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Structural and dynamical properties of the percolation backbone in two and three dimensions
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We study structural and dynamical properties of the backbone of the incipient infinite cluster for site
percolation in two and three dimensions. We calculate the average mass of the backbone in ehepeaca,
(Mg())~ 7%, whered? is the chemical dimension. We firdf = 1.45+0.01 ind=2 andd®=1.36+0.02 in
d=3. The fractal dimension im spaced? is obtained from the relatiod?=d2d,,, d?=1.64+0.02 in
d=2 andd?:1.87 + 0.03 ind=3, whered,, is the fractal dimension of the shortest path. The distribution
function ®(r,/) is determined, giving the probability of finding two backbone sites at the spatial distance
r connected by the shortest path of lengthas well as the related quant%in(r,Na\,), giving the length of
the minimal shortest path for two backbone sites at distara=ea function of the numbé\,, of configurations
considered. Regarding dynamical properties, we study the distribution fund®gfs,t) and Pg(r,t) of
random walks on the backbone, giving the probability of finding a random walker taftere steps, at a
chemical distance”, and Euclidean distanae from its starting point, respectively, and their first moments
(/5(t))~t19%" and (rg(t))~t¥, from which the fractal dimensions of the random walf{ and d® are
estimated. We findd® =2.28+0.03 and d2=2.62+0.03 in d=2 as well asd® =2.25+0.03 and
d\',3V=3.09t 0.03 ind=3.[S1063-651X%97)00508-4

PACS numbsgfs): 05.20-y, 05.40+j, 64.60—i, 66.30—h

[. INTRODUCTION Since our clusters are generated in chemical sgsee be-
low), this is the natural metric for measuring critical expo-
Percolation represents a useful model for a variety of sysnents. To this end, we first calculate the fractal dimension of
tems in many fields of science displaying both structural disthe backbone in chemical spacé §pacé d®, and obtain the
order and self-similarity, i.e., fractal behavior, within some fractal dimension in Euclidean space gpacé d?, from the
range of length scalels—3]. In many circumstances, a de- rejationd®=d® d,,;,, whered,,, is the fractal dimension of

taile(_j know_ledge of theT internal structure of percolation clusthe shortest patf3,5]. We next study the distribution func-
ters is required. In particular, for studying transport processeggn dy(r,/), giving the probability that two backbone sites
near the percolation threshotd , a crucial role is played by gt distance from each other are connected by a shortest path
the COmpleX tOpOlOgy of the available CondUCtlng pathSof |ength/’, as well as the related quantilfﬁ]m(r,Nav), giv_
[4-7]. ing the length of the minimal shortest path for backbone sites
It is known that ap., the incipient infinite cluster exhib- at distancer from each other as a function of the number
its a variety of self-similar substructures and consequently &, of configurations considered. To the best of our knowl-
rich scenario of transport propertig$-7]. A prominent role  edge, these quantities have not been studied so far for the
is played by the backbone of the cluster, defined as the sulivackbone. It is therefore interesting to calculdig(r,”)
set of cluster sites carrying the current when a voltage difand compare it with the corresponding structural function
ference is applied between two sit@ee[8] and references ®(r,/) for the whole cluster, which is now known quite
therein. Thus, the backbone structure solely determines th@ccurately(for a recent work see Reff10]). From the addi-
conductivity of the whole percolation network between bothtional information obtained by studyirgg(r,/), we expect
sites. The backbone of a percolation cluster is also useful &9 better understand the structural properties of the whole
a model of a porous medium containing long polymer chaingluster as well.
[9]. So far, much is known about structural and dynamical Regarding dynamical properties, we consider random
properties of percolation clusters, but little is known aboutwalks on the backbone and calculate the mean square dis-
the corresponding properties of the backbone. placements of the walker as a function of time, in bdtand
In this paper, we report a detailed study of structural and spaces. Finally, we consider the corresponding distribution
dynamical properties of the backbone of the incipient infinitefunctions Pg(/',t) and Pg(r,t), giving the probability den-
cluster atp, in two and three dimensions. Actually, many of sity that the walker is, at time, at the distance” andr,
the exponents characterizing the structural and dynamicakspectively, from its starting point &&= 0. Following the
properties of the backbone are presently poorly known, irstudy of P(r,t) for the whole clustef11], we also discuss
particular, in three dimensions. To obtain accurate resultshe question of the dependence Bf(r,t) on the number
we study the backbone in topological or chemical spacéN,, of backbone configurations taken into account in the
[3,5]. The topological or chemical distaneé between two average.
points on the cluster is defined as the length of the shortest The paper is organized as follows. In Sec. Il, the fractal
path connecting them via nearest-neighbor cluster siteslimensions in chemical and Euclidean space are determined,
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FIG. 2. Plot of the chemical dimensiod? as a function of
1// for d=3 [obtained from successive slopes oMig(/) vs

FIG. 1. Plot of the chemical dimensiodf as a function of
1/ for d=2 [obtained from successive slopes oMig(/) vs
In/]. The backbone is determined usingesite on the last grown In/]. The backbone is determined usingesite on the last grown
chemical shell(open symbols and all sites on the last grown chemical shell(open symbols and all sites on the last grown
chemical shell(full symbolg. The plots are based on averages of chemical shell(full symbolg. The plots are based on averages of
Mg(7") over 80 000 cluster configurations, with a maximum chemi-Mg(/) over 80 000 cluster configurations, with a maximum chemi-
cal distance/ ,,=2000 (open and full circles and /,,=400 cal distance/ .= 1000 (open and full circles and /.= 200
(open and full triangles The results are summarized in Table I.  (open and full triangles The results are summarized in Table I.

together with the distribution function of the Euclidean dis- cal exponents and the fractal dimensions.
tancer between two backbone sites as a function of their
chemical distance’, and the scaling behavior of the shortest
path. In Sec. lll, we study random walks on the backbone,
both in chemical and Euclidean space, and determine thS0
corresponding distribution functions as well as their first mo-
ments. Finally, in Sec. IV, we summarize our results.

A. Fractal dimensions

Because the clusters are generated in chemical space, no
undary effects occur when looking at properties that de-
pend on the chemical distaneg in contrast to Euclidean
space [ space, where strong boundary effects are present.
Thus, the fractal dimensiod? of the backbone, defined by

(MB(r))~rd?, is not determined directly, but instead we

We generate large percolation clusters at criticality withstudy the mass-distance relation4nspace according to
the well-known Leath algorithnil2] on square and simple B
cubic lattices. The Leath algorithm generates in every step (Mg())~77, 1)
t the whole set of sites having a chemical distarieet from B . ) ) . .
the seed, i.e., in the first step all sites with=1 are gener- whered, is the fractal d|menS|on_of the_ backbone in chemi-
ated, in the second step all sites with=2 and so on. The C3B.| sgace. The two 'fractal d|mer'13|ons' are related by
corresponding backbone is obtained using an improved vefd =d/dmin, wheredn, is the fractal dimension of the short-
sion of the “burning” algorithm[8] described in detail in €St path and describes the scaling betweeand /, i.e.,
Appendix A. To perform the averages, we grow clusters ug (1))~ mn, with dp,=1.130+0.004 ind=2 [13,14 and
to a maximum chemical distancé,,, from the seed, with ~dmin=1.374+0.004 ind=3 [15].
/ max=2000 in two dimensions and,,= 1000 in three di- The results fod? are displayed in Fig. 1 fad=2, and in
mensions. To minimize the computer memory needed for th&ig. 2 ford=3, where the successive slopes dflg(/) vs
calculations, we estimate the minimum lattice sitese- In/ as a function of 1 are shown. The open symbols cor-
quired to generate such large clusters from a relation given ifespond to the case in which the backbone is defined be-
[11] (see Appendix B for details We useL=2801 in tween the seed andne randomly chosen site on the last
d=2 andL=685 in d=3, which in both cases are much grown chemical shell. Clearly, in this case the valuedBf
smaller tharL’ =2/,.+ 1. Neverthelessponeof the gen-  tends to decrease whefi—/ ., since close 0/, the
erated clusters reached the lattice boundaries. This more gfackbone grows nearly linear. This provides us with a nu-
ficient use of computer memory, as well as the improvedmerical lower bound for the actual valuedf . A numerical
burning algorithm, enables us to study much larger systemspper bound can be obtained by defining the backbone be-
than before, leading to more accurate estimates for the critiween the seed arall sites on the last grown chemical shell.

II. STRUCTURAL PROPERTIES
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TABLE I. The chemical dimensiod? of the backbone obtained 0
from Figs. 1 and 2. The fractal dimensiod® are calculated from 10
the relationd?=d®%d ;,, with dy,=1.130+0.004 d=2) [13,14
andd,,;,=1.374 = 0.004 d=23) [15]. o

o107
Fractal dimension Lattice dimension =
d=2 d=3 d=6 v 4
. ~ 10 |
d; 1.45+0.01 1.36:0.02 1
df 1.64+0.02  1.870.03 2 5
10 &
0
The full symbols correspond to this case, where now the 10 ¢ (b)

value ofd® tends to increase whefi—/ ., since close to
/ max the so defined backbone coincides with the cluster it- — 2
self. Our estimated asymptotic values, obtained by fitting ii 10
two straight lines for both the lower and upper sets of points,
and extrapolating ¥/—0, are reported in Table I. The re-

ported exponentd? are the averages of these extrapolations,
while the extrapolated values allow us to estimate the error
bars. The obtained values are consistent with previously pub- 166 i
lished results, see, e.48].

B(

I
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S
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B. Distribution functions r/f\?

Next, we consider the structural distribution function
dg(r,”), giving the probability that two backbone sites con-
nected by a shortest path of lengthare at spatial distance
r from each other. We assume fér(r,/) a similar scaling
form as for the entire clustdsee e.g.[5,10,14), i.e.,

FIG. 3. Scaling plots of the distribution function for percolation
backbonesr ®g(r,/) vs r//", for (8 d=2, /=1000 (circle),
/'=1400 (full diamond, and /'=1800 (square, and (b) d=3,
/=400 (circle), /=600 (full diamond, and /=800 (squarg. In
both cases, the plots are based on averages over 80 000 cluster
configurations, with a maximum chemical distan€g,,=2000 in
1 d=2 and /' ma=1000 ind=3. The lines represent our fits for
dg(r,/ )= —~Tfg(x), 2 r//¥<1 (continuous ling andr//”>1 (dashed ling The fitting

/v parameters are summarized in Table II.

with the scaling variablex=r//" and »=1/d,,,, and
®g(r,/)=0 for /</B. (r,N,). The quantity/2. (r,Ng) |
is discussed in detail in Sec. Ill. As for the entire clugig], ~ Which are related tog? and g3 by gi=gf+d and

we expect that the scaling functidg(x) cannot be fitted by 'g5=g5+d, respectively. The results for the fitting param-
a simple product of a power law and an exponential functioneters are reported in Table Il. We note that the corresponding
but displays a more general form distribution function®@(r,/) for the backbone defined

d=3, from which the exponentg? andg5 are determined,

B 4B TABLE II. The fitting parameters describing the scaling func-
cyx9 forx<1, tion fg5(x) (see Fig. 3 for the backbone of percolation clusters at

fo(x)= ngggexq_ané] for x>1, ®) criticality, V\éherefB(x):c?xg? for x<1 (continuous ling and
fa(x)=cSx%exd —agx®] for x>1 (dashed ling with
with two different exponentgg? and g5 in the regimes §=(1-7) L. The measured exponeng® and g2 are related to
r//"<1 andr//">1, respectively, and=(1—7)"L. The ¢} undgj by g¥=g5+d andg5=g5+d.
normalization is given in the embeddind-dimensional

space byfr91®g(r,/)dr=1. For convenience, we deter- Structural exponents Lattice dimension
mine numerically the distribution functio®(r,/), related ~ and prefactors d=2 d=3 d=6
to ®g(r,”) by g8 1.30+0.20 1.02:0.20 0
s 1.97+0.20  0.59-0.20 0
1/ 1 d ai‘ 3.30+0.20 4.02£0.20
$B(r'/):rd—1®8(r,/):F( _,:) fa(x), (4) Eg 3.97+0.20 3.59£0.20
7 ct 150+0.20  4.63-0.20
cs 3.10t0.20  3.43-0.20

which is normalized according tdDg(r,/)dr=1. The

- ag 0.62+0.20 0.94-0.20
functionr dg(r,/) vsr// " is shown in Fig. 3 fod=2 and
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between the seed and all sites on the last grown chemical

shell is identical todg(r,7) within the current numerical —~ ] ()
accuracy. =
C. Minimal shortest path n}\\

We discuss next the behavior of the minimal shortest path g
/B.(r,Ng) determining the values of/ at which =
®y(r,/)=0. This quantity plays a very important role for o E
determining transport properties: The fact that the minimal =

shortest path,/ﬁm(r,Na\,) shows an explicit dependence on

the number of configurationl,, considered has important 102 !
consequences for dynamical properties as, e.g., randonm 3 (b)
walks, fractons or electronic wave functiofisl]. In this pa- 2

per we restrict ourselves to the discussion of the effect onm? 10 F

random walks, see Sec. Ill. >>
We expect a scaling behavior eﬁ?nm(r,Na\,), as a func- = 0
tion of the Euclidean distanaeand the number of configu- = 10 f
rations N,, considered, similar to that on the entire cluster E e
[11], i.e., SO P
. 5(N..) 10 E -
r or r<rc(Na),
/(T Nay) = 5 ! y J
min( N al (Ng)rdmn  forr>rB(N,,). ©® 10 10 10

”/rclzg(NaV)

Notice that below the crossover distanc&N,,), the mini-

mal chemical d'St.ance/ﬁin(r’Nav) IS |_ndependent_ of the FIG. 4. Scaling plots of the minimum chemical distance

numéaer o_f conflguratlor_ls_Na\, conS|dered,_ while for /B (r N_y/r (N vs/ro(Ny), for (8 d=2 and(b) d=3, both

r>r:(Ny) it depends explicitly oMN,,. To obtain the cross- for N,=1 (circle), Ny=4 (full diamond, N,,=20 (square,

over distanceE(NaV) analytically, we consider the probabil- N,,=100 (full triangle), and N,,=750 (stap. In both cases, the

ity WS to find a shortest path of lengti=r=rZ within  plots are based on a total ensemble of 80 000 cluster configurations,
a with a maximum chemical distance ,,=2000 in d=2 and

] ) ) . / max=1000 ind=3. The lines represent the predicted exponent 1

the entire cluster the relatioWy_=zp° was used i11],  for r/ro(N,)<1 (continuous ling and dyyy for r/r(Ng)>1

where z is the coordination number of the lattice. For the (dashed ling The results are summarized in Table IIl.

backbone we expect a similar relatiwﬁavz ZeP ", Where

zis replaced by an effective coordination numbgy, which ~ Wherexx is the value o= r/re(Na) at the crossover. The

incorporates the probability that the considered site belonggesults are reported in Table [ll. We note that the correspond-

to the backbone. Since the backbone is more dilute than thig structural quantity” {2 (r,N,) for the backbone de-

whole cluster, we have in average a smaller connectivity, i.efined between the seed and all sites on the last grown chemi-

Z.f<z. This yields cal shell is identical to/2, (r,N,) within the current
numerical accurancy.

Nay backbone configurations, whewy =N, holds. For

B(N,) INZgg+ INN, ®
r = H
R In(1/p.) IIl. DYNAMICAL PROPERTIES

wherezy is not known analytically and must be determined  In the following, we consider dynamical properties of the
a posteriori backbone by studying random walks, both in Euclidean and
To determineaﬁ]m(Na\,), we assume, as for the entire chemical space. To this end, we employ the exact enumera-
cluster, the scaling behavior®, (r,N,)=rS(N,)gg[r/  tion method5]. For the present purposes, clusters are grown
ch(Nav)]- To fulfill Eq. (5), the scaling functiomyg(x) must  on square and simple cubic lattices up to a maximum chemi-

behave asgB(X):X when x<1 and gB(X)Ndei” when cal distance/ma,(: 1000 ind=2 and /maX: 400 ind=3.
x>1. This yields Clusters which have not reached the chemical stigll, are

ap (Na) = ag[rE(Ng,) ]+~ dmin, (7) TABLE IlI. Structural constants, defined in Ed§) and(7) and
obtained from the data collapse shown in Fig. 4.

where the prefactosg remains to be determined. Results for

/81 ,Na /rB(N,) versusr/rg(N,,) for different values of ~ Structural constant Lattice dimension
N, are shown in Fig. 4 fod=2 andd=3. The shown lines d=2 d=3 d=6
T : B
indicate thBe predicted exponents, 1 deC(NaV)§1 and Zos 21402 1.2+0.2 1
dmin for r/r (Ng)>1. The values ot are determlnle_% such g 1.02+0.05 0.95-0.07

min

that the best data collapse is achieved, ang=Xx;
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FIG. 5. Plot of the fractal dimensionts andd®’ of the random
walk as a function of 1/for d=2 [obtained from successive slopes
of Inrg(t) and Inv’g(t) vs Int, respectively. The backbone is deter-
mined usingonesite on the chemical sheff ., (open circley and
all sites on the chemical shef ., (full circles). The plots are
based on averages of(t) and/z(t) over 10 000 cluster configu-
rations, with a maximum chemical distancé,,=1000 and
tmax=4000 time steps. The results are summarized in Table IV.

FIG. 6. Plot of the fractal dimensiomts andd2’ of the random
walk as a function of 1/for d=3 [obtained from successive slopes
of Inrg(t) and In”z(t) vs Int, respectively. The backbone is deter-
mined usingonesite on the chemical sheff,,,, (open circle and
all sites on the chemical shei ., (full circles). The plots are
based on averages pf(t) and/z(t) over 12 000 cluster configu-
rations, with a maximum chemical distancé,,,=400 and
tmax= 1600 time steps. The results are summarized in Table IV.

discarded. Again, the lattice sizes are estimated with the
method discussed in Appendix B. In our simulations, weextrapolating 1/— 0, are reported in Table IV. The reported
consider random walks df,,,=4000 andt,,,,= 1600 time exponentsd&‘,/ and d\?v are the averages of these extrapola-
steps ind=2 andd=3, respectively. tions, while the extrapolated values allow us to estimate the
error bars. The obtained values are consistent with previ-
ously published results, see, e[d.6].
A. Mean displacements

The mean displacements aftertime steps in chemical

and Euclidean metric are given by B. Distribution functions

(/B(t)>~t1’dv8v/ (8) The probability of a random walker to be at chemical
distance/” and Euclidean distance aftert time steps is
and given by the distribution functionBg(/’,t) andPg(r,t), re-
8 spectively. The mean displaceméntg(t)) and(rg(t)) dis-
(rg(t))~t'dw, (9 cussed above are the first moments of these distributions. For

the distribution function in chemical space we expect a form
from which the fractal dimensions of the random wd&{ similar to that for the entire clustéb,6], i.e.,
andd® are determined. The results fdf” andd are dis-
played in Fig. 5 ford=2 and Fig. 6 ford=3, where the Pe(/ ) | [/}
successive slopes ofAfg(t) and Irrg(t) vs Int as a function Pg(0t) ex gE
of 1/t are shown. The open circles correspond to the case in
which the backbone is defined between the seed arel
randomly chosen site on the chemical shéll.,, and the _ _
full circles to the case in which the backbone is defined be- , TABLE IV. Summary of the results for the fractal dimensions
tween the seed arall sites on the chemical shefl,,,. Both d,,/ andd,, of the random walk on the backbofsee Figs. 5 and)6
sets of points coincide as long as the random walker mainl

: (10

explores regions of the backbone where both algorithm iffusion exponent Lattice dimension

yield similar structures. This provides us with numerical up- d=2 d=3 d=6
per and lower bounds for the actual valuesd&,’r{ and d\?v. d&’ 2.28+0.03 2.25-0.03 2
Our estimated asymptotic values, obtained by fitting twog® 2.62+0.03 3.09-0.03 4

straight lines for both the lower and upper sets of points, and
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FIG. 7. Scaling plots of the distribution function
—In[Pg(/,1)/Pg(0)] vs /1&2, for (a) d=2, t=1000 (circle),
t=2000 (full diamond, and t=4000 (squarg, and (b) d=3,
t=400 (circle), t=800 (full diamond, andt= 1600 (square, with
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FIG. 8. Scaling plots of the distribution function
—In[Pg(r,t;Na)/Pg(0t;N,)] vs r/€2, for (@) d=2, t=1000 and
(b) d=3, t=400, both forN,,=1, i.e., typical averagécircle),
N,=200 (full diamond, and N,=10000 (square, with

-
10

£2~(/g(1)). In both cases, the plots are based on averages oveiP~(rg(t)). In both cases, the plots are based on a total ensemble
more than 10 000 cluster configurations, with a maximum chemicabf more than 10 000 cluster configurations, with a maximum chemi-

distance/ = 1000 ind=2 and /' ,,,=400 in d=3. The lines
represent the predicted exponemi%/ for /1£8<1 (continuous
line) andd®/(d2 —1) for //£2>1 (dashed ling

with £8~(/5(t)) and Pg(0t)~[£2]~ @, where(/ (1)) is

the mean displacement in chemical metrlc defined abovePg(r,t;Ngy)=rd"9

The distribution is normalized agrs/d/ Pg(/1)d/=1.To
obtain the exponentg, we plot —In[Pg(/,t)/Pg(0;t)] vs
//55 in double logarithmic form in Fig. 7 fod=2 and
d=3. Similar to the entire cluster, we findg=d2" for
/188<1 andvg=d5//(dB —1) for //¢8>1.

To analytically calculate the distribution function
Pg(r,t;Na) =(Pg(r,t))n,, for a random walker in Euclidean
space, averaged ovét,, configurations, we follow Refs.
[6,11] and writePg(r,t;N,,) as a convolution integral of the
distribution of a random walker irf spacePg(/,t), and the
structural function®g(r,”), i.e.,

PB(rut;Nav) _
Pg(0.t;Na)

ex _C//[rB(N )]dw (dmin—1D)/(d

cal distance” ;.= 1000 and/,,,=400 ind=2 andd=3, respec-
tively. The lines represent the predicted exponegfte‘ad—de for

r<r? (continuous ling d2/(d2—1) for rf<r<r,(N,) (dashed
line), andd®/(d® —1) for r>r,(N,) (dashed-dotted line

fs » )/dE—l%(r,/)PB(/,t)d/,
min v/ (11)

where/ . (r,N,) is the length of the minimal shortest path
discussed in Sec. IIl. The dependence of the lower integration
limit /ﬁm(r,Na\,) on the number of configuratiors,, con-
sidered introduces a second crossover distan¢®l,,) and
causes a dependenceRyf(r,t;N,) onN,,. The distribution
Pg(r,t;N,) is normalized on the backbone by
frd?‘lpB(r,t;Na\,)dr=1. Following the procedure de-
scribed in[11,17), we obtain, in full analogy to the results
for percolation clusters,

forr<r®,

for ri<r<rf(N,), (12)

dB/(d® - 1)

_1)( >W W
&

forr>r2(Ng)
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B_ ¢B
ri=er

and

B B —U[dB(dmn-1/(dE- D], B B_1)q8
rx(Nav):fr ag w' “min w [rC(NaV)](dW 1)/dw,

19

APPENDIX A: IMPROVED “BURNING” ALGORITHM

The backbones studied in this paper are generated using
with §,B~<rB(t)),Where(rB(t)) is the mean displacement in an improved version of the burning algorithm. The basic
the Euclidean space defined above. Hence, for large didurning algorithm was first introduced [8]. We review the
tancesr, the relevant length scale increases logarithmicallyabove algorithm and consider its improvement.
with the numberN,, of configurations. Belowr2(N,,), To use the burning algorithm, one has to find the chemical
Pg(r,t)=Pg(r,t;N,) is independent oN,,, while above distances” to the starting site of the backbone and the sites
r®(N,,), the self-averaging hypothesis breaks down andvhere loops of cluster sites relative to the starting site close
Pg(r,t;N,,) depends logarithmically oi,,. The so-called up (loop site3. Using the Leath method, the sites of the
typical average(Pg(r,t))y, is equivalent to the case cluster are generated with increasing chemical distafice
Nay=1, i.e., (Pg(r,t))yp=Pg(r.t;1). from the seed. Therefore it is convenient to define the back-

To verify our predictions given in Eq$12)—(14), we plot  bone between the seéstarting sit¢ and one randomly cho-
—In[Pg(r,t;N,)/Pg(0t;Na) ] vsr/grB in double logarithmic  sen site on the last grown chemical shell of the cluged
form in Fig. 8 ford=2 andd=3. The shown lines indicate site) [20]. In such a case the chemical distaneédo the
our predicted exponenty, +d—df for r<r?, di/(d3—1) starting site are trivially identical to those obtained by Leath
for rB<r<rB(N,,), andd2/(d2 —1) for r>r,(N,). The  growth. By choosing the end site of the backbone on the last
numerical data are well described by our analytical results.grown chemical shell we ensure that no sites with a larger
chemical distance” to the starting site than the end site
exists. In addition, the loop sites are easy to identify during
Leath growth, as they occur with increasing chemical dis-
tance/” from the seed.

The burning algorithm is divided into two parts. In the

In this paper we present extensive numerical simulationdirst part we start burning the end site, becoming a burning
concerning the structural and dynamical properties of théite. Then, its nearest-neighbor cluster sites are burnt, and
backbone of percolation clusters at criticality in two andbecome the new burning sites. This process is repeated from
three dimensions. An improved burning algorithm, intro-each burning site, with the condition that only nearest-
duced in this work, enables us to study much larger systemseighbor sites are burnt which have a chemical distahoe
than before, therefore leading to improved estimates for théhe starting site smaller than the burning site itself. This part
fractal dimensions of the backbodé andd®, as well as for  of the burning algorithm ends when the starting site is
the corresponding fractal dimensions of the random walkeached. The thus obtained burnt sites are located along the
d2 and d2. We also calculate the structural distribution shortest path between the starting and the end site, and form
function ®g(r,/), the length of the minimal shortest path the so-called skeleton or elastic backbd@1]; an example
/B.(r,Na), and the distribution function of a random is shown in Fig. ga).
walker in chemical and Euclidean spad®&;(/,t) and In the second part of the algorithm we deal with the loop
Pg(r,t;N,,), respectively. sites. At the beginning all loop sites are considered as active

We note that frond? anddS the conductivity exponent and stored in a list sorted by increasing chemical distance

1, which describes the scaling behavior of the conductivity”” to the starting site. We start burning the first loop site, i.e.,

o of a percolation system near criticality as a function of thethe one with the smallest chemical distanCéo the starting
system sizel, ie o~L"* can be calculated by site, and proceed in the same way as for the skeleton. If

~ B B B B . during this process two or more different sites are reached
u=d,—df+d—2 [56]. Our results ford; andd,, yield \ nicn are known to be part of the backbone, then the burnt
#=0.98£0.03 ind=2 andu=2.22-0.03 ind=3. These sijtes(including the loop sitebelong to the backbone, and the
results are in very good agreement with the valuesgorresponding loop site is no longer active and is removed
ﬁ:O.97i 0.01 andﬁ=2.2i 0.1 ford=2 andd=3, respec- from the list. Otherwise it cannot be decided yet whether
tively, obtained from other simulation8]. these sites belong to the backbone or not, and one has to

IV. SUMMARY
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sequential burning algorithm
3

FIG. 9. Example for a configu-
ration of a cluster and its back-
bone. The two end sites defining
the backbone are colored in light
gray, the sites found so far which
belong to the backbone are in dark
gray, and the remaining cluster in
black. The cluster sites marked by
a white square are loop sites,
named “1,” “2,” and “3.” The
white arrows indicate the burning
processes and their directions, as
discussed in Appendix A. The row
at the top of the figure shows the
different steps of the sequential
burning algorithm with the errone-
ous result(d1), the row in the
middle the “back-start” algo-
rithm, and the row at the bottom
the improved burning algorithm
with the correct result§e2 and
(e3), respectively.

(c2) (d2)

improved burning algorithm
3

restore the previous state of the burnt sites including the looptarting again at the active loop site with the smallest chemi-

site, which remains active. In both cases one can continueal distance” to the starting sitéi.e., site “1”), as shown in

treating the next loop sitéhaving a chemical distancé to  Fig. 9 (c2), yield the erroneous result shown in Fig(d1).

the starting site equal or larger than the previous)@ame¢he  This failure can be easily prevented, if it is realized during a

same way as described above. If the active loop site with thburning process that only one site is burning during a burn-

largest chemical distanc€ has been considered, one startsing step, reflecting the singly connected structure of the path,

from the active loop site with the smallest The algorithm  and the backbone has not yet been reached, see Fi}).9

ends when no new site has been found belonging to thén such a case, one can immediately stop the burning process

backbone during a complete run through the list of activefrom this loop site, keep the loop site active, and restore the

loop sites. previous state of the corresponding burnt sites. In addition,
However, this sequential algorithm described above genene can always proceed sequentially, even after adding a

erally produces erroneous results, such that sites not belongew part to the backbone, as shown in Fidc9), (d3), and

ing to the backbone are added t¢see Fig. &cl) and(d1l)].  (e3), and as a result the computing time scales only linearly

To avoid such failures, one has to start again at the activevith the number of loop sites.

loop site with the smallest chemical distan€é¢o the starting

site whenever adding a new part to the backbone, instead of

proceeding sequentially. By doing this, the backbone is de-

termined correctlyfsee Fig. 9c2), (d2), and(e2)]. Unfortu-

nately this “back-start” algorithm is very time consuming, APPENDIX B: ESTIMATE FOR THE LATTICE SIZE

since now the computing time depends quadratically on the FOR PERCOLATION CLUSTERS AT CRITICALITY

number of loop site$22]. o _
The improvement of the algorithm is based on a simple TO minimize the computer memory needed for the simu-

observation: The reason for the erroneous outcome of thigtions, we estimate the minimum lattice size=2R+1 re-

sequential version is due to the likely existence of so-callediuired to generate a cluster &, shells, with the condition

“tadpoles,” i.e., a group of sites which is linked to the actual that its radial extent,, will not exceedR. To this end, we

backbone through a singly connected path. According to Figemploy the relation in(r,Nay) = amin(Na)r min [cf. Eq.(5)]

9(a), the burning starting at the first loop sitéenoted “1”  valid in the regime r>r(N,), where amn(Na)

in the figure reaches the so far known backbone in one=alr¢(Na)1™ %, a=1, and r(Ng)=(Inz+INN,)/

point, which coincides with the starting site. Therefore, theln(1/p;) [11]. From these relations one can estimate

burnt sites are not identified as backbone sites and are réma= (7 max/[I «(Ngy) ]~ @min)dmin. In our simulations we

stored to their previous state. A new burning process, startingonsider typicallyN,,=10° configurations, so that for deter-

from the next loop site(denoted “2"), as shown in Fig. mining, e.g., structural properties with ,,,=2000 and

9(b), reaches the backbone in two points, one is the starting max= 1000 ford=2 andd=3, respectively, we estimate

site and the second a skeleton ditearest-neighbor site of Ima=1228 andr ,,,=309. We have actually useR=1400

“2” to the right), and these burnt sites are correctly identi-andR=342 ind=2 andd=3, respectively, which in both

fied as backbone sites. Proceeding sequentially in the list afases are much smaller thaf,.,, and actually correspond

active loop sites in such a situation, i.e., by starting a burningo the value ofr ., obtained with the above formula for

process from the site “3,” as shown in Fig.(61), instead of more than 18 configurations.
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