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Weakly nonlinear analysis of electroconvection in a suspended fluid film
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It has been experimentally observed that weakly conducting suspended films of smectic liquid crystals
undergo electroconvection when subjected to a large enough potential difference. The resulting counterrotating
vortices form a very simple convection pattern and exhibit a variety of interesting nonlinear effects. The linear
stability problem for this system has recently been solved. The convection mechanism, which involves charge
separation at the free surfaces of the film, is applicable to any sufficiently two-dimensional fluid. In this paper,
we derive an amplitude equation which describes the weakly nonlinear regime, by starting from the basic
electrohydrodynamic equations. This regime has been the subject of several recent experimental studies. The
lowest order amplitude equation we derive is of the Ginzburg-Landau form, and describes a forward bifurca-
tion, as is observed experimentally. The coefficients of the amplitude equation are calculated and compared
with the values independently deduced from the linear stability calculdi&i063-651X%97)05408-]

PACS numbep): 47.20.Ky, 47.65+a, 61.30-v

[. INTRODUCTION the plane of the film, but were not consistent with the Carr-
Helfrich mechanism. These were likely driven by the mecha-
Although spatiotemporal pattern formation is ubiquitousnism discussed here, with the flow alignment a secondary
in nature, there are relatively few systems which are ameeffect. It has, however, been hypothesiz&@] that the two
nable to both accurate experimental study and first-principle§echanisms might coexist in some smegicnaterials. The
weakly nonlinear analysigl]. The classic examples involv- mechanism we discuss here is presumably also responsible
ing fluid mechanical instabilities are Rayleigh+ed con-  for convection observed in thin, suspended films of isotropic
vection and Taylor-Couette flow. The results of perturbationfluids and in nematics in certain regimgkl]. These cases
theory, based on the Navier-Stokes and heat equations, areilfvolve substantial three-dimensional effects, however, be-
good agreement with high precision experiments in thecause they lack the smectic layering which has the effect of
weakly nonlinear regime of these two instabilitigls2]. A restricting the flow to the film plane. In what follows, we
more complex example is electroconvection in nematic lig-consider only very thin isotropic films, relevant to the case of
uid crystals due to the Carr-Helfrich mechani$j. Here, ~ SmecticA, on which most of the experiments have been per-
remarkably good agreement has been achieved in spite of tiermed[4-7].
complexity of the problem. However, in other cases either A theoretical model of the onset of electroconvection in
the materials cannot be sufficiently characterized or the unsuspended films was introduced by Daya, Morris, and de
derlying physical equations are not understood well enougfBruyn[8]. The film was represented as a weakly conducting,
to allow quantitative comparisons between observations anivo-dimensional, isotropic fluid. To find the electric fields
theory. and charge densities which drive convection, the electrostatic
Electroconvection in suspended smectic films is a prompotential was determined. The three-dimensional electro-
ising new experimental system for quantitative studies ofstatic equations effectively constitute a nonlocal coupling be-
spatiotemporal pattern formatidd—7]. When a thin, sus- tween the in-plane fields and charge densities which appear
pended film of smectic liquid crystal is subjected to a suffi-in the two-dimensional Navier-Stokes and charge continuity
cient potential difference, a charge separation arises whicRquations. This extra coupling formally distinguishes the re-
drives the film into convection. The flow pattern just abovesulting equations from those of thermal convection in the
onset is sustained by the electric field acting on chargeRayleigh-Baard problem, although some interesting simi-
which develop near the free surfaces of the film. Thesdarities remain. The value of the critical wave number from
charges are simply a consequence of the electrostatic bounte linear stability analysi§8] is in good agreement with
ary conditions which must be satisfied by the fields insideexperimentg4,5,7].
and outside of the filni8]. Figure 1 shows a schematic of the ~ The purpose of this paper is to present a weakly nonlinear
experimental arrangement. This source of charge is distin@nalysis of the electrohydrodynamic equations given in Ref.
from that due to the Carr-Helfrich mechanism which drives[8]. The multiple-scales perturbation theory employed in our
bulk electroconvection in certain nemati. In that case, treatment is similar to that given in Refl] for Rayleigh-
the charge generation mechanism involves an essential coBénard convection. Although there are important physical
pling to the director orientation. In experiments on sme#étic- differences between these two pattern forming instabilities,
liquid crystal films[4—7], in which the director was perpen- the resulting amplitude equation for both problems is of the
dicular to the film, no orientational effects were observed,Ginzburg-Landau form
indicating that the flow remained isotropic in the film plane.
Recent experiments on smec@cfilms [9] showed convec- - 5
tion and flow alignment of the projection of the director in 700 A= €A+ EgayA—goAl A7, 1.1
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d Il. LINEAR STABILITY ANALYSIS

1 /4—d In this section, the physical model describing electrocon-
7/ vection in a thin film is presented. The linear stability analy-
® sis of the relevant equations is concisely reviewed. Further
O details are given in Ref8]. Note that we changed some of
4 the notation of Ref[8] to simplify the presentation of this
A y paper.
¥ The film is treated as a two-dimension@D) conducting
fluid in the x-y plane, with areal material parameters= sp,
ns=Sn, and os=so, wheres, p, », and o are the film
thickness, bulk density, bulk molecular viscosity, and bulk
V2 R conductivity, respectively. The coordinate system is shown
X in Fig. 1. The film is assumed to be infinite in tkalirection
and bounded betweend/2 andd/2 in they direction. We
FIG. 1. Schematic of film geometry and coordinate system. Theonly consider the thin film limit wheres/d—0. Two elec-
wire electrode configuration is shown. The vortex pair periodicity istrode configurations are analyzed. In the “plate” geometry,
N=2md/k, whered is the film width. The thickness of the film  the film is suspended between two thin sheet electrodes
(not shown is such thas<d. which fill the rest of thex-y plane, whereas in the “wire”
geometry, the film is suspended between two thin line elec-

where e is the dimensionless control parameter, which delrcdes which are along the direction. In both cases, the
pends on the applied electric potential, aAdx,t) is a electrode ay=—d/_2 is fixed ata_potentlalo%V/Z, and the
slowly varying amplitude. The form of Eql.1) is quite electrode a_§/=d/2 Is at a po_tent|al ov/f2.

universal and describes many other physical systems which The Navier-Stokes equation

exhibit forward bifurcation$1]. The coefficientsry, &,, and

go are compared with those previously obtained by other Ps
methods. In particularry and &, are found to be in good
agreement with the values determined from the linear stabiljescribes the fluid flow of the liquid crystal, where
ity analysis of Daya, Morris, de Bruy[8] et al. and Mao, de Vo= (dx,dy,0), P(x,y), q(x,y), and E(x,y) are the two-
Bruyn, and Morris have experimentally measured all threjimensional gradient operator, two-dimensional pressure
coefficients[7]. The experimental value df, is in reason- field, surface charge density, and electric field in the film
able agreement with theory. Quantitative comparisomof plane, respectively. The incompressibility of the fluid implies
andgg with theory is difficult at the present time due to large that

uncertainties in the conductivity and viscosity of the liquid

crystal, which are required to nondimensionalize the experi- du+dw=0, (2.2
mental results.

Determining the amplitude equation constitutes a first stepvhereu(x,y) andv(x,y) are thex andy components of the
towards understanding the fully nonlinear regime beyond théwo-dimensional velocity fieldi. The pressure field is elimi-
onset of electroconvection. For small wave numbers neanated from Eq(2.1) by applying the curl operator. Taking
threshold, the stability of solutions of E¢L.1) determines the curl of Eq.(2.1) twice, using Eq(2.2), and selecting the
the regions of control parameter-wave number space whepé COmponent gives
the vortex pattern itself is stabl@]. For example, one ex-
pects such a one-dimensional pattern to exhibit a long- = psdi Ve +psdy(Vs [(U-Voul) = psVEl (u- Vv ]
wavelength instability due to the Eckhaus mechariigr?2] __ 4 2
which restricts the range of stable wave numbers available to 75V 50+ (95Q) (9y W | ,—0) + (3¢ (Fxy ¥ | =0)
the pattern. The amplitude equation can also be used to study — (Fxy®) (3P | 1=0) = (3y@) (2¥ | 1), (2.3
how the ends of a finite-length film affect the range of stable
wave numbers. This wave number selection mechanism washere the electric potential(x,y,z) is related to the in-
first investigated by Cros®t al. [13] in the context of plane electric field viaEy(x,y)=—V¥(X,y,2)|,—0. The
Rayleigh-B@ard convection in finite containers. End selec-three-dimensional Laplace equation,
tion was observed experimentally by Maobal.[6] in elec-
troconvection patterns in smecticfilms. It is possible to VAW =0, (2.9
extend the present theory to determine the Eckhaus and end- ) ) )
selection stability boundariefl4], but this is beyond the SPecifies¥ in the half space=0 with appropriate boundary
scope of the present paper. conditions in the<-y plane, WhereV=((9x,.(9y ,az)_. The sur-

This paper is organized as follows. The linear stabilityf@ce charge density depends on the discontinuity inzhe
analysis of the electroconvective instability is briefly re- derivative of¥" across the two surfaces of the film
viewed in Sec. Il. The amplitude equation is determined in P P P
Sec. lll. Section IV compares the results of this theoretical - _ ¢ — + €01 y0-= —2€0— ,
investigation with previously obtained observations, and 9Z|,_ o+ Iz IZ{, o+
contains a brief conclusion. (2.5

=—VP+ 7 Viu+qEs, (2.9

&u+ \Y
E (U~ s)u
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wheree, is the permittivity of free space. v(Xy=*3)=(dy)(x,y==*3)=0, (2.15
The motion of charge is governed by the charge continu-
ity equation V(x,y==*3%,0)=0, (2.19
dq W(x,y,2)—0,z— *x, (2.19
==V (qut oEo), 2.6 (x.y.2)

In the plate electrode configuration, Dirichlet boundary con-

which includes contributions from both the convective ditions are employed on they plane, with

a(x,y)u(x,y) and conductivessE¢(X,y) current densities. _ 1

Diffusion of charge in the plane of the film can be neglected. V(xy.0=0ly[>3. (2.18
Equations(2.3-(2.6) constitute the basic electrohydrody- | the wire electrode geometry, mixed boundary conditions

namic equations; the electrode geometry enters into thgpply such that

boundary conditions of¥. The solution of these equations

in the “base state” below the onset of convection has 3,V (X,Y,2)| =0+ =0Jy|>3 . (2.19

u@(x,y)=0, with q(®(y) and¥©)(y,z) satisfying the elec- _

trostatic boundary value problem given by Eq8.4) and In both cases the potentidf (x,y,0)=¥|,—o(x,y), |y|<0,

(2.5). To examine the stability of the base state, we introducds specified on the film.

the perturbed quantities Equations(2.10—(2.13 can be expressed as
u=0+u®, (2.7) LC=D, (2.20
q=q+q?, (g e
Ve —RI RQK 0
Es=E+EW 2.9 ° " "
soTs TS 29 -Q 0 V2 0
where  EP=E,®y and  EM(x,y)=E,D(x,y)x L=l o 1 0 9 )|geot =)o |
+E,M)(x,y)y. Quantities which have dimensions of length, 0 0 0 V2
time, charge density, and electric potential are nondimen-
sionalized by, eyd/og, €,V/d, andV, respectively. Substi- (2.21

tuting the perturbed field variables into EgR.3)—(2.6),

nondimensionalizing, and suppressing the superscripts, v(x.y)
yields acx,y)
C= , (2.22
ng_Ra§q+RQa)2<\Ir|Z:0 \I,(vavz)|Z:0
V(X,Y,2)
:R&x[(&xq)(&yw|z:0)_(ayQ)(ax‘P|z:O)]
_ d
+ P Hay(V20) — 3y(Vo- [ (u- Voul) an
+V§[(U-VS)U]}, (2.10 Rax[(¢9XQ)(ayq’|z:O)_(‘9yQ)(ax\If|z:0)]
atq+u(aXQ)+U(ayq)
—Qu+ V¥, o= g+ u(aq) +v(dya), (21D B= 0
A+ (39 sm0- = (39)|,-0-=0, (212 0
(2.23
V¥ =0. (2.13 . N . .
The linear stability problem is defined by
The dimensionless parameters £0=0 (2.24
R= €0 V? and P= €7 (2.14) The neutral stability curvé&R =R .(«) is determined by sub-
o nS2 pads stituting the normal mode solution
7 d ' ituting th I mod luti
are analogous to the Rayleigh and Prandtl numbers. We will, ;K(y)
henceforth, consider only the lim—«, as this is the case a(y)
most relevant to experiments on real smectic matefials c=|— e (2.25
for which P~ 10-100. The nonconstant coefficigpfy) de- P.(y,0) ' '
pends on the electrode configuration and is given by (v.2)

Q(y)=,a°(y), whereq(®©)(y) is the base state charge den-

sity. The variablew, g, and ¥ above represent the dimen-
sionless perturbed functions™®, q®), and ¥V, respec- into Eq.(2.24). The following alterations have been made to

tively, and satisfy the following boundary conditions: the notation of Ref.[8]: A(y)—EK(y), ®(Y)—>E<(Y),
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Qy(y)—¥.(y,0), and Q(y,2)—¥,(y,2). The variables Wwhere
V., Q., and, are expanded as

W) =i [dyuo(Y)]. (3.6
= 21 Antern(Y), (2.29 The ordere equation, Eq(3.2), is transformed to
m=
S LoG=By, 3.7
= , 2.2
m§=:1 AinGen(Y) (227 by the method described in Réfl]. The ansatz
= o = v§ w(y)
Ty.2)= 3, Aln(y.2), (2.29 1) o
m=t _ qi(y) b(Y)
— — — = AZe2irox 4 [—
where vm(y), Gn(y), and¥.(y,z) satisfy the boundary a iy, 0 | 7o Wy(y,0)
conditions Eqs(2.15 to (2.19. The linear problem is solved vi(y,2) (y,2)
numerically in Ref[8] by smﬁ)stitutingcm, the even Chan- o
drasekhar functiof16], for vem(y) and then finding self- .
consistent solutions fog.,(y) and¥,(y,z). v2(y)
. az(y)
Il. DERIVATION OF THE AMPLITUDE EQUATION XA +cc.p + ¥5(y,0) |AGl%, (3.8
The multiple-scales approach is used to obtain the ampli- Wi(y,2)

tude equation, which describes the slow temporal and spatial

variation of the field variable§1,12]. The slow scales

X=¢€Y% and T=et are treated as independent of the fastis used to solve Eq¢3.7). The variableA;(X,T) is a second
scalesx andt. Here, e is the dimensionless control param- amplitude function. Substitution of E¢3.8) into Eq. (3.7)
eter. We takee=(R—R.o)/ Rco, WhereRq is the critical  gives the following sets of partial differential equations
value of R at the minimum of the neutral stability curve

R="TRe(«). The nonlinear equation describing the physical (95— (2k0)?)?v5+ (2k0)*Reod — (2k0)*ReoQW5l,— 0
system, Eq(2.20), is expanded in powers af'? as in Ref.

[1]. At orderse'? €, ande®? Eq.(2.20 becomes = —2k3Reol W(dyWpl,=0) — (3y ) Yol ,=0], (3.9
£oCo=Bo, @D _Qvi+(t9§—(2Ko)2)‘1’i|zo:iKoTb;oJf;o(é’yaz), o
3.1
LoCq1+ L1Coy= B, (3.2
(0,9 ,—0r — (0,%9)|,—0-=0, (.11
EOCZ+£1C1+£ZCO=BZ, (33) CI1 ( z 1)|z 0 ( z 1)|z 0
2 2_ 2 €__
respectively. (95 +3d;—(2k))¥1=0, (3.12
The solution of Eq(3.1), at ordere*? is
and
vo(X.Y) wo(y) Jv5=0, (313
do(X,Y) ®(y) |
— — — i kX € € TR s TR T
Co=| Wo(x,y,2)|,-0 | TR (y,0 [ € FEC —Qus+dyW5|,—o=—irgUy G +iKol cht to(dych)
Wo(X,Y,2) o(Y,2) +;§,‘((?y?b), (3.19
(3.9 . . .
q2+(azqu)|z=0+_(Uv)zqu)|z=0*:01 (3.19
where Aq(X,T) is the amplitude functionk, is the critical
wave number which minimizes the functid®.(«), and c.c. (5§+ gg)qf;:o, (3.16
genotes_ complex_ cciljugation. The_ functions
vo(Y) = v(Y) | = xg! B(Y) =0(Y)| = xg! and Y(y,2) where the superscript denotes complex conjugation. A

=¥ (y,2)| .- «, @re solutions of the linear stability problem, vector G, which solves Eq(3.7), is presented in Appendix

Egs. (2.26— (2 28. The x component of the velocity field, A. The general solution at orderis
Ug, is specified by expanding the incompressibility condition - . o
Eq. (2.2) via the multiple-scales method. At ordet?, C1=G—{(2k0) " *(2dx9xAo) € G+c.c}, (3.17

UO(X,y):AO(X,T)l_,b(y)eiKOX+ c.c., (3.5 where the prime denotes, , anda) is given by
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(2, 0Y))] =k,

w(y)
. a(y) (aqu<(y))|K=K0
= %0 | T OBy O] e, | - 31O
O(y’z) aKEK(ylZ))|K:KO
The ordere®? equation, Eq(3.3), can similarly be trans-

formed to
LoG=0. (3.19

According to the Fredholm theorefd5], a solutionG, of
Eq. (3.19 exists if and only if

(Cblg)zo

The inner product is chosen to be

(3.20

27l kg s
(Cmacn):(ZW/KO)_lfo de_de{v:%(X,Y)vn(X,Y)

+am(Y)An(X,Y) + Wl = oWl =0}

2l kg ES >
+(27T/KO)_1J dxf dyJ
0 —0o0 — o0

XdZ Wi (x,y,2)V,(X,Y,2)}, (3.21)
such thatC; (i=m,n) is
vi(X,y)
Qi(X,y)
G| Wity D)oo (322
‘Pi(xvyiz)

The vectorC, in Eq. (3.20 is any eigenvector of the adjoint

£} with zero eigenvalue

LiCy=0 (3.23
or more explicitly
—Qap=0, (3.29
—Reod2vp+Wy|,—0=0, (3.29
ReoQdzvp+ Vi + (9% )| z=0+ = (9,¥p) |0~ =0,
(3.26
V¥, =0. (3.27

Since Ly # Lg, Ly is not self-adjoint. The boundary condi-

tions on the adjoint quantities are

vp(X,y=*3)=(dyvp)(X,y=*3)=0, (3.28
Wy(X,y=*3,00=0p(X,y=*3)=0, (3.29
V,—0,z— *+ o, (3.30
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As in the linear stability problem, Dirichlet boundary condi-
tions are employed on they plane in the plate electrode
configuration with

(3.31)

and mixed boundary conditions are applied in the wire elec-
trode geometry with

\I’b(X,y,O) = 01|y| >% ’

az\Pb(Xuy1Z)|z=O+:0- (3.32

In both cases the relatio#r,(x,y,0)="Py|,—o(X,y), |y|<0,

is specified on the film. The adjoint problem defined by Eq.
(3.23 with boundary conditions Eq$3.28—(3.32) is satis-
fied by

yl>3.

_Uoo(y)
Gho(y)
G | (y,0)
ho(Y,2)

i kX
e' 0%,

(3.33

Where_vbozz_»bko, Hoo:EoKO: and@l)():@b,(o. A detailed
solution forC, is given in Appendix B.

Completely expanding Eq(3.20 gives the amplitude
equation

F101Aq+ F2Ag+ F3(2i kodx) 2Ag+ F 4Aq| Ag|?=0,
(3.39

in the slow scaleX andT. The coefficientd-; are

2
F1=f dy oo, (3.39

-1/2

1/2 -
Fo= Jlllzdy{_Kcz)Rcovgo(Cb—Q\Ide:o)}, (3.36

1/2 _ — —
Fom [ avi(2n (20 kBt~ Reoth

+ReoQW| =0l — thoto+ (2k0) Lo Wl =0}

+ | ay|” daony oW, (3.37

12 -
Fs= Jfl/zdy{(i K0)*Reotiol — 0 (3yWil,-0)

—2(8y &) W] =0+ 205(3, W5 | ,—0) + (3,05 W | =0
+ (3, W5l ,-0) — (3,05 Yol - 0] + ol £ (A0 ) T

+(2i ko) B a5+ v} 6 (dyQ7) +vi( ny*J)‘F Uo(ﬁy%)]}
(3.38

where the prime denotes. and the superscript indicates

complex conjugation. In terms of the fast variabkeandt,
Eq. (3.39) is expressed as
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TABLE I. Numerical results.

P s e - v e -eoa

[
Wire electrode Plate electrode PSSR S S IR ar - CUGNEN
geometry geometry WP A\ / //_.\\\ \
" <\ [ 7~
Critical wave numberk, 4.7467 4.2239 AN ALY
Critical control parameteR g 76.855 91.855 [ /7 4t by o M\
Correlation lengthé, 0.284 84 0.297 43 \ P! " 2/ f \ N “ vy )
Time scaler, 0.350 72 0.37155 NN
Nonlinear couplingg, 1.746 02 2.842 4 ! }‘ :‘\\_.// N \\._,:i 5 '
NN e AN N~ P
L N i A T T JIE SR P 1
To0 A= eA+ E50°A—goA|Al?, (3.39
such that A(xt)= ellZAO(X,T), To=—F/F,, 53: FIG. 2. Vortex pattern just above onset. The dimensionless ve-

locity must be scaled bgo/ ey, wheres, o, and ¢, are the film
thickness, bulk conductivity, and permittivity of free space, respec-
tively. Here we plot the vector velocity field for wire electrodes

_4K(2)F3/F2, anng= - F4/F2.
The normalization of the amplitude function in the solu-

tion of the €' equation, (3.4) is arbitrary. The scale of yth control parametee=0.1. Usings=142 nm andr=2.0x10""
A(x,t) can be set by requiring (Qm)~%, which are typical values for smectic films, gives
) sal/ ep= 3.2 mm/s. The magnitude of the velocity at the centre of the
Nu—1=(qu)/{oEy)=|Al?, (3.40  figure is approximately equal to 2.4 mm/s.
where This provides a useful independent check of our numerical
- " results.

- o he comparison of our theoretical results with the experi-

y=(27lk 1f dxf dy(---). (3.4 T P sults v P

(=l o 0 —1/2 y(---)- (349 ments of Mao, de Bruyn, and Morr[¢] is difficult, at the

present time, due to the uncertainties in the measurements of
Note that Nu is the “Nusselt number” for the electroconvec-the material parameters of the liquid crystal film. For ex-
tion problem, which is defined to be the ratio of the totalample, to nondimensionalize the experimentally measured
current density to the conducted current density, spatiallyalue ofgy, the factore3/ o2s?> must be employed. While the
averaged. thicknesss of the smectic thin film can be measured accu-

rately, the bulk conductivity of the liquid crystal is much less

IV. DISCUSSION AND CONCLUSION well characterized. Our calculated values of tNeisselt nor-

malized value ofgg are substantially larger than those esti-

To find the coefficients of the amplitude equatié®,39,  mated from experimen], but in view of the uncertainty in
we evaluate Egs(3.35—(3.38 using the numerical tech- ¢ (roughly a factor of 3 no more precise comparison can
niques described in Refi8] and[17]. They-integrations are  currently be made. Experiments which will more accurately
performed by the Romberg method. A simgleralgorithm  measurer and the viscosityy in annular films are presently
is employed to solve the Helmholtz equatiof&12), (3.16,  being performed18].
and (B11), on aNXN grid in the first quadrant of thg-z The flow pattern which develops just above onset can be
plane. The solutions in the rest gfz plane follow from visualized by evaluating the velocity vector figidon thex-
symmetry. The double integration in E@.37) is performed y plane. The lowest order andy components of the field
using a D trapezoidal rule based on the same grid. Theare given by Eqs(3.5 and (3.4), respectively. The ampli-
coefficients are extrapolated such thdal—o and tude functionA in these expressions is obtained by solving
Ntiim /IN—0, where Ny, is the number of grid points Eg. (3.39 for the steady state case with a specified control
across the width of the film. The Fourier series in Edgl),  parametere. An example of the resulting vortex pattern is
(A4), and (B9) are expanded up tb=29. Six modes are shown in Fig. 2. This may be qualitatively compared with
employed in the solutions Eq&.26—(2.28, Eq. (A3), and  the experimental pattern shown in Figbbof Ref.[5]. As
Egs. (B5)—(B7), of the linear stability, ordeg, and adjoint above, a quantitative comparison of theoretical and experi-
problems, respectively. Including more terms in these seriemental velocities is difficult because of the experimental un-
expansions does not significantly change our final results. certainty ino.

The values ofry, &y, andgg are shown in Table I. Only In conclusion, a multiple-scales expansion of the basic
0o, the coefficient of the nonlinear term, depends on the norelectrohydrodynamic equations for electroconvection in a
malization of A by the Nusselt number according to Eg. suspended fluid film was used to find the lowest order am-
(3.40. These results can be compared with those obtainedlitude equation. The set of basic equations were not self-
independently from the linear stability calculations of Daya,adjoint, necessitating the evaluation of the adjoint eigenfunc-
Morris, and de Bruyri8]. In the latter approach, the corre- tions. The coefficientsry, &, and g, of the resulting
lation length&, was derived from the curvature of the neutral Ginzburg-Landau equation were determined by numerical
curve atxgy and the characteristic timey from the linear integration. The results of this work can be employed in
growth rate atky. Both 75 and &, from the linear stability further studies of the weakly nonlinear phenomena near the
analysis are in good agreement with the present calculatiomnset of electroconvection in suspended smectic films. Of
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particular interest is the mechanism of wavelength selectioThe variableW5(y,z) is specified by solving the Laplace

[1] and the effect of sidewalls on the convection patternequation,(3.16 by a relaxation method, subject to Hé4)

[6,14]. and the boundary conditions Eq®.17—(2.19. The func-
tion g5(y) is numerically calculated via E¢3.15.
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APPENDIXA (92— k) 70— Q Gho=0, (B1)
In this appendix, a method for solving the ordeequa- L
tions, (3.9—(3.16 is described. Note that the functions k&R oo+ Yol ,=0=0, (B2)
vi(y) anduvs(y) are velocity fields and satisfy E(R.15), the - o -
boundary conditions om. The quantitiesy§(y) and g5(y) — k5 RcoQubot (95— k) tho T (3, %) | ,—o+
are charge densities. The functioli§(y,z) and¥5(y,z) are —
electric potentials and satisfy Eq2.16—(2.19), the bound- —(9%0)]2=0-=0, (B3)

ary conditions on¥’. B

In the linear stability calculatiof8], the functionsuy(y)
and gy(y) are chosen to be even. The derivative of the baseThe functionsu,o(y), ao(y), and%,o(y,z) are expanded
state charge densit@(y), is also even. We choos€(y) to  as

be odd. Hence the nonhomogeneous part of B4.0 can be
expanded in a Fourier sine series

(954 95— k) Wpo=0. (B4)

o)

T Wo(y)= 2, Brtoom(y), (85)
—[dywo(y) () + wo(Y)[dyb(Y) 1+ Q(Y)vi(y)

=S, bsin2aly). AD) %o(Y)= 2 Brbom(¥), (B6)

The general solution of Eq3.10 is Uo(y.2)= >, Bulhom(Y,2), (B7)

m=1
VE(y,00=— > [(271)2+ (2K0) 2] tysin(27rly). where uyom(y), thom(y). and¥hon(y.2) satisfy the adjoint
=1 boundary conditions, Eq$3.28—(3.32.
(A2) With the solutions Eqs(B5)—(B7), Eqg. (B1) implies that
Assuming a trial solution (85— K6)*wom(¥) ~ Q(Y) Gom(y)=0.  (B8)
N . — . —
oo Since Gyom(y) must satisfy qom(y==*3)=0, let
Ul(y)—mz=l EnSn(y). (A3 Gom(Y)=co$(2m-1)my]. The product of Q(y) and

cog(2m—1)my] is even and can be represented by a Fourier
whereS,, is the odd Chandrasekhar functid6] with E;=1 cosine series. The general solution of E§8) is
andE,,=0 form=2, ... N, yields the coefficienty, in Eq.

(A1). Equation (A2) and the boundary conditions Egs. “vpom(Y) =M ;c0sH koY) + M ysinh( koY)

(2.17-(2.19 determineW¥i(y,z) via the Helmholtz equa- @

tion, Eq.(3.12), which is solved by a numerical relaxation + > [(27)2+ k2] 2by,coq27ly), (BY)
1=0

method. The functiom;(y) is found by numerical differen-
tiation of wi(y,z) in Eq. (3.11). Thenq;(y) and ¥3(y,0)
are substituted into Eq3.9) to calculate a new estimate of
vi(y). This process is repeated unili(y), gi(y), and
V¥i(y,z) are self-consistently determined. M= —2[ ko+SiNN( k)]~ Y[ SiNN ko /2)
In the second set of order equations,(3.13 and the
boundary conditions Eq2.15 indicate thatv5(y)=0. The
right-hand side of Eq(3.14), simplified via Eq.(3.6), is an
odd function and can be expanded in a Fourier sine series.

The general solution of Eq3.14) is *
|v|2=2[K0+sinr(KO)]*l[Kosinr(KO/z)]lZ0 (—1)'[(27)?

Wi(y,0= —2}1 (27l) " 2asin(27ly). (A4) 2] 2.

where the constantgl, and M, are specified by the bound-
ary conditionsu,om(y =% 3) = (dythom) (Y= *3)=0 to be

©

+(K0/2)cosr(K0/2)]|§0 (—1)'[(271)2+ k2] 2y,
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Substitution of Eqs(B5)—(B7) into Eq.(B2) and Eq.(B4)
yields

Bhom(¥,0) = — k& Rcotbom(Y), (B10)
and

(5 + 02— k§) Woom(Y,2) =0. (B11)

The latter is a Helmholtz equation subject_to the adjoint

boundary conditions Eqs3.30—(3.32, with W,,(y,0),
ly|<3, given by Eq.(B10). Equation(B11) is solved by a
numerical relaxation method.

Using Eqgs.(B5)—(B7) to expand Eq(B3) leads to

% Bl — K(Z)RCOQ_UbOm+ (’93_ K(z))?]oOm'l' (azﬁbOm”z:O*'

— (9 %om)| 2=0-1=0, (B12)

which implies that the coefficient8,, vanish unless the
compatibility condition

WEAKLY NONLINEAR ANALYSIS OF ...

1713

1/2 - —
ITomll= ‘ f_ 1/2dy[ - K(Z)RCOQ GonUhom T %On(a;zl

- K(Z))?I)Om_" ZEJOn( azEbOm”z:O*] =0,

(B13)

is satisfied. Note that the relation o, om)|,—o-
=—(3,%om)|z=0+,» Which is analogous to the discontinuity

in the electric field?, ¥, across the two surfaces of the film
in the linear problem, is used to derive E®13). In Eq.
(B13), the values ofxy and R, are fixed to be those ob-
tained from the linear stability analysis. The coefficieBts
are determined by the matrix equation

TomBm=0, (B14)

whereT,, is given in Eq.(B13). These coefficients are then
subs_tituted into EqeB5)—(B7) to generataig(y), Gholy),
and¥,(y,2).
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