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Phase diagram of cholesteric liquid crystals in a field
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The phase diagram of a bulk cholesteric liquid crystal in an electric or magnetic field applied perpendicular
to the pitch axis is studied. This is an example of a system which exhibits different types of phase transitions
between various modulated and homogeneous states. Possible transitions are of three types:~1! first order,~2!
continuous and described as a condensation of solitons with repulsive interaction, or~3! continuous but
characterized by a small order parameter. The detailed behavior of the temperature-field phase diagram is
found to be strongly dependent on the intrinsic chirality, where the existence of an undulating state is predicted
at high chirality. The relevant temperature, electric field, and chirality ranges are experimentally attainable.
@S1063-651X~97!00308-5#

PACS number~s!: 61.30.Gd, 64.70.Md, 61.30.Cz
te
he
m
c
a

he

lk
el
a
th
lie
du

g
m
a

ns

s
m
ol
r
th
th
n
h
s

ag
a
d

el
o

ion
e

at
ar-
der
is a
ent

a
a

the
at

ho-

e
lead
like
is-

his
in

he
ibes
this
am-
o-
ee-

lo-
tran-
the
an
is.

-
m-
gn-

not
with

a

I. INTRODUCTION

Phase transitions in systems which exhibit modula
structures have been of interest for a long time due to t
frequent appearance in a wide variety of physical syste
The transitions from modulated to homogeneous states
be of different types and involve various types of critic
points~multicritical, tricritical, etc.!. A particular example of
such a system, where some of these features manifest t
selves, is that of a cholesteric liquid crystal upon which
magnetic or electric field is applied. The behavior of a bu
cholesteric liquid crystal in the presence of an external fi
is of importance for many practical applications as well
for basic physical research. In this work we investigate
behavior of a bulk cholesteric system in an externally app
field within the context of phase transitions between mo
lated and homogeneous structures.

Continuous phase transitions from modulated to homo
neous states can be realized via two different mechanis
The ordinary second-order transition involves some sm
order parameter which vanishes continuously at the tra
tion. This type of transition is referred to as aninstability-
type transition @1#. However, another type of continuou
transition which is not associated with a small order para
eter is possible. This type is described by nucleation of s
tons. The solitons arise as the domain walls separating
gions of homogeneous states. In the domain wall region
perturbation of the homogeneous phase is not small, and
a small local order parameter cannot be defined. The dista
between solitons increases as the transition is approac
and becomes infinitely large at the transition point. The
transitions are referred to asnucleation transitions@1–4#. A
model for the homogeneous-modulated transition in m
netic systems, in which both kinds of continuous phase tr
sitions are present along the phase boundary, was studie
Schaub and Mukamel@5#. The phase diagram of this mod
exhibits a transition line consisting of three segments: two
these correspond to the two types of continuous transit
~instability and nucleation types!. They are separated by th
561063-651X/97/56~2!/1773~11!/$10.00
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third segment, which is first order. The two critical points
the two ends of the first-order segment are different in ch
acter: one is a usual tricritical point, separating the first-or
segment from the instability-type segment, and the other
multicritical point, which separates the first-order segm
from the nucleation-type segment.

A bulk cholesteric liquid crystal which is subjected to
magnetic or electric field is also a system which exhibits
continuous phase transition of a nucleation type. When
external field is applied perpendicularly to the helical axis,
low temperatures, it unwinds the helical structure of the c
lesteric state via a nucleation-type transition@6–8#. However,
the cholesteric liquid crystalline system differs from th
magnetic system in other features and these differences
to a very different global phase diagram. For example, un
magnetic helical systems, the zero-field transition to the d
ordered state in cholesteric liquid crystals is first order. T
is due to the extra term in the Landau free energy, cubic
the order parameter, which is allowed by symmetry in t
cholesteric case but is absent in the model which descr
the magnetic system. Within the approach pursued in
work, the state of the system is determined by three par
eters: temperature, field, and the intrinsic chirality of the ch
lesteric. Certain regions of the phase diagram in this thr
dimensional space have been studied in the past@7–13#.
Here we use the mean field approximation to study the g
bal phase diagram and the nature of the resulting phase
sitions. In this work, we study a model which describes
behavior of a bulk cholesteric liquid crystal subject to
applied magnetic or electric field normal to the helical ax
As discussed by Refs.@6,8#, in bulk materials, if the field is
initially applied in a different direction, the helical axis re
orients to be perpendicular to the field. In restricted geo
etries, boundary effects may compete with the axis reali
ment, resulting in interesting reorientation transitions~see,
for example,@14,15# and the references they contain!. In this
paper we do not consider boundary effects. We also do
consider blue phase structures, which arise in systems
high chirality. Three distinct types of states are found:
1773 © 1997 The American Physical Society
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1774 56R. SEIDIN, D. MUKAMEL, AND D. W. ALLENDER
nematic state~which may be either strongly or weakly o
dered!, a cholesteric modulated state with a nonvanish
winding number, and an undulating state, in which the dir
tor undulates periodically around the magnetic field dir
tion. These states are characterized by different forms of
two scalar order parameters, referred to as the nematic
the phase order parameters. The nematic order param
which indicates the degree of orientational ordering in
system, is small in the weakly ordered nematic state
larger in the strongly ordered nematic state. The phase o
parameter is constant in the nematic state, a bounded
odic function in the undulating state, and an unbound
creasing~or decreasing! function in the cholesteric state.

The cholesteric phase diagram is very different from t
found by Schaub and Mukamel for magnetic systems. T
global phase diagram, in the temperature–applied-field p
varies as the intrinsic chirality of the system is changed. T
parameter is tunable in our model and has different phys
values for different cholesteric liquid crystalline materia
We found that cholesteric liquid crystals exhibit seve
types of phase transitions between the various availa
states and different types of critical and multicritical poin

The phase diagram and the various critical and multicr
cal points found in this study may readily be tested exp
mentally. Estimates of the relevant temperature, elec
field, and chirality ranges~to be discussed in Sec. IV! at
which many of the interesting features of the phase diag
are expected to take place indicate that they are experim
tally attainable. In experimental studies of the temperatu
electric-field phase diagram of the nematic materi
4-cyano-4’-(n-heptyl!biphenyl ~7CB! @16# and 4’-
n-pentyl-4-cyanobiphenyl~5CB! @17# it was found that the
nematic-paranematic critical point is reached atE&250
kV/cm and atE5141 kV/cm, respectively. By, for example
mixing 5CB with a chiral liquid crystal, the system will be
come cholesteric. The interesting features of the resul
phase diagram are expected to take place at fields belo
around 150 kV/cm.

The organization of this paper is as follows. In Sec. II w
derive the rescaled model out of the free energy of a cho
teric liquid crystal subjected to an external field applied p
pendicularly to the pitch axis. One has to solve explicitly t
resulting equations of motion, but since we were not able
do this analytically we solved them numerically. Approx
mate analytical tools were also applied in order to gain m
understanding of the mechanisms underlying the phase
gram. In Sec. III we present the complete mean field ph
diagram, in the temperature-field plane, for different valu
of the intrinsic chirality obtained by both analytical and n
merical means. The analytical results were obtained by u
a reasonable, phase-only, approximation in which only
phase order parameter was allowed to vary in space.
accurate numerical results were obtained by solving num
cally the coupled nonlinear Euler-Lagrange differential eq
tions for the two order parameters with appropriate bound
conditions. In Sec. IV we summarize the main results a
discuss the experimental implications of this study.

II. MODEL

In this section we consider the Landau theory of chol
teric liquid crystals. The appropriate macroscopic descript
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of the cholesteric uses a symmetric traceless second-
tensor,Qi j , for example, the anisotropic part of the magne
susceptibility tensor. The free energy density of a bulk ch
lesteric liquid crystal in the presence of an external magn
field H can be described by the following Landau expans
@18–20#:

f chol5
1

2
AQi j Qji 2

1

3
BQi j QjkQki1

1

4
C~Qi j Qji !

2

1 q̃0e i jkQil Qkl, j1
1

2
L1Qi j ,kQi j ,k1

1

2
L2Qi j ,iQk j ,k

2
1

2
xa

MHiQi j H j . ~1!

As usual, the coefficientA is taken to vary linearly with the
temperatureA5a(T2T* ), wherea and T* are constants.
The other coefficients,B, C, q̃0 , L1, andL2, are taken to be
temperature independent. Here,e i jk is the completely anti-
symmetric third-rank tensor,Qi j ,k[]Qi j /dxk , and the sum-
mation over repeated indices is being used. The molec
magnetic anisotropyxa

M is assumed to be positive, so that th
magnetic field tends to align the liquid crystalline molecu
along the field direction. The case of an electric fieldE
is described by the substitution xa

MHiQi j H j

→@ea
M/(4p)#EiQi j Ej whereea

M is the molecular anisotropy
of the dielectric permittivity.

The expansion~1! includes all terms allowed by symme
try, up to fourth order inQi j and quadratic order in its de
rivatives. The chiral nature of the cholesteric system res
in the pseudoscalar first-order spatial derivative term in
free energy. Without loss of generality, the sign ofq̃0 is
taken to be positive, corresponding to a right-handed ch
state.

It is well known that the tensor order parameterQi j which
minimizes the free energy~1! in the cholesteric state ha
some degree of biaxiality. However, for long waveleng
i.e., small q̃0, this biaxiality is small@21,22#. For simplicity
the biaxiality is neglected in the present study, consider
only a uniaxial order parameterQi j . In this caseQi j can be
written as

Qi j 5
1

2
S~3ninj2d i j !, ~2!

wheren5(nx ,ny ,nz) is a unit vector andS is the magnitude
of the order parameter. In the geometry which is conside
here n is assumed to be a planar vector:n5xcosQ
1ysinQ, x andy being two unit vectors perpendicular to th
helical axis and perpendicular to each other. Using this fo
of the order parameter in Eq.~1! we get the following ex-
pression for the free energy:

f chol5
3

4
AS22

1

4
BS31

9

16
CS42

9

4
q̃0S2]zQ1

9

4
LS2~]zQ!2

1
9

16
L~]zS!22

1

8
xa

MH2S2
3

8
xa

MH2Scos2Q, ~3!
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56 1775PHASE DIAGRAM OF CHOLESTERIC LIQUID . . .
where we take, for simplicity,L1522L2/3[L. This free
energy is checked to be insensitive to the ratio ofL2 /L1 for
values ranging from23/2 up to 10. The number of fre
parameters can be reduced by rescaling the expressio
the free energy density, using the following relations:

S5
1

3

B

C
f, Q5

1

2
u, A5

1

6

B2

C
r ,

z5jz, j25
9

2

CL

B2 , xa
MH25

2

9

B3

C2 v,

q̃05
L

j
q0 , f chol5

1

36

B4

C3F. ~4!

Note that r may be written as t(T2T* ) where
t56Ca/B2. The resulting rescaled free energy takes
form

F52
1

3
vf1

1

2
rf22

1

3
f31

1

4
f42vfcosu2q0f2u8

1
1

2
f2~u8!21

1

2
~f8!2. ~5!

It is described by three parametersr , v, andq0, wherer is
proportional to the reduced temperature,v is proportional to
the magnetic or electric field squared, andq0 is the intrinsic
chirality parameter which is related to the zero-field pitch,
discussed in Sec. IV. The prime denotes differentiation w
respect to the reduced coordinatez. This is a one-
dimensional model, where the pitch is parallel toz. We as-
sume that the magnetic or electric field is applied in a dir
tion perpendicular to the helical axis.

The main difference between this free energy density
that of the magnetic system studied in@5# is the existence of
the cubic term2f3/3 and the linear term2vf/3 in Eq.~5!.
It should be noted that compared to the magnetic system,
results in an extra tunable parameter, the rescaled intri
chirality q0. The phase diagram and the nature of the vari
transition lines and critical points are found to be stron
dependent onq0.

The equilibrium state of the system is described by
two rescaled functionsf(z) and u(z). These functions are
determined by the minimization of the functional associa
with Eq. ~5! with respect to bothf(z) andu(z). This mini-
mization results in the following Euler-Lagrange equation

f95rf2f21f32vcosu2
1

3
v22q0fu81f~u8!2,

~6a!

f2u95vfsinu12q0ff822ff8u8. ~6b!

In order to get the full phase diagram in the (r ,v,q0)
space, one has to solve these equations, subject to the a
priate boundary conditions. The resulting (r ,v) phase dia-
gram is presented in Figs. 1–3, for three different values
q0. The following states were found to be stable in so
regions of this phase space: the nematicN ~or paranematic
P) state, which is characterized by a constantf and u50,
for
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the modulated cholesteric stateC which is characterized by a
periodic nematic order parameterf(z) and anunboundin-
creasing phase variableu(z), and an undulating stateU,
which is characterized by periodicf(z) and aboundperi-
odic phase variableu(z).

The nematic state occurs at the highv, low r region of the
phase diagram, the paranematic state at lowv, high r , and
the cholesteric state at lowv, low r . At high temperatures
when no field is applied upon the system, the choleste
order is either metastable or unstable, and the system
comes isotropic via a first-order phase transition. Whe
field is switched on, it weakly orders the system to form
paranematic state. At lower temperatures the field distorts
helical structure of the cholesteric state, until it is complet
unwound at some critical value of the field, at which t
system exhibits a phase transition to a nematic state whic
ordered in the direction of the field. For high enough chir
ity, the undulating state develops near the paranema
nematic critical point, which is at highv, high r .

III. MEAN FIELD PHASE DIAGRAM

The various states which are realized in this model~nem-
atic, cholesteric, and undulating! occupy different regions in
the temperature-field (r ,v) phase diagram. These regions a

FIG. 1. The (r ,v) phase diagram for theq050.1, obtained nu-
merically, as described in the text. Here and in the following ph
diagrams solid lines represent first-order phase boundaries
dashed lines correspond to continuous phase boundaries. The
lesteric, nematic, and paranematic states are denoted byC, N, and
P, respectively. The critical point and the critical end point a
denoted by CP and CE, respectively. The approximate nuclea
transition line~unshown! given by Eq.~8! is shifted to the left by
Dv/v'0.008 compared to the numerical line.
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1776 56R. SEIDIN, D. MUKAMEL, AND D. W. ALLENDER
FIG. 2. ~a! The (r ,v) phase diagram forq050.2. The multicriti-
cal point is denoted by MC and the triple points byT1 andT2. In
~b! the region of the undulating state (U) is enlarged. The tricritical
points are denoted by TC1 and TC2. The dashed line represent
analytical continuous instability line, and the solid lines correspo
to the first-order transition lines, calculated numerically. The
proximate nucleation transition line~unshown! is shifted to the left
of the numerical line by 2%.
separated by phase transition lines of several types. The
tailed phase diagram strongly depends on the intrinsic ch
ity parameterq0. We first summarize the main features of th
phase diagram and the structure of the associated states
then discuss their derivation. We also comment on the ef
of fluctuations on the critical behavior associated with t
various lines of second-order transitions occurring in
phase diagram.

For smallq0, the typical phase diagram is shown in Fi
1. It exhibits a cholesteric state for smallv andr . This state
is separated from the paranematic and nematic region by
transition lines. One is a first-order transition line and t
other is a continuous, nucleation-type, transition line. T
two lines meet at a critical end point CE. The first-order li
extends beyond the critical end point, separating a w
nematic~or paranematic! state from a strong nematic stat
This line ~referred to as theN-P line! ends at a liquid-gas-
like critical point CP.

As q0 increases beyond a critical valueq0
c , the nucleation

line changes its character and becomes first-order at l
r . The two resulting segments~first and second order! of the
nucleation line are separated by a multicritical point M
This point is not an ordinary tricritical point but rather
point at which the interaction between solitons changes fr
repulsive~in the second-order segment! to attractive~in the
first-order segment!. The first-order segment of the nucle
ation line meets theN-P line at a triple point, denoted a
T1 in Fig. 2~a!. For q0 larger than another critical valueq0

u

~which numerically is close to the estimatedq0
c), the nematic

the
d
-

FIG. 3. The (r ,v) phase diagram forq050.4. The two bars
represent the points on the transition line at whichu changes from
being unbound to being bound. The approximate nucleation tra
tion line ~unshown! is shifted to the left of the numerical line b
4.5%.
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56 1777PHASE DIAGRAM OF CHOLESTERIC LIQUID . . .
state becomes unstable to undulations around the field d
tion, in some region near the critical point CP. This is sho
in Figs. 2~a! and 2~b!. The region occupied by the undulatin
state is bounded by a transition line which forms a clos
loop, consisting of a continuous~instability-type! segment,
that changes into first-order segments at each end via
ordinary tricritical points TC1, TC2. These first-order trans
tion lines meet theN-P line at a triple point T2.

The region in which the undulating state is stable b
comes larger as the intrinsic chiralityq0 is increased. For
larger q0 the region occupied by the undulating state a
proaches the cholesteric region, until they merge, formin
single region. Note that the cholesteric and the undulat
states have the same symmetry, and therefore may exist
single state in some region of the phase diagram. There
ists, however, a line inside this region, separating the dom
in which the phase order parameter is unbound~cholesteric
state! from that in which it is bound~undulating state!. On
this line the nematic order parameterf develops a set of
nodes which allows for phase slip of theu variable. This line
is not a line of phase transitions, and no singularity of t
free energy takes place on it. This phase diagram is show
Fig. 3. Here, the cholesteric~or undulating! state is separated
from the nematic~or paranematic! state by a line composed
of four segments. In the order of increasingv they are first
order, continuous instability type, another first order and
continuous nucleation type. The instability line is separa
from the two first-order segments by two tricritical poin
TC1 and TC2. The nucleation line is separated from the fi
order segment by a multicritical point MC.

In the following, we present some approximate analyti
approaches for studying certain features of the phase
gram. The full phase diagram is then studied numerically

A. The constant f approximation

Analytical solutions of Eqs.~6! are not available. In order
to get some understanding of the phase diagram it is inst
tive to find some approximate analytical solutions of the
equations. A reasonable such approximation is the one
which the nematic variablef is assumed to be a constan
letting only the phaseu be z dependent. This approximatio
is valid at the limitv50 and it is improved forvÞ0 as the
intrinsic chirality of the system is reduced. We use this a
proximation to obtain a qualitative phase diagram for t
model ~5!.

1. The N-P transition

In the region where the cholesteric helical structure
unwound (u50) the system is described by a single ord
parameterf which becomes independent of space. The f
energy density takes the form

F5
1

2
rf22

1

3
f31

1

4
f42

4

3
vf. ~7!

f5f0 minimizes this free energy and satisfies the followi
cubic equation:

rf02f0
21f0

32
4

3
v50. ~8!
c-
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In a nematic system (q050), at zero field (v50), there is
a first-order transition between a disordered high tempera
state and an ordered uniaxial nematic state. This transi
takes place atr 52/9. When a chirality is introduced into th
system (q050), the transition temperature is shifted u
wards, tor 52/91q0

2. This transition takes place between
disordered high temperature state and a cholesteric lo
symmetry state.

When a field is switched on (v.0), the disordered state
turns into a weakly ordered nematic state. It is easy to c
culate, in the nematic region, the transition line from a hi
temperature weakly ordered~paranematic! state to a low
temperature strongly ordered~nematic! state. The field de-
pendent nematic-paranematic (N-P) transition temperature
is given by

r 54v1
2

9
. ~9!

This transition line ends at the critical point, denoted by C
in Fig. 1 (r c51/3, vc51/36), which corresponds to
fc51/3 . This transition is of course suppressed in the
gion where the cholesteric state is energetically preferr
The cholesteric-paranematic transition in the presence
field is also of first order, but it takes place at temperatu
which are higher than in the nonchiral system. This segm
has to be calculated numerically.

2. The nucleation line

Another transition line which can be derived in the pha
only approximation is the cholesteric-nematic unwindi
transition line @7,8#. Near the nucleation transition, in th
limit where the distance between domain walls is large,
translational behavior of the phase variableu is
u(z12l )5u(z)12p, and the amplitudef is given by the
nematic solutionf0 obtained from Eq.~8!. Treatingl as an
undetermined parameter, the free energy difference betw
the periodic and nematic states for a cell of thickness 2l ~i.e.,
one period! has the following form to leading order in 1/l
@7,8,23#:

Fu~ l !5
C1

l
1

C2

l
e22g l . ~10!

Here C15f0
2@4g2pq0#, C2516f0

2g, andg5Av/f0. The
first term may be interpreted as the energy per soliton,
the second term is the intersolitonrepulsiveinteraction en-
ergy (C2.0). In equilibrium, the distance between the d
main walls, 2l , is determined by minimizingFu( l ) with re-
spect to l . For C1.0 the minimum is obtained atl 5`,
resulting in a nematic phase. However, forC1,0, the mini-
mum is obtained atl'2(1/2g)ln(2C1) with a logarithmic
divergence ofl as the transition is approached. Thus t
nucleation transition occurs whenC150, i.e., at

v5
p2

16
q0

2f0 . ~11!

Using this result in Eq.~8!, it is found that
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f05
1

2S 11A11
p2

3
q0

224r D . ~12!

Within the phase-only approximation, the nucleation tran
tion line in the (r ,v) plane is given by Eqs.~11! and ~12!.

The effect of fluctuations on nucleation transitions h
been considered previously@24#. It has been shown that in
d53 dimensions~as in our case! fluctuations do not chang
the nature of the transition, and the logarithmic divergence
l persists beyond mean field.

B. The multicritical point

The interaction between solitons near the nucleation tr
sition line, within the phase-only approximation, is alwa
repulsive (C2.0), resulting in a continuous transition. How
ever, we will show that when the asymptotic behavior off
at largez is taken into account, the interaction between so
tons is always positive for smallq0, but for q0 greater than a
critical valueq0

c , the interactionC2 is negative at smallv
and positive only at largev. WhenC2,0, a chain of solitons
forms and the transition is first order@5,25#. The first-order
segment of the nucleation line and the cholesteric–we
nematic transition line meet theN-P line at the triple point
T1, as is shown in Fig. 2~a!.

In order to determine the point at which the intersolit
interaction changes from repulsive to attractive, t
asymptotic behavior of bothf andu at large distances from
the center of the soliton has to be determined for single s
ton solutions. It is useful to locate the center of a soliton
the origin by making the transformationz̄ 5z2 l . Then, as
l→`, the limiting values off( z̄ ) andu( z̄ ) are

f~6`!5f0 , u~2`!50, u~`!52p, ~13!

wheref0 is the value off which minimizes the nematic fre
energy given in Eq.~7!. Since we are looking far away from
z̄ 50, we may expandf( z̄ ) andu( z̄ ) around their limiting
values:

f~ z̄ !5f01f̃~ z̄ !, ~14a!

u~ z̄ !5H ũ ~ z̄ !, z̄ !1

2p1 ũ ~ z̄ !, z̄ @1.
~14b!

The linearized equations of motion which result from t
insertion of Eq.~14! into Eq. ~6! are

f̃912q0f0 ũ 82~r 22f013f0
2!f̃50, ~15a!

f0
2 ũ 922q0f0f̃82vf0 ũ 50. ~15b!

It is sufficient to examine thez̄→` limit since z̄→2`
leads to the same result.

Let f̃5Afexp(2a z̄ ), ũ 5Auexp(2a z̄ ) whereAf and
Au are constants. Inserting this ansatz into the lineari
equations of motion, one gets an algebraic set of equat
for Af andAu :
i-

s

f

n-

-

k-

e

li-
t

d
ns

S a22~r 22f013f0
2! 22q0f0a

2q0f0a f0
2a22vf0

D S Af

Au
D 50. ~16!

The condition for having a nontrivial solution to these equ
tions is

a42a2S v
f0

1r 22f013f0
224q0

2D13vf022v1
v

f0
r 50.

~17!

Whethera is real or complex depends on the values
the parameters. As argued by Jacobs and Walker@25#, real
a corresponds to a repulsive large-distance interaction
tween the domain walls, while complexa leads to an attrac-
tive large-distance interaction. The large-distance inter
tions, which are relevant when only a small number
solitons exist in the system, can be determined by using
ear stability analysis around the asymptotic form~14! for
f( z̄ ) and u( z̄ ). The interaction free energyF int(r ,v,a) is
the difference between the free energy of a chain of solit
(Fchain) and the sum of all single soliton free energi
(Fsingle). It can be calculated at the unwinding transition u
ing the asymptotic forms off( z̄ ) and u( z̄ ), Eq. ~14!. For
the case of complexa, F int(r ,v,a) is negative at certain
intersoliton distances, and the chains are favorable over
single soliton configuration. In this case, the interaction
attractive, and the transition from a nematic state to a c
lesteric state is first order. Ifa is real,F int(r ,v,a) is positive,
and a chain configuration is not favored energetically. T
situation describes repulsion between solitons and leads
continuous transition.

The interaction between solitons changes from repuls
to attractive, at the point at which the discriminantD of Eq.
~17! vanishes. This yields the following equation whic
should be satisfied by the multicritical point:

D5S v
f0

1r 22f013f0
224q0

2D 2

24S 3vf022v1
v

f0
r D

50. ~18!

We then assume that the multicritical point lies on t
nucleation line, as given by the phase-only approximation
that its coordinates are determined by a simultaneous s
tion of Eqs.~18!, ~8!, and ~11!. The second equation dete
minesf0 for givenv andr , and the third one determines th
intersection point of the locus of points at which the intera
tion changes from repulsive to attractive with the nucleat
line. There are only two points in the (r ,v) plane which
satisfy all three equations~18!, ~8!, and~11!. They are given
by

r M
~6 !5~f0

M ~6 !!21S 5p2

48
2~46p! Dq0

2 , ~19a!

vM
~6 !5

p2

16
q0

2f0
M ~6 ! , ~19b!

and they correspond to
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f0
M ~6 !5 1

4 @11A118~46p2p2/48!q0
2#,

respectively.
For q0,q0

c'0.1434 both points (vM
6 ,r M

6) lie above the
N-P transition line in the (r ,v) plane; thus for these value
of q0 the cholesteric-nematic transition line stays continuo
all the way up to theN-P transition line. Forq0.q0

c , the
point (vM

1 ,r M
1) lies below theN-P transition line. This is the

multicritical point at which the cholesteric-nematic nucl
ation transition changes from continuous to first order.
q0

c , the meeting point of the first-order segment of the nuc
ation line and theN-P line changes its character from bein
a critical end point~as in Fig. 1! to being a triple point@as in
Fig. 2~a!#.

C. The undulating instability line

In the following, we determine the stability limits of th
nematic state. We consider a situation in which the nem
state is periodically perturbed and study the conditions un
which it is unstable against undulations.

It is convenient to represent the order parametersf(z)
andu(z) in terms of the two real scalar functionsf1(z) and
f2(z) : f11 if25feiu. We introduce a small order param
etere, and expandf1(z) andf2(z) around the nematic stat
described byf15f0, f250. The nematic amplitudef0 sat-
isfies Eq.~8! and minimizes the nematic free energy~7!. To
carry out this expansion we introduce the following ans
for the fieldsf1 andf2 @5#:

f15f01e2A1es1cos~qz!1e2b1cos~2qz!1O~e3!,
~20a!

f25es2sin~qz!1e2b2sin~2qz!1O~e3!, ~20b!

wheres1
21s2

251 and the coefficientsA, s1 , b1 , b2, and
q have to be determined by a minimization of the free e
ergy. We are interested in calculating the free energy to o
e4 and therefore higher-order terms in the expressions
f1 andf2 need not be considered. Using this expansion,
free energy per unit length associated with Eq.~5! can be
written as a power series ine:

F5F01a2e21a4e41O~e6!. ~21!

This is a Landau-type expression for the free energy ne
second-order transition expanded in the small order par
etere. Here,F0, given by Eq.~7!, is the free energy of the
nematic state characterized by a constantf5f0. The
second-order transition between the nematic state and
undulating state occurs when the coefficient of the quadr
term vanishes, i.e.,a250.

a252
v

12f0
s2

21
1

4
r 2

1

4
f0~s1

211!1
1

4
f0

2~2s1
211!

2q0qs1s21
1

4
q2. ~22!

The parameterss1, s2, andq are determined by minimizing
a2, subject to the constraints1

21s2
251, and they are given

by
s

t
-

ic
er

z

-
er
r
e

a
-

he
ic

q52q0s1s2 , ~23a!

s1
25

1

2F12
1

2q0
2S v

6f0
2

1

2
f01f0

2D G , ~23b!

s2
25

1

2F11
1

2q0
2S v

6f0
2

1

2
f01f0

2D G . ~23c!

The expressions fors1 ands2 are not always physical. Re
quiring thats1

2 and s2
2 are non-negative we obtain the fo

lowing condition:

U v
6f0

2
1

2
f01f0

2U<2q0
2 . ~24!

The minimal q0 for which this condition is satisfied is
q0

u51/A48'0.1443. Forq05q0
u the instability takes place a

the critical point CP which ends theN-P line. Forq0,q0
u the

condition ~24! is not satisfied and the nematic state is sta
to small perturbations. The predicted value ofq0

u50.1443 is
very close to the estimated value ofq0

c50.1434 which was
obtained in the preceding section using an asymptotic
proximation. We have not done the extensive numerical c
culation required to determineq0

c precisely and thus deter
mine which of the two critical wave vectors,q0

c and q0
u , is

larger. Forq0.q0
u the instability line is physical, and there i

a region in the (r ,v) plane where the undulating state
stable. The a250 line is stable as long a
a4(s1 ,s2 ,q,A,b1 ,b2)>0. The expression fora4 is rather
lengthy and will not be explicitly presented here. After d
termining the parametersA, b1, and b2 by minimizing a4
with respect to each one of them, and solving the equati
a250 anda450, we find two distinct tricritical points for
everyq0.q0

u @see Fig. 2~b!#. For values ofv below the tri-
critical points, the transition to the undulating state is fi
order. At q05q0

u the critical point CP becomes a Lifshit
point @26,27#. The (r ,v) phase diagram in the vicinity of this
point is basically the phase diagram corresponding to a
shitz point in the presence of an ordering field. The fir
order segment of the instability line is found numerically f
several values ofq0. For q0*q0

u the undulating instability
line is far from the triple pointT1 ~or from the critical end
point CE!, and it intersects theN-P line at a triple point
T2, forming a closed loop. An example for this case can
seen in Fig. 2~b!, for q050.2. Asq0 is further increased, the
region where the undulating state is stable increases, an
boundaries move towards the cholesteric region until th
merge atq0'0.25. In this case, as is shown in Fig. 3 f
q050.4, the first-order cholesteric-paranematic transit
and the first-order cholesteric-nematic transition contin
smoothly the first-order segments of the instability line~the
meeting points are denoted in Fig. 3 by bars!.

The Landau-Ginzburg model corresponding to t
second-order segment of the transition from the nematic
the undulating state is anX-Y-like model. It is thus expected
that this transition belongs to the universality class of
n52 component vector model.
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D. Numerical results

As noted in the preceding section the Euler-Lagran
equations~6! obtained for the model~5! cannot be solved
analytically. In the beginning of this section, we presented
approximate treatment of Eq.~5!, in which only the phase
order parameteru was allowed to vary in space. We foun
an approximate expression for the nucleation line, Eqs.~11!
and~12!, and the multicritical point on this line, at which th
nature of the cholesteric-nematic transition changes fr
continuous to first order. However, in order to obtain a m
detailed phase diagram of model~5! the z dependence off
must also be taken into account, and thus a numerical tr
ment of Eqs.~6! is needed. Equations~6! for f(z) and
u(z) are solved numerically, employing a special code cal
COLNEW @28,29#, which was specifically developed for solv
ing multipoint boundary value problems for a coupled s
tem of ordinary differential equations. We chose to resc
Eq. ~5! by the lengthl (2l is the periodicity of the modulated
states!, so thatl becomes a parameter in the expression
the rescaled free energy, rather than in the limits of integ
tion. The periodicity 2l and the chiralityq5p/ l are deter-
mined at every point (v,r ,q0) in the phase diagram by
minimization procedure. Forv50, the actual chiralityq is
equal to the intrinsic chiralityq0. The rescaled Euler
Lagrange equations that were solved are

1

l 2 f91
1

3
v2rf1f22f31vcosu1

2

l
q0fu82

1

l 2 f~u8!2

50, ~25a!

f

l 2 u922q0ff81
2

l 2 ff8u82vfsinu50, ~25b!

where the prime stands now for a derivative with respec
the dimensionless coordinatez̃ 5z/ l . The rescaled boundar
conditions that should be satisfied byf andu are

f8~0!50, f8~1!50, ~26a!

u~0!50, u~1!5p ~26b!

for the cholesteric configuration, and

f8~0!50, f8~1!50, ~27a!

u~0!50, u~1!50 ~27b!

for the undulating configuration.
Equations~25! are solved for both sets of boundary co

ditions @Eqs.~26! and ~27!# by employing theCOLNEW pro-
cedure. Examination of the order parameter profiles
comparison between the energies of the different states
ables us to determine the thermodynamic boundaries sep
ing the different states in the phase diagram, and also
determine whether the phase transitions are of first or sec
order.

Both first- and second-order boundaries appear in
phase diagram. A point on the nematic side of the seco
order nucleation transition line is found by reaching the fi
point at which the minimum of the free energy occurred
q50. For a first-order case, the situation is different. It
e

n

m
e

at-

d

-
le

r
-

o

d
n-
at-
to
nd

e
d-
t
t

determined by the first point for which there existed
q50 solution of the Euler-Lagrange equations but the ch
lesteric~or the undulating! free energy is larger than the cor
responding nematic one.

Note that the nematic solution (q50, u50, and
f5const! is a trivial solution for the Euler-Lagrange equa
tions, but it is not the thermodynamically stable solution ou
side the nematic region. The parameters at which theq50
solution is replaced by theqÞ0 one can then be determine
only by comparing the free energies of the two solutions.

The results of the numerical solution are summariz
graphically in Figs. 1–5. In Figs. 1–3 the complete pha
diagrams for several values ofq0 are presented (q050.1,
which is belowq0

c and q0
u , q050.2 which is above both

q0
c andq0

u, andq050.4 which is far aboveq0
c andq0

u). These
are the typical phase diagrams, corresponding to three dif
ent regimes ofq0. As a rule, the region occupied by th
cholesteric state becomes larger asq0 is increased, i.e., the
cholesteric–weak-nematic transition occurs at higher te
peratures and the cholesteric–strong-nematic transition ta
place at higher values of the applied field. The cholester
weak-nematic transition temperature increases monot
cally with the field, intersecting ther axis atr 52/91q0

2. For
q050.1 (,q0

c), this line joins theN-P line smoothly while
for q050.2 (.q0

c) the two lines intersect with a finite
change in slope. In the case ofq050.1, the entire
cholesteric-nematic transition is continuous~of a nucleation
type!. This line intersects theN-P line and the cholesteric–
weak-nematic transition line at a critical end point CE. A
the CE is approached along the cholesteric–weak-nem
line, q vanishes, as is shown in Fig. 4. Theq050.2 case is

FIG. 4. The chirality wave vectorq as a function ofv, for
q050.1, along the cholesteric–weak-nematic transition line, as
critical end point CE is approached. The horizontal axis is chose
be 1/ln(vc2v) (vc50.004 017 67), in order to show directly th
behavior which was described in Sec. III A 2.
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FIG. 5. In ~a! and~b! the profiles off(z/ l ) and@u(z/ l )#/p are
shown, respectively, at several points on theq050.2 (r ,v) phase
diagram for one period (0<z/ l<2). The solid profiles ~1! corre-
spond to a point at the cholesteric-paranematic transition
(v50.0137, r 50.280, q50.171). Thedashedprofiles ~2! corre-
spond to a point at the first-order segment of the nucleation
(v50.015 83,r 50.275, q50.133). Thedash-dottedprofiles ~3!
correspond to a point near the nucleation line (v50.0232,r 50.1,
q50.069). Thedottedprofiles ~4! correspond to a point in the un
dulating region, near the first-order part of the instability transit
line (v50.026, r 50.325, q50.184). Note that in the cholesteri
state~1!–~3! u increases by 2p over a period while in the undulat
ing state~4! u is a periodic function.
different. The multicritical point (v50.0176, r 50.25) on
the cholesteric-nematic transition line lies below the trip
point, and thus the segment of this transition line which co
nects the multicritical point and the triple point is of fir
order. In this caseq does not vanish at the triple point, but i
value changes discontinuously. The cholesteric to str
nematic transition line is first order at the triple pointT1 and
the three transition lines which meet at this point must fo
three angles, each of which is smaller than 180°, accord
to the rule for the intersection of three first-order transiti
lines @30#. The multicritical point slides down along th
cholesteric–strong-nematic transition line asq0 is increased,
and the first-order segment of this transition becomes lon
as can be seen by comparing theq050.2 case in Fig. 2~a! to
the q050.4 case in Fig. 3.

As q0 increases, the triple pointT1 gets closer to theN-
P critical point CP (vc51/36, r c51/3). At the same time,
the point at which the instability~to undulations! line closes
on theN-P line T2 slides down in the opposite direction. Fo
q50.2 these two regions are well separated, as can be
in Fig. 2~a!. In Fig. 2~b! the detailed structure of the insta
bility line for q050.2 is shown. The dashed line which co
nects the two tricritical points represents a continuous tr
sition, and the solid segments which meet on theN-P line
correspond to first-order transitions. Asq0 is further in-
creased, the distance between the two points (T1) and
(T2) decreases, until they merge forq0'0.25. The precise
mechanism of this merging process was not investigate
this study. For values ofq0 which are larger than 0.25 th
global phase diagram changes. The cholesteric and the u
lating states are no longer separated, but instead for
single modulated state. Naively, one would expect the t
states to be separated, since their modulated structures
to be topologically different@in one caseu(z) is unbound
while in the other it is bounded#. This would indeed be the
case iff(z).0 for all z. However, if the amplitudef van-
ishes at some pointz, the winding number is no longer to
pologically meaningful, and one can go from one state to
other in a continuous fashion. The line in the (r ,v) plane on
which f(z) has a set of nodes can be calculated numerica
This line intersects the modulated-nematic transition lines
two points, which are denoted by bars in Fig. 3. In this fi
ure, theq050.4 phase diagram is given. In this diagram, t
instability line consists of both second-~dashed! and first-
~solid! order segments separated from each other by the
tricritical points TC1 and TC2. These first-order segme
join onto the first-order cholesteric–weak-nematic line a
the first-order continuation of the nucleation line. Along t
cholesteric–weak-nematic and undulating instability linesq
is finite and it varies smoothly along the line. The continuo
instability transition occurs for finiteq, as opposed to the
nucleation-type transition at whichq vanishes.

In Fig. 4 we present the behavior ofq as a function of
v for q050.1 on the cholesteric-paranematic transition lin
as the critical end point CE is approached. Clearlyq goes to
0 and the transition at the critical end point is continuo
We plottedq versus 1/ln(vc2v) in order to show in a clear
manner the expected logarithmic behavior near a continu
transition of a nucleation type.

In Fig. 5 we show characteristic profiles of the order p
rametersu andf near the transition lines forq050.2. These
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profiles yield the structure of the modulated states at dif
ent points near various transition lines. The solid and
dashed curves correspond to points near the first-o
cholesteric–weak-nematic, and the first-order choleste
strong-nematic transition lines, respectively. The dash-do
curves are associated with the order parameters very clo
the nucleation transition, at whichq vanishes. The dotted
profiles correspond to the order parameters in the undula
region, whereu(z) is bound, near the first-order part of th
undulating-nematic transition, at whichq stays finite.

IV. DISCUSSION

In this work, we studied the mean field phase diagram
a bulk cholesteric liquid crystal subjected to an externa
applied field. The phase diagram was found to be rather r
exhibiting two types of modulated states: a cholesteric s
characterized by a nonvanishing winding number, and
undulating state in which the director makes small osci
tions around the direction of the applied field. The nature
the transition lines separating the various states and the
ticritical points at which these lines meet have been stud
in detail. In the present study it was assumed that the sys
is described by a uniaxial order parameter. This assump
is valid for low chirality where the biaxial corrections a
small, of orderq4. In the following, we discuss the exper
mental implications of this study and present estimates of
range of fields~either electric or magnetic!, temperature, and
chiralities at which some of the more interesting features
the phase diagram could be observed. It is found that w
the magnetic field required to reach the critical point CP
very high ~about 40 T!, the required electric field is of the
order of a few hundreds of kV/cm, which is within exper
mental reach.

Consider first the chiralityq0. It corresponds to a pitch
P given by P54pj/q0, wherej is the correlation length
defined in Eq.~4!. Taking 10 nm as a typical value ofj @31#
one getsP5125/q0 nm. The interesting features of the pha
diagram occur atq0 in the range of 0.120.2, corresponding
to a pitchP in the range of 1260–630 nm, which is a com
fortable experimental range. The wavelengthl of the back-
scattered light from a modulated structure is related toP via
l5Pn, wheren is the refraction index of the liquid crysta
For a typicaln of 1.6 the wavelength of the scattered light
expected to be in the range of 2000 nm to 1000 nm. In
present work we analyzed structures which are modulate
one direction only. More complicated structures such
those occurring in blue phases have not been considere
has been shown@20# that such structures are expected
occur for chiralitiesq0*0.28 ~note that the chirality param
eterq0 which is used here is related to the chirality para
eterk used in Ref.@20# by q05k/A6). We therefore expec
the interesting regions of the phase diagrams of Figs. 1–
be physically realizable.

We now turn to the question of the magnitude of t
applied field for which the phenomena of interest are
pected to take place. Consider a magnetic field first. T
relation between the variablev and the corresponding mag
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nitude of the magnetic field in Gaussian units is given by

H25S 9f

2

K2

xAj2D v, ~28!

where K25(4/9)(B4j2)/C3 is the twist elastic coefficient
typically of order 431027 dyn,xA5(fB/C)xA

M is the mag-
netic anisotropy, typically 1027 in cgs units, andj, the cor-
relation length, is typically of order 1026 cm @6#. Using this
relation, the critical applied field for theN-P transition,
which in our dimensionless units is found atv51/36 and
f51/3, corresponds to a value of the order of 400 kG, wh
is not easily accessible experimentally. Perhaps the crit
field could be approached at national high magnetic fi
facilities. The corresponding magnitude of the electric fie
in statvolts/cm is given by

E5A4pS xA

eA
D 1/2

H, ~29!

whereeA is the dielectric anisotropy, the value of which
typically in the range of 0.1–40, in cgs units. Using th
relation, assumingeA510, we found that the critical electric
field is 400 kV/cm, which is achievable experimentally, e
pecially if pulsed field techniques are used. In experime
on the nematic material 4’-n-pentyl-4-cyanobiphenyl~5CB!
in an electric field the critical point was found to occur
E5141 kV/cm, which is consistent with the crude estima
presented above.

Next we estimate the temperature range over which
undulating phase is expected to be stable. The rescaled
peraturer is linearly related to the difference (T2T* ) @see
Eq. ~4!# by r 5t(T2T* ). At the nematic-isotropic transition
~NI!, when no field is applied,r NI52/9 corresponds to
(TNI2T* )51 °C, following de Gennes and Prost@32#. Thus
t52/9 (°C! 21, and at the NP critical point
(TCP2T* )53/2 °C, which is consistent with Ref.@16#. The
undulating state forq050.2 ~pitch equal to 630 nm! is shown
in Fig. 2 to have a width inr of about 0.005, which corre
sponds to 0.02 °C. This range is quite narrow, but it can
increased by using a smaller intrinsic pitch, or a larg
TNI2T* .

We summarize by emphasizing that the phenomena
sented in this work, including the observation of the mu
critical point and the undulating state, are expected to
observable in materials of intermediate pitch, with largeeA
and TNI2T* , under conditions of careful temperature co
trol and relatively high electric fields.
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