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Weakly nonlinear analysis of electroconvection in a suspended fluid film

V. B. Deyirmenjian, Zahir A. Daya, and Stephen W. Morris
Department of Physics and Erindale College, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 6 February 1997; revised manuscript received 17 April 1997!

It has been experimentally observed that weakly conducting suspended films of smectic liquid crystals
undergo electroconvection when subjected to a large enough potential difference. The resulting counterrotating
vortices form a very simple convection pattern and exhibit a variety of interesting nonlinear effects. The linear
stability problem for this system has recently been solved. The convection mechanism, which involves charge
separation at the free surfaces of the film, is applicable to any sufficiently two-dimensional fluid. In this paper,
we derive an amplitude equation which describes the weakly nonlinear regime, by starting from the basic
electrohydrodynamic equations. This regime has been the subject of several recent experimental studies. The
lowest order amplitude equation we derive is of the Ginzburg-Landau form, and describes a forward bifurca-
tion, as is observed experimentally. The coefficients of the amplitude equation are calculated and compared
with the values independently deduced from the linear stability calculation.@S1063-651X~97!05408-1#

PACS number~s!: 47.20.Ky, 47.65.1a, 61.30.2v
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I. INTRODUCTION

Although spatiotemporal pattern formation is ubiquito
in nature, there are relatively few systems which are am
nable to both accurate experimental study and first-princip
weakly nonlinear analysis@1#. The classic examples involv
ing fluid mechanical instabilities are Rayleigh-Be´nard con-
vection and Taylor-Couette flow. The results of perturbat
theory, based on the Navier-Stokes and heat equations, a
good agreement with high precision experiments in
weakly nonlinear regime of these two instabilities@1,2#. A
more complex example is electroconvection in nematic
uid crystals due to the Carr-Helfrich mechanism@3#. Here,
remarkably good agreement has been achieved in spite o
complexity of the problem. However, in other cases eit
the materials cannot be sufficiently characterized or the
derlying physical equations are not understood well eno
to allow quantitative comparisons between observations
theory.

Electroconvection in suspended smectic films is a pro
ising new experimental system for quantitative studies
spatiotemporal pattern formation@4–7#. When a thin, sus-
pended film of smectic liquid crystal is subjected to a su
cient potential difference, a charge separation arises w
drives the film into convection. The flow pattern just abo
onset is sustained by the electric field acting on char
which develop near the free surfaces of the film. The
charges are simply a consequence of the electrostatic bo
ary conditions which must be satisfied by the fields ins
and outside of the film@8#. Figure 1 shows a schematic of th
experimental arrangement. This source of charge is dist
from that due to the Carr-Helfrich mechanism which driv
bulk electroconvection in certain nematics@3#. In that case,
the charge generation mechanism involves an essential
pling to the director orientation. In experiments on smecticA
liquid crystal films@4–7#, in which the director was perpen
dicular to the film, no orientational effects were observ
indicating that the flow remained isotropic in the film plan
Recent experiments on smectic-C films @9# showed convec-
tion and flow alignment of the projection of the director
561063-651X/97/56~2!/1706~8!/$10.00
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the plane of the film, but were not consistent with the Ca
Helfrich mechanism. These were likely driven by the mech
nism discussed here, with the flow alignment a second
effect. It has, however, been hypothesized@10# that the two
mechanisms might coexist in some smectic-C materials. The
mechanism we discuss here is presumably also respon
for convection observed in thin, suspended films of isotro
fluids and in nematics in certain regimes@11#. These cases
involve substantial three-dimensional effects, however,
cause they lack the smectic layering which has the effec
restricting the flow to the film plane. In what follows, w
consider only very thin isotropic films, relevant to the case
smectic-A, on which most of the experiments have been p
formed @4–7#.

A theoretical model of the onset of electroconvection
suspended films was introduced by Daya, Morris, and
Bruyn @8#. The film was represented as a weakly conducti
two-dimensional, isotropic fluid. To find the electric field
and charge densities which drive convection, the electrost
potential was determined. The three-dimensional elec
static equations effectively constitute a nonlocal coupling
tween the in-plane fields and charge densities which app
in the two-dimensional Navier-Stokes and charge continu
equations. This extra coupling formally distinguishes the
sulting equations from those of thermal convection in t
Rayleigh-Bénard problem, although some interesting sim
larities remain. The value of the critical wave number fro
the linear stability analysis@8# is in good agreement with
experiments@4,5,7#.

The purpose of this paper is to present a weakly nonlin
analysis of the electrohydrodynamic equations given in R
@8#. The multiple-scales perturbation theory employed in o
treatment is similar to that given in Ref.@1# for Rayleigh-
Bénard convection. Although there are important physi
differences between these two pattern forming instabiliti
the resulting amplitude equation for both problems is of
Ginzburg-Landau form

t0] tA5eA1j0
2]x

2A2g0AuAu2, ~1.1!
1706 © 1997 The American Physical Society
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56 1707WEAKLY NONLINEAR ANALYSIS OF . . .
wheree is the dimensionless control parameter, which d
pends on the applied electric potential, andA(x,t) is a
slowly varying amplitude. The form of Eq.~1.1! is quite
universal and describes many other physical systems w
exhibit forward bifurcations@1#. The coefficientst0, j0, and
g0 are compared with those previously obtained by ot
methods. In particular,t0 and j0 are found to be in good
agreement with the values determined from the linear sta
ity analysis of Daya, Morris, de Bruyn@8# et al.and Mao, de
Bruyn, and Morris have experimentally measured all th
coefficients@7#. The experimental value ofj0 is in reason-
able agreement with theory. Quantitative comparison oft0
andg0 with theory is difficult at the present time due to larg
uncertainties in the conductivity and viscosity of the liqu
crystal, which are required to nondimensionalize the exp
mental results.

Determining the amplitude equation constitutes a first s
towards understanding the fully nonlinear regime beyond
onset of electroconvection. For small wave numbers n
threshold, the stability of solutions of Eq.~1.1! determines
the regions of control parameter-wave number space w
the vortex pattern itself is stable@1#. For example, one ex
pects such a one-dimensional pattern to exhibit a lo
wavelength instability due to the Eckhaus mechanism@1,12#
which restricts the range of stable wave numbers availabl
the pattern. The amplitude equation can also be used to s
how the ends of a finite-length film affect the range of sta
wave numbers. This wave number selection mechanism
first investigated by Crosset al. @13# in the context of
Rayleigh-Bénard convection in finite containers. End sele
tion was observed experimentally by Maoet al. @6# in elec-
troconvection patterns in smectic-A films. It is possible to
extend the present theory to determine the Eckhaus and
selection stability boundaries@14#, but this is beyond the
scope of the present paper.

This paper is organized as follows. The linear stabil
analysis of the electroconvective instability is briefly r
viewed in Sec. II. The amplitude equation is determined
Sec. III. Section IV compares the results of this theoreti
investigation with previously obtained observations, a
contains a brief conclusion.

FIG. 1. Schematic of film geometry and coordinate system. T
wire electrode configuration is shown. The vortex pair periodicity
l52pd/k, whered is the film width. The thicknesss of the film
~not shown! is such thats!d.
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II. LINEAR STABILITY ANALYSIS

In this section, the physical model describing electroco
vection in a thin film is presented. The linear stability ana
sis of the relevant equations is concisely reviewed. Furt
details are given in Ref.@8#. Note that we changed some o
the notation of Ref.@8# to simplify the presentation of this
paper.

The film is treated as a two-dimensional~2D! conducting
fluid in thex-y plane, with areal material parametersrs5sr,
hs5sh, and ss5ss, where s, r, h, and s are the film
thickness, bulk density, bulk molecular viscosity, and bu
conductivity, respectively. The coordinate system is sho
in Fig. 1. The film is assumed to be infinite in thex direction
and bounded between2d/2 andd/2 in the y direction. We
only consider the thin film limit wheres/d→0. Two elec-
trode configurations are analyzed. In the ‘‘plate’’ geomet
the film is suspended between two thin sheet electro
which fill the rest of thex-y plane, whereas in the ‘‘wire’’
geometry, the film is suspended between two thin line el
trodes which are along thex direction. In both cases, th
electrode aty52d/2 is fixed at a potential of2V/2, and the
electrode aty5d/2 is at a potential ofV/2.

The Navier-Stokes equation

rsF]u

]t
1~u•¹s!uG52¹sPs1hs¹s

2u1qEs , ~2.1!

describes the fluid flow of the liquid crystal, wher
¹s5(]x ,]y,0), Ps(x,y), q(x,y), and Es(x,y) are the two-
dimensional gradient operator, two-dimensional press
field, surface charge density, and electric field in the fi
plane, respectively. The incompressibility of the fluid impli
that

]xu1]yv50, ~2.2!

whereu(x,y) andv(x,y) are thex andy components of the
two-dimensional velocity fieldu. The pressure field is elimi-
nated from Eq.~2.1! by applying the curl operator. Taking
the curl of Eq.~2.1! twice, using Eq.~2.2!, and selecting the
y component gives

2rs] t¹s
2v1rs]y~¹s•@~u•¹s!u# !2rs¹s

2@~u•¹s!v#

52hs¹s
4v1~]x

2q!~]yCuz50!1~]xq!~]xyCuz50!

2~]xyq!~]xCuz50!2~]yq!~]x
2Cuz50!, ~2.3!

where the electric potentialC(x,y,z) is related to the in-
plane electric field viaEs(x,y)52¹sC(x,y,z)uz50. The
three-dimensional Laplace equation,

¹2C50, ~2.4!

specifiesC in the half spacez>0 with appropriate boundary
conditions in thex-y plane, where¹5(]x ,]y ,]z). The sur-
face charge density depends on the discontinuity in thz
derivative ofC across the two surfaces of the film

q52e0

]C

]z U
z501

1e0

]C

]z Uz502522e0

]C

]z U
z501

,

~2.5!

e
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1708 56DEYIRMENJIAN, DAYA, AND MORRIS
wheree0 is the permittivity of free space.
The motion of charge is governed by the charge conti

ity equation

]q

]t
52¹s•~qu1ssEs!, ~2.6!

which includes contributions from both the convecti
q(x,y)u(x,y) and conductivessEs(x,y) current densities.
Diffusion of charge in the plane of the film can be neglect

Equations~2.3!–~2.6! constitute the basic electrohydrod
namic equations; the electrode geometry enters into
boundary conditions onC. The solution of these equation
in the ‘‘base state’’ below the onset of convection h
u(0)(x,y)50, with q(0)(y) andC (0)(y,z) satisfying the elec-
trostatic boundary value problem given by Eqs.~2.4! and
~2.5!. To examine the stability of the base state, we introd
the perturbed quantities

u501u~1!, ~2.7!

q5q~0!1q~1!, ~2.8!

Es5Es
~0!1Es

~1! , ~2.9!

where Es
(0)5Ey

(0)ŷ and Es
(1)(x,y)5Ex

(1)(x,y) x̂
1Ey

(1)(x,y) ŷ. Quantities which have dimensions of lengt
time, charge density, and electric potential are nondim
sionalized byd, e0d/ss , e0V/d, andV, respectively. Substi-
tuting the perturbed field variables into Eqs.~2.3!–~2.6!,
nondimensionalizing, and suppressing the superscr
yields

¹s
4v2R]x

2q1RQ]x
2Cuz50

5R]x@~]xq!~]yCuz50!2~]yq!~]xCuz50!#

1P21$] t~¹s
2v !2]y„¹s•@~u•¹s!u#…

1¹s
2@~u•¹s!v#%, ~2.10!

2Qv1¹s
2Cuz505] tq1u~]xq!1v~]yq!, ~2.11!

q1~]zC!uz5012~]zC!uz50250, ~2.12!

¹2C50. ~2.13!

The dimensionless parameters

R5
e0

2V2

shs2
and P5

e0h

rsds
~2.14!

are analogous to the Rayleigh and Prandtl numbers. We
henceforth, consider only the limitP→`, as this is the case
most relevant to experiments on real smectic materials@7#,
for whichP'10–100. The nonconstant coefficientQ(y) de-
pends on the electrode configuration and is given
Q(y)5]yq

(0)(y), whereq(0)(y) is the base state charge de
sity. The variablesv, q, andC above represent the dimen
sionless perturbed functionsv (1), q(1), and C (1), respec-
tively, and satisfy the following boundary conditions:
-

.

e

e

n-

ts,

ll,

y

v~x,y56 1
2 !5~]yv !~x,y56 1

2 !50, ~2.15!

C~x,y56 1
2 ,0!50, ~2.16!

C~x,y,z!→0,z→6`. ~2.17!

In the plate electrode configuration, Dirichlet boundary co
ditions are employed on thex-y plane, with

C~x,y,0!50,uyu. 1
2 . ~2.18!

In the wire electrode geometry, mixed boundary conditio
apply such that

]zC~x,y,z!uz50150,uyu. 1
2 . ~2.19!

In both cases the potentialC(x,y,0)5Cuz50(x,y), uyu<0,
is specified on the film.

Equations~2.10!–~2.13! can be expressed as

LC5B, ~2.20!

where

L5S ¹s
4 2R]x

2 RQ]x
2 0

2Q 0 ¹s
2 0

0 1 0 ]z~• !uz5012]z~• !uz502

0 0 0 ¹2
D ,

~2.21!

C5S v~x,y!

q~x,y!

C~x,y,z!uz50

C~x,y,z!
D , ~2.22!

and

B5S R]x@~]xq!~]yCuz50!2~]yq!~]xCuz50!#

] tq1u~]xq!1v~]yq!

0

0
D .

~2.23!

The linear stability problem is defined by

LC50. ~2.24!

The neutral stability curveR5Rc(k) is determined by sub-
stituting the normal mode solution

C5S v̄k~y!

q̄k~y!

C̄k~y,0!

C̄k~y,z!
D eikx, ~2.25!

into Eq. ~2.24!. The following alterations have been made
the notation of Ref.@8#: L(y)→ v̄k(y), Q(y)→ q̄k(y),
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56 1709WEAKLY NONLINEAR ANALYSIS OF . . .
Vs(y)→C̄k(y,0), and V(y,z)→C̄k(y,z). The variables

v̄k , q̄k , andC̄k are expanded as

v̄k~y!5 (
m51

`

Āmv̄km~y!, ~2.26!

q̄k~y!5 (
m51

`

Āmq̄km~y!, ~2.27!

C̄k~y,z!5 (
m51

`

ĀmC̄km~y,z!, ~2.28!

where v̄km(y), q̄km(y), andC̄km(y,z) satisfy the boundary
conditions Eqs.~2.15! to ~2.19!. The linear problem is solved
numerically in Ref.@8# by substitutingCm , the even Chan-
drasekhar function@16#, for v̄km(y) and then finding self-
consistent solutions forq̄km(y) andC̄km(y,z).

III. DERIVATION OF THE AMPLITUDE EQUATION

The multiple-scales approach is used to obtain the am
tude equation, which describes the slow temporal and sp
variation of the field variables@1,12#. The slow scales
X5e1/2x and T5et are treated as independent of the fa
scalesx and t. Here,e is the dimensionless control param
eter. We takee5(R2Rc0)/Rc0, whereRc0 is the critical
value ofR at the minimum of the neutral stability curv
R5Rc(k). The nonlinear equation describing the physic
system, Eq.~2.20!, is expanded in powers ofe1/2 as in Ref.
@1#. At orderse1/2, e, ande3/2, Eq. ~2.20! becomes

L0C05B0 , ~3.1!

L0C11L1C05B1 , ~3.2!

L0C21L1C11L2C05B2 , ~3.3!

respectively.
The solution of Eq.~3.1!, at ordere1/2, is

C05S v0~x,y!

q0~x,y!

C0~x,y,z!uz50

C0~x,y,z!
D 5A0~X,T!S v̄0~y!

q̄0~y!

C̄0~y,0!

C̄0~y,z!
D eik0x1c.c.,

~3.4!

whereA0(X,T) is the amplitude function,k0 is the critical
wave number which minimizes the functionRc(k), and c.c.
denotes complex conjugation. The functio

v̄0(y)5 v̄k(y)uk5k0
, q̄0(y)5q̄k(y)uk5k0

, and C̄0(y,z)

5C̄k(y,z)uk5k0
are solutions of the linear stability problem

Eqs. ~2.26!–~2.28!. The x component of the velocity field
u0, is specified by expanding the incompressibility conditi
Eq. ~2.2! via the multiple-scales method. At ordere1/2,

u0~x,y!5A0~X,T! ū0~y!eik0x1c.c., ~3.5!
li-
ial

t

l

where

ū0~y!5 ik0
21@]y v̄0~y!#. ~3.6!

The ordere equation, Eq.~3.2!, is transformed to

L0C̃15B1 , ~3.7!

by the method described in Ref.@1#. The ansatz

C̃155 S v1
e~y!

q1
e~y!

C1
e~y,0!

C1
e~y,z!

D A0
2e2ik0x1S v̄0~y!

q̄0~y!

C̄0~y,0!

C̄0~y,z!
D

3A1eik0x1c.c.6 1S v2
e~y!

q2
e~y!

C2
e~y,0!

C2
e~y,z!

D uA0u2, ~3.8!

is used to solve Eq.~3.7!. The variableA1(X,T) is a second
amplitude function. Substitution of Eq.~3.8! into Eq. ~3.7!
gives the following sets of partial differential equations

„]y
22~2k0!2

…

2v1
e1~2k0!2Rc0q1

e2~2k0!2Rc0QC1
e uz50

522k0
2Rc0@ q̄0~]yC̄0uz50!2~]y q̄0!C̄0uz50#, ~3.9!

2Qv1
e1„]y

22~2k0!2
…C1

e uz505 ik0 ū0 q̄01 v̄0~]y q̄0!,
~3.10!

q1
e1~]zC1

e !uz5012~]zC1
e !uz50250, ~3.11!

„]y
21]z

22~2k0!2
…C1

e50, ~3.12!

and

]y
4v2

e50, ~3.13!

2Qv2
e1]y

2C2
e uz5052 ik0 ū0 q̄0* 1 ik0 ū0* q̄01 v̄0~]y q̄0* !

1 v̄0* ~]y q̄0!, ~3.14!

q2
e1~]zC2

e !uz5012~]zC2
e !uz50250, ~3.15!

~]y
21]z

2!C2
e50, ~3.16!

where the superscript* denotes complex conjugation. A
vector C̃1, which solves Eq.~3.7!, is presented in Appendix
A. The general solution at ordere is

C15 C̃12$~2k0!21~2]x]XA0!eik0x C̄081c.c.%, ~3.17!

where the prime denotes]k , and C̄08 is given by



t

i-

i-
e

ec-

q.

1710 56DEYIRMENJIAN, DAYA, AND MORRIS
C̄085S v̄08~y!

q̄08~y!

C̄08~y,0!

C̄08~y,z!
D 5S „]k v̄k~y!…uk5k0

„]k q̄k~y!…uk5k0

„]kC̄k~y,0!…uk5k0

„]kC̄k~y,z!…uk5k0

D . ~3.18!

The ordere3/2 equation, Eq.~3.3!, can similarly be trans-
formed to

L0C̃25G. ~3.19!

According to the Fredholm theorem@15#, a solution C̃2 of
Eq. ~3.19! exists if and only if

~Cb ,G!50. ~3.20!

The inner product is chosen to be

~Cm ,Cn!5~2p/k0!21E
0

2p/k0
dxE

2`

`

dy$vm* ~x,y!vn~x,y!

1qm* ~x,y!qn~x,y!1Cm* uz50Cnuz50%

1~2p/k0!21E
0

2p/k0
dxE

2`

`

dyE
2`

`

3dz$Cm* ~x,y,z!Cn~x,y,z!%, ~3.21!

such thatCi ( i 5m,n) is

Ci5S v i~x,y!

qi~x,y!

C i~x,y,z!uz50

C i~x,y,z!
D . ~3.22!

The vectorCb in Eq. ~3.20! is any eigenvector of the adjoin
L0

† with zero eigenvalue

L0
†Cb50, ~3.23!

or more explicitly

¹s
4vb2Qqb50, ~3.24!

2Rc0]x
2vb1Cbuz5050, ~3.25!

Rc0Q]x
2vb1¹s

2qb1~]zCb!uz5012~]zCb!uz50250,
~3.26!

¹2Cb50. ~3.27!

SinceL0ÞL0
† , L0 is not self-adjoint. The boundary cond

tions on the adjoint quantities are

vb~x,y56 1
2 !5~]yvb!~x,y56 1

2 !50, ~3.28!

Cb~x,y56 1
2 ,0!5qb~x,y56 1

2 !50, ~3.29!

Cb→0,z→6`. ~3.30!
As in the linear stability problem, Dirichlet boundary cond
tions are employed on thex-y plane in the plate electrod
configuration with

Cb~x,y,0!50,uyu. 1
2 , ~3.31!

and mixed boundary conditions are applied in the wire el
trode geometry with

]zCb~x,y,z!uz50150, uyu. 1
2 . ~3.32!

In both cases the relationCb(x,y,0)5Cbuz50(x,y), uyu<0,
is specified on the film. The adjoint problem defined by E
~3.23! with boundary conditions Eqs.~3.28!–~3.32! is satis-
fied by

Cb5S v̄b0~y!

q̄b0~y!

C̄b0~y,0!

C̄b0~y,z!
D eik0x, ~3.33!

where v̄b05 v̄bk0
, q̄b05 q̄bk0

, and C̄b05C̄bk0
. A detailed

solution forCb is given in Appendix B.
Completely expanding Eq.~3.20! gives the amplitude

equation

F1]TA01F2A01F3~2ik0]X!2A01F4A0uA0u250,
~3.34!

in the slow scalesX andT. The coefficientsFi are

F15E
21/2

1/2

dy q̄b0* q̄0 , ~3.35!

F25E
21/2

1/2

dy$2k0
2Rc0 v̄b0* ~ q̄02QC̄0uz50!%, ~3.36!

F35E
21/2

1/2

dy$~2k0!21 v̄b0* @2~]y
22k0

2! v̄082Rc0 q̄08

1Rc0QC̄08uz50#2 v̄b0* v̄01~2k0!21 q̄b0* C̄08uz50%

1E
2`

`

dyE
2`

`

dz~2k0!21C̄b0* C̄08 , ~3.37!

F45E
21/2

1/2

dy$~ ik0!2Rc0 v̄b0* @2 q̄0* ~]yC1
e uz50!

22~]y q̄0* !C1
e uz5012q1

e~]yC̄0* uz50!1~]yq1
e !C̄0* uz50

1 q̄0~]yC2
e uz50!2~]yq2

e !C̄0uz50#1 q̄b0* @ 1
2 ~]yv1

e ! q̄0*

1~2ik0! ū0* q1
e1 v̄0* ~]yq1

e !1v1
e~]y q̄0* !1 v̄0~]yq2

e !#%,

~3.38!

where the prime denotes]k and the superscript* indicates
complex conjugation. In terms of the fast variablesx and t,
Eq. ~3.34! is expressed as
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t0] tA5eA1j0
2]x

2A2g0AuAu2, ~3.39!

such that A(x,t)5e1/2A0(X,T), t052F1 /F2, j0
25

24k0
2F3 /F2, andg052F4 /F2.

The normalization of the amplitude function in the sol
tion of the e1/2 equation, ~3.4! is arbitrary. The scale o
A(x,t) can be set by requiring

Nu215^qv&/^ssEy&5uAu2, ~3.40!

where

^•••&5~2p/k0!21E
0

2p/k0
dxE

21/2

1/2

dy~••• !. ~3.41!

Note that Nu is the ‘‘Nusselt number’’ for the electroconve
tion problem, which is defined to be the ratio of the to
current density to the conducted current density, spati
averaged.

IV. DISCUSSION AND CONCLUSION

To find the coefficients of the amplitude equation,~3.39!,
we evaluate Eqs.~3.35!–~3.38! using the numerical tech
niques described in Refs.@8# and@17#. They-integrations are
performed by the Romberg method. A simpleSORalgorithm
is employed to solve the Helmholtz equations,~3.12!, ~3.16!,
and ~B11!, on aN3N grid in the first quadrant of they-z
plane. The solutions in the rest ofy-z plane follow from
symmetry. The double integration in Eq.~3.37! is performed
using a 2D trapezoidal rule based on the same grid. T
coefficients are extrapolated such thatN→` and
Nf ilm /N→0, where 2Nf ilm is the number of grid points
across the width of the film. The Fourier series in Eqs.~A1!,
~A4!, and ~B9! are expanded up tol 529. Six modes are
employed in the solutions Eqs.~2.26!–~2.28!, Eq. ~A3!, and
Eqs. ~B5!–~B7!, of the linear stability, ordere, and adjoint
problems, respectively. Including more terms in these se
expansions does not significantly change our final result

The values oft0, j0, andg0 are shown in Table I. Only
g0, the coefficient of the nonlinear term, depends on the n
malization of A by the Nusselt number according to E
~3.40!. These results can be compared with those obtai
independently from the linear stability calculations of Day
Morris, and de Bruyn@8#. In the latter approach, the corre
lation lengthj0 was derived from the curvature of the neutr
curve atk0 and the characteristic timet0 from the linear
growth rate atk0. Both t0 and j0 from the linear stability
analysis are in good agreement with the present calcula

TABLE I. Numerical results.

Wire electrode
geometry

Plate electrode
geometry

Critical wave numberk0 4.7467 4.2239
Critical control parameterRc0 76.855 91.855
Correlation lengthj0 0.284 84 0.297 43
Time scalet0 0.350 72 0.371 55
Nonlinear couplingg0 1.746 02 2.842 4
l
ly

e

s

r-

d
,

l

n.

This provides a useful independent check of our numer
results.

The comparison of our theoretical results with the expe
ments of Mao, de Bruyn, and Morris@7# is difficult, at the
present time, due to the uncertainties in the measuremen
the material parameters of the liquid crystal film. For e
ample, to nondimensionalize the experimentally measu
value ofg0, the factore0

2/s2s2 must be employed. While the
thicknesss of the smectic thin film can be measured acc
rately, the bulk conductivity of the liquid crystal is much le
well characterized. Our calculated values of the~Nusselt nor-
malized! value ofg0 are substantially larger than those es
mated from experiment@7#, but in view of the uncertainty in
s ~roughly a factor of 3!, no more precise comparison ca
currently be made. Experiments which will more accurat
measures and the viscosityh in annular films are presently
being performed@18#.

The flow pattern which develops just above onset can
visualized by evaluating the velocity vector fieldu on thex-
y plane. The lowest orderx and y components of the field
are given by Eqs.~3.5! and ~3.4!, respectively. The ampli-
tude functionA in these expressions is obtained by solvi
Eq. ~3.39! for the steady state case with a specified con
parametere. An example of the resulting vortex pattern
shown in Fig. 2. This may be qualitatively compared w
the experimental pattern shown in Fig. 6~b! of Ref. @5#. As
above, a quantitative comparison of theoretical and exp
mental velocities is difficult because of the experimental u
certainty ins.

In conclusion, a multiple-scales expansion of the ba
electrohydrodynamic equations for electroconvection in
suspended fluid film was used to find the lowest order a
plitude equation. The set of basic equations were not s
adjoint, necessitating the evaluation of the adjoint eigenfu
tions. The coefficientst0, j0, and g0 of the resulting
Ginzburg-Landau equation were determined by numer
integration. The results of this work can be employed
further studies of the weakly nonlinear phenomena near
onset of electroconvection in suspended smectic films.

FIG. 2. Vortex pattern just above onset. The dimensionless
locity must be scaled byss/e0, wheres, s, and e0 are the film
thickness, bulk conductivity, and permittivity of free space, resp
tively. Here we plot the vector velocity field for wire electrode
with control parametere50.1. Usings5142 nm ands52.031027

(V m!21, which are typical values for smectic films, give
ss/e053.2 mm/s. The magnitude of the velocity at the centre of
figure is approximately equal to 2.4 mm/s.
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particular interest is the mechanism of wavelength selec
@1# and the effect of sidewalls on the convection patte
@6,14#.
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APPENDIX A

In this appendix, a method for solving the ordere equa-
tions, ~3.9!–~3.16! is described. Note that the function
v1

e(y) andv2
e(y) are velocity fields and satisfy Eq.~2.15!, the

boundary conditions onv. The quantitiesq1
e(y) and q2

e(y)
are charge densities. The functionsC1

e(y,z) andC2
e(y,z) are

electric potentials and satisfy Eqs.~2.16!–~2.19!, the bound-
ary conditions onC.

In the linear stability calculation@8#, the functionsv̄0(y)
and q̄0(y) are chosen to be even. The derivative of the ba
state charge density,Q(y), is also even. We choosev1

e(y) to
be odd. Hence the nonhomogeneous part of Eq.~3.10! can be
expanded in a Fourier sine series

2@]y v̄0~y!# q̄0~y!1 v̄0~y!@]y q̄0~y!#1Q~y!v1
e~y!

5(
l 51

`

blsin~2p ly !. ~A1!

The general solution of Eq.~3.10! is

C1
e~y,0!52(

l 51

`

@~2p l !21~2k0!2#21blsin~2p ly !.

~A2!

Assuming a trial solution

v1
e~y!5 (

m51

N

EmSm~y!, ~A3!

whereSm is the odd Chandrasekhar function@16# with E151
andEm50 for m52, . . . ,N, yields the coefficientsbl in Eq.
~A1!. Equation ~A2! and the boundary conditions Eq
~2.17!–~2.19! determineC1

e(y,z) via the Helmholtz equa-
tion, Eq. ~3.12!, which is solved by a numerical relaxatio
method. The functionq1

e(y) is found by numerical differen-
tiation of C1

e(y,z) in Eq. ~3.11!. Then q1
e(y) and C1

e(y,0)
are substituted into Eq.~3.9! to calculate a new estimate o
v1

e(y). This process is repeated untilv1
e(y), q1

e(y), and
C1

e(y,z) are self-consistently determined.
In the second set of ordere equations,~3.13! and the

boundary conditions Eq.~2.15! indicate thatv2
e(y)50. The

right-hand side of Eq.~3.14!, simplified via Eq.~3.6!, is an
odd function and can be expanded in a Fourier sine se
The general solution of Eq.~3.14! is

C2
e~y,0!52(

l 51

`

~2p l !22alsin~2p ly !. ~A4!
n
n

ci-

e

s.

The variableC2
e(y,z) is specified by solving the Laplac

equation,~3.16! by a relaxation method, subject to Eq.~A4!
and the boundary conditions Eqs.~2.17!–~2.19!. The func-
tion q2

e(y) is numerically calculated via Eq.~3.15!.

APPENDIX B

The solution of the adjoint problem, Eqs.~3.23!–~3.32!, is
discussed in this section. Substitution of the vectorCb Eq.
~3.33! into Eqs.~3.24!–~3.27! gives

~]y
22k0

2!2 v̄b02Q q̄b050, ~B1!

k0
2Rc0 v̄b01C̄b0uz5050, ~B2!

2k0
2Rc0Q v̄b01~]y

22k0
2! q̄b01~]zC̄b0!uz501

2~]zC̄b0!uz50250, ~B3!

~]y
21]z

22k0
2!C̄b050. ~B4!

The functionsv̄b0(y), q̄b0(y), andC̄b0(y,z) are expanded
as

v̄b0~y!5 (
m51

`

Bmv̄b0m~y!, ~B5!

q̄b0~y!5 (
m51

`

Bmq̄b0m~y!, ~B6!

C̄b0~y,z!5 (
m51

`

BmC̄b0m~y,z!, ~B7!

where v̄b0m(y), q̄b0m(y), andC̄b0m(y,z) satisfy the adjoint
boundary conditions, Eqs.~3.28!–~3.32!.

With the solutions Eqs.~B5!–~B7!, Eq. ~B1! implies that

~]y
22k0

2!2 v̄b0m~y!2Q~y! q̄b0m~y!50. ~B8!

Since q̄b0m(y) must satisfy q̄b0m(y56 1
2 )50, let

q̄b0m(y)5cos@(2m21)py#. The product of Q(y) and
cos@(2m21)py# is even and can be represented by a Fou
cosine series. The general solution of Eq.~B8! is

v̄b0m~y!5M1cosh~k0y!1M2ysinh~k0y!

1(
l 50

`

@~2p l !21k0
2#22bmlcos~2p ly !, ~B9!

where the constantsM1 andM2 are specified by the bound

ary conditionsv̄b0m(y56 1
2 )5(]y v̄b0m)(y56 1

2 )50 to be

M1522@k01sinh~k0!#21@sinh~k0 /2!

1~k0 /2!cosh~k0 /2!#(
l 50

`

~21! l@~2p l !21k0
2#22bml ,

M252@k01sinh~k0!#21@k0sinh~k0 /2!#(
l 50

`

~21! l@~2p l !2

1k0
2#22bml .
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Substitution of Eqs.~B5!–~B7! into Eq.~B2! and Eq.~B4!
yields

C̄b0m~y,0!52k0
2Rc0 v̄b0m~y!, ~B10!

and

~]y
21]z

22k0
2!C̄b0m~y,z!50. ~B11!

The latter is a Helmholtz equation subject to the adjo
boundary conditions Eqs.~3.30!–~3.32!, with C̄b0m(y,0),
uyu< 1

2, given by Eq.~B10!. Equation~B11! is solved by a
numerical relaxation method.

Using Eqs.~B5!–~B7! to expand Eq.~B3! leads to

(
m

Bm@2k0
2Rc0Q v̄b0m1~]y

22k0
2! q̄b0m1~]zC̄b0m!uz501

2~]zC̄b0m!uz502#50, ~B12!

which implies that the coefficientsBm vanish unless the
compatibility condition
tt.

ys
t

iTnmi5 I E
21/2

1/2

dy@2k0
2Rc0Q q̄b0n v̄b0m1 q̄b0n~]y

2

2k0
2! q̄b0m12 q̄b0n~]zC̄b0m!uz501#I50,

~B13!

is satisfied. Note that the relation (]zC̄b0m)uz502

52~]zC̄b0m!uz501, which is analogous to the discontinuity
in the electric field]zC̄0m across the two surfaces of the film
in the linear problem, is used to derive Eq.~B13!. In Eq.
~B13!, the values ofk0 andRc0 are fixed to be those ob
tained from the linear stability analysis. The coefficientsBm
are determined by the matrix equation

TnmBm50, ~B14!

whereTnm is given in Eq.~B13!. These coefficients are the
substituted into Eqs.~B5!–~B7! to generatev̄b0(y), q̄b0(y),
andC̄b0(y,z).
ys.
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