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Dynamics of cylindrical domain walls in nematic liquid crystals
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(Received 4 February 1997

Analytical calculations of the dynamics of a curved domain wall in a nematic liquid crystal are performed.
The core of the wall is assumed to form a cylinder whose axis coincides with the direction of an external
magnetic field. The equation of motion for the nematic director field is solved in a comoving coordinate frame
by applying a polynomial expansion of the tilt angle with respect to the radial distance from the wall core.
Starting from a cylindrical domain wall at rest as the initial condition, the shrinking of the cylinder and the
change of the wall width are analyzed in detail. In particular, we find that flet Wall decays faster than the
Bloch wall, in agreement with energy consideratioi&1063-651X97)03208-X]

PACS numbgs): 61.30.Jf, 11.27d

[. INTRODUCTION liquid crystal. Section Ill develops the polynomial expansion
as an analytical method to solve approximately the dynamics
. of the director field. Within this approach, we obtain closed
a large variety of defect structures. Such defects are very, ,ressions for the dynamics of the wall core and width. In
interesting from the theoretical point of viel—3]. More-  gac |y some selected results together with their discussion

over, they are important for applications, e.g., they play &e presented. Section V contains an outlook on possible
crucial role in the switching mechanisms in modern liquid- extensions of our investigations.

crystal display devices(surface-stabilized ferroelectric
liquid-crystal cells [4—7]. Therefore, a quantitative investi-

It is a well-known fact that nematic liquid crystals reveal

gation of defect dynamics is desirable. Il. DIRECTOR EQUATIONS OF MOTION
The types of defects in the nematic director field cover FOR CYLINDRICAL DOMAIN WALLS
zero- and one-dimensional objedjsoint and line defects, A. Comoving polar coordinates

respectively that arise due to the presence of impurities or Il calculati . | h lindrical
surfaces[3,8]. Two-dimensional sheets, i.e., walls, are un- O all calculations we restrict ourselves to the cylindrica

stable in an isolated nematic. They can be stabilized howJeometry as pointed out in.Figs. 1and 2. The cylinder_axi_s Is
ever, by imposing an external magnetic fié8. The situ’a— determined by the orientation of the external magnetic field

o . . . . H, which coincides with the axis of our coordinate frame,
tion is similar to domain walls in a ferromagnetic material .

where regions of different spin orientations are separated bl H =HoZ. (z denotes the unit vector alorm) As already
a thin boundary layef10]. In a nematic liquid crystal, the mennoned_above, a.domaln waII_ occurs for parallel and an-
director can align parallel or antiparallel to the external mag-iParallel director orientations with respect to the external
netic field. Due to fact that the director has no arrowheadfi€ld in different spatial regions. In the case of axial geom-
these two situations are energetically equivalent. It may hapSlry, We assume the director to be aligned along the positive
pen that two spatial regions of antiparallel director orienta-
tion will form, with a domain wall between thef®]. Yy 5

Domain walls in nematic liquid crystals due to the exis-
tence of an external field are static in a planar geom@&ty
A qualitatively different behavior occurs when the shape of
the wall is curved. In this case the wall becomes a dynamical
object, i.e., its core starts to move and the wall width is
changing. The present paper is devoted to a quantitative
study of the dynamics of domain walls in a cylindrical ge-
ometry. We consider the case of director reorientation
through Bloch and Nel walls[11,17. From a methodologi- n(r)
cal point of view, in our calculations we use the so-called
polynomial approximationwhich has turned out to be very d
fruitful in studies of defect dynamics in relativistic scalar
field theorieg13]. Due to the cylindrical symmetry, we can
find explicit analytical solutions to equations of motion ob-
tained within that approximation.

The organization of the paper is as follows. In Sec. Il the
equation of motion for the director field is derived on the
basis of the Ericksen-Leslie theof¥4,15 for the case of a FIG. 1. Geometry and coordinates for a cylindrical Bloch wall.
cylindrical domain wall of Bloch or Nel type in a nematic  The projection is onto a plane perpendicular to the cylinder axis.
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FIG. 2. Geometry and coordinates for a cylindricaleNevall.
The projection is onto a plane perpendicular to the cylinder axis.

or negativez axis (up and downinside or outside the cylin-
der, respectively. Now the director can reorient fromto
downin either thegp-z plane orp-z plane, where g, ¢,z)
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Ng=sinO(&,t) d(p,t)+coM(£,t)z  (Bloch wall), (5)
Ny=SinO (&) &(H,t) +coP(£,1)z  (Neelwall). (6)

B. Free-energy density

In the framework of the Ericksen-Leslie theofy4,15
the dynamics of the director field follows from the balance
between elastic, magnetic, and viscous torques. The latter are
determined by the temporal change in the director, whereas
elastic and magnetic torques are obtained as a variational
derivative from a free-energy densify Thus the equation of
motion for the director components generally reads

an; _
Y1 ot

S5F
- =0

on;

dF dF 7
&(t?jni) an; ’ ( )
In Eq. (7) y, is the rotational viscosity of the liquid crystal.
It is the only one among the six Leslie viscosity coefficients
[14,15 that enters the equation of moti¢n). This is due to
the neglect of hydrodynamic flow in our approach. In fact,
Eq. (7) should contain an additional termn;, with the
Lagrange multipliern, accounting for the constraint of
being a unit vector. In the cylindrical geometry under con-

are cylindrical coordinates. We refer to these two cases asideration, however, it turns out that this constraint can be

Bloch (Fig. 1) andNeel (Fig. 2) walls, taking the nomencla-

incorporated much more easily by starting from EQ.(i.e.,

ture from planar domain walls in ferromagnetic substancesyithout the Lagrange multipli¢rLater on we shall eliminate

[10] and nematic liquid crystal9].

the variation of the length of the director by taking appropri-

For our calculations it will be advantageous to work ate projectionS' as will be demonstrated below.

within a comoving cylindrical coordinate frame. The radial

coordinate consists of the wall radiygt) and the radial

The free-energy densityr consists of an elastic and a
magnetic part = Fojasit Fmag - FOr the elastic free-energy

distance¢ from the wall. These are related to Cartesian co-density we take the Oseen-gtter-Frank expressidi6—18,

ordinates according to

x=[p(t)+£lcosp, y=[p(t)+&]sing. oY)

The nabla operator, expressed in the comoving coordinates; ©

reads

v} J +a 1 9 45 J 5
—fa—g ¢_p+§ﬁ z. 2
The “spatial” time derivatived/dt is related to the “mate-
rial” (i.e., comoving time derivativeD/Dt by the chain rule
between the coordinate sexs=(x,y,z) and &,=(¢,¢,2)

(laboratory and comoving coordinajes
J D o€, d

gt Dt at . X 0E,

x;

©)

The relation above is simplified for cylindrical geometry

d D d

s Dt Pag (4)

For the Bloch and Nel walls we can describe the director

orientation by thdilt angle field® (&,t), which measures the
angle between the local director and thaxis. In terms of

the comoving frame, the director is in thg-z plane for the
Bloch wall and in theg-z plane for the Nel wall:

which containssplay, twist, and bend deformations of the
director field:
Feias= sK11(divn)2+ FK,o(n - curln) 2+ 3K 5(n X curln) 2.

®

In Eq. (8) Ky1, Ky, andK3; denote elastic constants of the
nematic liquid crystal.

The magnetic free-energy density couples the direstor
to the magnetic fieldH via the anisotropy of the magnetic
susceptibilityA y (xg means the magnetic field constant

fmag:_%MOAX(n'H)Z- 9
For a cylindrical Bloch or Nel wall we can express the
free-energy density explicitly in comoving coordinates,

cos@sin@))2 1 sin*®

1
Fa=5Ky O+ +=Kgg—
"2 22( p+é 27%(pt8)?

1 2
—E/.LOAXHOCOSZG) (Bloch wall), (10
1 , sin@\2 1
]:NZEKll (¢ CO@‘FH +§K33® Sinf®
1 5 ;
— — oA xH5cogO®  (Neel wall). (11)
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In Egs. (10) and (11) ®' stands for the radial derivative
dO/JE.

C. Director equation of motion

Returning to Eq(7) we now have to account for the con-
straint of the director normalizationir(|=1). To this aim we
write the left-hand sid€LHS) of Eq. (7) explicitly in comov-
ing coordinates

(LHS)g= — y2(®—p@®')(Exn) (Blochwall, (12)

(LHS)y=y1(®—p®')(pxn) (Neelwall). (13
Here® denotes the material time derivatized/Dt.

For further considerations we express the right-hand sid
(RHY of Eg. (7) in Cartesian coordinates. Its components
read

(RH9); =K 44;(divn) —Ks(n - curln)(curln);
—Kygcurl[(n -curln)nT} — Kzl (N dynj) din;
= ni(njdin) 1} + oA x(n-H)H; . (14

The constraint of the director normalizatipm =1 means
that we have to discard th@nfinitesima) variation of the
length of the directorsn=e€(r)n. [e(r) is a small number
everywhere. The corresponding variation of the total free
energyF (which is the volume integral over the free energy
density F) reads

5n 0.

B SN .
oF dr5n on d°re(r)n (15

From Eq.(15) it is obvious thathe variation of the direc-
tor length is related to the projection of the variational de-
rivative of the free-energy densitiye., of the RHS14)] onto
the director Moreover, from Eqgs(12) and (13) we recog-
nize that the LHS, projected onto the director, yields zero
Thus we conclude that by discarding the projection of &y.
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O—pO®')=Ky,c08 —{ —— —
Ya( pO’) 11 p+éJE

|

91 9
R0 g v E
K sin® coB

— oA xH2sin®@co®  (Neel wall). (17)

[(p+§)5in®]]

[(P+§)CO]]

In agreement with the pictorial visualization of Figs. 1 and 2,
the cylindrical Bloch wall contains neplay deformations,
whereas in the N wall twist deformations are absent.

e
Ill. SOLUTION FOR THE DIRECTOR DYNAMICS

A. Polynomial expansion

The method to construct an approximate solution of the
equations of motior{16) and (17) is the polynomial expan-
sion of the fieldwhich has been developed in previous pa-
pers[13]. We shall specify it here to the case of cylindrical
domain walls in nematic liquid crystals.

The key idea is to take the spatial dependence of the tilt
angle field® (&,t) as a Taylor-like expansion with respect to
the wall distance around its “core” value® (£=0t). The
wall core corresponds to the radius of the cylindee.,
£=0), where the director is oriented perpendicular to zhe
axis; thus®(£=0t)==/2 Vt. The temporal evolution of
the field is governed by the expansion coefficients

T 1 1
O(£D) =5 +ahé+ b(DEF ZeE  (18)

The polynomial expansion cannot be truncated at arbitrary
order because we have to glue the bulk solution®@dqi,t)
smoothly to the boundary conditions. This is not always pos-
sible. However, it has been demonstrated for the case of
cylindrical domain walls in a relativistic field theofyvhere

onto the director we properly take into account the directothe same symmetry considerations are valid as in our)case

constraint.
Additionally, after some lengthy calculations we find that

for the Bloch and Nel walls the projection ont& and ¢,

that the third-order polynomial expansi¢B) guarantees the
compatibility of the bulk solution with the boundary condi-
tions [13]. Of course, for higher order of the Taylor expan-

respectively, yield identically zero. Thus the scalar equatiorfion the accuracy of the calculations will increase.

of motion for the tilt angle field® (&,t) can be obtained by
projecting Eq.(7) onto the third linearly independent direc-

tion, which is £xn for the Bloch wall andgxn for the
Neel wall. After performing the projections and changing for
the comoving coordinates, we obtain the equations of motio
for the tilt angle field:
(CM K sin@ coP
pré "% (p+é)?
2K K 2)cosﬁ)sin3®
¥ (pre)?
— oA xH3sin@cos®  (Bloch wall),
(16)

¥1(0—pO')=K,0"+Kp,

From Eq.(18) we can easily obtain the spatial and tem-
poral derivatives of the tilt angle fiel®(&,t). The trigono-
metric and fractional expressions that occur in the equations
of motion (16) and (17) are expanded as well up to third
I;1')rder in the wall distancé€. All these expansions are then
inserted into Eqs(16) and (17). By a comparison of the
coefficients of subsequent orders §nwe obtain a set of
ordinary differential equations for the expansion coefficients
a(t), b(t), andc(t). For the third-order polynomial expan-
sion (18) such a comparison yields meaningful results for
zeroth and first order if. Thus, from our calculations we
obtain two equations

, a
yipa=—Kb— Koo (Bloch wall), (19



56 DYNAMICS OF CYLINDRICAL DOMAIN WALLS IN ... 1787

o b a These relations must hold also in the bulk equatid®—
y1(a—pb) =Kot + Koo~ +2(Kzz—Ka)— (22) in order to fulfill the boundary conditions. Introducing
P P them, Eqs(19)—(22) become simplified:
+uoAxH3a (Bloch wall), (20)

_ a vip=——(Bloch wall), (31
vipa=—Kab—Ka (Neel wall), (21) P

. 32 3 a
. b a 'yla:_WKzza +2(Kgs— Kzz)?
y1(a—pb) =K3s€+ K~ — (Kz3— K1) — — (Kgg— Kyp)@®
p P +uoAxH3a  (Bloch wall), (32
+uoAxH3a (Neel wall). (22)

B. Boundary conditions np=T (Neel wall), (33)

Next we have to incorporate the boundary conditions.
These are determined by the director alignment parallel and
antiparallel to the external magnetic field inside and outside
the wall, respectively. Théinstantaneoyswall thickness is
given as&y(t) + &1(t), where &y(t) measures the outward
distance from the core to the outer edge of the wall an
£,(t) means the core-to-edge distance towards the cylind
axis. Therefore, the boundary conditions read

. 32 3 a
yia=-— WK33+ Kaz—Kyp]a®—(Kazs— K11);2

+uoAxH3a (Neel wall). (34)

gliquations(31) and (33) describe the time evolution of the
wall core, i.e., the cylinder radius, whereas E(&2) and
(34) govern the dynamics of the wall half-width for the
O(&,t)y=m, ©O(—&,1)=0, (23 Bloch and Nel wall, respectively.

0'(&,1)=0, 0'(-&,1)=0. (29 C. Solution for the wall dynamics

Equations(23) determine the director orientation at the edge '€ coupled equations of moti¢81)—(34) can be solved
of the wall and Eqs(24) are the conditions for the smooth- analytically. First we solve Eq$31) and(33) for the dynam-

ness of the solution. ics of the wall core. It obeys a square root law:
We can immediately express the boundary conditions in K
terms of the polynomial expansion for the tilt angle field p(t)= /p(Z)_Z_ZZt (Bloch wall), (35)
(18): Y1
1 1 T K
ago+ 5bés+ soéo=7, (25) p(t)= p%—Zy—sst (Néel wall). (36)
1
s 2 Qualitatively, starting from a wall radiysy, the cylindri-
atbgot 2 c&=0, (26) cal domain wall will shrink. This behavior is similar to what

has been found for relativistic field theorigk3]. For usual
1, 3 iy nematic liquid crystal¥,, is the smallest of the elastic con-
—ag+ §b§1_ 5051: K (27)  stants. Therefore, Eq&35) and (36) indicate that the decay
time of the Bloch wall is larger than that of the &lawall.
1 Now we can use the solutior{85) and (36) to eliminate
a—b¢;+ §C§§=0- (28)  the p dependence from the equations of motion for the wall
width (32) and(34). The latter then read

Equations(25)—(28) form a set of inhomogeneous linear

equations for the expansion coefficieai&),b(t),c(t). The a=A(t)a—Ba’, (37
solubility conditions yield relations between the expansion o
coefficients and the wall partial widthig(t) and &(t), where the abbreviations stand for
37 2(K3z—Kz)  wmoldx ,
=£, a=-—, 29 A(t)= H Bloch wall), (38
&=t a= g (29 (0=t H ), (38)
3 32 32 K
b=0, c=-7@=" 522" (30) B=5— 7_212 (Bloch wall), (39
We note that th tial widths of th Il have t doutt
e note that the partial widths of the wall have turned out to (Kss—Ki)  pody

be identical and there is no quadratic term in the polynomial A(t)=—

HZ (Neelwall), (40)
expansion. y1p6—2Kgt 71 °
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K33_ Kll

32 K
33+
97 vq Y1

(Neel wall). (41
Equation (37) is an ordinary differential equation of Ber-

noulli type. By the substitutiora= 1/\/3 it can be trans-
formed into an inhomogeneous linear differential equation

a+2A(t)a=2B, (42

whose general solution is obtained from a twofold integra-

tion:
- 1 -
a(t)= W[ZBN(tHao], (43
t
M(t)=exp( Jodt’ZA(t’)), (44
t
N(t)=f dt’M(t’). (45)
0

a, is the initial value for the auxiliary variabla(t). This
variable is related closely to the wall half-wid(t) [Eq.
(51) below].
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TABLE |. Material constants of PAA at 120 °C.

Splay elastic constan€; 7.0<10°2 N

Twist elastic constari ,, 4.3x107°2 N

Bend elastic constarn€; 171071 N

Rotational viscosityy, 6.7<10°2 Nm/s

Magnetic anisotropytoA x 1.21x 1077

IV. QUANTITATIVE RESULTS

The analytical results for the dynamics of cylindrical do-
main walls in nematic liquid crystals that have been obtained
in the preceding section can be specified to real materials.
For further considerations we choose the parameters that en-
ter the solutions according to the nematic phase of
p-azoxyanisole (PAA) at 120°C [1,2] (Table ). The
magnetic-field strengtid, has been chosen to be 500 Oe,
according to a magnetic flux densiBy= woHy=0.05 T.

The initial configuration is a cylindrical domain wall at
rest. At zero time the cylinder radius is larger than the wall
half-width by two or three orders of magnitude:
po=p(t=0)=0.1 mm, with £,=¢&(t=0)=1 um or
0.1 um.

Figure 3 shows the shrinking of the wall according to the

For our case of the cylindrical domain walls all integrals Square-root law35) and (36). The actual decay time is the

can be solved analytically:

M(t)=e"(1-Bt)?, (46)
ealﬁ( ﬁ) 5+1 a ( a )
N(t)= —| — o+1—=|—vy|l 6+1=—at|]|,
(t) B Y 5" e
(47)
where additional abbreviations are introduced:
2u0A 2K
= MoR X Hg, _ _222
Y1 Y1Po
K33
6=—2—+2 (Bloch wall), (48)
Koo
. ZMOAXHz _ 2Kgg
Y1 o’ 71Po,
K11 -
6=1— Ko (Neel wall). (49

33

In Eq. (47) y(v,x) stands for the incomplete gamma func-

tion, whose integral representation is

y(v,X)= joxdteftt”fl. (50

From the solution for the auxiliary variabia(t) the time
evolution of the wall half-widthéy(t) is obtained by simple
back substitution

da(t) 4

&)= (51

moment when the cylinder radius touches the edge of the
wall. However, from the temporal evolution of the wall
width (see below it is obvious that the decay time is only
slightly overestimated when taking the time for which the
cylinder has shrunk to zero:

2
Y1p
Tdecay=ﬁ (Bloch wall), (52)
2
Y1Po ,
Tdecay:m‘ (Neel Wa”) (53)

0.1
— 008}
z
= 0.06 |
w2
=
= 0.04 t
-
S 0.02 |
2

0

time [g]

FIG. 3. Temporal evolution of the radius of a cylindrical domain
wall in PAA at 120 °C. The initial wall radiup(t=0)=0.1 mm.
Solid line, Bloch wall; dashed line, e wall.
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FIG. 4. Temporal evolution of the half-width of a cylindrical
domain wall in PAA at 120°C. The initial wall half-width
p(t=0)=1 um. Solid line, Bloch wall; dashed line, Mewall.

FIG. 6. Catastrophic behavior of the width of a cylindrical
Bloch wall in PAA at 120 °C.

_ _ ) Introducing the parameters given at the beginning of this
The main feature of the Bloch wall are twist deformations,section, we obtairé .= 0.15 um for the half-width of a

whereas the Na wall consists rather of bend deformations. planar Bloch wall. However, according to Figs. 4 and 5, the
The decay timeg¢52) and (53) depend on the elastic con- metastable value for the half-width of the cylindrical Bloch
stantsK 3 and K, the Neel wall decays about four times  \aj| is ¢g,0=0.21 um. The discrepancy is due to the cur-
faster than the Bloch wall. vature that gives rise to additionakend deformations. As-
Interestingly, the dynamics of the wall width reveals two suming that a similar law to Eq(54) also holds for the
separate processes on different time scales. First a rapid,rved wall, we can extract an effective elastic constant
change occurs from the initial half-width to a metastabIeKBloch:8'4>< 10"12 N. For the curved Nel wall the coher-

state that does not depend on the initial conditigigs. 4  ence lengthFigs. 4 and Bis &ye=0.68 wm, corresponding
and 5. The metastable half-width can be related to the mag;q g effective elastic constant Kfye= 8.85< 10" L N. This
netic coherence lengiy,,y. For planar geometry the direc- means that the elastic energy content of cylindrical domain
tor would reorient in an external magnetic field byvaist  \alls is about one order of magnitude larger for theeNe
deformation on a length scal&9] of geometry than for the Bloch-like reorientation.
As already stated above, the effective coherence length
Epioch OF Eneel dENOtes a metastable state. After several sec-
Ema= K2z i (54) onds, when the cylinder has shrunk so that its ragii$ is
HoAx Ho of the orderéy(t), our solution for the wall half-width breaks
down. Formally, our expressions for the Bloch wall reveal an

0.8
1
=1 I — B
= 06 t § o
ﬁ ).
e — _
5 047 = 0.6
E z
: S = 0.4 |
= -
— 0.2 | E
g = 0.2 ¢
° —— g
0 0.05 0.1 0.15 0.2 0

1.9 192 194 196 1.98 2

time [ms] :
time [s]
FIG. 5. Temporal evolution of the half-width of a cylindrical
domain wall in PAA at 120°C. The initial wall half-width FIG. 7. Catastrophic behavior of the width of a cylindricaleNe
p(t=0)=0.1 um. Solid line, Bloch wall; dashed line, Mewall. wall in PAA at 120 °C.
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implosion (Fig. 6), whereas for the N wall we obtain an domain wall depends on the material constamts,,
explosion(Fig. 7) of the wall width. This is due to the op- K,,, Ks3, wq, andy4, they could be useful for the deter-
posite sign of the quantity in Egs.(46) and(47) and thus  mination of these constants by observing the shrinking of the
depends on the relative magnitude of the elastic constantylindrical domain walls.

[cf. (48) and (49)]. Actually, one should remember that for It is possible to generalize our calculations to domain
wall half-widths larger than the cylinder radius the boundarywalls of a more general shape, e.g., we could allow for a
conditions(24) are not correct and then our solutions losemodulation along the axis or for noncircular sections by the
their physical meaning. Thus, within the framework of thex-y plane. For the relativistic scalar field theory this has been
polynomial expansion we are able to study the decay of thperformed in Ref[13(b)]. The calculations in the general
cylindrical domain wall until its radius becomes approxi- case are much more cumbersome than for strictly cylindrical

mately equal to its half-width. symmetry, while the main ideas of the polynomial approxi-
mation remain unchanged. For this reason we have chosen to
V. REMARKS restrict our presentation to the cylindrical geometry.

Our solutions forp(t) and &y(t) give a rather detailed
d_escrlptlon_of the time _evoluthn of cylindrical domain Wal_ls. ACKNOWLEDGMENT
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