqs. ~46! and ~47! and thus
depends on the relative magnitude of the elastic const
@cf. ~48! and ~49!#. Actually, one should remember that fo
wall half-widths larger than the cylinder radius the bounda
conditions~24! are not correct and then our solutions lo
their physical meaning. Thus, within the framework of t
polynomial expansion we are able to study the decay of
cylindrical domain wall until its radius becomes approx
mately equal to its half-width.

V. REMARKS

Our solutions forr(t) and j0(t) give a rather detailed
description of the time evolution of cylindrical domain wall
First of all, it would be interesting to compare our theoretic
predictions with experimental results. Furthermore, beca
our expressions explicitly show how the dynamics of t
.

ri-
ts

y

e

l
se

domain wall depends on the material constantsK11,
K22, K33, m0, andg1, they could be useful for the deter
mination of these constants by observing the shrinking of
cylindrical domain walls.

It is possible to generalize our calculations to doma
walls of a more general shape, e.g., we could allow fo
modulation along thez axis or for noncircular sections by th
x-y plane. For the relativistic scalar field theory this has be
performed in Ref.@13~b!#. The calculations in the genera
case are much more cumbersome than for strictly cylindr
symmetry, while the main ideas of the polynomial appro
mation remain unchanged. For this reason we have chose
restrict our presentation to the cylindrical geometry.
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