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Transport far from equilibrium: Uniform shear flow
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The Bhatnager-Gross-Krook model kinetic equation is applied to spatially inhomogeneous states near steady
uniform shear flow. The shear rate of the reference steady state can be large, so the states considered include
those very far from equilibrium. The single-particle distribution function is calculated exactly to first order in
the deviations of the hydrodynamic field gradients from their values in the reference state. Corresponding
nonlinear hydrodynamic equations are obtained, and the set of transport coefficients are identified as explicit
functions of the shear rate. The spectrum of the linear hydrodynamic equations is studied in detail, and
qualitative differences from the spectrum for equilibrium fluctuations are discussed. Conditions for instabilities
at long wavelengths are identified and discus$8d063-651X%97)11708-1

PACS numbsgs): 05.20.Dd, 51.16ty, 83.50.Ax, 83.20-d

I. INTRODUCTION ally rare[2]. In contrast, exact results have been obtained for
a number of physically interesting special steady stg¢s

Nonequilibrium phenomena are well understood for statesising a model kinetic equation designed to preserve the es-
near equilibrium. However, even the qualitative features ofential features of the Boltzmann equation while admitting
transport and fluctuations far from equilibrium are poorly more practical analysigt]. In some cases these results have
understood, due to the complexity of the physical states andeen compared with those from Monte Carlo simulation far
the lack of an adequate controlled theoretical description ifirom equilibrium, indicating that the kinetic model provides
general. It is useful in this context to consider more restricboth qualitative and semiquantitative representations of the
tive conditions and specialized states for which greateunderlying Boltzmann equatidrb]. The objective here is to
progress in this difficult area can be made. Here we considarse this kinetic model approach for the special class of states
a low-density simple atomic gas for which transport proper-at or near uniform shear flow. Uniform shear flow is a par-
ties are described by the nonlinear Boltzmann equation. Fdicularly well-studied nonequilibrium state using numerical
states near equilibrium, the Chapman-Enskog expansion ehethodgboth Monte Carlo simulation at low density] and
the distribution function about the local equilibrium distribu- molecular-dynamics simulation at high dendi6;7]), illus-
tion in terms of gradients of the hydrodynamic fields pro-trating rheological properties normally associated with com-
vides approximations to a normal solutitme for which all  plex molecular fluid§8]. More importantly, it is one of the
space and time dependence occurs through the hydrodgpecial cases for which an exact solution to the model kinetic
namic variables[1]. From this solution the corresponding equation has been obtaing8,10|, providing the necessary
hydrodynamic equations are obtained, including explicit ex+eference state for the modified Chapman-Enskog expansion
pressions for the associated transport coefficients. In prindeveloped here. We look for solutions to the kinetic equation
ciple, this method applies to states far from equilibrium asas an expansion in small spatial gradients relative to an exact
well, although calculation of the Chapman-Enskog expansolution for local uniform shear rather than around local
sion to higher orders in the gradients is prohibitively diffi- equilibrium. The heat and momentum fluxes are calculated
cult, and questions of convergence remain unresolved. Afrom this solution to linear order in these gradients, and a
alternative approach is to expand in small gradients about elosed set of generalized hydrodynamic equations is ob-
more relevant reference state than local equilibrium. For extained. This is analogous to the nonlinear Navier-Stokes
ample, consider states near a homogeneous reference steadyiations near equilibrium, except that here the reference
state. Deviations of the hydrodynamic variables from theirstate is non-Maxwellian and a complex function of the shear
values in this state are characterized by small relative spatiahte. The associated nonlinear transport coefficients are iden-
gradients. A modified Chapman-Enskog expansion can b#fied, and examples calculated for arbitrary values of the
implemented to obtain the distribution function and hydro-shear rate.
dynamic equations to leading order in these gradients. Since To expose the physical content of these hydrodynamic
the reference state can be far from equilibrium, the form ofequations and their differences from those for states near
the hydrodynamic equations and the dependence of the transguilibrium, hydrodynamic modes are calculated from the
port coefficients on parameters of the steady state will bassociated linearized equations. In addition to their depen-
quite different from those for states near equilibrium. dence on the shear rate, these modes have a more complex

In practice this program has not been carried out sincevave-vector dependence than those from the Navier-Stokes
determination of a nontrivial reference steady state far fromequations due to the broken symmetry of the reference state.
the equilibrium from the Boltzmann equation is exception-More surprisingly, a new long wavelength instability is
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found such that the hydrodynamic modes are growing ini-

tially for any finite shear rate and sufficiently long wave- n(f-t)Ef dv f(r,v,t), n(r,t)u(r,t)EJ dv vf(r,v,1),
length[11]. A more detailed study of this instability and its

verification via computer simulation is described elsewhere

[12]. %n(r,t)kBT(r,t)EJ dvimcf(r,v,t), (2.5

Il. KINETIC THEORY AND UNIFORM SHEAR FLOW wherec=v—u. ) ) )
The macroscopic conservation laws are obtained by tak-

In this section the kinetic theory is defined, the associate¢hg moments of Eq(2.1) and using the definition€2.5)
macroscopic conservation laws obtained, and the special so-

lution for steady uniform shear flow is described. In the next D.n(r,t)+n(r,t)V-u(r,t)=0, (2.6
section, this solution is generalized to a local reference state

for an expansion to describe a class of states near uniform 2

shear flow and to obtain the associated hydrodynamic equa- D:T(r.t)+ m[v'Q(r,t)+tij(f,t)ﬁiuj(f1t)],
tions. '

Exact or even approximate solutions to the Boltzmann =s(r,t), (2.7
equation far from equilibrium are exceptionally rare, due to
the complexity of the nonlinear collision operator. Therefore Dtui(r,t)+[mn(r,t)]‘1ajtij =0, (2.9

kinetic models have been introduced to replace the Boltz-

mann collision operator with a simpler, more tractable operawhereD=d;+u-V is the material derivative. The heat and
tor. The best studied of these is a single relaxation timgnomentum fluxes(r,t) andt;;(r,t) are linear functionals of
model due to Bhatnager, Gross, and Krdtile BGK model  f(r,v,t) given by

[4]. The essential qualities of this model are its preservation

of the exact equilibrium solution and all five conservation _ 1

laws. The BGK Boltzmann kinetic equation is given by q(r,t)—f dvim cef(r.v.1),

d
—+v-V,

g f+m IV, (Feuf)=—v(f—1,), (2.1 tij(r,t)=J dv m gc;f(r,v,t). (2.9

, ) The inhomogeneous term on the right side of the temperature
whereF,, is an external force. The parametein Eq.(2.1)  oqyations(r,t), is due to the external forde,,, introduced
IS a collision frequency W.h'Ch depends on an interaction lawyq ' serve as a thermostat. Several thermostats that have been
This frequency is a function of the density and temperatureqeq in hoth theory and computer simulations. Here we
At low density, it can be written as choose a force that is proportional to the relative velocity
c=v—u(r,t),
v~n(r,t)TO(r,1), (2.2

Fex(r,c,t)=—mx(n(r,t),T(r,t))c. (2.10

when the potential has a formv(r)~r~', with b=1/2
—2/. In the case of Maxwell molecule$£4), b is zero so  The resulting source ters(r,t) in the equation for the tem-
v becomes independent of temperature. For the hard sphepgrature becomes
case | », resulting in a value forb of 3. Finally,

f(r,v,t) is the local equilibrium distribution s(r,t)=—2T(r, )\ (n(r,1),T(r,1)). (2.11

¢ 3 The proportional “constant’\ (n(r,t),T(r,t)) is determined
f/(r,v,t):n(r,t)(ﬂ(r’ )m) by requiring stationarity of the system in the uniform shear
2@ flow state(see below, and may depend on the local density,
1 temperature, and shear rate. In Appendlia different ther-
Xex;{ - —B(r,t)m(V—U(r,t))zy (2.3 ~ Mostat is considered for comparison. The primary changes
2 are the degree to which the external force compensates for
viscous heating away from the state of uniform shear flow.
wheren(r,t), T(r,t)=[kgB(r,t)]" %, andu(r,t) are the den- The fact that the fields are functionals fffr,v,t) makes
sity, temperature, and flow velocity of the nonequilibrium the BGK Boltzmann equation highly nonlinear and difficult
state. These hydrodynamic fields are defined such that  to solve in general. However, in many cases an implicit so-
lution can be given as an explicit function of the velocity and

1 functional of the fields. Then, the fields must be determined

_ self-consistently from the above macroscopic conservation

f dvl v | (F(rv,)=f(r,v,1)=0, (2.4 laws. One of the cases for which an exact solution is known
v? is uniform shear flow3,9,13. The uniform shear state is a

planar flow whosex component of the flow velocity has a
which assures that the BGK equation yields the correct congradient along thg axis, ug;= a;;rj anda;; = adiy s;, , where
servation laws and equilibrium stationary state in the absence is a constant shear rate. In addition, the density tem-
of driving forces. More explicitly, Eq(2.4) gives peratureTg , heat flux, and momentum flux are spatially
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constant. This state is generated by a periodic boundary cofit0], and comparison with Monte Carlo simulations of the
dition in the local Lagrangian framel3]. The viscous heat- Boltzmann equation for shear flow is given in R¢19].

ing induced by these boundary conditions is compensated b@nly the transport properties associated with the heat and
the external force. It is easily verified that this macroscopiomomentum fluxes are considered further here. These can be
state is an exact stationary solution to the above conservatiaralculated directly from Eq92.9 and (2.14), with the re-

laws (2.6)—(2.8) if A(n(r,t),T(r,t)) is chosen to be sults
_ _atyd@) g(a)=0,
As=\(ng,Tg)=— BnkgT, | (2.12

ti; (@)= (ps+3a°Vy(a))8; — n(a)(ay; +aj)
Due to the simplicity of uniform shear flow state at the mac- _ .
roscopic level, it has been studied extensively as a prototype REOLTLT (218

of nonequilibrium states far from equilibrium in theory Thys, the heat flux vanishes but the momentum flux de-
[10,14-17 and in computer simulatior{$,7,18,19. To ob-  scribes nontrivial rheological effects in terms of the hydro-
tain the distribution function for this state it is useful to ex- static pressure p=nkgT, the shear viscosity 5(a)
press the kinetic equatig@.1) in terms of the velocity in the = —a 't,(a), and the viscometric function¥,(a)
local rest frame, defined by, =v;—a;;r;. In this frame, the Ea—Z[tyy(a)_txx(a)], where
flow field vanishes and the macroscopic state becomes spa-

tially homogeneous. Consequently, we look for a stationary

Vs
. — ! a = ’
solution to Eq.(2.1) of the formf(r,v,t)="f4(v'), n(a) (2hg(@)+ )2 Ps
L(v",a)fs(v)=—wvsfs (V'),
6)y(a)

Vi(a)=— (2.19

2oy (e o s
L(v’,a)Eaijvj’i,+>\sv’-Vv,+3>\S— vs. (213 (2hs(a)+vy)
i In general there is a second independent viscometric function
V,(a)=a t,[a) —t,y(a)] which vanishes for our kinetic
model. The magnitudes of these transport coefficients are
monotonically decreasing functions of the shear rate, and
have been discussed in detail elsewHd/@.

The subscrips denotes the stationary state value dgdis
the corresponding local equilibrium distribution function
with the hydrodynamic fields for uniform shear flow. The
solution to Eq.(2.13 is

* lll. HYDRODYNAMICS NEAR UNIFORM SHEAR FLOW
fo(v')= st dr e™f (V')
0 In this section we consider states that deviate from uni-
- form shear flow by small spatial gradients. A solution to the
:”SJ dt e_t(Vs_3)\s)fs/(e)‘stAij(—t)vj/)_ (2.14  BGK Boltzmann equatior{2.1) is obtained by a variant of
0 the Chapman-Enskog method, whereby the distribution func-
tion is expanded about lacal uniform shear flow reference
state in terms of the small spatial gradients of the hydrody-
namic fields relative to those of uniform shear flow. This is
thy (/) — a(3hg— vty (gt N e analogous to the usual Chapman-Enskog expansion about a
eEX(v) =X (A (D)) A= aii'g local equilibrium distribution. The solution obtained in this
way can be used to calculate the heat and momentum fluxes
where use has been made of @tp)(avx)x(vx)zx(eatvx) and in terms of the hydrodynamic variables, so that E(@_s6)—
exp@tyd, )X(u) =X, +aw,). To determiner, as an ex- (2.8) become a closed set of hydrodynamic equations. The

. . analysis here is carried out to first order in the gradients. For
plicit function of a, the component of the momentum flux gmaji shear rate the usual Navier-Stokes results are recov-
tyy,s(2) can be calculated from Eq&.9) and(2.14 to ob-

y " : ered, where the heat flux is given by Fourier's law and the
tain the self-consistent equation momentum flux is given by Newton’s viscosity law. How-
ever, for large shear rates these fluxes and the corresponding
hydrodynamic equations are more complex.

This has one real solution and two complex conjugate solu- ITQ constfrur(]:t tfhe Chapman-Enskog expansion we look for
tions. The physically relevant real value is solutions of the form

f(r,v,t)=1(v',y,(r,1)), (3.1

The second equality follows from the property for an arbi-
trary functionX(v)

3N(2N g+ vg) 2= a2 (2.1

az
1+ 9—2
Vs

2 1 2
)\S(a)=Tsm cosh i~ . (217

6 where y,(r,t) are the hydrodynamic fields, and
=v;—a;;rj. This representation expresses the fact that the
With ¢ known, the velocity distribution given by ER.14  space dependence of the reference shear flow is completely
is completely determined. absorbed in the relative velocity variabl,, and all other
Any transport property of interest now can be calculatedspace and time dependence occurs entirely through a func-

by integration. A detailed discussion can be found in Reftional dependence on the hydrodynamic variablegr,t).



1736 MIRIM LEE AND JAMES W. DUFTY 56

This is an example of a “normal” solution, which is ex- 99n 89 su;
pected to result from a wide class of initial conditions at long at =0, ot +a;;6u;=0,
times and large space scales. It is essential for a hydrody-
namic description since the velocity average of any quantity (0)
becomes a functional of the hydrodynamic fields. Approxi- 3 T (0)
? ! . Yy 3 - App EnkBT+aijtij +3)\nkBT:O, (39)
mate solutions to the BGK equation are obtained by expand-

ing Eqg. (3.2) in a formal uniformity parametee that mea- ) _
sures the spatial gradients of the fieldgr,t), wheret;;”’ is defined by Eq(3.4). The parametek of the
external force is now chosen to impog@T/at=0, i.e.,

f(v,vya(rlt))zf(O)(V,lya(r!t))+ 6f(l)(vllya(r!t))+ Tt

(3.2 N(N(r,t),T(r,t))=—at(r,t)/3n(r,t)kgT(r,t).  (3.10

The solution to Eq(3.7) is obtained in a way similar to that

This expansion leads to a corresponding expansion for th]eOr Eq. (2.13, with the result

heat and momentum fluxes when substituted into (B,

312
ti=tP+et+---, q=qP+eq¥+..-, (33 f(o)(V',ya(f,t))IV(r,t)n(f,t)(m)
ti(j')=f dvmec;f(”, q(”:f dvimcicf”. (3.4 Xfo dr e "(nVeMryT

Finally, use of this expansion for the fluxes in the conserva- Xexr{ - Lezx(r,t)f
tion laws (2.6)—(2.9) identifies an expansion for the time 2kgT(r,t)

derivatives of the fields in powers of the uniformity param-

eter X[Ajj(=7)(v] = 8uy(r,t)]%], (3.1D
g 9O F1eY) . . . . .
e b e— . (3.5 whereA;;(t) is defined in Eq(2.19. The relationship of Eq.
Jt ot ot (3.1 to Eg. (2.19 is analogous to the relationship of the

local equilibrium distribution to the strict equilibrium distri-
These results provide the basis for generating the Chapmahution, where the former is obtained from the latter by re-

Enskog solution to the BGK Boltzmann equation. placing the hydrodynamic fields with their actual nonequilib-
The BGK Boltzmann equation in terms of the variablerium values. To determine\(r,t)=x(n(r,t),T(r,t)), the
v’ is obtained directly from Eq2.1), momentum fluxtff;)(r,t) is calculated using Eq$3.4) and
(3.11) to obtain
a+( '+a r)a L(v',a)+\du-V,, |f(r,v',t)
—+ (v +a;r)——L(v', V., v, B
gt g ! tO(r )= Y kT, (312

2

= vt (r,V,1), (3.6 @M.+ u(r.1)
. ] where v(r,t)=v(n(r,t),T(r,t)). Use of Eq.(3.10 then

wheredu=u—us. Also, the operatot (v',a) is defined by  giyes, finally,
Eq. (2.13 except withv,\ ¢ replaced by, \ as functions of
n(r,t) andT(r,t). The form of\ is still to be determined at 3N(r, ) (2N (r,t) + v(r,t))°=p(r,t)a’. (3.13
this point. The spatial gradient in the second term on the left
side is taken at constamt , and consequently this term is of This shows thai (n(r,t),T(r,t)) is the same as Eq2.16
first order in the uniformity parameter. Substituting the ex-for uniform shear flow, except that the density and tempera-
pansions(3.2) and(3.5) into (3.6) and equating coefficients ture are replaced by their values for the general nonequilib-
of each degree in the uniformity parameter leads to the equaium state. With this result fox (r,t), solution(3.11) is com-
tions for {0 and f(*): pletely determined.
Next, consider the solution to E¢3.8) for the contribu-

EIC) o tions to first order in the spatial gradients. As shown in Ap-
—¢ L@l a+reu vy, fO=vf,, (3.7 pendix B, the right side is a linear combination of the hydro-
dynamic gradients. Consequentlf{!) necessarily has the
same form,
90 "
(T_L(U ,a)+)\6u-V\,,)f . on oT FrT
FOV,Yo(r))=Xn o=+ Xg o=+ X, i——, (319
g 9 nor " or ket or,
=_<—+(Ui’+aijrj)_)f(o). (38) . .
at o where the coefficientX(y,(r,t),v') are functions of the

velocity to be determined from substitution of £§.14) into
To lowest order in the expansion the conservation laws givéq. (3.8),



56 TRANSPORT FAR FROM EQUILIBRIUM: UNIFORM . .. 1737

9 shear rates isf'n'j(a)—>(aij+aji)m(,8/v)2, which vanishes
—i “Lwha)+h du-Vy [ Xg—aXy kdpu, =~ Yak- for zero shear rate as expected. The momentum flux is ex-
(3.15 pressed in terms of a viscosity tensotl(a), of degree 4
which is symmetric and traceless iijp. There are 19 inde-
Here 8 denotesn, T,u,,uy, andu,, andi,k represents Car- pendent viscosity coefficients. At zero shear rafga) re-
tesian coordinates. The last term on the left side originateguces to Newton's viscosity Iaw;/}{n(a=0)= 7( 81 Sim
from (69 at)(adu,lar;)=(alar;)(dP/at)su, and Eq.
(L e funtons i re Gven expicty i 1 o e Bk modell o
i The corresponding nonlinear hydrodynamic equations are

H 1 H . . .
consistently fromf ).1The procedure is to solve E@.1910  optained directly from these results and the conservation
find £ in terms oft{") and then to use this result to derived |aws

a self-consistent equation fctfjl). Further details can be

+ 6imdj— z dij6im), Wheren=p/v is the shear viscosity for

found in Appendix B along with the explicit solution to Eq. Dn+nV-86u=0, (3.18
(3.15.

In this way the complete normal solution near the uniform 3 i dou dduil o i ddu
shear state is constructed to ordeilhe heat and momentum EnkBDtT_ a;; Yim g + “or |t T Yim
fluxes then are calculated from E@B.4). The first terms m ! m
t{”(a) andq(®(a) represent the transport properties of the g, on . aT|
local reference state. They are the same as those of Sec. Il, N g_ri &nj a_rj+§” 5_”. =0, (3.19

Eqg. (2.18, except that the density and temperature are re-

placed by their values for the general nonequilibrium state. 9 a8
An important consequence of this replacement is that their Dt5Uk+p_1—[ti(£)_ Viﬁq—
gradients are no longer zero and thus they now contribute to i I'm
the hydrodynamic equations. The second tetfﬁ’:{a) and
qi(l)(a) provide new transport coefficients describing dissi-
pation due to spatial deviations uniform shear flow,

+akj5Uj:0, (32@

whereD,=d,+u-V. This is a primary result of our analysis.
These equations are analogous to the nonlinear Navier-
Stokes equations for a fluid near local equilibrium, and re-
duce to them for zero shear rate. More generally, the refer-
Dig)= _| & A on nce state is local shear flow, which can be very far from
ait@)=—| & @5+ & @) o], ence st ) ¥ e very
ar; or; equilibrium. Furthermore, there is no restriction on the de-
viations from this reference statéy,, since the nonlinear
(3.16 dependence of all coefficients gi(r,t) has been retained.
' The spatial gradients relative to shear flow must be small,
however, and the equations are accurate to second order in
It is understood thar, A(a), andp, and the transport coef- these gradients. The terms proportionabtl andt{ in Eq.
ficients all are functions of the local nonequilibrium tempera-(3.19 represent viscous heating due to the excess gradient of
ture and density, as well as the shear mtdhe method for  the flow velocity relative to the reference state. There is no
calculatingyji(a)andé&, ;(a) and some detailed forms of the viscous heating from the reference state alone, since the local
coefficients are given in Appendix C; a more complete list-thermostat has been chosen to cancel it, but for states near
ing can be obtained on request from the authors. Since thgniform shear flow the thermostat cannot compensate for
reference state is anisotropic there are new transport coefféffects due to the gradients relative to the reference state.
cients, reflecting the broken fluid symmetry, which do notThe implications of this new hydrodynamic description far
exist for hydrodynamics near equilibrium. Fourier’'s law for from equilibrium are elaborated in Sec. IV by an analysis of
the heat flux is modified by a thermal conductivity tensorthe associated linear hydrodynamic modes.
¢7 j(a), which has the form

- (?5U|
tiM(a)=— k(@) —.
ij Yik ark

ér(a)= &M(a) &+ P (a)ay;+ £ (a)ay + & (a)ayay V- HYDRODYNAMIC MODES
() The above hydrodynamic equations are restricted to small

+ &7 (a)ayja (3.17  spatial gradients relative to the reference state of uniform

i _ L shear flow. If in addition the initial perturbatiordy,(0) are
characterized by five scalar “thermal conductivities” char- gmgq)| then these equations can be linearized with respect to
acterizing this tensor. The anisotropy is in thgy plane sy (1) The resulting set of five linear equations defines the
so, for example, a temperature gradient in shelirection  hygrodynamic modes, or linear response excitations to small
leads to a heat flux in both theandy directions. At zero  nertyrhations. If all of these modes decay in time, the state is
shear rate only the contribution frog{"(a) survives with  |inearly stable. Otherwise, a growth of these modes signals
£1(0)= «, wherex =5kgp/2mv is the thermal conductivity an onset of instability that is ultimately controlled by the
for the BGK model. An additional difference from Fourier's dominance of nonlinear terms. In this section we determine
law is a contribution to the heat flux from a density gradientthe hydrodynamic modes for states far from equilibrium and
characterized by the transport tensgj{,-(a). This has arep- contrast them with those for states near equilibrium.
resentation like Eq(3.17) in terms of five additional scalar The linearized hydrodynamic equations follow directly
transport coefficients. The asymptotic behavior for smallfrom Egs.(3.18—(3.20:
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9 where the periodicity requirek;=2n;#/L;, wheren; are
ot Tair igr, on+ngV-ou=0, (4.)  integers and_; are the linear dimensions of the system. In
the second equalitk(t) is given by

J J 2
t(©
at Al ) T Bngkg TSl o k(D) =kjAji(1). 45

(4.2)  The linearized hydrodynamic equations in this Fourier rep-

2 [, on azﬁw 0
' resentation are

~ 3nek [gnls&r ar; éTivsari&rj N

a a 5 (at“”) asn (at“’)) 38T ;
—+ayr U+ - — ~ - v
ot Taligy okt s | Jor et | _ar Y ot [Aay = IKj(DBau K (DK (DD 187, =0,
" 025U| (46)
| —
_ 7|m,5—(7ri(9rm + akj5uj =0. (43)

where, in addition, the dependent variables now have been

To analyze these equations it is convenient to transform t§¢@led to dimensionless forms,

the local Lagrangian frame,"=ri—usi(r)t=Aij(t)rl~. The

Lees-Edwards boundary conditions then become simple pe- - sn [3\Y2sT m \¥2 _

riodic boundary conditions in the variabié. A Fourier rep- 5ya:|n_: (5) T (ﬁ) 5U]- (4.7)
resentation is defined by s s \TBTs

. . A summation convention applies and Latin indices denote
_ 1 aiker _ ik(t)-r
5ya(k't)_f dr'e ‘Wa(r’t)_f dre Ya(r,1), Cartesian coordinates. The three matriges;,B,5, and
(4.9 D,z are

Aaﬁ::ab‘a35ﬁ4, (48)
0 0 Oix iy diz
0 0 Bij B2yj Bsz
n (ot} 2\* at(°>
— — = = 0 0 0
kgTe)| V2 Ps\ an 3 pS s
Baﬁi:< m) n [t 2\ 12T, &t}S) , (4.9
— == = = 0 0 0
Ps\ an | 3/ ps\ dT
n(atY 2\ 2T, atﬂo)
— — = = 0 0 0
Ps 3/ ps s
whereB,;; = \2/3(1hy) (—ayYs+t{’)). The matrixD,,z is
0 0 0 0 0
2\ 2ng j 27T, 0 0 0
§ p_sgnl,s §_§Tl,s
D .= _ - - . 4.1
il 0 0 Y P T e 1 (419
0 0 p 17% s p l?’{)ll s p 17Jz)I/ s
0 0 P 7x|,s P yyl,s P '}’zl,s
The homogeneous solution to equatidds) can be calculated easily by settikgr 0,
8Y o(t) =[€7 A 4p8Y 5(0) =[1 = At] 38 5(0). (4.1

The second equality follows from the propeAy=0. Consequently, all fields are constant excépt, which behaves as

SU,(1)=Ux(0)—atsu,(0). (4.12
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The homogeneous state is unstable to an initial perturbatmﬂm;,n leading to an unbounded linear change in time. Stability
is still possible at finitek if this behavior is modulated by exponential hydrodynamic damping faet@s“k t with >0.

To simplify the analysis at+0 we allow perturbation only along the velocity gradient direction, ke=ky. In this case the
linear hydrodynamic equations have time-independent coefficieatsk(t) =k),

JLF
t

" — — H 2
(9 5yv—0, FaB_AaB_Ik Baﬁ"f'k DD‘B’ (413)

av

and the matrice® andD now take the simpler forms

0 0 0 1 0
0 0 Baxy Bayy 0
(0) 112 (0)
ar | ), B S o o
aﬁz( m) Psi N /¢ Psl T /g ’ (4.14
ng[ Ity 2\ 121 atyy)
= - = 0 0 0
Ps\ an | 3/ Ps
0 0 0 0 0
0 0 0 0 0
2\Y2ng 2T, 0 0 0
§ p ny,s §E§Tys
D,sz= 4.1
o 0 0 ps Vs Ps Viys 0 @13
0 Ps Vs Ps Mivs 0
0 0 0 ps Vi
Equation(4.13 can be solved by Laplace transformation,
Wa(k2)= | dte 5T, (k0 ~[21+F(k.2)1, 167 .k, t=0). 4.16
0

The eigenvalues ) (k,a) of the matrixF (k,z) define the five simple hydrodynamic poleszat— »("(k,a), which determine
the dominant dynamics of thé}'a(k,t) at larget and smallk. At equilibrium (@a=0), the hydrodynamic modes of the
Navier-Stokes equations are recover@&do sound modes, a heat mode and a twofold-degenerate shea) foodeng
wavelengths K—0),

ick+Tk?
—ick+Tk?
w(i)(k,O)—>w§\PS(k)= D+k? , 4.17
(nlp)k?
(mlp)k?

where c¢=+5/3Bm is the sound velocity,'=D+/3+(27/3p)=1/Bmv is the sound damping constantD;
=§¥yys(a=0)/pCp=1/Bmv is the heat diffusion coefficienC, is the specific heat per unit mass, anth=1/gmv is the
kinematic viscosity. The equilvalence ©f D1, and#/p is a peculiarity of the BGK model. These coefficients are positive so
that Eqs(4.17 represent damped excitations. Corrections to these dispersion relations are & pdéscribing an expansion
that is analytic ink aboutk=0.

For finite shear rate, the modes are more complicated and the behavior at long wavelengths is qualitatively different. To be
more precise, consider the casekef 0 at fixed, finitea. It follows directly from Eq.(4.16 that hydrodynamic modes have
the asymptotic behavior
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ci(a)k?
— 3141 V3)ca(a)kP3+ 3(1-i V3)ca(a)k™+cy(a)k?
oV(ka)—| —L(1-i V3)c(a)k?3+ 3(1+i V3)ca(@)k¥3+cy(a)k? |, (4.18
co(a)k?P+cg(a)k3+cy(a)k?
(n(a)lp)k?

with the coefficients;(a) given by

[an(a) at(@)  an(a) aty(a) at;‘y(a))‘l
A= = Tan T Tan a7 aT ’ 4.19
232 (0)(3_) 13
cy(a)=| ———(n(a)+ yy(a) —2=—| . (4.20
mkg
2 [atyy(a) © iy (a) 1 [ at@
cs(a)=9n2kaC2(a)L T (Tayy) tyy(a) - a(n(a)+yxy(a)) T Inmoa)| " an —ayy(a)],
(4.21)
ci(a) 1 1
Cia)=——3—+3p (V@) + vy (a))+3nk & y(@)]. (4.22

The modeg4.18 represent two oscillating modes and threeThis prediction of a long-wavelength instability has been
purely damped modes, just as in the Navier-Stokes caseerified quantitatively by comparison with Monte Carlo
(4.17. However, there are two important qualitative differ- simulation of the same kinetic equation from which this hy-
ences. First, the long-wavelength behavior is nonanalytic imrodynamics was derivdd 1]. Further analysis of this insta-

k aboutk=0, and is given by a power series kd3. Thus,  bility and comparisons to simulations is reported in detail
for example, the purely damped modes do not represent dilsewherd12]. In the following we focus on the stable do-
fusive behavior as in the Navier-Stokes case. This nonananain of Fig. 1. To study the stable dynamics a new dimen-
lytic behavior with respect td is due to the fact that the sionless variabl@=k*/a* is introduced. The hydrodynamic
reference matrix aét=0 is not diagonalizable, and the eigen- modes are expressed as functionkafndx, i.e., () (k,a)
values are not analytic abolit=a=0. Therefore, recovery = (k,x), and the expansion abokt=0 is performed at

of the form of the modes near equilibrium requires thand  fixed x. Physically, this involves controlling both the shear
a be taken to zero in a related wésee below. The hydro-  rate and the wavelength simultaneously to assure that the
dynamics for an alternative choice of thermostat, discussegystem is stablésufficiently largex) while approaching the

in Appendix A, has dispersion relations that are analyticlong-wavelength limit. To simplify the calculation, a system
aboutk=a=0. A second critical difference between Egs. of Maxwell molecules is consideregnteratomic potential
(4.18 and (4.17) is that the two oscillating modes are un- ~r~4), In this caser(n,T) and\(n,T) are independent of
stable in the long-wavelength limit because the coefficienthe temperature. The hydrodynamic modes for the stable do-
c,(a) is positive for alla. This means the modes include main are then obtained for> 2/\/5, which lies above the
excitations that grow in time. Eventually, the deviationsdashed line shown in Fig. 1,

5y . grow beyond the limitations of the linear equations, and
full nonlinear hydrodynamic equations are required to deter-
mine their ultimate values. These will be different from those
of the reference state, representing the fact that the reference 2
state itself is unstable. —ick+Tk2— 5—a2

2
ick+Tk?®—- —a?
5v

It is possible that the hydrodynamic modes are stable at 0 4
shorter wavelengths. This is in fact the case, as can be seen o (k,a)— D-k? ' (4.23
by solving Ré¢w'(ks,a)]=0 to determine the stability line 4
ks(a) in thek-a plane. This is illustrated in Fig. 1, where the D k?2+ —a?
calculation was performed using the exact eigenvalues rather Sv
than the smalk expansion of Eq(4.18. Dimensionless vari- (5l p)K?

ables are usek* =k/ anda* =ar, wherer=v"1 is the

mean free time,/=uvy/v is the mean free path, and For this expansion at fixed the eigenvalues are again ana-
vo=+2kgT/m is the thermal velocity. Above this line the lytic functions ofk and can be interpreted as perturbations of
modes are stable, while below this line they are unstablethe Navier-Stokes modes due to small but finite shear rate.
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The restrictions orx imply (2/\/5)a* <k* <1, so the shear V. DISCUSSION

rate depgndence is small but not neces_sarily in the Navier- The objective here has been to study transport far from
S\tcolhfiisn “m:;r '\élfreshgezr;er?gi/ésthiaﬁnt'gi St:fcliss:g]a;neqwhbnum for the special nonequilibrium states near uni-
a 9 9 = : %orm shear flow. Dynamical properties of states far from
xs=k/ky(a)>1, and evaluatings(k,xs) as a function ok eqyjjlibrium are not well understood due to their complexity
exactly. o _ L and technical difficulties with the formal theories of nonequi-
The linearized hydrodynamic variabledy ,(k,t) can be liprium statistical mechanics. However, at low density the
expressed in terms of the eigenvalues and eigenfunctions, Boltzmann kinetic theory provides a controlled formulation
of this problem. There are still difficulties for practical ap-
~ oDkt (1) (Nt ~ plications, so a kinetic model has been used to allow a de-
Y o(K,t)= 2. e o' (K,X)(75°) (K, X) 8y 5(K,0), tailed analysis for a special class of states near uniform shear
(4.24 flow. First, the BGK Boltzmann equation was solved exactly
for the steady state distribution at uniform shear flow, and
i . i . the corresponding transport properties given as a function of
Wthzri{g(lt)h} are tTe T%er;vec;ors a'{%(l)}(ﬁrf ;he 1a_SS$C" the shear F;ate Ngext aF;quFionpto thegkinetic equation was
ated biorthogonal set defined By, (2, )' fa'= ij- 10N obtained for a class of states deviating from uniform shear
lustrate the effects O.f the shear rate the analytu_: resm_JIts fOI‘Vow by small spatial gradients in the hydrodynamic fields,
small k, Eq. (4.23), will be used. The corresponding eigen- using a variant of the Chapman-Enskog approximation

vectors are method. By “variant” we mean that a local form of the
stationary solution for shear flow is used as a reference func-
3\12 [2)12 llzi tion rather than the local equilibrium distribution function. In
5 5 x 10 general this reference state is very different from a Maxwell-
3 5 12, ian and can be very far from equilibrium if the shear rate is
( _) (_) , (_> 1 0) large. The Chapman-Enskog expansion was used to deter-
5 5 mine the distribution function to first order in the gradients.
(0= ( 2 4.2 The result is a “normal solution” for which all space and
( ) 1,0,0, T time dependence occurs through the hydrodynamic fields.
These fields must be determined from hydrodynamic equa-
12 2i tions which follow from the exact conservation laws. The
_(g) , 11_@1 0,0 irreversible parts of the hydrodynamic fluxes were deter-
mined as functions of the hydrodynamic fields and their gra-
(0,0,0,0 dients using the normal solution with results of the form
ti =—n(dus;/dr;) — yik(déu, /or,) for the momentum flux
1/3\12 1 1 and qf = — & ;(a6T/ar;)— &, ;(a6nlar;) for the heat flux.
5( §> , —, 0, 2,O Since these coefficients are calculated near the stationary
V10 state of broken symmetry there are many new transport co-
1/3\¥2 1 1 efficients (., §TJ én,j), in comparison to the case of states
E( 5) , \/—1_0 0,5,0 near equilibrium, which depend on the shear rate. With these
7= ( (3)1/2 . i /3 00) ,  (4.20 -
2, 72 7
(3(3)1’2 3 iy3x ) 0s |
5\2) '5’ 2 0.0 k
(0,0,0,0,2 06 -
where it is understood thadt is restricted to the stable do-
main. Then the response of the density to an initial density 0.4 /
perturbation is found to be /
/
5n(k,t)=[%e*(rk2*(2a2’5”)tcos(kct) o2 T
+e7P%(1- ge45) |an(k,0). (4.2 0.0 . . .
0.0 0.5 1.0 1.5 .2.0

Thus, for small shear rates there is an enhancement of the

amplitudes for both the sound and heat modes. All other FIG. 1. The solid line separates the statabove and unstable
hydrodynamic variables can be calculated in a similar waybelow) domains in thek* =k/, a* =a/v parameter space. The
from Eg. (4.24), as well for both the stable and unstable dotted line is the asymptotic form obtained from Sec. IV
regions, including small and large shear rates. (x>2/\/5).
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new expressions for the fluxes, a closed set of the general- APPENDIX A: THERMOSTATS
ized hydrodynamic equations was derived near uniform

S To establish a steady state for uniform shear flow a non-
shear flow. In summary, a complete description at both th y

%onservative external force is introduced in Sec. Il to com-

kinetic and hydrodynamic levels has been given for a wid&,onsate for viscous heating generated by the Lees-Edwards
class of states arbitrarily far from equilibrium. In particular, boundary conditions. In Sec. Il for statesaruniform shear

the analysis provides a rare example of the relevance of fo\y 4 local form for this nonconservative force is used,

hydrodynamic description far from equilibrium. The corre-

sponding hydrodynamic modes were calculated to okder Foxdr,t)=—mx(n(r,t),T(r,t))(v—u(r,t)). (A1)

for arbitrary shear rate from the linearized hydrodynamic

equations. An unexpected result is an instability for any fi-With this local form it is possible to imposg®)T=0, which

nite value of the shear rate at sufficiently long wavelengthslead to the results thak(n(r,t),T(r,t)) is the same as

This prediction has been verified quantitatively by compari-As(ns, Ts) at uniform shear flow given by E¢2.17), except

son with direct Monte Carlo computer simulation of the ki- that the temperature and density are replaced by those for the

netic equation, confirming the validity of the hydrodynamic 9eneral nonequilibrium state. The resulting hydrodynamic

description[11,17. equations express viscous heating only due to the gradients
The hydrodynamic analysis was carried out here only fo,relatl\_/e to uniform shear flow. An alterna_tlve choice is to use

spatial variations along the velocity gradient. More complexthe simpler case of the constanfns, Ts) in Eq. (A1) even

dynamics is expected in the general case of arbitrary diredOr States near uniform shear flow. The advantage of this

tion for the spatial perturbation and a description will bechoice is a simpler implementation of the Monte Carlo simu-

given elsewhere. In addition to the stable and unstable expdation method for the solution to the kinetic model equations.

nential time dependence of the hydrodynamic modes, ther@bviously, this is consistent with the conditions for the

will be algebraic modulations due to the fact that the hydro-Stéady-state uniform shear flow. However, this choice only

dynamic matrix atk=0 cannot be diagonalized. This can partially compensates for the viscous heating at local uni-

lead to initial growth of perturbations of uniform shear flow form shear flow, i.e.g{”’T#0. In this appendix, the changes

even when the hydrodynamic modes are stable. from the results of Sec. Ill in both the Chapman-Enskog
The approach taken here can be extended to several othg@lution and the hydrodynamic equations due to this alterna-

physically interesting reference nonequilibrium states sucfive choice are described.

as a constant temperature gradient, or combined heat and To lowest order in the uniformity parameter, the BGK

momentum transport. Exact solutions to the BGK kineticequation with the new thermostat becomes

equation are known for these cag8s20,21, so the refer- 40

ence distribution for the Chapman-Enskog expansion is o / 0)_

available. Other directions of extension include applications gt Lha)Eh oYy o=t (A2

at higher densities. Recently, a BGK-like kinetic model for

the dense fluid Enskog kinetic equation has been describddere and below it is understood thef=\(ns,Ts) is inde-

and applied with success to shear flp22]. This provides pendent of space and time. Since the solution is normal, its

theoretical access to densities relevant for moleculartime dependence occurs only through the hydrodynamic

dynamics simulations. variables, and the contributions from the time derivative
Although attention has been focused on transport, the{®) can be calculated using the conservation laws to lowest

analysis can be extended in a straightforward way to describerder in the uniformity parameter,

fluctuations in uniform shear flow. The reason for this is the

close relationship of the kinetic equations for fluctuations to dOn(ry  d%ui(r,t) _

that for transporf23,24). For example, the kinetic equation at =0, gt +8;;0u;(r,1)=0, (A3)
for phase-space fluctuations at two times is governed by the

linearization of the kinetic equation for transport. As a con- 3OT(r,1)

sequence, the linear hydrodynamic equations studied in Sec.gn(rat)kBT+aijti(j0)(r,t)+3 N $n(r,)kgT(r,t)

IV also can be used to compute the hydrodynamic part of

time correlation functions such as the dynamic structure fac- =0. (A4)

tor measured in light scattering. Recently, kinetic models for

fluctuations have been developed that are self-consistent withhese differ from the results of the Sec. Il because it is no
the BGK kinetic model for transpo[25]. Their detailed ap- longer possible to choose; to compensate for the viscous
plication to fluctuations in uniform shear flow, including heating, i.e., a;t{(r,t)# =3\ n(r,t)kgT(r,t). Instead,
anomalous long range spatial correlatid@6] will be dis-  Eg. (A2) becomes

cussed elsewhere.

J
- (0) - r_ 0)
3nkB(a”t” + 3\ nkBI)(ﬂ_ L((v'— éu),a)|f!
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follows from the temperature dependencevofThe analysis Xnk

is simplest for Maxwell molecules wheteis independent of 3\ X
the temperature. Thetf)~T (as is verifieda posterior) and - “Lla+Aseu vy, Tk
the solution to Eq(A5) is Xy, k

ow
312

2T X Y

fOVy,(r,1)=w(r,1) n(r’t)(Zﬂ-k—T(rt)) ( ) Tk Yn'k
B!l + 5 (hs—W) X1 =— Tk |, (A12
o J‘oodT e~ u(r,t)re3w(r,t)7 a 5j,y Xuj K uj Kk
0

m wherei, j, andk represent Cartesian coordinates. The func-

X exp( S — AUk tionsY  are same as those given in Appendix B. Since the
2kgT(r,1) equations foiX,, , and Xy  are different from Eq(3.15), the
transport coefficients for the heat flu§¢1 andér |, are also

X[Ajj(—7) (] = 8uj(r,1)1%], (A6) different for this new thermostat. However, the equation for

Xy, is unchanged, so the transport coefficients for the mo-

mentum flux,y},,, are unchanged. The corresponding hydro-

(A7) dynamic equations are the same as in Sec. lll, except for the
temperature equation, which becomes

a ty(r.t)

W(n(l’,t),T(r,t))E - W

The solution is still only implicit since{))(r,t), or equiva- Snkg D,T— a”),Hn‘mu' 4 204 I (0 ylm‘mul
lently w(r,t), must be determined self-consistently using Eq. MmN Im
an

(A6). The result is ol 9T
_a_rigl“vjW+§|Tviﬁ}:3(w_)‘5)nk3-r' (A13)
3w(r,t)(2w(r,t)+ u(r,t))2=v (r,t)a2 (A8) : )
The new term 3f—Ag)nkgT on the right side represents the
This equation is the same as that fofn(r,t),T(r,t)), Eq.  Vviscous heating due to spatially uniform deviations from the
(3.13, showing thatw(r,t) has the same functional depen- Steady state.
dence oma, v(r,t), andT(r,t). This proves that the zeroth
order solutions to the BGK Boltzmann equation, E46) APPENDIX B: CHAPMAN-ENSKOG EXPANSION
and (3.11), for the two different thermostats are the same. . . a)
The lowest order equations for the temperature differ, how- N this appendix, Eq(3.8) for £ is solved,

ever. Use of Eq(A7) in Eq. (A4) gives 40
— ~L@'a)+\eu- vy fW=—(DP+v.V)iO,
aOT(r, =2 (w—X\g) T(r,1), (A9) (B1)
which vanishes only at the steady state. where D{M= (9 at) +ay;rj(alar;). The right side of Eq.

Now consider the first-order solution in the Chapman-(B1) can be written in terms of hydrodynamic derivatives,

Enskog expansion,
g exp 5 (0)

50 (D v W= 3, .
—r L @)+ sou- Vv,>f<1> ‘
wherey,={n(r,t), T(r,t), du(r,t)} . The time derivatives
F) . can be replaced by first-order spatial gradients of hydrody-
( pn +(vf ey o )f (A10)  namic variables using the corresponding hydrodynamic
equations obtained from Eq&.6)—(2.8)

(DM+v'-V)y,, (B2)

and look for solutions of the form DYn+V-(néu)=0, (B3)
O dl 3 (1) t(L (O)aa (0)
VYl D) =X (VYT t)) +xT.(v Yl T D) Snkg(D{Y+6u- V) T+ay i+t ——=+V.q©=0,
i J
(B4)
|(V !ya(r t))é’_l’l (All) (3’t-(|0)
D§1)5u|+5u~V5u|+p’1a—'ri=O. (B5)

The equations for the coefficientss;(v';y,(r,t)), are de-
termined from substitution of into EGA10), and they are Use of these equations in E@®2) gives
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an
(DO +v - V)FO=Y, (v’ Yalh)o -
i

, oT
+Yri(v ;ya(r!t))é’_r
I

(95Uk
Yy (VY )

The coefficientsy, ; are given by

of©

af @ ot
i G

- VY—p 1

0
af© ot ot
aou; aT '

ar; -

(B6)

(B7)

(B9)

wherei,| k,m denotex,y,z. The derivatives of ®) can be

obtained simply from Eq(3.11),

af @ O[5y ©_ .2 AN
_ﬁn _T &n [f _Vh]+ Vh)\,
(0)
AR BTSN vhy
aT 2T 2kgT?

9f©@ m
o0, ket M

Here the function$, are defined by

h,,=j dr T€7VT+3}"’f/(e)‘TAij(—T)(vj'—5uj)),
0

«© m
— —v7+3\T _
hy fo dre [37‘ —kBTe

X[Aij(_T)(vj’_auj)]z]

X £, Ay (—7)(v] = buy)),

(B10)

(B11)

(B12)

(B13)

(B14)
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hT: fo dT e_VT+3}\792)\T[Aij(_ T)(Uj, - 5U])]2

Xf (A} (= 7)(v] = 8uy), (B15
huk: f dre” VT+3)\Te2)\Tgk(VI'7_)
0
Xf (€\Ajj(— ) (v] — &uy)), (B16)

where the functiong(v',t) in the expression foh, are
=(vy— duy) +at(vy—duy),

gy=at(vy— du,) +(1+a’t?)(vy— duy),

(B17)

The right side of Eq(B1) now can be written in terms of the
coefficients,Y , ; , and the hydrodynamic gradients. Note that
Y, are given only implicitly since they depend on the un-
known flux t{"). The procedure is therefore to determine
f1) in terms oft,(Jl), and then use that result to obtain a
self-consistent equation fcllfr

Clearly, fY) must have the same form as the right side of
Eq. (B6),

gzzvé_ 5uz-

+ XT I(V lya(r t))_

f nl(V !ya(r t)) (9r

5Uk

J
u i (V' Yal(r ) —— TR (B18)

Substitution of this form into Eq(B1) gives the equations

_Yuz,k!

9\ d
——L(v',a)+\ou;— g

ot 7| Xak =Xy, kOa,u, =

Ui

(B19

wherea=n,T,u,,u,, andu,. These equations have a form
similar to Eq(4.8) and can be solved in a similar way to
obtain

ak_J dr e e ad, u Xu, k(€ Ajj(—7)(v] - du)))

=Y o k(@ A} (— 7)(v] = 6u))]. (B20)
This implicit result is sufficient for determination of the
transport coefficients, as described in Appendix C.

APPENDIX C: TRANSPORT COEFFICIENTS

In this appendix, the transport coefficients defined in Egs.
(3.16 are calculated using the solution to H8.15. First,
the coefficients from momentum flux are considered,

7:Jrn_ j dV'mCiCqul m> (C1
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wherec=Vv’' - §u. As an exampleyg is analyzed in detail. w_ [* _(wh2nt
Substitution of the solutionX, ,, Eq.(B20), into the defi- ~ Yxy~ fo dte mJ dv(vy—atvy)vy

nition of vy, Eq. (C2), gives

2 910 T
_ m
{ 3nkg JT (Ly + @im Yxy) aou, Y
" —(t(°)+a xy) 2va 3 10va 3 v
7§¥:J av’ mCnyfO dt e e, @Ay (~t)c). ST ) 3nt 0] (2nt
(C2 (C3)

Use of resul(3.12 for t{}) and relation(3.13 for A gives the
final value of y}Y

Xy’
To proceed it is necessary to know the temperature depen- W(v—2\)
dence ofv and \. The simplest case is that of Maxwell yg: 5 p. (C4)
molecules for whichy and\ are constants. Thep can be (2N +v)%(6A+v)

calculated with a sequence of <.:hange, of variatales: firsthe same method can be applied for all the transport coeffi-
Vi—v'+éu, thenv'—e V', and finallyvi — Ajj(Y)vj . In cients,»,, &,;, and&; ;. A complete listing of the results
this way yg is found to be can be obtained from the authors on request.
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