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Static and dynamic properties of dissipative particle dynamics
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The algorithm for the dissipative particle dynami{@PD) fluid, the dynamics of which is conceptually a
combination of molecular dynamics, Brownian dynamics, and lattice gas automata, is designed for simulating
rheological properties of complex fluids on hydrodynamic time scales. This paper calculates the equilibrium
and transport propertieiscosity, self-diffusion of the thermostated DPD fluid explicitly in terms of the
system parameters. It is demonstrated that temperature gradients cannot exist, and that there is therefore no
heat conductivity. Starting from thid-particle Fokker-Planck, or Kramers equation, we proveHatheorem
for the free energy, obtain hydrodynamic equations, and derive a nonlinear kinetic eqihéoRokker-
Planck-Boltzmann equatigifior the single-particle distribution function. This kinetic equation is solved by the
Chapman-Enskog method. The analytic results are compared with numerical simulations.
[S1063-651%97)00608-9

PACS numbgs): 47.11+j, 51.10+y, 83.70.Hq, 02.70.Ns

I. INTRODUCTION erted by all particles inside the action sphere. In the subse-
quentpropagationstep of fixed lengthst all particles move

The interest of the last decade in dynamical and rheologifreely to their new positions;(t+ 6t) =r;(t) + Vv 6t. There
cal properties of complex fluids has seen the introduction ofire no hard cores and the particles may be considered as
several new numerical methods for carrying out computecompletely interpenetrable. These softer interactions have
simulations on hydrodynamic time scales, the simulation othe computational advantadé,8] of allowing particle mo-
which using molecular dynamics often results in intensivetion on the order of a mean free paghduring each time step
computational demands. These new techniques inclide of fixed lengthst. This represents a substantial advantage
lattice gas cellular automataGCA) [1,2]; (i) lattice Boltz-  over event driven MD algorithms for hard sphere fluids,
mann equationLBE) [3]; and (iii) dissipative particle dy- where the lengthst of the free propagation interval is on
namics(DPD). average much shorter, especially at fluid densities.

The last method was introduced by Hoogerbrugge and By ignoring some of the microscopic details of the inter-
Koelman[4], and was modified by Espahand Warrer[5] actions, which are presumably irrelevant for fluid dynamics,
to ensure a proper thermal equilibrium state. The primaryDPD has the advantages of LGCAs, but avoids the disadvan-
goal of this paper is a theoretical analysis and explicit calcutages of lacking Galilean invariance and of introducing spu-
lation of transport and thermodynamic properties in terms ofious conservation laws. In fact, the “point particles” should
model parameters. This is highly relevant in view of thenot be considered as molecules in a fluid, but rather as clus-
current interest in applications of DPD to systems such agers of particles that interact dissipativel§,5]. The intro-
flows past complex objectst], concentrated colloidal sus- duction of noise and dissipation represents a coarse-grained
pensions[6,7], dilute polymer solutiond8,9], and phase mesoscopic level of description and hydrodynamic behavior
separatiorf10]. is expected at much smaller particle numbers than in conven-

The DPD algorithm models a fluid df interacting par-  tional MD. If ty=1/ynR3 denotes the characteristic kinetic
ticles out of equilibrium and conserves mass and momentumjme scale in DPD, witm=N/V the number densityd the
Position and velocity variables acentinuousas in molecu-  nhumber of dimensions, angdthe friction constant, thety, is
lar dynamics(MD), but time is updated irdiscretesteps  considered to be large compared to any molecular time scale.
ot, as in LGCA and LBE. The algorithm is a mixture of  |n this coarse-grained description the dominant interac-
molecular dynamics, Brownian and Stokesian dynamics, anglons are the dissipative and random forces, whereas the con-
LGCA'’s, with a collision and apropagationstep. In the servative forces can be interpreted as weak forces of rela-
collision step each particle interacts with all the particlestively long range and may be taken into account as a Vlasov
inside an action sphere of radil®, throughconservative mean field term in the kinetic equations. In addition, they can
forcesF;;, dissipativeforcesFp, j;, which are proportional have the spurious effect of tending to force the DPD particles
to both the step sizét and a friction constany, andrandom  into “colloidal crystal” configurations, unless friction and
forcesFgj, which supply the energy lost by the damping. noise are sufficiently large to prevent cooling into a lattice
Here i,je{1,2,... ,N} label the particles. In numerical configuration4,5,11. In the second half of the paper, where
simulations, this is implemented by simultaneously updatingve derive a kinetic equation for the single-particle distribu-
the velocities from their precollision valug to their post- tion function, the conservative force will be neglected. This
collision valuev" according to the instantaneous forces ex-corresponds to the strong damping limit {arge). The ran-
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dom forces act effectively as repulsive forces to prevent colsensitive dependence of thermodynamic and transport prop-
lapse of DPD particles. erties on time ste@t [13,11,14. A promising step towards

A substantial contribution towards the understanding ofunderstanding thedt dependence was recently taken by
the DPD fluid was given by Espahand Warren[5], who  Marsh and Yeoman§l4], who calculated the equilibrium
derived a Fokker-Planck equation for tNeparticle distribu- ~ temperature as a function of the step size, determined stabil-
tion function in the limit of continuous timeg—0). These ity criteria for the step size, and validated their result by
authors also modified the original algorithm by imposing theextensive numerical simulations. We shall not attempt to
detailed balance conditions, which guarantee the existence §fesent here a systematic study of the differ@t) cor-
the proper thermal Gibbs equilibrium, described byrections to equilibrium distributions and transport properties,
exy —H/6,] whereH is the Hamiltonian of the correspond- Pbut postpone this to a later publication.
ing conservative system arfy=kgT, is the global equilib- The paper ends in Sec. VIII with comments on the most
rium temperature. These results are briefly reviewed in Sedmportant results and future prospects for DPD.
Il to establish the notation. Concerning the macroscopic evo-
lution equations, Espanh formally established12] the lin- Il. THE FOKKER-PLANCK FORMALISM
earized Navier-Stokes equations and derived Green-Kubo . ) . .
formulas for the DPD transport coefficients using a Mori- fThe d)ll\lnam|qs| of a DPD system q?flgesbthe time eyollut|on
Zwanzig projection operator technique. However, to date ng' an -particle system, _specifie y a pon

guantitative evaluation of these formulas for DPD seems to_ X =(vi,r)[i=12,....N} in phase space, in terms of

exist. Hence, little is known explicitly about the approach tostochastic differential equations. For a theoretical description
equilibrium, the validity of standard hydrodynamicsystem 'Ft:|:ncr|r<]oereu§§2xegfr?\fe? bcogzlder;r:zewig?e'?é]em Fokker-
size dependence, effects of generalized hydrodynayrocs To intgr ret tHe se arateytermp?in the Fokker-P.Ianck equa-
about transport coefficients. For the transport coefficients, =" TP € Sep . q
Hoogerbrugge and Koelmajd] have estimated the kine- tion, it is instructive first to consider the a'nalogdﬂsafmers
matic viscosityv= n/p, where 5 is the shear viscosity and equationfor _the probabllltyP(v!r,f[) of a smgle. particle of
p=nm is the mass density a8~ yn RS“ with nR8~1. massm, having a phase descriptiot:=(v,r) at timet:

This result has recently been extended8,11] to include 9 F(r) J o2 92
the bulk viscosity by applying the “continuum approxima- HP+v- _rP: -—— —P+ ’y—V-VP+ el
tion” to the discrete equations of motion for the DPD par- 1)
ticles, following suggestions of Hoogerbrugge and Koelman

[4]. In Sec. lll we show how the free energy of the DPD fluid The three terms on the right can be interpreted as follows.
monotonicallyapproaches its equilibrium value by proving The first term is an external conservative force
anH theorem for the Fokker-Planck equation of Esplaand F(r)=—VV(r). The term involving the damping constant
Warren, and we make the connection with the detailed balvy corresponds to the Langevin foreeyv and the diffusive
ance conditions derived if5]. term with diffusion coefficient o® results from the random

As a first step towards establishing the full nonlinear hy-¢cq ;2 in the equivalent Langevin description, which reads
drodynamic equations we derive in Sec. IV the full macro-

scopic conservation laws for mass and momentum density, dr

as well as the energy balance equat{details are given in a=V,

the Appendix. The conceptual basis for the existence of hy-

drodynamic equations is tHecal equilibriumstate, which in dv F A

DPD is very different from that in a molecular fluid, because FGom W+ o€, (2

of the unusual role of the temperature. In Sec. V we study in
a quantitative fashion the decay of the energy densit ~ . . . . .
e(r,t) and “kinetic” temperatured(r,t) towards thermal X/\ihere oé Is GaAUSS'Aan white noise with amphtud? and
equilibrium with global temperatur@,, and we assess in (§)=0 and (&(t)&(t'))=15(t—t"), where I is a
what sense and on what time scale the DPD fluid described-dimensional unit tensor. _
an isothermalfluid out of equilibrium. This is done on the  |f we impose that the stationary solution of the Kramers
basis of a nonlinear kinetic equation—referred to as theequation be the Gibbs distributionPeq~exp{—[%m\/2
Fokker-Planck-BoltzmanriFPB) equation—for the single- +V/(r)]/6,}, then the diffusion coefficient must satisfy the
particle distribution functiorf(x,t). It will be obtained from  following detailed balanc€DB) condition:
the first equation of the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy for the DPD fluid in combination » 2760
with the molecular chaos assumption. T T m )

By solving in Sec. VI the FPB equation in the hydrody-
namic stage, using the Chapman-Enskog method, we deriwghere 6,=KkgT is the temperature in thermal equilibrium,
the constitutive relations and the Navier-Stokes equationmeasured in energy units.
This enables us to calculate in Sec. VII the transport coeffi- The full Fokker-Planck equation derived by ESphand
cients of shear and bulk viscosity, as well as the selfWarren for the DPD system is a direct extension of the
diffusion coefficient. Kramers equation tdl interacting particles. The time evolu-

So far, we have not discussed ftliscrete time versioof  tion of the N-particle distribution functionP(I',t) is gov-
DPD, as implemented in actual simulations. They show arned by
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&IP:(’CC+‘CD+‘CR)P' (4) 5.0

where the conservative, dissipative, and random parts of the
evolution operator are defined, respectively, as

g F 4
e c,
o

__ g 1 F(Rij) [ o a) >

T T2 m Ty i)’

o= Rl By —| (R

D_i'j#i YWp(Rjj) ij'&_vi( i Vij)s
=S Twzrolt . Za (L) 6 "o
R 4 iij( i) i v R oy o) 5 x/R,

. . . FIG. 1. Typical evolution of a particle configuration over a pe-
The summations run over all particles and the only dncfer'riod of 20 time steps, showing that DPD interactions are “soft” as

ence to the origingl5] is that the parameterg ando have  ;mnared to hard core interparticle interactions. The circle with
been scaled by the masssuch thaty has the dimensions of a4iusr,=4 indicates the range of interaction.

an inverse time. The three terms above are Nhparticle

extensions of the three terms on the right hand side of Ecenergy density will be discussed more fully in Sec. IV. In
D). _ typical applications the conservative force may be set equal
(1) The conservative parc results from the additive and to zero. The parameterg and o satisfy Eq.(3) and the
central interparticle interactions due to a potentlalweighting functions are chosen such thﬂb(r)zwé(r),
Vz%ziﬁid:(R”) whereR;;=r;—r; is the relative position which constitute in combination with Edq3) the detailed
and a hat denotes a unit vector. It is the Liouville operator fobalance conditions for the DPD system, as will be discussed
the corresponding conservative system and in the limit ofn Sec. Ill. The density is typically chosen such that there are
zero noise and friction, Eq5) reduces to the Liouville equa- 5 — 10 particles within an action sphere, which means that
tion. the instantaneous total force on any particle is small on av-
(2) The second term is analogous to the dissipative ternerage.
in the Kramers equation. It accounts for the Langevin damp- Figure 1 shows an enlargement of part of configuration
ing force between the paiij(), which is proportional to the space, showing a sequence of 20 consecutive particle posi-
friction constanty and to the component of the relative ve- tions evolving from a randomly chosen initial configuration.
locity v;; along the line of centeréij , and is of finite range. ~ The trajectories are relatively smooth, in contrast to the dis-
This last property is described by a positive weighting func-continuous paths in hard core interactions, illustrating that
tion wp(R;;) that is only nonvanishing inside an action the resultant force on each particle is relatively small at this

sphere of finite radiug,. parameter setting.
(3) The last term in Eq(5) represents the random noise
and should be compared with the diffusive term in EQ. . AN H THEOREM
The random forceod;; between the pairi{) is directed Consider the following functional of thi-particle distri-

anngﬁzij and is proportional torwg(R;;) where the weight-  bution functionP(T',t):
ing function wg(R;;) is again only nonvanishing within a
finite action sphere.

The ranges of the conservative, dissipative, and random
forces may all be different as the model stands. More-
over, one of the essential properties of DPD is that itsvhere §,=mo?/2y andH is the Hamiltonian of the corre-
dynamics conserves total particle numbed and sponding conservative system:
the total momentum P=ZX;mv;. Consequently, (N) 1 1 1
= [dxf(x,t) and (P)=[dxmvf(x,t) are constants of the SN o2 S a2 o
motion. The Iatter<is>always set equal to 0 as the total system H= Z pmvitV= E. Vit i%i ¢(Rip), (@)
is assumed to be at rest. Heféx,t) is the single-particle
distribution function. V is the potential energy ané(R;;) is the pair interaction.

In addition, we want to emphasize that microscopic mo-The functional can be interpreted as a sortfrefe energy
mentum conservation is an essential property of a fluidF=E— 6,S, whereE=(H) is the average total energy and
model if it is to have a momentum densjtyr,t)u(r,t) that ~ S=—(InP) yields the total entropy. The goal of this section
is slowly varying in space and time. In contrast, we note thais to show thatF is a Lyapunov functional witl#, <0 and
the energy of the system is not strictly conserved under th#& investigate the implications of this result for the equilib-
DPD algorithm. The equations for the mass, momentum, andum solution of the Fokker-Planck equation.

]I[P]zf dIP(T,t){H + 6oInP(T", 1)}, (6)
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The time derivative of Eq(6) yields in combination with  whereuy is a constant independent gfandt. We will only

Eq. (4) consider macroscopic systems which are not in uniform mo-
tion at long times and consequently limit ourselves to
- UOZO.
‘MLJ dl{H+ 6oInP+ fo}(Lc+ Lo+ Lr)P(T1). (8) The functionP.(TI') is also the stationary solution of the
Fokker-Planck equation(4) if A(rq,...,ry) satisfies

We observe that the third term inside the curly brackets inCcA=0. This yields the Gibbs distribution as the equilib-
Eq. (8) vanishes due to total probability conservation. Thenrium solution:
consider the contributiofig, 7} to Eqg.(8) due to the Liou-

ville operatorL.. Partial integration with respect g and 1 H
v; yields directly PedI')= > €xp — %l (15

where H is the Hamiltonian(7) of the system and is a
{0 F}e= _j dT{PLcH + 6LcP}. 9 normalization constant. We assume tRa, is uniquely de-
termined by the requirement that it satisfies E@<S) and
Here LcH={H,H}=0 because the curly brackets represent(4). Consequently the DPD system will always reach the
Poisson brackets, as can easily be demonstrated. The secaaime equilibrium state if left undriven, independent of the
term in Eq.(9) reduces to surface terms im andv; and volume and number of particles. The temperature of this
therefore vanishes too. equilibrium state has a valué,=ma?/2y, which only de-
Next, we combine the remaining terms in E&) and pends on the parameters of the model. So DPD describes a
perform a partial; integration, also symmetrizing the result system, thermostated 8 and with a free energy{ P¢y| at
overi andj. The final result is equilibrium. Note that, in contrast to thé theorem for the
Boltzmann equatiorisee, e.g.[15]), no molecular chaos ap-

0o - d d | proximation is required to derive this result for the DPD
Hov oy :

1
atfz——myf dar >
2 NES

Rij - Vij + 1 Rij system.

In their original discussioi5], Espaol and Warren im-
posed that the Gibbs distribution be the stationary solution of
the Fokker-Planck equation. The consequences of this re-
quirement can be seen by inserting E&f) into Eq. (4). It
(10 leads to the so-calledetailed balanceonstraint

X

. , g [ O
wo (Rij)Rij - Vij + Wr(Rij) —Rij - R P

Now we make the following observation. If we choose o’m
wD(r)zﬁwg(r)zwg(r)zw(r). (16)
Wo (1) =w(r)=w(r), (11 7o
Consequently, the constraint imposed in Etfl) is the de-
wherew(r) is an arbitrary positive function vanishing for tajled balance constraint for DPD. The important result from
>Ry, thend, F=<0, as the right hand side of E(LO), can  the H theorem is that it demonstrates that the Gibbs distri-
be cast into the form bution (15 is the inevitable equilibrium distribution.
Throughout the rest of the paper we shall restrict ourselves to
dealing exclusively with DPD systems that obey the DB con-
dition (16). If the DB condition is violated, ndd theorem
can be derived and the Gibbs distribution is not a stationary
where{- - -} is the same as in E¢10). Note that the equality Solution of the FP equation for DPD. In this case, the sta-
sign applies if and only iP is the solution of Eq(13) below.  tionary state of the system does not correspond to thermal
Consequently, the free-energy-type functigjP] is a  €quilibrium but to some driven state, which will in general
monotonically decreasing function of time, until it reachesexhibit long range spatial correlatiofsee, e.g.[16—18§).

1
aF==zmy| dIP X w(R){---}’<0, (12
i,j#i

equilibrium whereP= P, which is simply the solution of The original version of DPD, introduced by Hooger-
{---}=0 for every pair {j): brugge and Koelmaf¥], violates the DB requiremertiL6)
and therefore its stationary distribution will not approach a
0o @ 9 Gibbs state but may exhibit spatial correlations, e.g., alge-
Vit —| —— = Peg=0 (13 braic correlations ~¢ whered is the number of dimensions,
omlov oy q

extending far beyond the ranges of the conservative, dissipa-

Chanai iables 1o th lati lociti f th ficl tive, and stochastic forces. This absence of thermal equilib-
anging variables 1o the refative velocities o In€ particles; ., g likely to be the reason for difficulties and inconsis-

it is easy to prove that the equilibrium distribution of thet ncies discussed fi#,5,12
system is separable in the velocities, and has the genereﬁ T

form
IV. MACROSCOPIC CONSERVATION

AND BALANCE EQUATIONS

1
= _ L 2
Ped D) =A, - ,rN)exp[ 2005 M(v; = Uo) ] ’ In the preceding section we have established the existence

(149 of and approach to a thermal equilibrium state for the
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DPD system that obeys the detailed balance conditi@n dp=—V-pu,
In this section, we address the problem of how the quantities
of macroscopic interest evolve in time towards the final a(pu)=—V-(puu+II), (22)

equilibrium state, concentrating on the local mass

density p(r,t)=mn(r,t), the local momentum density \hereV=4/gr andIl is the local pressure tensor or momen-
p(r,t)u(r,t), and the local energy densig(r,t). tum flux density in the local rest frame of the fluid. The
As discussed in Sec. Il the microscopic dynamics of DPDgontinuity equation has been derived by setting

conserve mass and momentum, and the corresponding mag= =,8(r—r,;) into Eq.(18). The only nonvanishing term is
roscopic densities obey local conservation laws. As the totahe gne containing & ar,) 8(r—r;)=—V&(r—r;), and the
energy is not conserved under DPD, the evolution equatiogontinuity equation follows at once. Derivation of the con-
for the macroscopic energy density does not have the form ofgryation equation for the momentum density proceeds along
a local conservation equation, but contains source and Sinkimilar lines by choosing\==,mv;8(r —r.). Details of the

terms corresponding to the random and dissipative forcesgiier derivation are given in the Appendix where it is shown
respectively. In the final equilibrium state, these will balancey, 5t

each other.
Consider a general macroscopic quant{#y), defined I(r,t) = (r,t)+M(r,t)+Mp(r,t), (22
through
with kinetic (K), collisional transfer C), and dissipative
<A>:J dT'A(D)P(T,t). (17) (D) contributions:
Its time evolution can be obtained from the Fokker-Planck HKzf dvmVVf(v,r,t),

equation(4) combined with the detailed balance condition

(16), by multiplying the Fokker-Planck equation with

A(T',1), integrating over all' space, and performing one or _Ef ,f 6] o
two partial integrations with respect tg andv;. The result HC_Z dvav’ [ dRRE(R) T (v.r, v, 1),
is the general rate of change equation:

1 “
N Mp=—=-m fdvdv’dewR R-(v—Vv')IRR
(9t<A>:<Z (Vi.&_ri+a'.a_ViA> D > My (R{R-( )}
X f@(v,r,v,r't), (23
~ ~ 0
—7<,2. W(Rij){Rij'Vij}[Rij'f]A> , . :
h# Vi with R=r—r’. The kinetic flux contains the so-call@ecu-
6, g liar velocity V=v—u(r,t), and f () is the spatially averaged
+ = > W(Rij)[Rij~—] pair distribution function:
m \ijZi oV
R 1
| Ry __i) A (18) f(z)(v,r,v’,r,t)=J’ dAFP(v,r + AR,V r+ (A —1)R,t).
é’Vi (9VJ 0

(24)

for any dynamic variablé\(I"). o - I
Consider the conserved mass densifr,t)=mn(r,t)  The kinetic and collisional transfer contributions to the mo-

and the momentum densipy(r,t)u(r,t) defined through mentum flux in Eqs(22) and(23) are present in any particle
model with conservative forces. They are dominant in sys-
tems with sufficiently high density—dense gases and
n(r,t)=<§i: 5(f—ri)> :f dvf(v,r,t), liquids—where the potential energy contributions are non-
negligible with respect to the kinetic fluxes.
The explicit form for these collisional transfer contribu-
nu(r,t)=<2 Vi 5(r—ri)> =f dvf(v,r,t)v. (190  tions is given in the literature for several cases: smooth po-
i tentials [19], elastic hard sphereg20], or inelastic hard
sphereq21]. The dissipative contributiodl results from
Ghe Langevin-type damping forces between the particles. The
random forces do not contribute to the momentum flux.

It is convenient at this stage to introduce the single-particl
and pair distribution functions, defined as

The H theorem, derived in Sec. lll, guarantees the ap-
f(x,t):f(v,r,t)=<2 5(x—xi)>, proach to thermal equilibrium, where the distribution func-
! tions take the form

f(z)(x,x’,t)=<.2. 5(x—xi)5(x’—xj)>. (20
ij#i

d/r2 mv2
f(X):”OQDO(V):”O(ngO) eXp[—z—eo],
Application of Eq.(18) to the conserved densities in EG9) , , ,
yields the macroscopic conservation laws: f2(x,X")=n5eo(V) @o(v)g(r—r']), (25)
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whereg(R) is the pair distribution function in thermal equi- forces, as well as dissipative contributions analogouH o
librium, ny=N/V is the number density, angy(v) the Max-  in Eq. (23), andq vanishes in global equilibrium.
wellian velocity distribution. If T were set equal to zero, Eq29) would have the
The sum of the kinetic and collisional transfer contribu- generic form of the energy balance equation in ordinary hy-
tions reduces to the equilibrium pressure and the diSSip&tiV@rodynamics, where the heat current would contain a term
contribution vanishes. ThuH=p,l with p, given by the  proportional to the temperature gradient. As will become ap-
virial theorem: parent in later sections, this is not the case in the DPD sys-
tem. Although Eq(29) looks like a macroscopic equation for
nS dé(R) the energy balance in the presence of sources and sinks, it
Po=Ngby— ﬁj dRRd—Rg(R), (26) loses its physical significance after a relaxation titgein
which e(r,t)—(d/2)8gn(r,t), and Eq.(29) reduces to the
where continuity equation. This will be discussed in Sec. VI, below
Eq. (41).
One may also derive a balance equation for the free en-
F(R)=— @d $(R) _ 27) ergy density, which would be a local version of tHetheo-
dR rem of Sec. Il or of the corresponding one of Sec. V for the
o Fokker-Planck-Boltzmann equation. It would enable one to
Away from global equilibrium, the pressure tensorigentify the irreversible entropy production. A similar bal-

11(r,t) will contain the local equilibrium pressure and terms gnce equation for the entropy density in a dilute gas can be
involving the viscosities. However, before the Navier-Stokesyerived from the Boltzmann equati¢@3].

equations, or more generally, the full set of hydrodynamic
equations, can be derived the conceploafl equilibrium—
which forms the conceptual basis of slow hydrodynamic V- FOKKER-PLANCK-BOLTZMANN EQUATION

evolution — has to be reexamined, as the energy is no longer |, this section we derive an approximate kinetic equation,

a conserved quantity. This can only be done after identifyingeferred to as the Fokker-Planck-Boltzmann equation, for the
the slow and fast relaxation modes in DPD, on the basis of gjngle-particle distribution functiof(x,t), which is based on

kinetic equation. This will be done in Sec. V.
Next we consider the energy density, defined as

the molecular chaos assumption and has a collision term
which is quadratic irf(x,t).

Moreover, from here on theonservative forcesvill be

neglected, which corresponds to the strong damping limit

e(r,t)=<§i: &(V) 5(r—ri)> (v large. Numerical measurements of the two-particle cor-
relation function 11] have demonstrated that the inclusion of

1, 1 ) the conservative force can result in the formation of crystal-

:f dvz mvaF(x,t) + Ef dvdv line ordering, which is an undesirable feature in the current
context of fluid dynamics or rheology of complex fluids.

However, these effects may prove important to the ongoing

investigation into the static properties of DPD.

This section is organized as follows. We start by deriving
whereei(v)zém\/,-2+ Si.;#(R;;) is the microscopic energy the first equation of the BBGKY hierarchy, which relates
per particle. Use of the rate of change equati®8) leads ¢:f to the pair functionf®(x,x’,t). Then themolecular
after some lengthy algebra to the energy balance equation, §§aosassumption
discussed in the Appendix. It reads

xJ dRH(R)f P (v,r, v/ ,r—Rit), (29

F(x,x",t)=f(x,t)f(x’,t) (31
oe=-V.-q+T. (29
yields a closed equation, the FPB equation, which again sat-
isfies anH theorem. Next we analyze thecal equilibrium
solution of the kinetic equation, which provides the concep-
m . 5 tual basis for the existence of hydrodynamic equations and
F(rH=y i%i W(Rij)| 6o~ E{Rii (Vi—vp} transport coefficients, as well as the justification for solving
' this kinetic equation for finding the “normal solution” by
means of the Chapman-Enskog method.
><5(r—ri)>, (30 The first equation of the BBGKY hierarchy can be de-
rived directly by applying Eq(18) to the u-space density:
where the term proportional té, is a source resulting from
the random force, and the term with the minus sign is a sink
resulting from the Langevin-type damping forces. In global f(x)ZE S(X—%;). (32
equilibrium, the source and sink terms balance one another i
andI'¢q=0. The heat currentq, given explicitly in Egs.
(A12)—(A15) of the Appendix contains the standard kinetic Its average yield$(x,t) on account of Eq(20). The result-
and collisional transfer contributions due to conservativeng equation of motion is

Here the explicit form of the source terf@2] is



1682 C. MARSH, G. BACKX, AND M. H. ERNST 56

pr- 3.0 : ;
atf=f dIP(T,0)1 2 — vi+ > yw(Rj)
Tdr; ES —— dt=0.025
o5 N e dt=0.05
R - - -- dt=0.1 1
N AL R LA S s
ovi - moavilav;  av we e 5 ! T d=02
g20f .
(33 E: ,
s o
. . . 5 U
where the (:) contraction of tensors is defined by 2 45|t ! i
A:B=2 ,5A.5Bga, With a,8 denoting. Cartesian compo- 2 \\\ \
nents of vectors or tensors. The equation can be further S|m--§ SR
plified to 1.0 P eI
t = - ;_{:, -
atf:—V-<2 vi5(x—xi)> 05 . ‘ ‘
[ 0.0 0.5 1.0 1.5 2.0
J /R,
+ y(g_\/'<i%i S(x=x)W(R;j Rij{R; 'V‘i}> FIG. 2. Two-particle distribution function. The system param-
) eters in the simulation were takel:= 2000 particles, friction con-
yby 9 _ . A stanty=1, particle densityp=0.2, action sphere radil&,=4, and
T avﬁv'<i%i W(Rij)Ri; Rjj 5(X_Xi)>v Wp(r)=2(1—r/Ry).

(34) satisfies anH theorem @,7=<0) where the equality only

holds if f(x,t) is given by the equilibrium forrmgeq(v) of
Eq. (25), which establishes the existence of a unique global
equilibrium state.

The next problem is to solve the nonlinear FPB equation,
and to analyze the approach to equilibrium using the
Chapman-EnskogCE) method. According to this method,

) one can distinguish two stages in the evolution of the single-
@ ﬁ_} F(v,r,v' ,r—R,t) (35) particle distribution functiorf (x,t): a rapid kinetic stage and
m ovav T e a slow hydrodynamic stad@4.
In the kinetic stage,f(x,t) decays within a characteristic
This is the first equation of the BBGKY hierarchy with the kinetic timet, to the so-callechormal solution f(v|a(r,t))
Fokker-Planck equatio¥) taking the place of the Liouville which depends on space and time only through the first few
equation as the evolution equation. Under the moleculamomentsa(r,t)=fdva(v)f(x,t), the conserved densities,
chaos approximation(31) we have the following closed where a(v)={1yv, ...} are the collisional invariants. In
equation for the one-particle distribution function: fluid systems the timg, is the mean free time, whereas in a
DPD system, t, is estimated from Eqg.(36) as
, . to~1/(ynRY).
af+v.vi=I(f)= YJ’ dv J dRRRw(R) In the subsequeritydrodynamicstage,f depends only on
5 space and time through its dependence on the conserved den-
< F(V'.1-R t)'[i(v—v’)+ b 0 sities. In this stage, the solutiditv|a(r,t)) of the FPB equa-
' " ov m vov tion can be determined perturbativelys fo+ puf,+-- -, as
an expansion in powers of a small parameter;1,V, which
Xf(v,r,t). (36) measures the variation of the macroscopic parameters over a
S _ characteristic kinetic length scaléy=tqv = (1/y)+6y/m,

The molecular chaos approximation is a mean-field apwherep=/g,/m is a typical mean velocity. Therefore the
proximation, which neglects dynamical correlations resulting,u expansion is essentially an expansion in the small param-
from correlated multiple collisions taking place inside an ac-gter 1 (cf. solution to Kramers'’s equation {i25]).
tion sphere. As we have set all conservative forces equal to | the remaining part of this section, we focus on deter-
zero, the molecular chaos assumption is exact in the g|0b<'i‘hining the lowest order solutiofy, of Eq. (36), which is the
equilibrium state. Indeed, simulation results show that this iggqg equilibrium distribution. We first observe that the left
i_n fact an exce!lent_ approximation in the small-time steppand side of Eq(36) is of O(u), as4,f is proportional to
limit (as shown in Fig. 2 , da~0(w), and similarly for the gradient term. The right

It can be shown in a similar fashion to Sec. Ill that the h5ng side of Eq(36) is of O(1). This requires that, to the
functional dominant order inu, f should satisfyl (f,)=0+O(u). To
determine the solutiofi;, we delocalize the collision opera-
tor I (fg) by replacingfy(v’,r—R,t) on the right hand side
of Eq. (36) by fo(v',r,t)+O(u). If we denote thedelocal-

whereV=¢/gr. Performing the integrals over all variables
exceptx; andx; leads to

~oa J
o f+v.-Vi= 'yf dv’f dRRRW(R):[E(v—v’)

1
]-"=f dx[imv2+ Golnf(x,t)  F(x,1) 37
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ized collision operator by, thenf is the solution of and to linearize the FPB equation aroungby(v). From that
_ equation we shall derive howd(r,t) = 6(r,t) — 6, decays to
lo(fo)=0. (38) zero. Linearization of Eq(36) yields, after some algebra,
Guided by theH theorem, we assume the standard form P 6 3
for the local equilibrium distribution: 5t5f+V.V5f:w0_.(V+ 207 st
ov m ov
fo(via)= ( )dlz m(v—u* (39) mngy
oVi@)=n| 75| ex 20| +— f dRW(R)RR:U(r — R)Veo(V) |
0
wheren, ¢, andu are arbitrary functions of andt. Substi- (42)
tution of Eq. (39) into Eq. (38) shows, however, that the
abovef is only a solution if where we have used the relation
mo-?
0= 0052—7/, (40 nou(r,t):f dvéf(x,t)v, (43

where 6, is the constant model parameter introduced belowand introduced the coefficienty= 1/,
Eqg. (6), which equals the global equilibrium temperature.
The parametera(r,t) andu(r,t) in Eq. (39) are chosen to

_YNo d _ Yo
be the fluid density and flow velocity. Hence, wo=—g | ARW(R)=—4~

[(wl]. (44)

a(r,t):f dva(v)f(x,t):f dva(v)fo(x,t), (41 The eq_uation with its nonlocal integra_l operator on the _right
hand side of Eq42) would be the starting point for studying
generalized hydrodynamics with wave-number-dependent

wherea(v)={1y} is a collisional invariant. transport coefficients. Here, however, we shall only consider
This observation, Eq0), has a profound consequence g]e decay of

for the physical processes occurring in the DPD system, an

makes it very different from standard fluids with energy con- 1 my2
servation. In fluids, there is a fast kinetic relaxation to a local 86(r,t)= —f dv(— — 6y
equilibrium state specified by(r,t), 6(r,t), andu(r,t), and Mo d

a subsequent slow hydrodynamic relaxation of these fields t

global equilibrium. The DPD system distinguishes itselftfhzen thg r_atlt(aj c?f change dif can be calculated from Eq.
from standard fluids in the sense that there is a fast relaxatio% ), and yields:

of . (45)

on a time scalé, to a local equilibrium state, Eq$§39) and 1 mv2
(40), specified byn(r,t), u(r,t), and a spatially uniform and 3,00+ V- _f dv(—— 90>V5f: —2wy60 . (46)
constant temperatur@,. The subsequent slow relaxation in- No d

volves only the density(r,t) and flow velocityu(r, ). The second term on the left hand side of Ef) is typically

Consequently, a DPD system is not able to sustain a tem- o . he domi d S
perature gradient on hydrodynamic time scales; there is nf" () correction to the dominant decay terms. So &)

heat current proportional to a temperature gradient; and thefd & SimPple relaxation equation which shows explicitly that
is no heat conductivityThus the DPD system describes a (€ kinetic temperaturé(r,t) decays within the kinetic stage
thermostatedor isothermal process at a fixed temperature ©© the global temperatured, with a relaxation time
6o. It may only model physical systems where the tempera19=(2wo)7l= ito.
ture either relaxes very rapidly to an equilibrium value or The conclusion is that the energy density in the hydrody-
where the temperature is irrelevaf@n athermal process namic stage, given bg(r,t)=(d/2)6yn(r,t), is still a slow
The same conditions of rapid thermal relaxation or athermabut not an independentariable. It is strictly proportional to
processes apply to lattice gas automité], where, in the the density. Moreover, we can conclude that the free-energy-
majority of modelg27], energy conservation is not satisfied type functiong6) and(37) represent the actufriee energyof
during collisions. There the particles may be considered athe DPD system in the hydrodynamic stage.
hard, impenetrable point particles, as opposed to DPD, where Similarly, we can determine tHecal equilibriumpart of
the athermal system consists of completely interpenetrablide pressure tensof23) in the absence of conservative
particles. forces, by replacing in Ik by its local equilibrium form

It is worthwhile to explore the differences between DPDf, and f(?) in TI by f,f, according to theStosszahlansatz
and standard fluids somewhat further. Recalling that consef20]. To zeroth order inu, the dissipative pafl, vanishes,
vative forces have been set equal to zero in the present sitand the local equilibrium pressure is given by
ation permits us to write the energy densig(r,t)
=(d/2)n(r,t)0(r,t) in terms of a kinetic temperature
o(r,t). Clearly n(r,t) is a slowly changing variable, but
what is the behavior of(r,t)?

To answer this question, it is sufficient to consider only These results will be needed in the next section to solve the
small deviations from global equilibriumgf=f—nyeq(Vv), FPB equation to linear order in.

H0=f dvmVVfy=n(r,t) 6l (47
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VI. HYDRODYNAMIC STAGE 1 2

A. Chapman-Enskog method d
In Sec. IV we have derived the Fokker-PIanck-BoItzmannand
equation for the DPD system and described the Chapman-
Enskog method for obtaining its solutioi{v|n,u) in the mV2
hydrodynamical stage. The method requires that the right IV)= G-~ 1- (55
and left hand sides of the FPB equati@®) are expanded in 0
powers ofu~1,V, using the expansion Note that the density and temperature gradients are absent on
F(V[U) = ot pufy -, (49) the right hand side of Eq53), in contrast to the traditional

Chapman-Enskog resyl20].

: Lo S For convenience of notation we introduce the Fokker-
EveryV is replaced byuV and the derivative),f, is elimi- . o .

; . : Planck operato and its adjointZ™, defined as
nated using the macroscopic conservation laws. The lowest

order solution, which is the local equilibrium distribution, 9 0y 9
® [ m ca +HW)’ (56
fo=n r,t( ) ex;{——v—ur,t 21, (49
£+ = _V+ — —V . —V,
has been determined in the preceding section. md J
To obtainf,; we expand the FPB equation in powers of to write the final equation fof, as
w, yielding !
woﬁflzfo[JD"f‘jVU] (57)
0
Sp TRV Vie=I(fo) +p(dl/df)g fat - (30 s a second order partial differential equatitPDE) with

an inhomogeneity on the right hand side. We first construct a

We start with the right hand side of EG0), which has been special solution by recalling that the Fokker-Planck operator
calculated exactly t@(u«) terms included. One finds after £ can be mapped onto the Sctimger equation for an iso-
some algebra tha(f,)=O(u2). In the preceiding section it tropic d-dimensional harmonic oscillat§25]. Its eigenfunc-
has only been verified tha{f,) = O(u). The latter result is tions are the tensor Hermite polynomials, usually called So-
notsufficient, whereas the former is sufficient for our preseniline polynomials in a kinetic theory context, and the
purpose. In the remaining terms on the right hand side wénicroscopic fluxes) and 7 are among them, i.e.,

replace the collision operatbrby its delocalized form, as _ N

defined below Eq(38). The right hand side of Eq50) then Ligd=—2fed; L7I=-2], (59)

becomes 4
(dI/df); f1=wo—= | V+ @i)fl, (51)  This can easily be verified. Combination of E¢S7) and
0 v m oV (58) yields the special solution

with wq defined in Eq.(44). 1

To calculate the left hand side of E€50) to O(u) we fi=— Z—wofo[JiDJrJV-U] : (59
need the rate of change of and u to lowest order inu,
which may be calculated from the conservation equationghe general solution is obtained by adding an arbitrary linear
(21 with II replaced by its local equilibrium part combination of collisional invariants(V)={1V}, which

II,=n#yl, calculated in Eq(47), i.e., are the solutions to the homogeneous equation
Lfqa(V)=0. However, the constrairit1) suppresses these
dn=—V-(nu), (52) terms andf, is the desired solution of the FPB equation to

linear order inu.

ﬁtu=—u~Vu—@Vn. ) )
P B. Navier-Stokes equation
The only slow macroscopic fields are the densify,t)
and the flow velocityu(r,t), leading to the continuity equa-
tion and Navier-Stokes equation. The energy density in the
+v-Vig=f[J:D+IV-u], (53 hydrodynamic stageg(r,t) =(d/2)n(r,t) 8y, is not an inde-
t pendent variable. The energy balance equation derived in the
, Appendix is only relevant in the kinetic stage, but has no
with physical significance in the hydrodynamical stage.
The results forfy, and f, are sufficient to obtain the hy-
J,5(V) = m[v V. 55 VZ] drodynamic equations to Navier-Stokes order and to obtain
h B P dTET explicit expressions for the transport coefficients. The

They vyield in combination with Eq(49)

Jf
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O(u) correctionf; contains only gradients of the flow field, m) 2 1 )

Vu, butno gradients of the temperature. Therefore there will  (JaglJdsy) = A f dveo(V)| VoVg— FAMARAL
be no heat current and vanishing heat conductivity. The 0

O(u) terms in the pressure tensbr=II+ wIl;+ - - - will 2
be proportional toVu and we define the viscosities as the =C| SayOpst Sasdpy™ a5aﬁ575 : (67)
coefficients of proportionality through the constitutive rela-
tion By taking double contractions and evaluating Gaussian inte-
grals the constan® comes out to be equal to 1 and the (:)
I,=—2yD—¢V-ul, (60)  Pproduct in Eq.(64) yields
where 7 and ¢ are, respectively, shear and bulk viscosity. (J]3):D=2D. (68)
Combining Egs.(60), (47), and (21) then yields the L . .
Navier-Stokes equation for the DPD system, Combination of Eqs(64), (66), and(68) finally yields
_ n00 n00
(pU)+ V- (puu) = — BVN+V-(27D+ V- ul). (61) Mya== " P o, ¥ Uk (69

The explicit expressions will be obtained in the next SECtiOﬂComparison with the constitutive relatid60) enables us to
identify the coefficients as thidnetic partsof the viscosities,

VIl. TRANSPORT COEFFICIENTS
n 60 d 00 _ n 00 00

=200 2wy’ K dwe yw]’ O

A. Kinematic viscosities px and {x

There are two contributions to the pressure tensor: the
kinetic part I, and thedissipativepart I, , defined in Eq. Where the definitior{44) of w, has been used. We note that
(23) and two corresponding viscosities. The kinetic part dethe kinetic part is inversely proportional tp and has been
pends only orf = f,+ uf,, which are given in Eqg49) and  explicitly calculated.
(59). ThenIlk becomes
B. Dissipative viscositiesyy and {p

IMx=n6pl+ pllg 1+ - - -, (62 This section deals with the dissipative pHrtof the pres-
sure tensor in Eq(23), which depends on the pair distribu-
where . is a formal expansion parameter that will be settjon function(®. This function has a local equilibrium part
equal to unity at the end of the calculations and f82) and a part,uf(lz), linear in the gradients. We start with
the first part.
In order to make a direct comparison with the work of
HK,l:J dvmVVf, = ‘90J dviJ(V)+JV)If1. (63 Espainl [12] we retain the conservative forces, for the time
being. Then, the local equilibrium pair function has the form
Here the dyadienVVV has been split up into a traceless ten- )
sor 6,J and a termd, 71 proportional to the unit tensor and FP (%, x") = Fo(X) Fo(X ) Go([Xx—X']), (77)

we have used the relatigidvf,; =0 [see Eq(41)]. Inserting . . . L .
the explicit solution(59) into Eq. (63) allows us to write Eq. wheregy(R) is the spatial correlation function in local equi-
(62) in the form librium. Only at the end of the calculation we will set the

conservative forces equal to zero, so thgtR)=1.
Substitution of Eq(71) into Eq. (23) yields then

n00 neo
HK,1=——2w <J|J>ZD— g(j]j)V.u]L (64) 1 B
0 0 HD=—§7mf dRgo(R)W(R)RR{R-[u(r)—u(r—R)]}
where we have used the relatibg= neq(V) [see Eq(25)]

and introduced the inner product Xn(r)n(r—R)
:—%ymnzf dRR?gy(R)W(R)RRRR: VU, (72)
<A|B>:f dveo(V)A(V)B(V) . (65)

where[ - - - ] has been expanded to linear order in the gradi-
Moreover a crossproduct of a traceless tensor and a scalants. Calculation of the completely symmetric isotropic

vanishes, i.(J|.7)=0. The product.J].7) involves a simple  fourth rank tensor proceeds as in E§7) with the result
Gaussian integral and yields

dRR?go(R)W(R)R,R4R, R

2

The fourth rank tensofJ|J) is isotropic, traceless, and sym- d(d+2)
metric, which implies the general form (73

[80p0yst OasOpyt 0ayOpsl
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o : ' ' We return to the DPD systemithoutconservative forces,
o ggtg-?g where the Gibbs distributioril5) reduces toll}' ; ¢o(v;),
Present theory and where the spatial correlations are absent, i.e.,
20 o ——- Continuum approximation _ do(R)=1. This equality is also required here for consistency
d with the molecular chaos approximati¢8il), used in Sec. V

and subsequent ones.

So far, we have only considered local equilibrium contri-
butions toll; in Eqg. (72). To obtain the complete contribu-
tion, consistent with the molecular chaos assumption, we
substitute Eq(31) into Eq.(23) and use the definitiond.9).
Surprisingly, the resultg72) are recovered, showing that
Egs. (72—(76) give the full contribution of Il to the

e
(3]
I

niwl/oR,’8,

pry
o
T

05 - : . L
Navier-Stokes equation, at least within the molecular chaos
assumption.

0.0 ; . . . To facilitate the comparison with the original predictions
0 5 1:2 15 20 of [4,13,11, we setgy=1 in Eq.(75) and introduce
nnR,
2\ _rp2
FIG. 3. Kinematic viscosityv=n/p against densityn for (RO)w=[Rw]/[w], (77)

dt=0.05 anddt=0.15 in dimensionless units. The system param-

eters in the simulations were taken: friction constaatl and ran- ~ Where[a] denotes the spatial average introduced in(&d),
dom force strengthr=1.5 for densitiesn=0.025, 0.1, 0.3, and SO that<R2>W~ RS.

0.4. Lines indicate present theory and results as obtained by The final result for the dissipative part of the viscosities is
Hoogerbrugge and Koelman, an#i3], [11] under the continuum then

approximation.

2/ D2
CymRRA W]
where WD—W = wqty,NO/2(d +2),
(78)
[RZWgo]EJ dRRzgo(R)W(R) . (74 _ym nZ(R2>W[w] - ,
D—T—wotwnGO/Zd,

We note that the definition dfl; in Eq. (23 containsf @

rather thanf?)(v,r,v’,r—R,t). One easily verifies that the where wy=1/,= yn[w]/d is the characteristic relaxation
spatial averaging, denoted by the overline, makes no differrate introduced in Eq.(44), and t,, defined through
ence to linear order in the gradients. The final result for thq@:<R2>W;2, is the average traversal time of an action

dissipative part then becomes sphere witho = (6,/m)? the thermal velocity. These results
are in fact the theoretical predictions for ttetal shear and

5 V.ul. (75 bulkviscosity of the DPD fluid, as obtained(i3,11] on the
d(d+2) 2d basis of the “continuum approximation” to the equations of
motion of the DPD particles. In the present context of non-
equilibrium statistical mechanics and kinetic theory, these
€ontributions have been identified as the local equilibrium
contributions to the transport coefficients in order to make

2rp2 2rp2 the connection with Hoogerbrugge and Koelman’'s expres-
nD:w, gD:M (76) sion for the kinematic viscosity:

2d(d+2) 2d

myn’[R*wgo] = myn’[R?wgy]
HD - — —_

With the help of Eq(60) the coefficients can be identified as
the contributions to the viscosities due to the dissipativ
forces, i.e.,

2
The local equilibrium contribution75) to the dissipative v=nlp= &(Rw
pressure tensor turns out to be the dominant contribution to 2d(d+2)at’
the viscosity of a DPD fluid, for large values of, as illus-
trated in Figure 3 and confirmed by numerical simulation inwith their friction constantw= yét, proportional toét, as a
[4,13]. We also want to point out that &d(w) contribution  proper friction should be. Moreover, we recall that the range
to the pressure tensor, calculated in local equilibrium as idunctionw(R) in [4] is normalized as
Eq. (72), is not a novelty of this paper, but also occurs in all
systems with impulsivéhard core interactions that areot
strictly local. For instance, consider the collisional transfer n[w]sz' dRw(R)=1. (80
contribution analogous tH for elastic hard spheres, where

F=-Vé¢in Eq.(23 is ill defined. This term is calculated in g4 the result§78) and(79) are identical. Hoogerbrugge and
Secs. 16.4 and 16.5 620}, where its local equilibrium con-  kselman have also shown that the viscosity found in their
tribution yields n,s= £ {ys= £ with w~n?, defined in Eq.  numerical simulations approaches E@&8) and (79) for
(16.5.9 of [20]. These contributions in real fluids are the large ny. Simulations carried out with the modified DPD
direct counterparts ofjp=2/p~n? in DPD. algorithm show the same propertigk3].

(79
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We conclude this subsection by listing the full resig) D. Self-diffusion coefficientD
and(78) for the shear and bulk viscosity in a DPD fluid with

. . The coefficient of self-diffusion can be obtained by con-
continuous time §t—0):

sidering a DPD fluid that is in equilibrium, except for the

1 2 1 probability distributionf of a tagged particle, labeled as
7= 10+ nc=="Nb Potw _} i=1. Following the arguments of Sec. V and choosing the
2 d+2  wg J-space densitﬁs(x)=6(x—xl), instead of Eq(32), one
(81

L 2 arrives at an equation similar to E(5), with f and f(®
®o () . .
§:§D+§K:a”90: > W w_o} replaced byfg andfy™’, respectively, defined as
fs(x,0) = (a(x=xy)), 82

They involve the two intrinsic time scales of the DPD fluid:
the characteristic kinetic timg= 1l/w, [see Eq(44)] and the 2) e
traversal timet,, of an action sphere, as defined below Eq. f (X', 1) = gfl S(X=X1) 8(X=Xj) ).
(78), which is of orderRy/v .

In the parameter rangg,>t, the estimatesy, and{p of  The molecular chaos assumpti(®i) now takes the form
[13,11] dominate, and in the randgg<t, the kinematic vis-
cosities do, as illustrated in Fig. 3. f(x,x",t)=neo(v") fs(X,1), (83

as the fluid particles are in thermal equilibrium with the

_ ) ) Maxwellian ¢o(v) defined in Eq(25), and the resulting FPB
As a simple test, the shear viscosijyof the DPD system  equation is linear, i.e.,

was measured in two dimensions using a physical method. A
linear velocity gradient was established between two moving d ( 6y 9
%

C. Numerical simulations

plates and the force required to maintain this system was difstv-Vis=wo—=- fs. (84)

measured once equilibrium had been attained.
By means of these simulations, we have measured thg js identical to the Kramers equatict) with F(r)=0.

4+ — —
m Jv

ViSCOSiW of the DPD fluid as a function (l’f’)/ at different The Continuity equation takes the form
temperature®,=ma?/2y. Results are shown in Fig. 3 for a
higher temperature to emphasize the importance of the kine- ac(r,t)+V-j(r,t)=0, (85

matic contribution. At largeny the measured viscosity ap-

proaches the theoretical prediction when the time gtejs ~ With tagged particle density and current defined as
reduced. In this range of parameters, the viscosity is domi-

nated by its dissipative paf?8), corresponding to the origi- o(r t):f dvE(x,t)

nal estimates of Hoogerbrugge and Koelman. At small ’ s

and high temperaturé, the viscosity is dominated by the
kinetic contribution.

At small ny there are sizable differences between pre-
dicted and simulated results, which do not decrease with de-
creasing time step size. The breakdown of the theory in thiépplication of the Chapman-Enskog method to Eg4)
range of parameters could be explained by several factors.yields the *“local equilibrium” distribution function

(1) First, inspection of the collision term on the right hand fso= ¢(r.,t) ¢o(v) and following equation fofy; =f—f,
side of Eq.(36) or Eqg. (51) shows that withwyg~n7y and
wobo~ o small the typical size of the collision term 1/to
may not be large compared to the propagation terms on the
right hand side of Eq(36). Consequently, the Chapman-
Enskog expansion will be poorly convergent or even diver-AS Ve on the left hand side is again an eigenfunction of
gent, because the kinetic and hydrodynamic time regimes aré With eigenvalue—1, we find
no longer well separated, or, equivalently, because the
change of the macroscopic flow velocity over the character-
istic kinetic length scale becomes large. To be consistent
with the physical requirement of well separated time scales
in this range of parameters, the imposed velocity gradient$he coefficient ofself-diffusion D defined through the con-
would have to be reduced. stitutive equation

(2) The system size for the simulations carried out may be
too small. In order to avoid finite-size effects such as wave-
vector-dependent viscosities, the system must be signifi-
cantly larger than the interaction rangg of the particles.

(3) The molecular chaos approximati¢dl) could break becomes for the DPD fluid
down as a result of themallnet momentum transfer in DPD
collisions. This may cause the development of dynamic cor- & déo (90)

relations such as correlated bindtying” ) collisions. - wom  py[w]’

(86)

j(V,t)=f dwvfgy(x,t).

)

v+ EW fSleO‘Cfsl' (87)

¢O(U)V~Vc=wow-
1
fs1=——do(v)v-Ve. (88)
(0]

jzf dwf,;=-DVec, (89
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where p=mn is the mass density of the fluid. The above [13,1]] the total viscosity is estimated by, and{p, which
result is new. There is only a kinetic contribution and nois correct fort,,>t,. The simulated results for the kinematic

dissipative one. viscosity are in reasonably good agreement with the predic-
tions within the assessed theoretical regions of validity of the
VIIl. CONCLUSIONS AND PROSPECTS theory. We also calculated the coefficient of self-diffusion,

. ) . which only has a kinetic part.
The main results of this paper are the derivation and so- g |t i5 also of interest to consider the Green-Kubo for-
lution of the Fokker-Planck-Boltzmann equation for the DPD |\ 1< ¢or the viscosities in a DPD fluid as derived[i?],

fluid, providing explicit results for the thermodynamic and where the lineary dependence of the viscosity in the limit of

transport properties in terms of the system parameters: den- L : . .
. L ) large dissipationvy is questioned. To make the connection
sity n, friction constanty, temperaturef,=mo</2y, and

range functionw(R) with rangeR,. There are two intrinsic we obs_erve th_at”D and nc of [12] should be |dent|f|gd,
time scales: the kinetic relaxation tintg~ 1/nng deter- respect{vely, W'tr.mD andz of the present paper. The time
mined by the collision term, and the traversal timecorrelatlon functions 0f12] for #p and »c are formally

t,,~Ro/v of an action sphere, wheig=\/6,/m is the av- proport_ione_ll toy? and 1, respectively. Both time integrals
erage velocity. We highlight the most important results and®PPearing in the Green-Kubo formulas extend over the char-
future prospects in a number of comments. acterlstlc_ klnetlg t_lme to~ 1/7._ Consequentlypp~ vy anq

(1) The DPD fluid for continuous time(step size 7c™ 1/y inthe limit of largey, in complete agreement with
5t—0), described by th&l-particle Fokker-Planck equation the detailed calculation of the present paper.
of Espaml and Warren, obeys ahl theorem for the free (7) The validity of the kinetic transport coefficients
energyF. The indispensable role of the detailed balance conand{x and the convergence of the Chapman-Enskog expan-
dition in establishing such a theorem is demonstrated. Ision require that spatial variationg{-1,V) are small over a
guarantees a monotonic approach JBftowards a unique characteristic kinetic length scal@~ﬁ0~v_/nng. The
thermal equilibrium, described by the Gibbs distribution with convergence of the gradient expansion in EzR) and the
a temperatur@,=ma?/2y. validity of the dissipative viscositiegp and {p require in

(2) The local conservation laws for mass dengitynm  addition that spatial variations are small over the diameter of
and momentum density are the essential prerequisites for thg, action spheré,~ v, . Both criteria pose bounds on the
validity of the Navier-Stokes equations. The temperatureghear rates, imposed in the simulations, as well as on the

however, plays a very peculiar role. On the one hand th§gjigity of the Chapman-Enskog expansion.
detailed balance condition guarantees the existence of a well- (8) An interesting extension of the present theory would

defined thermal equilibrium with a global equilibriud, in e towards generalized hydrodynamics. Such a region exists
which energy is cpnserved on average. On the other hand, t,>to of Ry>ly. Then, the hydrodynamic modes with
the local equilibrium state depends only orr,t) and wave numbersk in the range (/R,.27/ly) have

u(r,t), but not on a local equilibrium temperatugr,t), i o ; "
which relaxes in a timé, (kinetic stage towards its uniform k-dependent d|SS|p:_;1t|ve V'SC.OS'U% and{p . Th(_ay may be
o . calculated by studying the eigenmodes of the linearized FPB
equilibrium valueé,. In the subsequent hydrodynamic stage . 7 :
equation(42). A similar wave vector range to generalized

the DPD fluid is not able to sustain a temperature gradient; drod ; in d hard sohere fluid
there is no heat conduction, and all processes occur isothepydrodynamics occurs in dense hard sphere fluids, whgere
mally. is small compared to the hard sphere diamB{gISuch theo-

(3) In the coarse-grained mesoscopic interpretation ofi€S have been used successfully to describe neutron scatter-

DPD particles as “lumps of fluids,” the microscopic conser- iNg experiments on liquid argon and liquid sodil8].
vative forces between the DPD particles are small comparegeneralized hydrodynamics in DPD might therefore be of
to the mesoscopic friction and random noitge y limit), interest in explaining light and neutron experiments on con-
and have been neglected in deriving the FPB equation. Agentrated colloidal suspensions.
sufficiently low temperature conservative forces can have the (9) The equilibrium propertiegsee Fig. 2 and14]) and
effect of forcing the DPD particles into crystalline configu- transport coefficients of DPOsee[16,18) depend sensi-
rations. tively on the step sizeéSt. The Fokker-Planck equatio@),

(4) The FPB equation is derived from the first equation ofthe detailed balance conditidi6), the FPB equatior36),
the BBGKY hierarchy for the distribution functions, ob- the hydrodynamic equation®1) and corresponding trans-
tained from theN-particle Fokker-Planck equation, playing port coeffcients in Secs. VII A, VII B, and VII C only hold
the role of the Liouville equation. In addition, the molecular for the continuous time model5(—0). The only analytic
chaos assumptioff?)(x,x")=f(x)f(x’) has been used. study, available on DPD at finitét [14], calculates the equi-

(5) The Chapman-Enskog solution to the continuous timdibrium temperatured(t), and derives criteria, imposed on
FPB equation yields two types of contributions to the vis-ét, for the stability of the equilibrium distributiofy(x).
cosities.(i) Dissipativeparts p and{p, accounting for the The most important open problem on DPD is a systematic
collisional transfer through the nonlocal dissipative interac-analysis of allt corrections to equilibrium and transport
tions. They are determined by the local equilibrium distribu-properties, such as an explanation of Figs. 2 and 3, suggest-
tion. (ii) Kinetic partsyx and{x, coming from the collision ing that the current form of the modified DPD algorithm for
operator and determined by the Chapman-Enskog solution dinite step sizest does not obey the detailed balance condi-
the FPB equation. It, >ty the dissipative viscosities are tions, which implies that its stationary state is not the thermal
dominant; ift,,<tq the kinetic viscosities are dominant. In equilibrium state described by the Gibbs distribution.
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APPENDIX: DETAILS OF THE MACROSCOPIC
FLOW EQUATIONS
1. Momentum conservation equation

InsertingA=3;mv;8(r —r;) in Eq. (18) yields directly

ar<PU>=—V'<Z mvivia(r—ri>>+<2 Fia(r—ri>>

i

—m7< 2# w(R;)(R;; -Vij)§i15(r—ri)>- (AL)

The first term on the right hand side, which will be calle
rhsl, is transformed to the local rest frame of the fluid by

introducing peculiar velocitie¥;=v,—u(r; ,t) and yields
rhsl=—-V-(puu+Ily), (A2)

where

(A3)

HK:<Z mViVié(r—ri)>

is the kinetic part of the pressure tensor, as listed in(Z8).
The second term on the right hand side of B4l), which

will be called rhs2, involves the conservative interparticle

forces Fi=2;,iF(R;;). Symmetrizing overi andj yields
then

1
rh32:<§.2¢. F(Ri,-)[é(r—ri)—ﬁ(r—fi)]>
L]l

J# 0

1 1
=—V~<§iz, F(Rii)Rijf d>\5(f—fi+>\Rij)>

Here we have used the identity
1 d
5(r—ri)—5(r—rj)=—fod)\aé(r—rﬁ—)\R”)
1
0

(A5)

The third term on the right hand side of E&1), referred to

1689

treated in a similar fashion. Symmetrizing oveandj, and
replacings(r —r;) by (1/2) 6(r —r;) — o(r —rj)], we obtain

m ~ N
rhs3=V- Ei%i YW(R;j)R;iRij(Rij - vij)

xfld)\é —-ri+AR
. (r—r; i)
= V.. (A6)

The result§A4) and(A6) are of the same general form, and
can be expressed using the pair distribution func{b) as

<2 ARy v, 'Vj)a(r_ri+7\Rij)>
ij#i

:f d"f dv'f dRA(R,v,V")

Xf@W,r+ARV r+(A—1)R,1), (A7)

where Eqs(A4), (A6), and(Al) yield, respectivelyIl and
I, as listed in Eq(23) with f (?) defined in Eq(24). Com-

d bination of Egs.(Al), (A2), (A4), and (A6) gives the mac-

roscopic equation for the momentum density,
as listed in Egs(21) and(22) in the body of the paper.

2. Energy balance equation

We start with the kinetic energy densig; by setting
A=2i(1/2)mvi25(r—ri) in Eq. (18). This yields, after some
algebra,

ek = —V'<Z %mvf&(r—ri)>
+<_2_ vi-F(Rij)é(r—ri)>
i,j#i
_m7<ij§;ei W(Rii)(ﬁii‘Vii)(ﬁij'Vi)5(f—ri)>

+700< Zi W(Rij)é(r—ri)>. (A9)

i,j#

By settingA=%Ei,#icb(Rij)a(r—ri) we find similarly for
the potential energy density,

1

,]#

—%<_E_ Vij ~F(Ri,-)5(r—ri)>. (A10)

i,j#i

We sum Eqs(A9) and(A10) to obtain the rate of change of

as rhs3, is due to dissipative particle interactions and can biae total energy density:
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containingv;; gives the energy sink’y resulting from the

e=extey= Z &(V)o(r—ry) ), (A11)  4amping forces. The second term containig is again
symmetrized and combined with EGA5) to give the dissi-

wheree¢;(v) is the microscopic energy per particle: pative part of the energy currentV-gp. Combination of

these terms then gives

1,1
&(v)=5mvi+ 5_2_ G (A12)
i# (a4)+(a3)=y( 2 W(R;)8(r—r)
i #i
We denote thenth term on the right hand sides of Egs.

A9) and (A10) b d(bn), tively, and get th A
f(ollo)weilrr:g (resu?ts:y fan) and (o respectvel. and get fhe _Emy<i,j2¢i W(R‘i)(Rii‘Vij)25(r_ri)>
(a1)+<b1>=—v'<2 viei(v)5<r—ri>>E—V~qK, +v-<§i%i RijW(R)(Rij - vip Ry (Vi+v))
1 1
(32)+(b2)=§<2 (Vi+Vj)'F(Rij)5(f—ri)> Xfo d)‘5(r_ri+)‘Rij)>
:_V<%2 R”F(R,J)(VI-I-VJ) +y<2 W(R,J)é(r—r|)>
i,j#i i,j#i

1 EFR_FD_V'qD, (A14)
Xf d)\&(r_ri+)\Rij)> :_V'qc.
0 wherel'g, I'p, andqgp are defined by the three preceding
(A13) terms, respectively.
To obtain the full energy balance equation we sum Egs.
The expression fof(a2)+(b2)] has been symmetrized over (A11) —(A14) to obtain
i andj and Eq.(A5) has been used. The terra4) repre-

sents the energy sourd& caused by the random forces. In 0e=—V-[Qk+qctap]+I'g—Tp=—-V-q+T.
(a3) we splity; into (1/2)vj; +(1/2)(v;+V;). The first term (A15)
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