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Phase diagram of cholesteric liquid crystals in a field
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The phase diagram of a bulk cholesteric liquid crystal in an electric or magnetic field applied perpendicular
to the pitch axis is studied. This is an example of a system which exhibits different types of phase transitions
between various modulated and homogeneous states. Possible transitions are of thré®) tiysesirder,(2)
continuous and described as a condensation of solitons with repulsive interacti¢®), @yntinuous but
characterized by a small order parameter. The detailed behavior of the temperature-field phase diagram is
found to be strongly dependent on the intrinsic chirality, where the existence of an undulating state is predicted
at high chirality. The relevant temperature, electric field, and chirality ranges are experimentally attainable.
[S1063-651%97)00308-3

PACS numbegs): 61.30.Gd, 64.70.Md, 61.30.Cz

I. INTRODUCTION third segment, which is first order. The two critical points at
the two ends of the first-order segment are different in char-
Phase transitions in systems which exhibit modulatedacter: one is a usual tricritical point, separating the first-order
structures have been of interest for a long time due to theisegment from the instability-type segment, and the other is a
frequent appearance in a wide variety of physical systemsnulticritical point, which separates the first-order segment
The transitions from modulated to homogeneous states camnom the nucleation-type segment.
be of different types and involve various types of critical A bulk cholesteric liquid crystal which is subjected to a
points (multicritical, tricritical, etc). A particular example of magnetic or electric field is also a system which exhibits a
such a system, where some of these features manifest themnntinuous phase transition of a nucleation type. When the
selves, is that of a cholesteric liquid crystal upon which aexternal field is applied perpendicularly to the helical axis, at
magnetic or electric field is applied. The behavior of a bulklow temperatures, it unwinds the helical structure of the cho-
cholesteric liquid crystal in the presence of an external fieldesteric state via a nucleation-type transitjiér-8]. However,
is of importance for many practical applications as well asthe cholesteric liquid crystalline system differs from the
for basic physical research. In this work we investigate thanagnetic system in other features and these differences lead
behavior of a bulk cholesteric system in an externally appliedo a very different global phase diagram. For example, unlike
field within the context of phase transitions between modumagnetic helical systems, the zero-field transition to the dis-
lated and homogeneous structures. ordered state in cholesteric liquid crystals is first order. This
Continuous phase transitions from modulated to homogeis due to the extra term in the Landau free energy, cubic in
neous states can be realized via two different mechanismghe order parameter, which is allowed by symmetry in the
The ordinary second-order transition involves some smaltholesteric case but is absent in the model which describes
order parameter which vanishes continuously at the transihe magnetic system. Within the approach pursued in this
tion. This type of transition is referred to as amstability-  work, the state of the system is determined by three param-
type transition[1]. However, another type of continuous eters: temperature, field, and the intrinsic chirality of the cho-
transition which is not associated with a small order paramiesteric. Certain regions of the phase diagram in this three-
eter is possible. This type is described by nucleation of solidimensional space have been studied in the pastl3.
tons. The solitons arise as the domain walls separating rddere we use the mean field approximation to study the glo-
gions of homogeneous states. In the domain wall region thbal phase diagram and the nature of the resulting phase tran-
perturbation of the homogeneous phase is not small, and thisstions. In this work, we study a model which describes the
a small local order parameter cannot be defined. The distandehavior of a bulk cholesteric liquid crystal subject to an
between solitons increases as the transition is approacheaipplied magnetic or electric field normal to the helical axis.
and becomes infinitely large at the transition point. TheseAs discussed by Ref§6,8], in bulk materials, if the field is
transitions are referred to asicleation transitiongl—4]. A initially applied in a different direction, the helical axis re-
model for the homogeneous-modulated transition in magerients to be perpendicular to the field. In restricted geom-
netic systems, in which both kinds of continuous phase tranetries, boundary effects may compete with the axis realign-
sitions are present along the phase boundary, was studied byent, resulting in interesting reorientation transitiqsse,
Schaub and MukamégE]. The phase diagram of this model for example[14,15 and the references they contaim this
exhibits a transition line consisting of three segments: two opaper we do not consider boundary effects. We also do not
these correspond to the two types of continuous transitionsonsider blue phase structures, which arise in systems with
(instability and nucleation typgsThey are separated by the high chirality. Three distinct types of states are found: a
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nematic statgwhich may be either strongly or weakly or- of the cholesteric uses a symmetric traceless second-rank
dered, a cholesteric modulated state with a nonvanishingensor,Q;; , for example, the anisotropic part of the magnetic
winding number, and an undulating state, in which the direcsusceptibility tensor. The free energy density of a bulk cho-
tor undulates periodically around the magnetic field direcqesteric liquid crystal in the presence of an external magnetic
tion. These states are characterized by different forms of théield H can be described by the following Landau expansion
two scalar order parameters, referred to as the nematic afd8—20Q:

the phase order parameters. The nematic order parameter,

which indicates the degree of orientational ordering in the 1 1 1

system, is small in the weakly ordered nematic state and fchOFEAQijQp—§BQijQ1kai+ZC(Qiiji)2

larger in the strongly ordered nematic state. The phase order

parameter is constant in the nematic state, a bounded peri-

odic function in the undulating state, and an unbound in- +q05iijilel,j+ELlQij,inj,k+ ELZQij,iij,k
creasing(or decreasingfunction in the cholesteric state.

The cholesteric phase diagram is very different from that 1w
found by Schaub and Mukamel for magnetic systems. The ~oXa HiQijH;. @

global phase diagram, in the temperature—applied-field plane
varies as the Intrinsic ph|rallty of the system IS changed. T.h'SAs usual, the coefficiem is taken to vary linearly with the
parameter is tunable in our model and has different physmatlern eratureA=a(T— T*), wherea and T* are constants
values for different cholesteric liquid crystalline materials. P o L '
We found that cholesteric liquid crystals exhibit several The other coefficients3, C, qo, Ly, andL,, are taken to be
types of phase transitions between the various availabliémperature independent. Heigy, is the completely anti-
states and different types of critical and multicritical points. Symmetric third-rank tensoQj; = dQ; /dx,, and the sum-
The phase diagram and the various critical and multicriti-mation over repeated indices is being used. The molecular
cal points found in this study may readily be tested experifagnetic anisotropy}' is assumed to be positive, so that the
mentally. Estimates of the relevant temperature, electrignagnetic field tends to align the liquid crystalline molecules
field, and chirality rangesto be discussed in Sec. )\at along the field direction. The case of an electric fi&d
which many of the interesting features of the phase diagraris ~ described by  the  substitution x)H;Q;H;
are expected to take place indicate that they are experimem[egﬂl(4w)]EiQij E; Whereeg" is the molecular anisotropy
tally attainable. In experimental studies of the temperature-ef the dielectric permittivity.
electric-field phase diagram of the nematic materials The expansiorfl) includes all terms allowed by symme-
4-cyano-4-fi-hepty)biphenyl (7CB) [16] and 4- try, up to fourth order inQ;; and quadratic order in its de-
n-pentyl-4-cyanobipheny{5CB) [17] it was found that the rivatives. The chiral nature of the cholesteric system results
nematic-paranematic critical point is reached Ex250 in the pseudoscalar first-order spatial derivative term in the

kV/icm and atE= 141 kV/cm, respectively. By, for example, free energy. Without loss of generality, the sign @f is

mixing 5CB with a chiral liquid crystal, the system will be- taken to be positive, corresponding to a right-handed chiral

come cholesteric. The interesting features of the resultingtate.

phase diagram are expected to take place at fields below or |t is well known that the tensor order parame@®y which

around 150 kv/cm. minimizes the free energyl) in the cholesteric state has
The organization of this paper is as follows. In Sec. Il wesome degree of biaxiality. However, for long wavelength,

derive the rescaled model out of the free energy of a Choleq-e smalld.. this biaxiality is small21.29. For simplicit
teric liquid crystal subjected to an external field applied per-;. ..’ o, IS Diaxiaity 1 21,22 mp ety

dicular] he pitch axis. One h | licitly th the biaxiality is neglected in the present study, considering
pendicularly to the pitch axis. One has to solve explicitly t eonly a uniaxial order paramet€y;; . In this caseQ;; can be
resulting equations of motion, but since we were not able t ritten as
do this analytically we solved them numerically. Approxi-
mate analytical tools were also applied in order to gain more

. ) : : 1
understanding of the mechanisms underlying the phase dia- Q; ==S(3n;n;— ;) 2)
. ij it ij/

gram. In Sec. Il we present the complete mean field phase 2
diagram, in the temperature-field plane, for different values
of the intrinsic chirality obtained by both analytical and nu- wheren=(n,,n,,n,) is a unit vector anc is the magnitude
merical means. The analytical results were obtained by usingf the order parameter. In the geometry which is considered
a reasonable, phase-only, approximation in which only théere n is assumed to be a planar vecton=xco¥d
phase order parameter was allowed to vary in space. The ysin®, x andy being two unit vectors perpendicular to the
accurate numerical results were obtained by solving numerihelical axis and perpendicular to each other. Using this form
cally the coupled nonlinear Euler-Lagrange differential equaof the order parameter in E4l) we get the following ex-
tions for the two order parameters with appropriate boundarpression for the free energy:
conditions. In Sec. IV we summarize the main results and

discuss the experimental implications of this study. 3 1 9 9. 9
fcho,:ZAsz— ZBS3+ Ecs“— Zqoszaz®+ ZLSZ(&Z®)2

Il. MODEL
In this section we consider the Landau theory of choles- 9 2. mpee. 3 w2
o . : L +—=L —=XaH"S—<sx.H
teric liquid crystals. The appropriate macroscopic description 16 (95) gXa S gXa Sc0s20, ©
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where we take, for simplicitylL;=—2L,/3=L. This free 0.4 T T
energy is checked to be insensitive to the ratidofL; for
values ranging from—3/2 up to 10. The number of free

P
parameters can be reduced by rescaling the expression fo
the free energy density, using the following relations:

S_lB ®_1 A_1|32
“3c® 972% ATsch

CP

CE

1

z=¢, &

0.2
9CL 2 B®
2w Mg

4 r
1B

fchoI:3_6@-7:- 4 C

Note that r

may be written as 7(T—T*) where 0.0}
r=6Ca/B?. The resulting rescaled free energy takes the
form
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It is described by three parametersv, andqg, wherer is \'4

proportlona! o the redlucgd temperatyds proporyon_al FO FIG. 1. The ¢,v) phase diagram for thgy=0.1, obtained nu-

tme. rr|1'agnetlc or elec'[tz[cglgld slqus:jred, ;mﬁls th? 'Irgr"?s'ﬁ merically, as described in the text. Here and in the following phase

chira ity pa.ramEterW ichisre ated to the Zero-Tiex pltc ’.asdiagrams solid lines represent first-order phase boundaries and

discussed in Sec. IV. The prime Qenotes QIﬁerentlatlon W'thﬂashed lines correspond to continuous phase boundaries. The cho-

respect to the reduced coordinate This is a one-

dimensional model, where the pitch is paralleltowe as-

lesteric, nematic, and paranematic states are denotézi by and

P, respectively. The critical point and the critical end point are
sume that the magnetic or electric field is applied in a direCyenoted by CP and CE, respectively. The approximate nucleation
tion perpendicular to the helical axis. transition line(unshown given by Eq.(8) is shifted to the left by
The main difference between this free energy density and /v ~0.008 compared to the numerical line.

that of the magnetic system studied[5] is the existence of

the cubic term— ¢3/3 and the linear term-v ¢/3 in Eq.(5). the modulated cholesteric stafewhich is characterized by a

It should be noted that compared to the magnetic system, thiseriodic nematic order paramete () and anunboundin-
results in an extra tunable parameter, the rescaled intrinsicreasing phase variablé(?), and an undulating state,

chirality go. The phase diagram and the nature of the variousvhich is characterized by periodig({) and abound peri-
transition lines and critical points are found to be stronglyodic phase variablé(¢).
dependent om,.

The nematic state occurs at the highow r region of the
The equilibrium state of the system is described by thephase diagram, the paranematic state at dovhigh r, and
two rescaled functiong({) and 6(¢). These functions are the cholesteric state at low, low r. At high temperatures
determined by the minimization of the functional associatedvhen no field is applied upon the system, the cholesteric
with Eqg. (5) with respect to bothp({) and 6(£). This mini-  order is either metastable or unstable, and the system be-
mization results in the following Euler-Lagrange equations: comes isotropic via a first-order phase transition. When a

L field is switched on, it weakly orders the system to form a

W 42 43 L p "2 paranematic state. At lower temperatures the field distorts the

¢'=r¢— ¢+ ¢"—veod 37 200$0" + H(67)7, helical structure of the cholesteric state, until it is completely

(68 unwound at some critical value of the field, at which the
system exhibits a phase transition to a nematic state which is

(6b) ordered in the direction of the field. For high enough chiral-

ity, the undulating state develops near the paranematic-

In order to get the full phase diagram in thed,do)  nematic critical point, which is at high, highr.

space, one has to solve these equations, subject to the appro-

priate boundary conditions. The resulting,{) phase dia-

gram is presented in Figs. 1-3, for three different values of

$20"=v $SiNG+2q9dp P’ — 2’ 6.

Ill. MEAN FIELD PHASE DIAGRAM

go- The following states were found to be stable in some The various states which are realized in this mddein-
regions of this phase space: the neméati¢or paranematic

atic, cholesteric, and undulatingccupy different regions in
P) state, which is characterized by a constaénand =0,

the temperature-fieldr (v) phase diagram. These regions are
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represent the points on the transition line at whithhanges from
being unbound to being bound. The approximate nucleation transi-

tion line (unshown is shifted to the left of the numerical line by
4.5%.

separated by phase transition lines of several types. The de-
tailed phase diagram strongly depends on the intrinsic chiral-
ity parameteny. We first summarize the main features of the
phase diagram and the structure of the associated states, and
then discuss their derivation. We also comment on the effect
of fluctuations on the critical behavior associated with the
various lines of second-order transitions occurring in the
phase diagram.

For smallqy, the typical phase diagram is shown in Fig.
1. It exhibits a cholesteric state for smallandr. This state
is separated from the paranematic and nematic region by two
transition lines. One is a first-order transition line and the
other is a continuous, nucleation-type, transition line. The
two lines meet at a critical end point CE. The first-order line
extends beyond the critical end point, separating a weak
nematic(or paranematicstate from a strong nematic state.
This line (referred to as thé\-P line) ends at a liquid-gas-
like critical point CP.

As q, increases beyond a critical valgg, the nucleation
line changes its character and becomes first-order at large
r. The two resulting segmentfirst and second ordgof the

nucleation line are separated by a multicritical point MC.
cal point is denoted by MC and the triple points B§ andT2. In Th_'s point s not an Ord'f‘ary tricritical p_omt but rather a
(b) the region of the undulating stat&l} is enlarged. The tricritical point gt Wh'Ch the interaction between solitons pha_nges from
points are denoted by TC1 and TC2. The dashed line represents thgPulsive(in the second-order segmeo attractive(in the
analytical continuous instability line, and the solid lines correspondrSt-order segmeit The first-order segment of the nucle-
to the first-order transition lines, calculated numerically. The ap-ation line meets thé\-P line at a triple point, denoted as
proximate nucleation transition li@nshown is shifted to the left  T1 in Fig. 2&). For qq larger than another critical valug

of the numerical line by 2%. (which numerically is close to the estimatgf), the nematic

FIG. 2. (a) The (r,v) phase diagram fay,=0.2. The multicriti-
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state becomes unstable to undulations around the field direc- In a nematic systengp=0), at zero field { =0), there is
tion, in some region near the critical point CP. This is showna first-order transition between a disordered high temperature
in Figs. 4a) and 2b). The region occupied by the undulating state and an ordered uniaxial nematic state. This transition
state is bounded by a transition line which forms a closedakes place at=2/9. When a chirality is introduced into the
loop, consisting of a continuougnstability-typg segment, system (,=0), the transition temperature is shifted up-
that changes into first-order segments at each end via tw@ards, tor =2/9+ qé, This transition takes place between a
ordinary tricritical points TC1, TC2. These first-order transi- disordered high temperature state and a cholesteric lower
tion lines meet théN-P line at a triple point T2. symmetry state.

The region in which the undulating state is stable be- When a field is switched orw(0), the disordered state
comes larger as the intrinsic chirality, is increased. For turns into a weakly ordered nematic state. It is easy to cal-
larger qo the region occupied by the undulating state ap-culate, in the nematic region, the transition line from a high
proaches the cholesteric region, until they merge, forming aemperature weakly orderegpbaranematic state to a low
single region. Note that the cholesteric and the undulatingemperature strongly ordergdemati¢ state. The field de-
states have the same symmetry, and therefore may exist apéndent nematic-paranematibl-P) transition temperature
single state in some region of the phase diagram. There exXs given by
ists, however, a line inside this region, separating the domain
in which the phase order parameter is unbogrtiblesteric 2
statg from that in which it is boundundulating state On r=dv+g. 9
this line the nematic order parameter develops a set of
ir;oggts ;Vrllllrfg gt:clopvlegr t?gﬁii?i s::g’O;rt]gea?zibr:ghg;;tsyhgf th e?I'his f[ransition line ends at the critica_l point, denoted by CP
free energy takes place on it. This phase diagram is shown i Fig. 1 (rc= 1/3’. Ve 1/36), which correspopds to
Fig. 3. Here, the cholester{or undulating state is separated _621/3 - This transition IS of course suppre_ssed in the re-
from the nematior paranematicstate by a line composed gion where th_e cholesterlc_ state is en_ergetlcally preferred.

The cholesteric-paranematic transition in the presence of a

of four segments. In the order of increasinghey are first . ) . -
g ghey 6{|eld is also of first order, but it takes place at temperatures

order, continuous instability type, another first order and ) . ) . .
continuous nucleation type. The instability line is separate hich are higher than in thg nonchiral system. This segment
as to be calculated numerically.

from the two first-order segments by two tricritical points
TC1 and TC2. The nucleation line is separated from the first-
order segment by a multicritical point MC.

In the following, we present some approximate analytical Another transition line which can be derived in the phase-
approaches for studying certain features of the phase dianly approximation is the cholesteric-nematic unwinding
gram. The full phase diagram is then studied numerically. transition line[7,8]. Near the nucleation transition, in the

limit where the distance between domain walls is large, the
A. The constant ¢ approximation translational behavior of the phase variablé is
0(Z+21)=0({)+ 2w, and the amplitudeb is given by the
. . o nematic solutionp, obtained from Eq(8). Treatingl as an
tp get some understandmg of the pha;e d|agrgm IS INSUUGs, yetermined parameter, the free energy difference between
tive to find some approximate analytical solutions of thes;_e[he periodic and nematic states for a cell of thicknesé.2..,

equations. A rea_sonalr_JIe sugh approximation is the one 'Bne periodl has the following form to leading order inl1/
which the nematic variable is assumed to be a constant, [7,8.23;

letting only the phas@ be ¢ dependent. This approximation

is valid at the limitv =0 and it is improved fow #0 as the c. C

intrinsic chirality of the system is reduced. We use this ap- Fol)= 2l 2229 (10)
proximation to obtain a qualitative phase diagram for the | |

model (5).

2. The nucleation line

Analytical solutions of Eqs(6) are not available. In order

Here C,= ¢3[4y— mqo], Co=16¢35y, and y= v/ $,. The
1. The N-P transition first term may be interpreted as the energy per soliton, and
In the region where the cholesteric helical structure isthe second term is the intersoliteapulsiveinteraction en-
unwound @=0) the system is described by a single ordere"dY (C,>0). In equilibrium, the distance between the do-

parameterp which becomes independent of space. The fredn@in walls, 2, is determined by minimizingr ,(1) with re-
energy density takes the form spect tol. For C;>0 the minimum is obtained dt=o,

resulting in a nematic phase. However, ©y<0, the mini-
1 1 1 4 mum is obtained at~ — (1/2y)In(—C;) with a logarithmic
F=§r¢2—§¢3+ Z¢4— 3V (7)  divergence ofl as the transition is approached. Thus the
nucleation transition occurs whe®y, =0, i.e., at

¢ = ¢y minimizes this free energy and satisfies the following

. . 2
cubic equation:

a
v=15%%0- (1

4
42 3_ .
Fbo= ot do— 3v=0. ®  Using this result in Eq(8), it is found that



1778 R. SEIDIN, D. MUKAMEL, AND D. W. ALLENDER 56

o a?—(r—2¢o+3¢3) —2dodoa | (A
1+ 1+ = 2—4r). 12 ( )( ¢):0_ 16
3 (42 2Qopoa boa’—v o/ \ Ay (10

Within the phase-only approximation, the nucleation transi-The condition for having a nontrivial solution to these equa-
tion line in the ¢,v) plane is given by Eqq11) and (12). tions is
The effect of fluctuations on nucleation transitions has
been considered previousf24]. It has been shown that in v v
d=3 dimensiongas in our casefluctuations do not change a*—a?|—+r—2¢q+ 3¢S—4q3) +3v¢g—2v+ ——r=0.
" e bo bo
the nature of the transition, and the logarithmic divergence of (17)
| persists beyond mean field.

_1
¢o—§

4

Whether« is real or complex depends on the values of
B. The muilticritical point the parameters. As argued by Jacobs and W48}, real

The interaction between solitons near the nucleation tran& cOrresponds to a repulsive large-distance interaction be-
sition line, within the phase-only approximation, is alwaystWeen the domain walls, while complexleads to an attrac-
repulsive C,>0), resulting in a continuous transition. How- tive Iarge_—dlstance interaction. The large-distance interac-
ever, we will show that when the asymptotic behaviordof ~1ONS, which are relevant when only a small number of
at large¢ is taken into account, the interaction between soli-S0litons exist in the system, can be determined by using lin-
tons is always positive for smadk, but for q, greater than a €@ _Stability analysis around the asymptotic fofi#) for
critical valueqS, the interactionC, is negative at smaly ~ #(¢) and 6({). The interaction free enerdyi(r.v,a) is
and positive only at large. WhenC,<0, a chain of solitons the difference between the free_energy o_f a chain of sollyons
forms and the transition is first ordgs,25]. The first-order (Fcnaid and the sum of all single soliton free energies
segment of the nucleation line and the cholesteric—weaktFsingid- It can be calculated at the unwinding transition us-
nematic transition line meet tHd-P line at the triple point ing the asymptotic forms of( ) and 6(¢), Eq. (14). For
T1, as is shown in Fig. (). the case of complexy, F;.(r,v,a) is negative at certain

In order to determine the point at which the intersolitonintersoliton distances, and the chains are favorable over the
interaction changes from repulsive to attractive, thesingle soliton configuration. In this case, the interaction is
asymptotic behavior of botkh and ¢ at large distances from attractive, and the transition from a nematic state to a cho-
the center of the soliton has to be determined for single solilesteric state is first order. i is real,F;,(r,v,«) is positive,
ton solutions. It is useful to locate the center of a soliton atand a chain configuration is not favored energetically. This
the origin by making the transformatiofi=¢—1. Then, as Situation describes repulsion between solitons and leads to a
continuous transition.

The interaction between solitons changes from repulsive

d(ro)=¢y, 6O(—2)=0, 6(x)=2m, (13)  to attractive, at the point at which the discrimindntof Eq.
(17) vanishes. This yields the following equation which
whered, is the value ofp which minimizes the nematic free Should be satisfied by the multicritical point:
energy given in Eq(7). Since we are looking far away from )
=0, we may expan@({) and () around their limiting D= v +r—2¢o+ 3¢(2,—4q(2,) _ 4( 3vo—2v + Lr
values: bo $o

| — o0, the limiting values ofp(¢) and 6(¢) are

— ~— =0. (18
d(L)=dot d({), (14a
o _ We then assume that the multicritical point lies on the
— | 6(¢), (<1 nucleation line, as given by the phase-only approximation, so
)= ~— — (14b  that its coordinates are determined by a simultaneous solu-
2m+0(¢), £>1. tion of Egs.(18), (8), and(11). The second equation deter-
, i i i i minesg, for givenv andr, and the third one determines the
_ The linearized equations of motion which result from thejersection point of the locus of points at which the interac-
insertion of Eq.(14) into Eq. (6) are tion changes from repulsive to attractive with the nucleation
_ _ _ line. There are only two points in the ) plane which
¢"+200¢0 0" — (r — 2o+ 3¢5) $=0, (158 satisfy all three equationd8), (8), and(11). They are given
by
$50"—20opod’ —v bg6=0. (15b) ,

. . 5w
= (g5 ) E_(“W))qg' e

It is sufficient to examine thel —« limit since {— —x
leads to the same result. ,

Let d=Agexp(—al), 6=Aexp(—al) whereA, and U(i>:7’_qz¢wt) (190
A, are constants. Inserting this ansatz into the linearized M 167070
equations of motion, one gets an algebraic set of equations
for A, andA,: and they correspond to
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ME =11+ 1+ 8(4+ 7— 72148)q3], q=200102, (239
respectively. 1 1/ v 1
For go<g§=~0.1434 both pointsyy,,ry) lie above the gfz_[ _ _2(__ = o+ B> } (23b
N-P transition line in the ,v) plane; thus for these values 2 205164 2
of qq the cholesteric-nematic transition line stays continuous
all the way up to theN-P transition line. Forgy>qg, the , 1 1/ v 1 5
point (v ,ry;) lies below theN-P transition line. This is the 02=5 1+ E(F%_ 5 %ot b0 } (230

multicritical point at which the cholesteric-nematic nucle-
ation transition changes from continuous to first order. At ) _
qS, the meeting point of the first-order segment of the nucle-The expressions foar12 and o are not always physical. Re-
ation line and the\-P line changes its character from being 9uiring thato and o; are non-negative we obtain the fol-
a critical end pointas in Fig. 1 to being a triple poinfas in  lowing condition:

Fig. 2@].

v 1

o 3ot &

2
60 <2qp. (29

C. The undulating instability line

In the following, we determine the stability limits of the
nematic state. We consider a situation in which the nematighe minimal g, for which this condition is satisfied is

state is periodically perturbed and study the conditions undeﬁg: 1/\/48~0.1443. Forgo= gy the instability takes place at
wh|ch Itis unst_able against undulﬁtmnsd. the critical point CP which ends th¢-P line. Forgo<qg the
Itis cgnvenlent to represent the order parametﬁ@) condition (24) is not satisfied and the nematic state is stable
ando({) in terms of t}}e two.real scalar functiog({) and to small perturbations. The predicted valueggf=0.1443 is
ftze(ri) af é;‘((ﬁ;: d;{) ?Ig)' Xﬁ% ;‘tzcg?l;?guigrphae”noer:jnztigasr; rtne- very close to the estimated value g§=0.1434 which was
descr,ibed b)¢p=¢l $,=0 T2he nematic amplitude, sat- obtained in the preceding section using an asymptotic ap-
1= o 2 P 0 proximation. We have not done the extensive numerical cal-

isfies EQ.(8) and minimizes the nematic free ener@. To | ired to determings ol d thus det
carry out this expansion we introduce the following ansatZu'ation required to determingg precisely an us deter-

for the fieldsé, and é, [5]; mine which of the two critical wave vectorgg andqg, is
larger. Forgy>qg the instability line is physical, and there is
d1= o+ €A+ eo1c09qL) + €28,0052qL) + O(€3), a region in the (,v) plane where the undulating state is

(20  stable. The a,=0 line is stable as long as
) ) as(01,05,9,A,81,8,)=0. The expression foa, is rather
$o=€0,SiN(qY) +€*B,8iN(29¢) +O(€), (20 |engthy and will not be explicitly presented here. After de-
termining the parameter&, B,, and 8, by minimizing a,

2 2__ F
whereo’+o5=1 and. the coefflcu.ar?tﬁ-, o1, B1, B2 and  \ith respect to each one of them, and solving the equations
g have to be determined by a minimization of the free en- ,=0 anda,=0, we find two distinct tricritical points for

ergy. We are interested in calculating the free energy to ordeéveryq0>q3 [see Fig. 2)]. For values ofu below the tri-

4 : . .
€’ and therefore h|gher-orQer terms in the_ EXpressions " ritical points, the transition to the undulating state is first
¢1 and ¢, need not be considered. Using this expansion, th%rder. At go=(qy the critical point CP becomes a Lifshitz

f/(/?i?teenn:sg; Sg\:vgrngelﬁggt; associated with Eg). can be point[26,27. The (r,v) phase diagram in the vicinity of this
point is basically the phase diagram corresponding to a Lif-
F=Fo+aye2+aet+0(ed). (21) shitz point in the presence of an ordering field. The first-
order segment of the instability line is found numerically for
This is a Landau-type expression for the free energy near several values ofj,. For qo=qq the undulating instability
second-order transition expanded in the small order paraniine is far from the triple poinfr1 (or from the critical end
etere. Here,F,, given by Eq.(7), is the free energy of the point CE), and it intersects th&l-P line at a triple point
nematic state characterized by a constait ¢,. The T2, forming a closed loop. An example for this case can be
second-order transition between the nematic state and trgeen in Fig. &), for qp=0.2. Asqq is further increased, the
undulating state occurs when the coefficient of the quadraticegion where the undulating state is stable increases, and its
term vanishes, i.eg,=0. boundaries move towards the cholesteric region until they
merge atgy~0.25. In this case, as is shown in Fig. 3 for
0o=0.4, the first-order cholesteric-paranematic transition
and the first-order cholesteric-nematic transition continue
smoothly the first-order segments of the instability l{tlee
meeting points are denoted in Fig. 3 by bars
~GoGoo2F Zqz' (22 Theg Eandau-Ginzburg modegl co?/responding to the
second-order segment of the transition from the nematic to
The parameters, o,, andq are determined by minimizing the undulating state is ak-Y-like model. It is thus expected
a,, subject to the constrairathr a§=1, and they are given that this transition belongs to the universality class of the
by n=2 component vector model.

fom— 2t R g2 )t SR 2024 1)
2 12¢0 2 4 4 o\v1 4 0 1
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D. Numerical results T T T

As noted in the preceding section the Euler-Lagrange 0.02 - i
equations(6) obtained for the mode(5) cannot be solved
analytically. In the beginning of this section, we presented an
approximate treatment of E@5), in which only the phase
order paramete® was allowed to vary in space. We found
an approximate expression for the nucleation line, Ef®. q
and(12), and the multicritical point on this line, at which the
nature of the cholesteric-nematic transition changes from
continuous to first order. However, in order to obtain a more
detailed phase diagram of modé) the { dependence op
must also be taken into account, and thus a numerical treat-
ment of Egs.(6) is needed. Equation&) for ¢({) and
0(¢) are solved numerically, employing a special code called
COLNEW [28,29, which was specifically developed for solv-
ing multipoint boundary value problems for a coupled sys-
tem of ordinary differential equations. We chose to rescale
Eq. (5) by the lengtH (2l is the periodicity of the modulated
state$, so thatl becomes a parameter in the expression for
the rescaled free energy, rather than in the limits of integra- 0.00 . . . .
tion. The per|od|C|ty 2 and the_ chiralityq= 7T/I_ are deter- : -0.04 0.03 0.02 -0.01 0.00
mined at every pointu,r,qp) in the phase diagram by a
minimization procedure. Foy =0, the actual chiralityq is 1/In(vc- V)
equal to the intrinsic chiralityqy. The rescaled Euler-
Lagrange equations that were solved are

0.01 - i

FIG. 4. The chirality wave vectoq as a function ofv, for
go=0.1, along the cholesteric—weak-nematic transition line, as the
1 1 2 1 critical end point CE is approached. The horizontal axis is chosen to
|—2¢"+ 3V~ ré+ ¢?— p3+vcoh+ l—q0¢0’ - I_2¢( 6')2 be 1/Inp.—v) (v,=0.004 017 67), in order to show directly the

behavior which was described in Sec. Il A 2.
=0, (259 , . . . .
determined by the first point for which there existed a
P 2 g=0 solution of the Euler-Lagrange equations but the cho-
L 0"—2qpdpd’ + |—2¢¢’ 0'—v psing=0, (25b Iesterlc((_)r the undglatmgfree energy is larger than the cor-
responding nematic one.

where the prime stands now for a derivative with respect to Note that the nematic solutionq&0, =0, and

. . L~ ¢=cons} is a trivial solution for the Euler-Lagrange equa-
the dimensionless coordinate=¢/1. The rescaled boundary tions, but it is not the thermodynamically stable solution out-

conditions that should be satisfied fyand 6 are side the nematic region. The parameters at whichqts€®

$'(0)=0, ¢'(1)=0, (269  solution is replaced by the# 0 one can then be determined
only by comparing the free energies of the two solutions.
6(0)=0, 6(1)=m (26b) The results of the numerical solution are summarized
graphically in Figs. 1-5. In Figs. 1-3 the complete phase
for the cholesteric configuration, and diagrams for several values @f, are presentedgp=0.1,
) ) which is belowqg and qg, go=0.2 which is above both
¢'(0)=0, ¢'(1)=0, (273 a5 andqg, andge= 0.4 which is far above$ andqg). These

_ _ are the typical phase diagrams, corresponding to three differ-
6(0)=0, 6(1)=0 (27h) ent regimes ofgy. As a rule, the region occupied by the
for the undulating configuration. cholesteric state becomes largercgsis increased, i.e., the

Equations(25) are solved for both sets of boundary con- cholesteric—weak-nematic t_ransition occurs at hig_h_er tem-
ditions [Egs. (26) and (27)] by employing thecOLNEW pro- peratures gnd the cholestenc—strqng-r!ematlc transition tgkes
cedure. Examination of the order parameter profiles an®!ace at higher values of the applied field. The cholesteric—
comparison between the energies of the different states el{€a@k-nematic transition temperature increases Zmonotonl-
ables us to determine the thermodynamic boundaries separ&@lly with the field, intersecting theaxis atr =2/9+qg. For
ing the different states in the phase diagram, and also tfo="0.1 (<qg), this line joins theN-P line smoothly while
determine whether the phase transitions are of first or secorfdr q,=0.2 (>qg) the two lines intersect with a finite
order. change in slope. In the case df,=0.1, the entire

Both first- and second-order boundaries appear in theholesteric-nematic transition is continuoid a nucleation
phase diagram. A point on the nematic side of the secondype). This line intersects th&l-P line and the cholesteric—
order nucleation transition line is found by reaching the firstweak-nematic transition line at a critical end point CE. As
point at which the minimum of the free energy occurred atthe CE is approached along the cholesteric—weak-nematic
g=0. For a first-order case, the situation is different. It isline, g vanishes, as is shown in Fig. 4. Thg=0.2 case is
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T T ' different. The multicritical point ¢=0.0176,r=0.25) on
(a the cholesteric-nematic transition line lies below the triple
1.0} (&) T point, and thus the segment of this transition line which con-
--------------- N LT T e nects the multicritical point and the triple point is of first
order. In this casg does not vanish at the triple point, but its
value changes discontinuously. The cholesteric to strong
081 ] nematic transition line is first order at the triple poirt and
(I) the three transition lines which meet at this point must form
three angles, each of which is smaller than 180°, according
to the rule for the intersection of three first-order transition
lines [30]. The multicritical point slides down along the
cholesteric—strong-nematic transition linecggsis increased,
and the first-order segment of this transition becomes longer,
as can be seen by comparing teg=0.2 case in Fig. @) to
the go=0.4 case in Fig. 3.
. As ( increases, the triple poifitl gets closer to thél-
. @ P critical point CP ¢.=1/36,r,=1/3). At the same time,
02| i the point at which the instabilityto undulationg line closes
on theN-P line T2 slides down in the opposite direction. For
L L i g=0.2 these two regions are well separated, as can be seen
0.0 0.5 1.0 1.5 2.0 in Fig. 2@). In Fig. 2b) the detailed structure of the insta-
/] bility line for q;=0.2 is shown. The dashed line which con-
C-» nects the two tricritical points represents a continuous tran-
sition, and the solid segments which meet on h line
(b) ! ' ' correspond to first-order transitions. Ag, is further in-
creased, the distance between the two poinid)(and
(T2) decreases, until they merge fgg~0.25. The precise
mechanism of this merging process was not investigated in
this study. For values afi; which are larger than 0.25 the
global phase diagram changes. The cholesteric and the undu-
lating states are no longer separated, but instead form a
single modulated state. Naively, one would expect the two
states to be separated, since their modulated structures seem
to be topologically differenfin one casef(¢) is unbound
while in the other it is bounddd This would indeed be the
case if¢(¢)>0 for all {. However, if the amplitudes van-
ishes at some poinf, the winding number is no longer to-
pologically meaningful, and one can go from one state to the
other in a continuous fashion. The line in they) plane on
which ¢(¢{) has a set of nodes can be calculated numerically.
This line intersects the modulated-nematic transition lines at
two points, which are denoted by bars in Fig. 3. In this fig-
ure, theqy= 0.4 phase diagram is given. In this diagram, the
instability line consists of both secon@dashed and first-
L 1 L (solid) order segments separated from each other by the two
0.0 0.5 1.0 1.5 2.0 tricritical points TC1 and TC2. These first-order segments
C/] join onto the first-order cholesteric—weak-nematic line and
the first-order continuation of the nucleation line. Along the
cholesteric—weak-nematic and undulating instability lines
shown, respectively, at several points on the=0.2 (f,v) phase !s finit_e.and it vgries smoothly alo_ng the line. The continuous
diagram for one period (€¢/I<2). Thesolid profiles (1) corre- 'nStab'“_ty transition 9‘?0‘”5 for _ﬁnmﬂ' _as opposed to the
spond to a point at the cholesteric-paranematic transition lindUcl€ation-type transition at whiaf vanishes. _
(v=0.0137,r=0.280,q=0.171). Thedashedprofiles (2) corre- In Fig. 4 we present the behavior gfas a function of
spond to a point at the first-order segment of the nucleation lin@ for go=0.1 on the cholesteric-paranematic transition line,
(v=0.015 83,r=0.275, q=0.133). Thedash-dottedprofiles (3) ~ as the critical end point CE is approached. Clearigoes to
correspond to a point near the nucleation liee=0.0232,r=0.1, 0 and the transition at the critical end point is continuous.
g=0.069). Thedottedprofiles (4) correspond to a point in the un- We plottedq versus 1/Ing,—v) in order to show in a clear
dulating region, near the first-order part of the instability transitionmanner the expected logarithmic behavior near a continuous
line (v=0.026,r=0.325,q=0.184). Note that in the cholesteric transition of a nucleation type.
state(1)—(3) 6 increases by # over a period while in the undulat- In Fig. 5 we show characteristic profiles of the order pa-
ing state(4) ¢ is a periodic function. rameters? and ¢ near the transition lines fay,=0.2. These

. .
. .
. .
04l . . -
* .
.

al®

FIG. 5. In(a) and(b) the profiles ofé(¢/1) and[ 6(¢/1) ] w are
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profiles yield the structure of the modulated states at differnitude of the magnetic field in Gaussian units is given by
ent points near various transition lines. The solid and the

dashed curves correspond to points near the first-order 2 % K2

cholesteric—weak-nematic, and the first-order cholesteric— 12 a8
strong-nematic transition lines, respectively. The dash-dotted

curves are associated with the order parameters very close tghere K,=(4/9)(B*¢%)/C? is the twist elastic coefficient,
the nucleation transition, at whic) vanishes. The dotted typically of order 4<10/ dyn,XA=(¢B/C)X,"(' is the mag-

profiles correspond to the order parameters in the undulatingetic anisotropy, typically 10 in cgs units, and:, the cor-

region, wherefd(¢) is bound, near the first-order part of the relation length, is typically of order I¢ cm[6]. Using this

v, (28

undulating-nematic transition, at whichstays finite. relation, the critical applied field for th&l-P transition,
which in our dimensionless units is found at1/36 and
IV. DISCUSSION ¢=1/3, corresponds to a value of the order of 400 kG, which

) ) ] ) is not easily accessible experimentally. Perhaps the critical
In this work, we studied the mean field phase diagram ofie|q could be approached at national high magnetic field

a bulk cholesteric liquid crystal subjected to an externallytagijities, The corresponding magnitude of the electric field
applied field. The phase diagram was found to be rather rich, statyolts/cm is given by

exhibiting two types of modulated states: a cholesteric state

characterized by a nonvanishing winding number, and an xa\Y?

undulating state in which the director makes small oscilla- E= m(:) H, (29

tions around the direction of the applied field. The nature of A

the transition lines separating the various states and the mufghere €, is the dielectric anisotropy, the value of which is

ticritical points at which these lines meet have been studiegypjcally in the range of 0.1-40, in cgs units. Using this

in detail. In the present study it was assumed that the systefg|ation, assuming,= 10, we found that the critical electric

is described by a uniaxial order parameter. This assumptiofie|d is 400 kV/cm, which is achievable experimentally, es-

is valid for low chirality where the biaxial corrections are pecially if pulsed field techniques are used. In experiments

small, of orderg®. In the following, we discuss the experi- on the nematic material 4i-pentyl-4-cyanobipheny(5CB)

mental implications of this study and present estimates of thgy an electric field the critical point was found to occur at

range of fielddeither electric or magnetictemperature, and E=141 kv/cm, which is consistent with the crude estimate

chiralities at which some of the more interesting features Obresented above.

the phase diagram could be observed. It is found that while Next we estimate the temperature range over which the

the magnetic field required to reach the critical point CP isyndulating phase is expected to be stable. The rescaled tem-

very high (about 40 7T, the required electric field is of the peraturer is linearly related to the differencel & T*) [see

order of a few hundreds of kV/cm, which is within experi- Eq.(4)] by r=7(T—T*). At the nematic-isotropic transition

mental reach. o _ (NI), when no field is appliedyy=2/9 corresponds to
Consider first the chiralitygy. It corresponds to a pitch (Ty—T*)=1°C, following de Gennes and Prd&2]. Thus

P given by P=4m¢/qo, where¢ is the correlation length  —5/g (cO~%, and at the NP critcal point

defined in Eq(4). Taking 10 nm as a typical value ¢f[31] (Tep—T*)=3/2 °C, which is consistent with ReffL6]. The

one get =125/, nm. The interesting features of the phaseundulating state fog,= 0.2 (pitch equal to 630 ninis shown

diagram occur at, in the range of 0.+ 0.2, corresponding Fig. 2 to have a width im of about 0.005, which corre-

to a pitchP in the range of 1260—-630 nm, which is a com- sponds to 0.02 °C. This range is quite narrow, but it can be

fortable ex_perlmental range. The Wavelengtknf the bac_:k— increased by using a smaller intrinsic pitch, or a larger

scattered light from a modulated structure is relate® a7 T+,

A=Pn, wheren is the refraction index of the liquid crystal. ~"\ve summarize by emphasizing that the phenomena pre-

For a typicaln of 1.6 the wavelength of the scattered light is sented in this work, including the observation of the multi-

expected to be in the range of 2000 nm to 1000 nm. In theyitical point and the undulating state, are expected to be

present work we analyzed structures which are modulated igpservable in materials of intermediate pitch, with laege

one direction only. More complicated structures such agngT,,—T*, under conditions of careful temperature con-
those occurring in blue phases have not been considered. | and relatively high electric fields.

has been showh20] that such structures are expected to
occur for chiralitiesq,=0.28 (note that the chirality param-
eterqy which is used here is related to the chirality param-
eterx used in Ref[20] by q,= «//6). We therefore expect This work was supported in part by the National Science
the interesting regions of the phase diagrams of Figs. 1-3 tBoundation under Science and Technology Center ALCOM
be physically realizable. Grant No. DMR 89-20147 and the Basic Research Founda-

We now turn to the question of the magnitude of thetion, administrated by the Israeli Academy of Arts and Sci-
applied field for which the phenomena of interest are ex-ences, Jerusalem, Israel. One of the auth&r$V.A.) ac-
pected to take place. Consider a magnetic field first. Th&nowledges receiving financial support from the Weizmann
relation between the variabte and the corresponding mag- Institute of Science as a Varon Visiting Professor.
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