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Transport far from equilibrium: Uniform shear flow
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The Bhatnager-Gross-Krook model kinetic equation is applied to spatially inhomogeneous states near steady
uniform shear flow. The shear rate of the reference steady state can be large, so the states considered include
those very far from equilibrium. The single-particle distribution function is calculated exactly to first order in
the deviations of the hydrodynamic field gradients from their values in the reference state. Corresponding
nonlinear hydrodynamic equations are obtained, and the set of transport coefficients are identified as explicit
functions of the shear rate. The spectrum of the linear hydrodynamic equations is studied in detail, and
qualitative differences from the spectrum for equilibrium fluctuations are discussed. Conditions for instabilities
at long wavelengths are identified and discussed.@S1063-651X~97!11708-1#

PACS number~s!: 05.20.Dd, 51.10.1y, 83.50.Ax, 83.20.2d
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I. INTRODUCTION

Nonequilibrium phenomena are well understood for sta
near equilibrium. However, even the qualitative features
transport and fluctuations far from equilibrium are poo
understood, due to the complexity of the physical states
the lack of an adequate controlled theoretical description
general. It is useful in this context to consider more rest
tive conditions and specialized states for which grea
progress in this difficult area can be made. Here we cons
a low-density simple atomic gas for which transport prop
ties are described by the nonlinear Boltzmann equation.
states near equilibrium, the Chapman-Enskog expansio
the distribution function about the local equilibrium distrib
tion in terms of gradients of the hydrodynamic fields pr
vides approximations to a normal solution~one for which all
space and time dependence occurs through the hydr
namic variables! @1#. From this solution the correspondin
hydrodynamic equations are obtained, including explicit
pressions for the associated transport coefficients. In p
ciple, this method applies to states far from equilibrium
well, although calculation of the Chapman-Enskog exp
sion to higher orders in the gradients is prohibitively dif
cult, and questions of convergence remain unresolved.
alternative approach is to expand in small gradients abo
more relevant reference state than local equilibrium. For
ample, consider states near a homogeneous reference s
state. Deviations of the hydrodynamic variables from th
values in this state are characterized by small relative sp
gradients. A modified Chapman-Enskog expansion can
implemented to obtain the distribution function and hyd
dynamic equations to leading order in these gradients. S
the reference state can be far from equilibrium, the form
the hydrodynamic equations and the dependence of the tr
port coefficients on parameters of the steady state will
quite different from those for states near equilibrium.

In practice this program has not been carried out si
determination of a nontrivial reference steady state far fr
the equilibrium from the Boltzmann equation is exceptio
561063-651X/97/56~2!/1733~13!/$10.00
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ally rare@2#. In contrast, exact results have been obtained
a number of physically interesting special steady states@3#
using a model kinetic equation designed to preserve the
sential features of the Boltzmann equation while admitt
more practical analysis@4#. In some cases these results ha
been compared with those from Monte Carlo simulation
from equilibrium, indicating that the kinetic model provide
both qualitative and semiquantitative representations of
underlying Boltzmann equation@5#. The objective here is to
use this kinetic model approach for the special class of st
at or near uniform shear flow. Uniform shear flow is a pa
ticularly well-studied nonequilibrium state using numeric
methods~both Monte Carlo simulation at low density@5# and
molecular-dynamics simulation at high density@6,7#!, illus-
trating rheological properties normally associated with co
plex molecular fluids@8#. More importantly, it is one of the
special cases for which an exact solution to the model kin
equation has been obtained@9,10#, providing the necessary
reference state for the modified Chapman-Enskog expan
developed here. We look for solutions to the kinetic equat
as an expansion in small spatial gradients relative to an e
solution for local uniform shear rather than around loc
equilibrium. The heat and momentum fluxes are calcula
from this solution to linear order in these gradients, and
closed set of generalized hydrodynamic equations is
tained. This is analogous to the nonlinear Navier-Sto
equations near equilibrium, except that here the refere
state is non-Maxwellian and a complex function of the sh
rate. The associated nonlinear transport coefficients are i
tified, and examples calculated for arbitrary values of
shear rate.

To expose the physical content of these hydrodyna
equations and their differences from those for states n
equilibrium, hydrodynamic modes are calculated from t
associated linearized equations. In addition to their dep
dence on the shear rate, these modes have a more com
wave-vector dependence than those from the Navier-Sto
equations due to the broken symmetry of the reference s
More surprisingly, a new long wavelength instability
1733 © 1997 The American Physical Society
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1734 56MIRIM LEE AND JAMES W. DUFTY
found such that the hydrodynamic modes are growing
tially for any finite shear rate and sufficiently long wav
length @11#. A more detailed study of this instability and it
verification via computer simulation is described elsewh
@12#.

II. KINETIC THEORY AND UNIFORM SHEAR FLOW

In this section the kinetic theory is defined, the associa
macroscopic conservation laws obtained, and the specia
lution for steady uniform shear flow is described. In the n
section, this solution is generalized to a local reference s
for an expansion to describe a class of states near unif
shear flow and to obtain the associated hydrodynamic e
tions.

Exact or even approximate solutions to the Boltzma
equation far from equilibrium are exceptionally rare, due
the complexity of the nonlinear collision operator. Therefo
kinetic models have been introduced to replace the Bo
mann collision operator with a simpler, more tractable ope
tor. The best studied of these is a single relaxation ti
model due to Bhatnager, Gross, and Krook~the BGK model!
@4#. The essential qualities of this model are its preserva
of the exact equilibrium solution and all five conservati
laws. The BGK Boltzmann kinetic equation is given by

S ]

]t
1v•“ r D f 1m21

“v•~Fextf !52n~ f 2 f l !, ~2.1!

whereFext is an external force. The parametern in Eq. ~2.1!
is a collision frequency which depends on an interaction la
This frequency is a function of the density and temperatu
At low density, it can be written as

n;n~r ,t !Tb~r ,t !, ~2.2!

when the potential has a formV(r );r 2 l , with b51/2
22/l . In the case of Maxwell molecules (l 54), b is zero so
n becomes independent of temperature. For the hard sp
case l→`, resulting in a value forb of 1

2. Finally,
f l (r ,v,t) is the local equilibrium distribution

f l ~r ,v,t !5n~r ,t !S b~r ,t !m

2p D 3/2

3expF2
1

2
b~r ,t !m„v2u~r ,t !…2G , ~2.3!

wheren(r ,t), T(r ,t)[@kBb(r ,t)#21, andu(r ,t) are the den-
sity, temperature, and flow velocity of the nonequilibriu
state. These hydrodynamic fields are defined such that

E dvS 1

v

v2
D „f ~r ,v,t !2 f l ~r ,v,t !…50, ~2.4!

which assures that the BGK equation yields the correct c
servation laws and equilibrium stationary state in the abse
of driving forces. More explicitly, Eq.~2.4! gives
i-
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n~r ,t ![E dv f ~r ,v,t !, n~r ,t !u~r ,t ![E dv vf ~r ,v,t !,

3
2 n~r ,t !kBT~r ,t ![E dv1

2 mc2f ~r ,v,t !, ~2.5!

wherec5v2u.
The macroscopic conservation laws are obtained by

ing moments of Eq.~2.1! and using the definitions~2.5!

Dtn~r ,t !1n~r ,t !¹•u~r ,t !50, ~2.6!

DtT~r ,t !1
2

3kBn~r ,t !
@¹•q~r ,t !1t i j ~r ,t !] iuj~r ,t !#,

5s~r ,t !, ~2.7!

Dtui~r ,t !1@mn~r ,t !#21] j t i j 50, ~2.8!

whereDt[] t1u•¹ is the material derivative. The heat an
momentum fluxesq(r ,t) andt i j (r ,t) are linear functionals of
f (r ,v,t) given by

q~r ,t !5E dv1
2 m c2cf ~r ,v,t !,

t i j ~r ,t !5E dv m cicj f ~r ,v,t !. ~2.9!

The inhomogeneous term on the right side of the tempera
equation,s(r ,t), is due to the external forceFext, introduced
to serve as a thermostat. Several thermostats that have
used in both theory and computer simulations. Here
choose a force that is proportional to the relative veloc
c5v2u(r ,t),

Fext~r ,c,t !52ml„n~r ,t !,T~r ,t !…c. ~2.10!

The resulting source terms(r ,t) in the equation for the tem
perature becomes

s~r ,t !522T~r ,t !l„n~r ,t !,T~r ,t !…. ~2.11!

The proportional ‘‘constant’’l„n(r ,t),T(r ,t)… is determined
by requiring stationarity of the system in the uniform she
flow state~see below!, and may depend on the local densit
temperature, and shear rate. In Appendix A a different ther-
mostat is considered for comparison. The primary chan
are the degree to which the external force compensates
viscous heating away from the state of uniform shear flo

The fact that the fields are functionals off (r ,v,t) makes
the BGK Boltzmann equation highly nonlinear and difficu
to solve in general. However, in many cases an implicit
lution can be given as an explicit function of the velocity a
functional of the fields. Then, the fields must be determin
self-consistently from the above macroscopic conserva
laws. One of the cases for which an exact solution is kno
is uniform shear flow@3,9,10#. The uniform shear state is
planar flow whosex component of the flow velocity has
gradient along they axis,usi5ai j r j andai j 5ad ixd jy , where
a is a constant shear rate. In addition, the densityns , tem-
peratureTs , heat flux, and momentum flux are spatial
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56 1735TRANSPORT FAR FROM EQUILIBRIUM: UNIFORM . . .
constant. This state is generated by a periodic boundary
dition in the local Lagrangian frame@13#. The viscous heat-
ing induced by these boundary conditions is compensate
the external force. It is easily verified that this macrosco
state is an exact stationary solution to the above conserva
laws ~2.6!–~2.8! if l„n(r ,t),T(r ,t)… is chosen to be

ls[l~ns ,Ts!52
a txy,s~a!

3nskBTs
. ~2.12!

Due to the simplicity of uniform shear flow state at the ma
roscopic level, it has been studied extensively as a proto
of nonequilibrium states far from equilibrium in theor
@10,14–17# and in computer simulations@6,7,18,19#. To ob-
tain the distribution function for this state it is useful to e
press the kinetic equation~2.1! in terms of the velocity in the
local rest frame, defined byv i85v i2ai j r j . In this frame, the
flow field vanishes and the macroscopic state becomes
tially homogeneous. Consequently, we look for a station
solution to Eq.~2.1! of the form f (r ,v,t)5 f s(v8),

L~v8,a! f s~v8!52nsf sl ~v8!,

L~v8,a![ai j v j8
]

]v i8
1lsv8–¹v813ls2ns . ~2.13!

The subscripts denotes the stationary state value andf sl is
the corresponding local equilibrium distribution functio
with the hydrodynamic fields for uniform shear flow. Th
solution to Eq.~2.13! is

f s~v8!5nsE
0

`

dt etL f l ~v8!

5nsE
0

`

dt e2t~ns23ls! f sl „e
lstL i j ~2t !v j8…. ~2.14!

The second equality follows from the property for an ar
trary functionX(v)

etLX~v8!5e~3ls2ns!tX„elstL i j ~2t !v j8…, L i j ~ t !5d i j 2ai j t,
~2.15!

where use has been made of exp(atvx]vx
)X(vx)5X(eatvx) and

exp(atvy]vx
)X(vx)5X(vx1atvy). To determinels as an ex-

plicit function of a, the component of the momentum flu
txy,s(a) can be calculated from Eqs.~2.9! and ~2.14! to ob-
tain the self-consistent equation

3ls~2ls1ns!
25nsa

2. ~2.16!

This has one real solution and two complex conjugate s
tions. The physically relevant real value is

ls~a!5
2 ns

3
sinhF cosh21

1

6S 119
a2

ns
2D G 2

. ~2.17!

With ls known, the velocity distribution given by Eq.~2.14!
is completely determined.

Any transport property of interest now can be calcula
by integration. A detailed discussion can be found in R
n-

by
c
on

-
pe

a-
y

-

-

d
f.

@10#, and comparison with Monte Carlo simulations of th
Boltzmann equation for shear flow is given in Ref.@19#.
Only the transport properties associated with the heat
momentum fluxes are considered further here. These ca
calculated directly from Eqs.~2.9! and ~2.14!, with the re-
sults

q~a!50,

t i j ,s~a!5„ps1
1
3 a2C1~a!…d i j 2h~a!~ai j 1aji !

2C1~a!aikajk ~2.18!

Thus, the heat flux vanishes but the momentum flux
scribes nontrivial rheological effects in terms of the hydr
static pressure p5nkBT, the shear viscosity h(a)
[2a21txy(a), and the viscometric functionC1(a)
[a22@ tyy(a)2txx(a)#, where

h~a!5
ns

~2ls~a!1ns!
2

ps ,

C1~a!52
6ls~a!

a2~2ls~a!1ns!
ps . ~2.19!

In general there is a second independent viscometric func
C2(a)[a22@ tzz(a)2tyy(a)# which vanishes for our kinetic
model. The magnitudes of these transport coefficients
monotonically decreasing functions of the shear rate,
have been discussed in detail elsewhere@10#.

III. HYDRODYNAMICS NEAR UNIFORM SHEAR FLOW

In this section we consider states that deviate from u
form shear flow by small spatial gradients. A solution to t
BGK Boltzmann equation~2.1! is obtained by a variant o
the Chapman-Enskog method, whereby the distribution fu
tion is expanded about alocal uniform shear flow reference
state in terms of the small spatial gradients of the hydro
namic fields relative to those of uniform shear flow. This
analogous to the usual Chapman-Enskog expansion abo
local equilibrium distribution. The solution obtained in th
way can be used to calculate the heat and momentum flu
in terms of the hydrodynamic variables, so that Eqs.~2.6!–
~2.8! become a closed set of hydrodynamic equations. T
analysis here is carried out to first order in the gradients.
small shear rate the usual Navier-Stokes results are re
ered, where the heat flux is given by Fourier’s law and
momentum flux is given by Newton’s viscosity law. How
ever, for large shear rates these fluxes and the correspon
hydrodynamic equations are more complex.

To construct the Chapman-Enskog expansion we look
solutions of the form

f ~r ,v,t !5 f „v8,ya~r ,t !…, ~3.1!

where ya(r ,t) are the hydrodynamic fields, andv i8
5v i2ai j r j . This representation expresses the fact that
space dependence of the reference shear flow is compl
absorbed in the relative velocity variable,v8, and all other
space and time dependence occurs entirely through a f
tional dependence on the hydrodynamic variables,ya(r ,t).
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1736 56MIRIM LEE AND JAMES W. DUFTY
This is an example of a ‘‘normal’’ solution, which is ex
pected to result from a wide class of initial conditions at lo
times and large space scales. It is essential for a hydro
namic description since the velocity average of any quan
becomes a functional of the hydrodynamic fields. Appro
mate solutions to the BGK equation are obtained by expa
ing Eq. ~3.1! in a formal uniformity parametere that mea-
sures the spatial gradients of the fieldsya(r ,t),

f ~v8,ya~r ,t !!5 f ~0!
„v8,ya~r ,t !…1e f ~1!

„v8,ya~r ,t !…1•••.
~3.2!

This expansion leads to a corresponding expansion for
heat and momentum fluxes when substituted into Eq.~2.9!,

t i j 5t i j
~0!1e t i j

~1!1•••, q5q~0!1e q~1!1•••, ~3.3!

t i j
~r !5E dvmcicj f

~r !, q~r !5E dv1
2 mc2cf ~r !. ~3.4!

Finally, use of this expansion for the fluxes in the conser
tion laws ~2.6!–~2.8! identifies an expansion for the tim
derivatives of the fields in powers of the uniformity param
eter

]

]t
5

]~0!

]t
1e

]~1!

]t
1•••. ~3.5!

These results provide the basis for generating the Chapm
Enskog solution to the BGK Boltzmann equation.

The BGK Boltzmann equation in terms of the variab
v8 is obtained directly from Eq.~2.1!,

S ]

]t
1~v i81ai j r j !

]

]r i
2L~v8,a!1ldu•“v8D f ~r ,v8,t !

5n f l ~r ,v8,t !, ~3.6!

wheredu5u2us . Also, the operatorL(v8,a) is defined by
Eq. ~2.13! except withns ,ls replaced byn,l as functions of
n(r ,t) andT(r ,t). The form ofl is still to be determined a
this point. The spatial gradient in the second term on the
side is taken at constantv8 , and consequently this term is o
first order in the uniformity parameter. Substituting the e
pansions~3.2! and ~3.5! into ~3.6! and equating coefficient
of each degree in the uniformity parameter leads to the eq
tions for f (0) and f (1):

S ]~0!

]t
2L~v8,a!1ldu•“v8D f ~0!5n f l , ~3.7!

S ]~0!

]t
2L~v8,a!1ldu–¹v8D f ~1!

52S ]~1!

]t
1~v i81ai j r j !

]

]r i
D f ~0!. ~3.8!

To lowest order in the expansion the conservation laws g
y-
y
-
d-

e

-

n-

ft

-

a-

e

]~0!n

]t
50,

]~0!dui

]t
1ai j duj50,

3

2
nkB

]~0!T

]t
1ai j t i j

~0!13lnkBT50, ~3.9!

where t i j
(0) is defined by Eq.~3.4!. The parameterl of the

external force is now chosen to impose] (0)T/]t50, i.e.,

l„n~r ,t !,T~r ,t !…52atxy
~0!~r ,t !/3n~r ,t !kBT~r ,t !. ~3.10!

The solution to Eq.~3.7! is obtained in a way similar to tha
for Eq. ~2.13!, with the result

f ~0!
„v8,ya~r ,t !…5n~r ,t !n~r ,t !S m

2pkBT~r ,t ! D
3/2

3E
0

`

dt e2n~r ,t !te3l~r ,t !t

3expS 2
m

2kBT~r ,t !
e2l~r ,t !t

3@L i j ~2t!„v j82duj~r ,t !…#2D , ~3.11!

whereL i j (t) is defined in Eq.~2.15!. The relationship of Eq.
~3.11! to Eq. ~2.14! is analogous to the relationship of th
local equilibrium distribution to the strict equilibrium distri
bution, where the former is obtained from the latter by
placing the hydrodynamic fields with their actual nonequil
rium values. To determinel(r ,t)[l„n(r ,t),T(r ,t)…, the
momentum fluxtxy

(0)(r ,t) is calculated using Eqs.~3.4! and
~3.11! to obtain

txy
~0!~r ,t !5

2an~r ,t !

„2l~r ,t !1n~r ,t !…2
n~r ,t !kBT~r ,t !, ~3.12!

where n(r ,t)[n„n(r ,t),T(r ,t)…. Use of Eq. ~3.10! then
gives, finally,

3l~r ,t !„2l~r ,t !1n~r ,t !…25n~r ,t !a2. ~3.13!

This shows thatl„n(r ,t),T(r ,t)… is the same as Eq.~2.16!
for uniform shear flow, except that the density and tempe
ture are replaced by their values for the general nonequ
rium state. With this result forl(r ,t), solution~3.11! is com-
pletely determined.

Next, consider the solution to Eq.~3.8! for the contribu-
tions to first order in the spatial gradients. As shown in A
pendix B, the right side is a linear combination of the hydr
dynamic gradients. Consequently,f (1) necessarily has the
same form,

f ~1!
„v8,ya~r ,t !…5Xn,i

]n

]r i
1XT,i

]T

]r i
1Xuk ,i

]duk

]r i
, ~3.14!

where the coefficientsXb,i„ya(r ,t),v8… are functions of the
velocity to be determined from substitution of Eq.~3.14! into
Eq. ~3.8!,
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S ]~0!

]t
2L~v8,a!1l du–¹v8DXb,k2aXux ,kdb,uy

52Yb,k .

~3.15!

Hereb denotesn,T,ux ,uy , anduz , andi ,k represents Car
tesian coordinates. The last term on the left side origina
from (] (0)/]t)(]duk /]r i)5(]/]r i)(]

(0)/]t)duk and Eq.
~3.9!. The functionsYb,k are given explicitly in terms of
f (0) and the flux t i j

(1) , which must be determined sel
consistently fromf (1). The procedure is to solve Eq.~3.15! to
find f (1) in terms oft i j

(1) and then to use this result to derive
a self-consistent equation fort i j

(1) . Further details can be
found in Appendix B along with the explicit solution to Eq
~3.15!.

In this way the complete normal solution near the unifo
shear state is constructed to ordere. The heat and momentum
fluxes then are calculated from Eq.~3.4!. The first terms
t i j
(0)(a) and qi

(0)(a) represent the transport properties of t
local reference state. They are the same as those of Se
Eq. ~2.18!, except that the density and temperature are
placed by their values for the general nonequilibrium sta
An important consequence of this replacement is that t
gradients are no longer zero and thus they now contribut
the hydrodynamic equations. The second termst i j

(1)(a) and
qi

(1)(a) provide new transport coefficients describing dis
pation due to spatial deviations uniform shear flow,

qi
~1!~a!52S jT, j

i ~a!
]T

]r j
1jn, j

i ~a!
]n

]r j
D ,

t i j
~1!~a!52g lk

i j ~a!
]dul

]r k
. ~3.16!

It is understood thatn, l(a), andp, and the transport coef
ficients all are functions of the local nonequilibrium tempe
ture and density, as well as the shear ratea. The method for
calculatingg lk

i j (a)andja, j
i (a) and some detailed forms of th

coefficients are given in Appendix C; a more complete li
ing can be obtained on request from the authors. Since
reference state is anisotropic there are new transport co
cients, reflecting the broken fluid symmetry, which do n
exist for hydrodynamics near equilibrium. Fourier’s law f
the heat flux is modified by a thermal conductivity tens
jT, j

i (a), which has the form

jT, j
i ~a!5jT

~1!~a!d i j 1jT
~2!~a!ai j 1jT

~3!~a!aji 1jT
~4!~a!aikajk

1jT
~5!~a!akiak j ~3.17!

characterized by five scalar ‘‘thermal conductivities’’ cha
acterizing this tensor. The anisotropy is in thex,y plane
so, for example, a temperature gradient in thex direction
leads to a heat flux in both thex and y directions. At zero
shear rate only the contribution fromjT

(1)(a) survives with
jT

(1)(0)5k, wherek55kBp/2mn is the thermal conductivity
for the BGK model. An additional difference from Fourier
law is a contribution to the heat flux from a density gradie
characterized by the transport tensor,jn, j

i (a). This has a rep-
resentation like Eq.~3.17! in terms of five additional scala
transport coefficients. The asymptotic behavior for sm
s

II,
-
.
ir
to

-

-

-
he
ffi-
t

r

t

ll

shear rates isjn, j
i (a)→(ai j 1aji )m(b/n)2, which vanishes

for zero shear rate as expected. The momentum flux is
pressed in terms of a viscosity tensor,g lk

i j (a), of degree 4
which is symmetric and traceless ini j . There are 19 inde-
pendent viscosity coefficients. At zero shear rateg lk

i j (a) re-
duces to Newton’s viscosity law,g lm

i j (a50)5h(d i l d jm

1d imd j l 2
2
3 d i j d lm), whereh5p/n is the shear viscosity for

the BGK model.
The corresponding nonlinear hydrodynamic equations

obtained directly from these results and the conserva
laws

Dtn1n“•du50, ~3.18!

3

2
nkBDtT2ai j g lm

i j ]dul

]r m
1

]dui

]r j
F t i j

~0!2g lm
i j ]dul

]r m
G

2
]

]r i
Fjn, j

i ]n

]r j
1jT, j

i ]T

]r j
G50, ~3.19!

Dtduk1r21
]

]r i
F t ik

~0!2g lm
ik ]dul

]r m
G1ak jduj50, ~3.20!

whereDt5] t1u–¹. This is a primary result of our analysis
These equations are analogous to the nonlinear Nav
Stokes equations for a fluid near local equilibrium, and
duce to them for zero shear rate. More generally, the re
ence state is local shear flow, which can be very far fr
equilibrium. Furthermore, there is no restriction on the d
viations from this reference state,dya , since the nonlinear
dependence of all coefficients onya(r ,t) has been retained
The spatial gradients relative to shear flow must be sm
however, and the equations are accurate to second ord
these gradients. The terms proportional tog lm

i j andt i j
(0) in Eq.

~3.19! represent viscous heating due to the excess gradie
the flow velocity relative to the reference state. There is
viscous heating from the reference state alone, since the l
thermostat has been chosen to cancel it, but for states
uniform shear flow the thermostat cannot compensate
effects due to the gradients relative to the reference st
The implications of this new hydrodynamic description f
from equilibrium are elaborated in Sec. IV by an analysis
the associated linear hydrodynamic modes.

IV. HYDRODYNAMIC MODES

The above hydrodynamic equations are restricted to sm
spatial gradients relative to the reference state of unifo
shear flow. If in addition the initial perturbationsdya(0) are
small then these equations can be linearized with respec
dya(t). The resulting set of five linear equations defines
hydrodynamic modes, or linear response excitations to sm
perturbations. If all of these modes decay in time, the stat
linearly stable. Otherwise, a growth of these modes sign
an onset of instability that is ultimately controlled by th
dominance of nonlinear terms. In this section we determ
the hydrodynamic modes for states far from equilibrium a
contrast them with those for states near equilibrium.

The linearized hydrodynamic equations follow direct
from Eqs.~3.18!–~3.20!:
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S ]

]t
1ai j r j

]

]r i
D dn1ns“•du50, ~4.1!

S ]

]t
1ai j r j

]

]r i
D dT1

2

3nskB
~2ag i j ,s

xy 1t i j ,s
~0! !

]dui

]r j

2
2

3nskB
Fjn j ,s

i ]2dn

]r i]r j
1jT j ,s

i ]2dT

]r i]r j
G50, ~4.2!

S ]

]t
1ai j r j

]

]r i
D duk1rs

21F S ]t ik
~0!

]n D
s

]dn

]r i
1S ]t ik

~0!

]T D
s

]dT

]r i

2g lm,s
ik ]2dul

]r i]r m
G1ak jduj50. ~4.3!

To analyze these equations it is convenient to transform
the local Lagrangian frame,r i85r i2usi(r )t5L i j (t)r j . The
Lees-Edwards boundary conditions then become simple
riodic boundary conditions in the variabler 8. A Fourier rep-
resentation is defined by

d ỹa~k,t !5E dr 8eik–r8dya~r ,t !5E dr eik~ t !–rdya~r ,t !,

~4.4!
to

e-

where the periodicity requireski52nip/Li , where ni are
integers andLi are the linear dimensions of the system.
the second equality,k(t) is given by

ki~ t !5kjL j i ~ t !. ~4.5!

The linearized hydrodynamic equations in this Fourier re
resentation are

]

]t
d ỹa1@Aan2 ik j~ t !Ban, j1kj~ t !kl~ t !Dan, j l #d ỹ n50,

~4.6!

where, in addition, the dependent variables now have b
scaled to dimensionless forms,

d ỹa5H d ñ

ns
, S 3

2D 1/2d T̃

Ts
, S m

kBTs
D 1/2

d ũJ . ~4.7!

A summation convention applies and Latin indices den
Cartesian coordinates. The three matricesAab ,Bab , and
Dab are
Aab5ada3db4 , ~4.8!

Bab j5S kBTs

m D 1/21
0 0 d jx d jy d jz

0 0 B2x j B2y j B2z j

n

ps
S ]t jx

~0!

]n D
s

S 2

3D 1/2Ts

ps
S ]t jx

~0!

]T D
s

0 0 0

n

ps
S ]t jy

~0!

]n D
s

S 2

3D 1/2Ts

ps
S ]t jy

~0!

]T D
s

0 0 0

n

ps
S ]t jz

~0!

]n D
s

S 2

3D 1/2Ts

ps
S ]t jz

~0!

]T D
s

0 0 0

2 , ~4.9!

whereB2i j 5A2/3(1/ps)(2ag i j ,s
xy 1t i j ,s

(0) ). The matrixDab is

Dab j l 5S 0 0 0 0 0

S 2

3D 1/2ns

ps
jnl,s

j 2

3

Ts

ps
jTl,s

j 0 0 0

0 0 r21gxl,s
jx r21gyl,s

jx r21gzl,s
jx

0 0 r21gxl,s
jy r21gyl,s

jy r21gzl,s
jy

0 0 r21gxl,s
jz r21gyl,s

jz r21gzl,s
jz

D . ~4.10!

The homogeneous solution to equations~4.6! can be calculated easily by settingk50,

d ỹa~ t !5@e2At#abd ỹb~0!5@12At#abd ỹb~0!. ~4.11!

The second equality follows from the propertyA250. Consequently, all fields are constant exceptdux , which behaves as

d ũx~ t !5 ũx~0!2atd ũy~0!. ~4.12!
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The homogeneous state is unstable to an initial perturbation ind ũy , leading to an unbounded linear change in time. Stabi
is still possible at finitek if this behavior is modulated by exponential hydrodynamic damping factors;e2ak2t, with a.0.

To simplify the analysis atkÞ0 we allow perturbation only along the velocity gradient direction, i.e.,k5kŷ. In this case the
linear hydrodynamic equations have time-independent coefficients~i.e., k(t)5k…,

S ]

]t
1F D

an

d ỹ n50, Fab5Aab2 ik Bab1k2 Dab , ~4.13!

and the matricesB andD now take the simpler forms

Bab5S kBTs

m D 1/2S 0 0 0 1 0

0 0 B2xy B2yy 0

ns

ps
S ]tyx

~0!

]n D
s

S 2

3D 1/2Ts

ps
S ]tyx

~0!

]T D
s

0 0 0

ns

ps
S ]tyy

~0!

]n D
s

S 2

3D 1/2Ts

ps
S ]tyy

~0!

]T D
s

0 0 0

0 0 0 0 0

D , ~4.14!

Dab5S 0 0 0 0 0

S 2

3D 1/2ns

ps
jny,s

y 2

3

Ts

ps
jTy,s

y 0 0 0

0 0 rs
21gxy,s

yx rs
21gyy,s

yx 0

0 0 rs
21gxy,s

yy rs
21gyy,s

yy 0

0 0 0 0 rs
21gzy,s

yz

D . ~4.15!

Equation~4.13! can be solved by Laplace transformation,

d ŷa~k,z!5E
0

`

dt e2tzd ỹa~k,t !5@zI1F~k,z!#an
21d ỹ n~k,t50!. ~4.16!

The eigenvaluesv ( i )(k,a) of the matrixF(k,z) define the five simple hydrodynamic poles atz52v ( i )(k,a), which determine
the dominant dynamics of thed ỹa(k,t) at large t and smallk. At equilibrium (a50), the hydrodynamic modes of th
Navier-Stokes equations are recovered~two sound modes, a heat mode and a twofold-degenerate shear mode! for long
wavelengths (k→0),

v~ i !~k,0!→vNS
~ i ! ~k!5S ick1Gk2

2 ick1Gk2

DTk2

~h/r!k2

~h/r!k2

D , ~4.17!

where c5A5/3bm is the sound velocity, G5DT/31(2h/3r)51/bmn is the sound damping constant,DT

5jTy,s
y (a50)/rCp51/bmn is the heat diffusion coefficient,Cp is the specific heat per unit mass, andh/r51/bmn is the

kinematic viscosity. The equilvalence ofT, DT , andh/r is a peculiarity of the BGK model. These coefficients are positive
that Eqs.~4.17! represent damped excitations. Corrections to these dispersion relations are of orderk3, describing an expansion
that is analytic ink aboutk50.

For finite shear rate, the modes are more complicated and the behavior at long wavelengths is qualitatively differen
more precise, consider the case ofk→0 at fixed, finitea. It follows directly from Eq.~4.16! that hydrodynamic modes hav
the asymptotic behavior
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v~ i !~k,a!→S c1~a!k2

2 1
2 ~11 i A3!c2~a!k2/31 1

2 ~12 i A3!c3~a!k4/31c4~a!k2

2 1
2 ~12 i A3!c2~a!k2/31 1

2 ~11 i A3!c3~a!k4/31c4~a!k2

c2~a!k2/31c3~a!k4/31c4~a!k2

~h~a!/r!k2

D , ~4.18!

with the coefficientsci(a) given by

c1~a!5F ]h~a!

]T

]tyy
~0!~a!

]n
2

]h~a!

]n

]tyy
~0!~a!

]T G S m
]tyy

~0!~a!

]T D 21

, ~4.19!

c2~a!5F 2a2

3n2mkB

~h~a!1gxy
xy~a!!

]tyy
~0!~a!

]T G 1/3

, ~4.20!

c3~a!5
2

9n2mkBc2~a!
F ]tyy

~0!~a!

]T
~2agyy

xy~a!1tyy
~0!~a!!2a~h~a!1gxy

xy~a!!
]txy

~0!~a!

]T G1
1

3nmc2~a!
S n

]tyy
~0!~a!

]n
2agxy

yy~a! D ,

~4.21!

c4~a!52
c1~a!

3
1

1

3Fr21~gxy
xy~a!1gyy

yy~a!!1
2

3nkB
jT,y

y ~a!G . ~4.22!
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The modes~4.18! represent two oscillating modes and thr
purely damped modes, just as in the Navier-Stokes c
~4.17!. However, there are two important qualitative diffe
ences. First, the long-wavelength behavior is nonanalytic
k aboutk50, and is given by a power series ink2/3. Thus,
for example, the purely damped modes do not represent
fusive behavior as in the Navier-Stokes case. This nona
lytic behavior with respect tok is due to the fact that the
reference matrix atk50 is not diagonalizable, and the eige
values are not analytic aboutk5a50. Therefore, recovery
of the form of the modes near equilibrium requires thatk and
a be taken to zero in a related way~see below!. The hydro-
dynamics for an alternative choice of thermostat, discus
in Appendix A, has dispersion relations that are analy
about k5a50. A second critical difference between Eq
~4.18! and ~4.17! is that the two oscillating modes are u
stable in the long-wavelength limit because the coeffici
c2(a) is positive for all a. This means the modes includ
excitations that grow in time. Eventually, the deviatio
d ỹa grow beyond the limitations of the linear equations, a
full nonlinear hydrodynamic equations are required to de
mine their ultimate values. These will be different from tho
of the reference state, representing the fact that the refer
state itself is unstable.

It is possible that the hydrodynamic modes are stable
shorter wavelengths. This is in fact the case, as can be
by solving Re@v ( i )(ks ,a)#50 to determine the stability line
ks(a) in thek-a plane. This is illustrated in Fig. 1, where th
calculation was performed using the exact eigenvalues ra
than the smallk expansion of Eq.~4.18!. Dimensionless vari-
ables are used,k* 5kl and a* 5at, wheret5n21 is the
mean free time,l 5v0 /n is the mean free path, an
v05A2kBT/m is the thermal velocity. Above this line th
modes are stable, while below this line they are unsta
se
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This prediction of a long-wavelength instability has be
verified quantitatively by comparison with Monte Car
simulation of the same kinetic equation from which this h
drodynamics was derived@11#. Further analysis of this insta
bility and comparisons to simulations is reported in det
elsewhere@12#. In the following we focus on the stable do
main of Fig. 1. To study the stable dynamics a new dim
sionless variablex5k* /a* is introduced. The hydrodynami
modes are expressed as functions ofk andx, i.e., v ( i )(k,a)
5v ( i )(k,x), and the expansion aboutk50 is performed at
fixed x. Physically, this involves controlling both the she
rate and the wavelength simultaneously to assure that
system is stable~sufficiently largex) while approaching the
long-wavelength limit. To simplify the calculation, a syste
of Maxwell molecules is considered~interatomic potential
;r 24). In this casen(n,T) andl(n,T) are independent o
the temperature. The hydrodynamic modes for the stable
main are then obtained forx. 2/A5, which lies above the
dashed line shown in Fig. 1,

v~ i !~k,a!→1
ick1Gk22

2

5n
a2

2 ick1Gk22
2

5n
a2

DTk2

DTk21
4

5n
a2

~h/r!k2

2 . ~4.23!

For this expansion at fixedx the eigenvalues are again an
lytic functions ofk and can be interpreted as perturbations
the Navier-Stokes modes due to small but finite shear r
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The restrictions onx imply (2/A5)a* ,k* ,1, so the shear
rate dependence is small but not necessarily in the Nav
Stokes limit. More generally, the entire stable doma
including larger shear rates can be accessed
xs5k/ks(a).1, and evaluatingv(k,xs) as a function ofk
exactly.

The linearized hydrodynamic variablesd ỹa(k,t) can be
expressed in terms of the eigenvalues and eigenfunction

d ỹa~k,t !5(
i

e2v~ i !~k,x!tza
~ i !~k,x!~hb

~ i !!†~k,x!d ỹb~k,0!,

~4.24!

where$z ( i )% are the eigenvectors and$h ( i )% are the associ-
ated biorthogonal set defined by(a(ha

( i ))†za
( j )5d i j . To il-

lustrate the effects of the shear rate the analytic results
small k, Eq. ~4.23!, will be used. The corresponding eige
vectors are

z~ i !51
XS 3

5D 1/2

, S 2

5D 1/2

, S 6

5D 1/2 i

x
, 21,0C

XS 3

5D 1/2

, S 2

5D 1/2

, S 6

5D 1/2 i

x
, 1,0C

X2S 2

3D 1/2

, 1, 0, 0,0C
X2S 2

3D 1/2

, 1, 2
2i

A3x
, 0,0C

~0, 0, 0, 0,1!

2 , ~4.25!

h~ i !51
X1
2S 3

5D 1/2

,
1

A10
, 0,2

1

2
,0C

X1
2S 3

5D 1/2

,
1

A10
, 0,

1

2
,0C

X2S 3

2D 1/2

, 0,
iA3x

2
, 0,0C

X3
5S 3

2D 1/2

,
3

5
, 2

iA3x

2
, 0,0C

~0, 0, 0, 0,1!

2 , ~4.26!

where it is understood thatk is restricted to the stable do
main. Then the response of the density to an initial den
perturbation is found to be

dn~k,t !5@ 3
5 e2„Gk22~2a2/5n!…tcos~kct!

1e2DTk2t~ 12 3
5 e24a2t/5n!#dn~k,0!. ~4.27!

Thus, for small shear rates there is an enhancement o
amplitudes for both the sound and heat modes. All ot
hydrodynamic variables can be calculated in a similar w
from Eq. ~4.24!, as well for both the stable and unstab
regions, including small and large shear rates.
r-
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V. DISCUSSION

The objective here has been to study transport far fr
equilibrium for the special nonequilibrium states near u
form shear flow. Dynamical properties of states far fro
equilibrium are not well understood due to their complex
and technical difficulties with the formal theories of noneq
librium statistical mechanics. However, at low density t
Boltzmann kinetic theory provides a controlled formulatio
of this problem. There are still difficulties for practical ap
plications, so a kinetic model has been used to allow a
tailed analysis for a special class of states near uniform s
flow. First, the BGK Boltzmann equation was solved exac
for the steady state distribution at uniform shear flow, a
the corresponding transport properties given as a functio
the shear rate. Next, a solution to the kinetic equation w
obtained for a class of states deviating from uniform sh
flow by small spatial gradients in the hydrodynamic field
using a variant of the Chapman-Enskog approximat
method. By ‘‘variant’’ we mean that a local form of th
stationary solution for shear flow is used as a reference fu
tion rather than the local equilibrium distribution function.
general this reference state is very different from a Maxw
ian and can be very far from equilibrium if the shear rate
large. The Chapman-Enskog expansion was used to d
mine the distribution function to first order in the gradien
The result is a ‘‘normal solution’’ for which all space an
time dependence occurs through the hydrodynamic fie
These fields must be determined from hydrodynamic eq
tions which follow from the exact conservation laws. Th
irreversible parts of the hydrodynamic fluxes were det
mined as functions of the hydrodynamic fields and their g
dients using the normal solution with results of the for
t i j* 52h(]us,i /]r j )2g lk

i j (]dul /]r k) for the momentum flux
and qi* 52jT, j

i (]dT/]r j )2jn, j
i (]dn/]r j ) for the heat flux.

Since these coefficients are calculated near the statio
state of broken symmetry there are many new transport
efficients (g lk

i j , jT, j
i , jn, j

i ), in comparison to the case of state
near equilibrium, which depend on the shear rate. With th

FIG. 1. The solid line separates the stable~above! and unstable
~below! domains in thek* 5kl , a* 5a/n parameter space. Th
dotted line is the asymptotic form obtained from Sec.
(x.2/A5).
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1742 56MIRIM LEE AND JAMES W. DUFTY
new expressions for the fluxes, a closed set of the gene
ized hydrodynamic equations was derived near unifo
shear flow. In summary, a complete description at both
kinetic and hydrodynamic levels has been given for a w
class of states arbitrarily far from equilibrium. In particula
the analysis provides a rare example of the relevance
hydrodynamic description far from equilibrium. The corr
sponding hydrodynamic modes were calculated to ordek2

for arbitrary shear rate from the linearized hydrodynam
equations. An unexpected result is an instability for any
nite value of the shear rate at sufficiently long wavelengt
This prediction has been verified quantitatively by compa
son with direct Monte Carlo computer simulation of the k
netic equation, confirming the validity of the hydrodynam
description@11,12#.

The hydrodynamic analysis was carried out here only
spatial variations along the velocity gradient. More comp
dynamics is expected in the general case of arbitrary di
tion for the spatial perturbation and a description will
given elsewhere. In addition to the stable and unstable ex
nential time dependence of the hydrodynamic modes, th
will be algebraic modulations due to the fact that the hyd
dynamic matrix atk50 cannot be diagonalized. This ca
lead to initial growth of perturbations of uniform shear flo
even when the hydrodynamic modes are stable.

The approach taken here can be extended to several
physically interesting reference nonequilibrium states s
as a constant temperature gradient, or combined heat
momentum transport. Exact solutions to the BGK kine
equation are known for these cases@3,20,21#, so the refer-
ence distribution for the Chapman-Enskog expansion
available. Other directions of extension include applicatio
at higher densities. Recently, a BGK-like kinetic model f
the dense fluid Enskog kinetic equation has been descr
and applied with success to shear flow@22#. This provides
theoretical access to densities relevant for molecu
dynamics simulations.

Although attention has been focused on transport,
analysis can be extended in a straightforward way to desc
fluctuations in uniform shear flow. The reason for this is t
close relationship of the kinetic equations for fluctuations
that for transport@23,24#. For example, the kinetic equatio
for phase-space fluctuations at two times is governed by
linearization of the kinetic equation for transport. As a co
sequence, the linear hydrodynamic equations studied in
IV also can be used to compute the hydrodynamic par
time correlation functions such as the dynamic structure
tor measured in light scattering. Recently, kinetic models
fluctuations have been developed that are self-consistent
the BGK kinetic model for transport@25#. Their detailed ap-
plication to fluctuations in uniform shear flow, includin
anomalous long range spatial correlations@26# will be dis-
cussed elsewhere.
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APPENDIX A: THERMOSTATS

To establish a steady state for uniform shear flow a n
conservative external force is introduced in Sec. II to co
pensate for viscous heating generated by the Lees-Edw
boundary conditions. In Sec. III for statesnearuniform shear
flow, a local form for this nonconservative force is used,

Fext~r ,t !52ml„n~r ,t !,T~r ,t !…„v2u~r ,t !…. ~A1!

With this local form it is possible to impose] t
(0)T50, which

lead to the results thatl„n(r ,t),T(r ,t)… is the same as
ls(ns ,Ts) at uniform shear flow given by Eq.~2.17!, except
that the temperature and density are replaced by those fo
general nonequilibrium state. The resulting hydrodynam
equations express viscous heating only due to the gradi
relative to uniform shear flow. An alternative choice is to u
the simpler case of the constantl(ns ,Ts) in Eq. ~A1! even
for states near uniform shear flow. The advantage of
choice is a simpler implementation of the Monte Carlo sim
lation method for the solution to the kinetic model equatio
Obviously, this is consistent with the conditions for th
steady-state uniform shear flow. However, this choice o
partially compensates for the viscous heating at local u
form shear flow, i.e.,] t

(0)TÞ0. In this appendix, the change
from the results of Sec. III in both the Chapman-Ensk
solution and the hydrodynamic equations due to this alter
tive choice are described.

To lowest order in the uniformity parameter, the BG
equation with the new thermostat becomes

S ]~0!

]t
2L~v8,a!1l sdu•“v8D f ~0!5n f l . ~A2!

Here and below it is understood thatls5l(ns ,Ts) is inde-
pendent of space and time. Since the solution is normal
time dependence occurs only through the hydrodyna
variables, and the contributions from the time derivati
] t

(0) can be calculated using the conservation laws to low
order in the uniformity parameter,

]~0!n~r ,t !

]t
50,

]~0!dui~r ,t !

]t
1ai j duj~r ,t !50, ~A3!

3
2 n~r ,t !kB

]~0!T~r ,t !

]t
1ai j t i j

~0!~r ,t !13 l sn~r ,t !kBT~r ,t !

50. ~A4!

These differ from the results of the Sec. III because it is
longer possible to choosels to compensate for the viscou
heating, i.e., ai j t i j

(0)(r ,t)Þ23 l sn(r ,t)kBT(r ,t). Instead,
Eq. ~A2! becomes

F2
2

3nkB
~ai j t i j

~0!13ls nkBT!
]

]T
2L„~v82du!,a…G f ~0!

5n f l , ~A5!

where the temperature derivative term is new. To solve
~A5!, we need to know the temperature dependence of
zeroth momentum flux,txy

(0) . For power-law potentials this
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follows from the temperature dependence ofn. The analysis
is simplest for Maxwell molecules wheren is independent of
the temperature. Thentxy

(0);T ~as is verifieda posteriori! and
the solution to Eq.~A5! is

f ~0!
„v8,ya~r ,t !…5n~r ,t ! n~r ,t !S m

2pkBT~r ,t ! D
3/2

3E
0

`

dt e2n~r ,t !te3w~r ,t !t

3expS 2
m

2kBT~r ,t !
e2w~r ,t !t

3@L i j ~2t!„v j82duj~r ,t !…#2D , ~A6!

w„n~r ,t !,T~r ,t !…[2
a txy

~0!~r ,t !

3n~r ,t !kBT~r ,t !
. ~A7!

The solution is still only implicit sincetxy
(0)(r ,t), or equiva-

lently w(r ,t), must be determined self-consistently using E
~A6!. The result is

3 w~r ,t !„2w~r ,t !1n~r ,t !…25n ~r ,t !a2. ~A8!

This equation is the same as that forl„n(r ,t),T(r ,t)…, Eq.
~3.13!, showing thatw(r ,t) has the same functional depe
dence ona, n(r ,t), andT(r ,t). This proves that the zerot
order solutions to the BGK Boltzmann equation, Eqs.~A6!
and ~3.11!, for the two different thermostats are the sam
The lowest order equations for the temperature differ, ho
ever. Use of Eq.~A7! in Eq. ~A4! gives

] t
~0!T~r ,t !52 ~w2ls! T~r ,t !, ~A9!

which vanishes only at the steady state.
Now consider the first-order solution in the Chapma

Enskog expansion,

S ]~0!

]t
2L~v8,a!1l sdu•“v8D f ~1!

52S ]~1!

]t
1~v i81ai j r j !

]

]r i
D f ~0!, ~A10!

and look for solutions of the form

f ~1!
„v8,ya~r ,t !…5Xn,i„v8,ya~r ,t !…

]n

]r i
1XT,i„v8,ya~r ,t !…

]T

]r i

1Xuk ,i„v8,ya~r ,t !…
]duk

]r i
. ~A11!

The equations for the coefficients,Xb,i„v8;ya(r ,t)…, are de-
termined from substitution of into Eq.~A10!, and they are
.

.
-

-

S ]~0!

]t
2L~v8,a!1l sdu•“v8D S Xn,k

XT,k

Xuj ,k

D
1S 2 TS ]w

]n D XT,k

2 ~ls2w! XT,k

a d j ,y Xuj ,k

D 52S Yn,k

YT,k

Yuj ,k

D , ~A12!

wherei , j , andk represent Cartesian coordinates. The fun
tionsYb,k are same as those given in Appendix B. Since
equations forXn,k andXT,k are different from Eq.~3.15!, the
transport coefficients for the heat flux,jn, j

i andjT, j
i , are also

different for this new thermostat. However, the equation
Xui ,k is unchanged, so the transport coefficients for the m

mentum flux,g lm
i j , are unchanged. The corresponding hyd

dynamic equations are the same as in Sec. III, except for
temperature equation, which becomes

3
2 nkB DtT2ai j g lm

i j ]dul

]r m
1

]dui

]r j
F t i j

~0!2g lm
i j ]dul

]r m
G

2
]

]r i
Fjn, j

i ]n

]r j
1jT, j

i ]T

]r j
G53~w2ls!nkBT. ~A13!

The new term 3(w2ls)nkBT on the right side represents th
viscous heating due to spatially uniform deviations from t
steady state.

APPENDIX B: CHAPMAN-ENSKOG EXPANSION

In this appendix, Eq.~3.8! for f (1) is solved,

S ]~0!

]t
2L~v8,a!1ldu•“v8D f ~1!52~Dt

~1!1v8•“ ! f ~0!,

~B1!

where Dt
(1)[(] (1)/]t)1ai j r j (]/]r i). The right side of Eq.

~B1! can be written in terms of hydrodynamic derivatives

~Dt
~1!1v8•“ ! f ~0!5 (

a51

5
] f ~0!

]ya
~Dt

~1!1v8•“ !ya , ~B2!

whereya5$n(r ,t), T(r ,t), du(r ,t)% . The time derivatives
can be replaced by first-order spatial gradients of hydro
namic variables using the corresponding hydrodynam
equations obtained from Eqs.~2.6!–~2.8!

Dt
~1!n1“•~ndu!50, ~B3!

3
2 nkB~Dt

~1!1du•“ !T1ai j t i j
~1!1t i j

~0!
]dui

]r j
1“•q~0!50,

~B4!

Dt
~1!dul1du•“dul1r21

]t i l
~0!

]r i
50. ~B5!

Use of these equations in Eq.~B2! gives
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~Dt
~1!1v8•“ ! f ~0!5Yn,i„v8;ya~r ,t !…

]n

]r i

1YT,i„v8;ya~r ,t !…
]T

]r i

1Yuk ,i„v8;ya~r ,t !…
]duk

]r i
. ~B6!

The coefficientsYa,i are given by

Yn,i5
] f ~0!

]n
~v i82dui !2r21

] f ~0!

]dul

]t i l
~0!

]n
, ~B7!

YT,i5
] f ~0!

]T
~v i82dui !2r21

] f ~0!

]dul

]t i l
~0!

]T
, ~B8!

Yuk ,i52n
] f ~0!

]n
dki2

2

3nkB

] f ~0!

]T S tki
~0!1alm

]t lm
~1!

]S ]duk

]r i
D D

1
] f ~0!

]duk
~v i82dui !, ~B9!

where i ,l ,k,m denotex,y,z. The derivatives off (0) can be
obtained simply from Eq.~3.11!,

] f ~0!

]n
5

f ~0!

n
1S ]n

]nD1

n
@ f ~0!2n2hn#1S ]l

]nD nhl , ~B10!

] f ~0!

]T
52

3

2T
f ~0!1

m

2kBT2
nhT

1S ]n

]TD1

n
@ f ~0!2n2hn#1S ]l

]TD nhl , ~B11!

] f ~0!

]dul
5

m

kBT
nhul

. ~B12!

Here the functionsha are defined by

hn5E
0

`

dt te2nt13lt f l „e
ltL i j ~2t!~v j82duj !…, ~B13!

hl5E
0

`

dt e2nt13ltH 3t2
m

kBT
e2ltt

3@L i j ~2t!~v j82duj !#
2J

3 f l „e
ltL i j ~2t!~v j82duj !…, ~B14!
hT5E
0

`

dt e2nt13lte2lt@L i j ~2t!~v j82duj !#
2

3 f l „e
ltL i j ~2t!~v j82duj !…, ~B15!

huk
5E

0

`

dt e2nt13lte2ltgk~v8,t!

3 f l „e
ltL i j ~2t!~v j82duj !…, ~B16!

where the functionsgk(v8,t) in the expression forhuk
are

gx5~vx82dux!1at~vy82duy!,

gy5at~vx82dux!1~11a2t2!~vy82duy!,

gz5vz82duz . ~B17!

The right side of Eq.~B1! now can be written in terms of the
coefficients,Ya,i , and the hydrodynamic gradients. Note th
Ya,i are given only implicitly since they depend on the u
known flux t i j

(1) . The procedure is therefore to determin
f (1) in terms of t i j

(1) , and then use that result to obtain
self-consistent equation fort i j

(1) .
Clearly, f (1) must have the same form as the right side

Eq. ~B6!,

f ~1!5Xn,i„v8,ya~r ,t !…
]n

]r i
1XT,i„v8,ya~r ,t !…

]T

]r i

1Xuk ,i„v8,ya~r ,t !…
]duk

]r i
. ~B18!

Substitution of this form into Eq.~B1! gives the equations

S ]~0!

]t
2L~v8,a!1ldui

]

]v i8
D Xa,k2aXux ,kda,uy

52Ya,k ,

~B19!

wherea5n,T,ux ,uy , anduz . These equations have a form
similar to Eq.~4.8! and can be solved in a similar way t
obtain

Xa,k5E
0

`

dt e2nte3lt@ada,uy
Xux ,k„e

ltL i j ~2t!~v j82duj !…

2Ya,k„e
ltL i j ~2t!~v j82duj !…#. ~B20!

This implicit result is sufficient for determination of th
transport coefficients, as described in Appendix C.

APPENDIX C: TRANSPORT COEFFICIENTS

In this appendix, the transport coefficients defined in E
~3.16! are calculated using the solution to Eq.~3.15!. First,
the coefficients from momentum flux are considered,

g lm
i j 52E dv8mcicjXul ,m , ~C1!
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wherec5v82du. As an example,gxy
xy is analyzed in detail.

Substitution of the solution,Xux ,y , Eq. ~B20!, into the defi-

nition of gxy
xy , Eq. ~C1!, gives

gxy
xy5E dv8 mcxcyE

0

`

dt e2nte3ltYux ,y„e
ltL i j ~2t !cj….

~C2!

To proceed it is necessary to know the temperature de
dence ofn and l. The simplest case is that of Maxwe
molecules for whichn andl are constants. Thengxy

xy can be
calculated with a sequence of change of variables:
v8→v81du, thenv8→e2ltv8, and finallyv i8→L i j (t)v j8 . In
this waygxy

xy is found to be
a

n
ch

F

n-

st

gxy
xy5E

0

`

dt e2~n12l!tmE dv~vx2atvy!vy

3F2
2

3nkB

] f ~0!

]T
~ txy

~0!1almgxy
lm!1

] f ~0!

]dux
vyG

5~ txy
~0!1agxy

xy!S 2na

~2l1n!3
2

10na

3~2l1n!3D 2
n

~2l1n!2
p.

~C3!

Use of result~3.12! for txy
(0) and relation~3.13! for l gives the

final value ofgxy
xy ,

gxy
xy5

n~n22l!

~2l1n!2~6l1n!
p. ~C4!

The same method can be applied for all the transport co
cients,g lm

i j , jn, j
i , andjT, j

i . A complete listing of the results
can be obtained from the authors on request.
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