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Structural and dynamical properties of the percolation backbone in two and three dimensions
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We study structural and dynamical properties of the backbone of the incipient infinite cluster for site
percolation in two and three dimensions. We calculate the average mass of the backbone in chemicall space,

^MB(l )&;l dl
B
, wheredl

B is the chemical dimension. We finddl
B51.4560.01 ind52 anddl

B51.3660.02 in
d53. The fractal dimension inr spacedf

B is obtained from the relationdf
B5dl

Bdmin , df
B51.6460.02 in

d52 anddf
B51.87 6 0.03 ind53, wheredmin is the fractal dimension of the shortest path. The distribution

function FB(r ,l ) is determined, giving the probability of finding two backbone sites at the spatial distance
r connected by the shortest path of lengthl , as well as the related quantityl min

B (r ,Nav), giving the length of
the minimal shortest path for two backbone sites at distancer as a function of the numberNav of configurations
considered. Regarding dynamical properties, we study the distribution functionsPB(l ,t) and PB(r ,t) of
random walks on the backbone, giving the probability of finding a random walker aftert time steps, at a
chemical distancel , and Euclidean distancer from its starting point, respectively, and their first moments

^l B(t)&;t1/dw
Bl

and ^r B(t)&;t1/dw
B
, from which the fractal dimensions of the random walkdw

Bl and dw
B are

estimated. We finddw
Bl 52.2860.03 and dw

B52.6260.03 in d52 as well as dw
Bl 52.2560.03 and

dw
B53.0960.03 ind53. @S1063-651X~97!00508-4#

PACS number~s!: 05.20.2y, 05.40.1j, 64.60.2i, 66.30.2h
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I. INTRODUCTION

Percolation represents a useful model for a variety of s
tems in many fields of science displaying both structural d
order and self-similarity, i.e., fractal behavior, within som
range of length scales@1–3#. In many circumstances, a de
tailed knowledge of the internal structure of percolation cl
ters is required. In particular, for studying transport proces
near the percolation thresholdpc , a crucial role is played by
the complex topology of the available conducting pa
@4–7#.

It is known that atpc , the incipient infinite cluster exhib
its a variety of self-similar substructures and consequent
rich scenario of transport properties@4–7#. A prominent role
is played by the backbone of the cluster, defined as the
set of cluster sites carrying the current when a voltage
ference is applied between two sites~see@8# and references
therein!. Thus, the backbone structure solely determines
conductivity of the whole percolation network between bo
sites. The backbone of a percolation cluster is also usefu
a model of a porous medium containing long polymer cha
@9#. So far, much is known about structural and dynami
properties of percolation clusters, but little is known abo
the corresponding properties of the backbone.

In this paper, we report a detailed study of structural a
dynamical properties of the backbone of the incipient infin
cluster atpc in two and three dimensions. Actually, many
the exponents characterizing the structural and dynam
properties of the backbone are presently poorly known
particular, in three dimensions. To obtain accurate resu
we study the backbone in topological or chemical sp
@3,5#. The topological or chemical distancel between two
points on the cluster is defined as the length of the shor
path connecting them via nearest-neighbor cluster s
561063-651X/97/56~2!/1667~9!/$10.00
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Since our clusters are generated in chemical space~see be-
low!, this is the natural metric for measuring critical exp
nents. To this end, we first calculate the fractal dimension
the backbone in chemical space (l space! dl

B , and obtain the
fractal dimension in Euclidean space (r space! df

B , from the
relationdf

B5dl
B dmin , wheredmin is the fractal dimension of

the shortest path@3,5#. We next study the distribution func
tion FB(r ,l ), giving the probability that two backbone site
at distancer from each other are connected by a shortest p
of lengthl , as well as the related quantityl min

B (r ,Nav), giv-
ing the length of the minimal shortest path for backbone s
at distancer from each other as a function of the numb
Nav of configurations considered. To the best of our know
edge, these quantities have not been studied so far for
backbone. It is therefore interesting to calculateFB(r ,l )
and compare it with the corresponding structural funct
F(r ,l ) for the whole cluster, which is now known quit
accurately~for a recent work see Ref.@10#!. From the addi-
tional information obtained by studyingFB(r ,l ), we expect
to better understand the structural properties of the wh
cluster as well.

Regarding dynamical properties, we consider rand
walks on the backbone and calculate the mean square
placements of the walker as a function of time, in bothl and
r spaces. Finally, we consider the corresponding distribu
functionsPB(l ,t) and PB(r ,t), giving the probability den-
sity that the walker is, at timet, at the distancel and r ,
respectively, from its starting point att50. Following the
study of P(r ,t) for the whole cluster@11#, we also discuss
the question of the dependence ofPB(r ,t) on the number
Nav of backbone configurations taken into account in t
average.

The paper is organized as follows. In Sec. II, the frac
dimensions in chemical and Euclidean space are determi
1667 © 1997 The American Physical Society
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1668 56PORTO, BUNDE, HAVLIN, AND ROMAN
together with the distribution function of the Euclidean d
tancer between two backbone sites as a function of th
chemical distancel , and the scaling behavior of the shorte
path. In Sec. III, we study random walks on the backbo
both in chemical and Euclidean space, and determine
corresponding distribution functions as well as their first m
ments. Finally, in Sec. IV, we summarize our results.

II. STRUCTURAL PROPERTIES

We generate large percolation clusters at criticality w
the well-known Leath algorithm@12# on square and simple
cubic lattices. The Leath algorithm generates in every s
t the whole set of sites having a chemical distancel 5t from
the seed, i.e., in the first step all sites withl 51 are gener-
ated, in the second step all sites withl 52 and so on. The
corresponding backbone is obtained using an improved
sion of the ‘‘burning’’ algorithm@8# described in detail in
Appendix A. To perform the averages, we grow clusters
to a maximum chemical distancel max from the seed, with
l max52000 in two dimensions andl max51000 in three di-
mensions. To minimize the computer memory needed for
calculations, we estimate the minimum lattice sizesL re-
quired to generate such large clusters from a relation give
@11# ~see Appendix B for details!. We use L52801 in
d52 and L5685 in d53, which in both cases are muc
smaller thanL852l max11. Nevertheless,noneof the gen-
erated clusters reached the lattice boundaries. This mor
ficient use of computer memory, as well as the improv
burning algorithm, enables us to study much larger syste
than before, leading to more accurate estimates for the c

FIG. 1. Plot of the chemical dimensiondl
B as a function of

1/l for d52 @obtained from successive slopes of lnMB(l ) vs
lnl ]. The backbone is determined usingonesite on the last grown
chemical shell~open symbols! and all sites on the last grown
chemical shell~full symbols!. The plots are based on averages
MB(l ) over 80 000 cluster configurations, with a maximum chem
cal distancel max52000 ~open and full circles! and l max5400
~open and full triangles!. The results are summarized in Table I.
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cal exponents and the fractal dimensions.

A. Fractal dimensions

Because the clusters are generated in chemical spac
boundary effects occur when looking at properties that
pend on the chemical distancel , in contrast to Euclidean
space (r space!, where strong boundary effects are prese
Thus, the fractal dimensiondf

B of the backbone, defined b

^MB(r )&;r df
B
, is not determined directly, but instead w

study the mass-distance relation inl space according to

^MB~ l !&;l dl
B
, ~1!

wheredl
B is the fractal dimension of the backbone in chem

cal space. The two fractal dimensions are related
df

B5dl
Bdmin , wheredmin is the fractal dimension of the shor

est path and describes the scaling betweenr and l , i.e.,
^l (r )&;r dmin, with dmin51.13060.004 ind52 @13,14# and
dmin51.37460.004 ind53 @15#.

The results fordl
B are displayed in Fig. 1 ford52, and in

Fig. 2 for d53, where the successive slopes of lnMB(l ) vs
lnl as a function of 1/l are shown. The open symbols co
respond to the case in which the backbone is defined
tween the seed andone randomly chosen site on the la
grown chemical shell. Clearly, in this case the value ofdl

B

tends to decrease whenl →l max, since close tol max the
backbone grows nearly linear. This provides us with a n
merical lower bound for the actual value ofdl

B . A numerical
upper bound can be obtained by defining the backbone
tween the seed andall sites on the last grown chemical she

f
-

FIG. 2. Plot of the chemical dimensiondl
B as a function of

1/l for d53 @obtained from successive slopes of lnMB(l ) vs
lnl ]. The backbone is determined usingonesite on the last grown
chemical shell~open symbols! and all sites on the last grown
chemical shell~full symbols!. The plots are based on averages
MB(l ) over 80 000 cluster configurations, with a maximum chem
cal distancel max51000 ~open and full circles! and l max5200
~open and full triangles!. The results are summarized in Table I.



th

i
in
ts
-
ns
rro
u

n
n-
e

on

r-

-
ing

c-
at

n

luster

r

56 1669STRUCTURAL AND DYNAMICAL PROPERTIES OF THE . . .
The full symbols correspond to this case, where now
value ofdl

B tends to increase whenl →l max, since close to
l max the so defined backbone coincides with the cluster
self. Our estimated asymptotic values, obtained by fitt
two straight lines for both the lower and upper sets of poin
and extrapolating 1/l →0, are reported in Table I. The re
ported exponentsdl

B are the averages of these extrapolatio
while the extrapolated values allow us to estimate the e
bars. The obtained values are consistent with previously p
lished results, see, e.g.,@8#.

B. Distribution functions

Next, we consider the structural distribution functio
FB(r ,l ), giving the probability that two backbone sites co
nected by a shortest path of lengthl are at spatial distanc
r from each other. We assume forFB(r ,l ) a similar scaling
form as for the entire cluster~see e.g.,@5,10,14#!, i.e.,

FB~r ,l !5
1

l ñ d
f B~x!, ~2!

with the scaling variablex5r /l ñ and ñ [1/dmin , and
FB(r ,l )50 for l ,l min

B (r ,Nav). The quantityl min
B (r ,Nav)

is discussed in detail in Sec. III. As for the entire cluster@10#,
we expect that the scaling functionf B(x) cannot be fitted by
a simple product of a power law and an exponential functi
but displays a more general form

f B~x!5H c1
Bxg1

B
for x!1,

c2
Bxg2

B
exp@2aBxd# for x@1,

~3!

with two different exponentsg1
B and g2

B in the regimes

r /l ñ!1 andr /l ñ@1, respectively, andd[(12 ñ )21. The
normalization is given in the embeddingd-dimensional
space by*r d21FB(r ,l )dr 51. For convenience, we dete
mine numerically the distribution functionF̃B(r ,l ), related
to FB(r ,l ) by

F̃B~r ,l !5r d21FB~r ,l !5
1

r S r

l ñ D d

f B~x!, ~4!

which is normalized according to*F̃B(r ,l )dr 51. The
function r F̃B(r ,l ) vs r /l ñ is shown in Fig. 3 ford52 and

TABLE I. The chemical dimensiondl
B of the backbone obtained

from Figs. 1 and 2. The fractal dimensionsdf
B are calculated from

the relationdf
B5dl

Bdmin , with dmin51.13060.004 (d52) @13,14#
anddmin51.374 6 0.004 (d53) @15#.

Fractal dimension Lattice dimension
d52 d53 d>6

dl
B 1.4560.01 1.3660.02 1

df
B 1.6460.02 1.8760.03 2
e

t-
g
,

,
r

b-

,

d53, from which the exponentsg̃1
B and g̃2

B are determined,

which are related tog1
B and g2

B by g̃1
B5g1

B1d and

g̃2
B5g2

B1d, respectively. The results for the fitting param
eters are reported in Table II. We note that the correspond
distribution functionFB

(all)(r ,l ) for the backbone defined

TABLE II. The fitting parameters describing the scaling fun
tion f B(x) ~see Fig. 3! for the backbone of percolation clusters

criticality, where f B(x)5c1
Bxg1

B
for x!1 ~continuous line! and

f B(x)5c2
Bxg2

B
exp@2aBxd# for x@1 ~dashed line!, with

d[(12 ñ )21. The measured exponentsg̃1
B and g̃2

B are related to

g1
B und g2

B by g̃1
B5g1

B1d and g̃2
B5g2

B1d.

Structural exponents Lattice dimension
and prefactors d52 d53 d>6

g1
B 1.3060.20 1.0260.20 0

g2
B 1.9760.20 0.5960.20 0

g̃1
B 3.3060.20 4.0260.20

g̃2
B 3.9760.20 3.5960.20

c1
B 1.5060.20 4.6360.20

c2
B 3.1060.20 3.4360.20

aB 0.6260.20 0.9460.20

FIG. 3. Scaling plots of the distribution function for percolatio

backbonesr F̃B(r ,l ) vs r /l ñ , for ~a! d52, l 51000 ~circle!,
l 51400 ~full diamond!, and l 51800 ~square!, and ~b! d53,
l 5400 ~circle!, l 5600 ~full diamond!, and l 5800 ~square!. In
both cases, the plots are based on averages over 80 000 c
configurations, with a maximum chemical distancel max52000 in
d52 and l max51000 in d53. The lines represent our fits fo

r /l ñ!1 ~continuous line! and r /l ñ@1 ~dashed line!. The fitting
parameters are summarized in Table II.
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1670 56PORTO, BUNDE, HAVLIN, AND ROMAN
between the seed and all sites on the last grown chem
shell is identical toFB(r ,l ) within the current numerica
accuracy.

C. Minimal shortest path

We discuss next the behavior of the minimal shortest p
l min

B (r ,Nav) determining the values ofl at which
FB(r ,l )50. This quantity plays a very important role fo
determining transport properties: The fact that the minim
shortest pathl min

B (r ,Nav) shows an explicit dependence o
the number of configurationsNav considered has importan
consequences for dynamical properties as, e.g., ran
walks, fractons or electronic wave functions@11#. In this pa-
per we restrict ourselves to the discussion of the effect
random walks, see Sec. III.

We expect a scaling behavior ofl min
B (r ,Nav), as a func-

tion of the Euclidean distancer and the number of configu
rationsNav considered, similar to that on the entire clus
@11#, i.e.,

l min
B ~r ,Nav!5H r for r ,r c

B~Nav!,

amin
B ~Nav!r

dmin for r .r c
B~Nav!.

~5!

Notice that below the crossover distancer c
B(Nav), the mini-

mal chemical distancel min
B (r ,Nav) is independent of the

number of configurationsNav considered, while for
r .r c

B(Nav) it depends explicitly onNav. To obtain the cross-
over distancer c

B(Nav) analytically, we consider the probabi
ity WNav

B to find a shortest path of lengthl 5r 5r c
B within

Nav backbone configurations, whereWNav

B 5Nav
21 holds. For

the entire cluster the relationWNav
5zpc

r c was used in@11#,

where z is the coordination number of the lattice. For th
backbone we expect a similar relationWNav

B 5zeffpc
r c , where

z is replaced by an effective coordination numberzeff , which
incorporates the probability that the considered site belo
to the backbone. Since the backbone is more dilute than
whole cluster, we have in average a smaller connectivity,
zeff,z. This yields

r c
B~Nav!5

lnzeff1 lnNav

ln~1/pc!
, ~6!

wherezeff is not known analytically and must be determin
a posteriori.

To determineamin
B (Nav), we assume, as for the entir

cluster, the scaling behaviorl min
B (r ,Nav)5r c

B(Nav)gB@r /
r c

B(Nav)#. To fulfill Eq. ~5!, the scaling functiongB(x) must
behave asgB(x)5x when x,1 and gB(x);xdmin when
x.1. This yields

amin
B ~Nav!5aB@r c

B~Nav!#
12dmin, ~7!

where the prefactoraB remains to be determined. Results f
l min

B (r ,Nav)/r c
B(Nav) versusr /r c

B(Nav) for different values of
Nav are shown in Fig. 4 ford52 andd53. The shown lines
indicate the predicted exponents, 1 forr /r c

B(Nav),1 and
dmin for r /r c

B(Nav).1. The values ofzeff are determined such
that the best data collapse is achieved, andaB5x

3

12dmin,
al

th

l

m

n

r

s
he
.,

wherex3 is the value ofx5r /r c
B(Nav) at the crossover. The

results are reported in Table III. We note that the correspo
ing structural quantityl min

B,(all)(r ,Nav) for the backbone de-
fined between the seed and all sites on the last grown ch
cal shell is identical tol min

B (r ,Nav) within the current
numerical accurancy.

III. DYNAMICAL PROPERTIES

In the following, we consider dynamical properties of th
backbone by studying random walks, both in Euclidean a
chemical space. To this end, we employ the exact enum
tion method@5#. For the present purposes, clusters are gro
on square and simple cubic lattices up to a maximum che
cal distancel max51000 in d52 and l max5400 in d53.
Clusters which have not reached the chemical shelll max are

FIG. 4. Scaling plots of the minimum chemical distan
l min

B (r ,Nav)/r c(Nav) vs r /r c(Nav), for ~a! d52 and~b! d53, both
for Nav51 ~circle!, Nav54 ~full diamond!, Nav520 ~square!,
Nav5100 ~full triangle!, and Nav5750 ~star!. In both cases, the
plots are based on a total ensemble of 80 000 cluster configurat
with a maximum chemical distancel max52000 in d52 and
l max51000 ind53. The lines represent the predicted exponen
for r /r c(Nav),1 ~continuous line! and dmin for r /r c(Nav).1
~dashed line!. The results are summarized in Table III.

TABLE III. Structural constants, defined in Eqs.~6! and~7! and
obtained from the data collapse shown in Fig. 4.

Structural constant Lattice dimension
d52 d53 d>6

zeff 2.160.2 1.260.2 1
aB 1.0260.05 0.9560.07
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discarded. Again, the lattice sizes are estimated with
method discussed in Appendix B. In our simulations,
consider random walks oftmax54000 andtmax51600 time
steps ind52 andd53, respectively.

A. Mean displacements

The mean displacements aftert time steps in chemica
and Euclidean metric are given by

^l B~ t !&;t1/dw
Bl

~8!

and

^r B~ t !&;t1/dw
B
, ~9!

from which the fractal dimensions of the random walkdw
Bl

anddw
B are determined. The results fordw

Bl anddw
B are dis-

played in Fig. 5 ford52 and Fig. 6 ford53, where the
successive slopes of lnl B(t) and lnrB(t) vs lnt as a function
of 1/t are shown. The open circles correspond to the cas
which the backbone is defined between the seed andone
randomly chosen site on the chemical shelll max, and the
full circles to the case in which the backbone is defined
tween the seed andall sites on the chemical shelll max. Both
sets of points coincide as long as the random walker ma
explores regions of the backbone where both algorith
yield similar structures. This provides us with numerical u
per and lower bounds for the actual values ofdw

Bl and dw
B .

Our estimated asymptotic values, obtained by fitting t
straight lines for both the lower and upper sets of points,

FIG. 5. Plot of the fractal dimensionsdw
B anddw

Bl of the random
walk as a function of 1/t for d52 @obtained from successive slope
of lnrB(t) and lnl B(t) vs lnt, respectively#. The backbone is deter
mined usingonesite on the chemical shelll max ~open circles! and
all sites on the chemical shelll max ~full circles!. The plots are
based on averages ofr B(t) and l B(t) over 10 000 cluster configu
rations, with a maximum chemical distancel max51000 and
tmax54000 time steps. The results are summarized in Table IV
e

in

-

ly
s
-

o
d

extrapolating 1/t→0, are reported in Table IV. The reporte
exponentsdw

Bl and dw
B are the averages of these extrapo

tions, while the extrapolated values allow us to estimate
error bars. The obtained values are consistent with pr
ously published results, see, e.g.,@16#.

B. Distribution functions

The probability of a random walker to be at chemic
distancel and Euclidean distancer after t time steps is
given by the distribution functionsPB(l ,t) andPB(r ,t), re-
spectively. The mean displacement^l B(t)& and^r B(t)& dis-
cussed above are the first moments of these distributions
the distribution function in chemical space we expect a fo
similar to that for the entire cluster@5,6#, i.e.,

PB~ l ,t !

PB~0,t !
;expF2S l

j l
BD vBG , ~10!

FIG. 6. Plot of the fractal dimensionsdw
B anddw

Bl of the random
walk as a function of 1/t for d53 @obtained from successive slope
of lnrB(t) and lnl B(t) vs lnt, respectively#. The backbone is deter
mined usingonesite on the chemical shelll max ~open circles! and
all sites on the chemical shelll max ~full circles!. The plots are
based on averages ofr B(t) and l B(t) over 12 000 cluster configu
rations, with a maximum chemical distancel max5400 and
tmax51600 time steps. The results are summarized in Table IV

TABLE IV. Summary of the results for the fractal dimension
dw

Bl anddw
B of the random walk on the backbone~see Figs. 5 and 6!.

Diffusion exponent Lattice dimension
d52 d53 d>6

dw
Bl 2.2860.03 2.2560.03 2

dw
B 2.6260.03 3.0960.03 4
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1672 56PORTO, BUNDE, HAVLIN, AND ROMAN
with j l
B;^l B(t)& and PB(0,t);@j l

B#2dl
B
, where^l B(t)& is

the mean displacement in chemical metric defined abo

The distribution is normalized as* l dl
B

21PB(l ,t)dl 51. To
obtain the exponentvB , we plot 2 ln@PB(l ,t)/PB(0,t)# vs
l /j l

B in double logarithmic form in Fig. 7 ford52 and
d53. Similar to the entire cluster, we findvB5dw

Bl for
l /j l

B,1 andvB5dw
Bl /(dw

Bl 21) for l /j l
B.1.

To analytically calculate the distribution functio
PB(r ,t;Nav)[^PB(r ,t)&Nav

for a random walker in Euclidean

space, averaged overNav configurations, we follow Refs
@6,11# and writePB(r ,t;Nav) as a convolution integral of the
distribution of a random walker inl space,PB(l ,t), and the
structural functionFB(r ,l ), i.e.,

FIG. 7. Scaling plots of the distribution functio
2 ln@PB(l ,t)/PB(0,t)# vs l /j l

B , for ~a! d52, t51000 ~circle!,
t52000 ~full diamond!, and t54000 ~square!, and ~b! d53,
t5400 ~circle!, t5800 ~full diamond!, and t51600 ~square!, with
j l

B;^l B(t)&. In both cases, the plots are based on averages
more than 10 000 cluster configurations, with a maximum chem
distancel max51000 in d52 and l max5400 in d53. The lines
represent the predicted exponentsdw

Bl for l /j l
B,1 ~continuous

line! anddw
Bl /(dw

Bl 21) for l /j l
B.1 ~dashed line!.
e.PB~r ,t;Nav!5r d2df
BE

l min
B

~r ,Nav!

`

l dl
B

21FB~r ,l !PB~ l ,t !dl ,

~11!

wherel min
B (r ,Nav) is the length of the minimal shortest pa

discussed in Sec. II. The dependence of the lower integra
limit l min

B (r ,Nav) on the number of configurationsNav con-
sidered introduces a second crossover distancer 3(Nav) and
causes a dependence ofPB(r ,t;Nav) onNav. The distribution
PB(r ,t;Nav) is normalized on the backbone b

*r df
B

21PB(r ,t;Nav)dr51. Following the procedure de
scribed in@11,17#, we obtain, in full analogy to the result
for percolation clusters,

er
al

FIG. 8. Scaling plots of the distribution functio
2 ln@PB(r ,t;Nav)/PB(0,t;Nav)# vs r /j r

B , for ~a! d52, t51000 and
~b! d53, t5400, both forNav51, i.e., typical average~circle!,
Nav5200 ~full diamond!, and Nav510 000 ~square!, with
j r

B;^r B(t)&. In both cases, the plots are based on a total ensem
of more than 10 000 cluster configurations, with a maximum che
cal distancel max51000 andl max5400 in d52 andd53, respec-
tively. The lines represent the predicted exponentsg1

B1d2df
B for

r ,r 1
B ~continuous line!, dw

B/(dw
B21) for r 1

B,r ,r 3(Nav) ~dashed
line!, anddw

B/(dw
Bl 21) for r .r 3(Nav) ~dashed-dotted line!.
PB~r ,t;Nav!

PB~0,t;Nav!
;5

12cS r

j r
BD g1

B
1d2df

B

for r ,r 1
B,

expF2c8S r

j r
BD dw

B/~dw
B

21!G for r 1
B,r ,r 3

B ~Nav!,

expF2c9@r c
B~Nav!#

dw
Bl

~dmin21!/~dw
Bl

21!S r

j r
BD dw

B/~dw
Bl

21!G for r .r 3
B ~Nav!

~12!
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~for the regimer ,r 1
B see also@18,19#!. The crossover dis-

tancesr 1
B and r 3

B (Nav) are given by

r 1
B5j r

BF ~g2
B1d!~dmin21!

aBdmin
G ~dw

B
21!/dw

B

~13!

and

r x
B~Nav!5j r

Ba
B
21/[dw

B
~dmin21!/~dw

B
21!]

@r c
B~Nav!#

~dw
B

21!/dw
B
,
~14!

with j r
B;^r B(t)&, where^r B(t)& is the mean displacement i

the Euclidean space defined above. Hence, for large
tancesr , the relevant length scale increases logarithmica
with the numberNav of configurations. Belowr 3

B (Nav),
PB(r ,t)5PB(r ,t;Nav) is independent ofNav, while above
r 3

B (Nav), the self-averaging hypothesis breaks down a
PB(r ,t;Nav) depends logarithmically onNav. The so-called
typical average ^PB(r ,t)& typ is equivalent to the cas
Nav51, i.e., ^PB(r ,t)& typ[PB(r ,t;1).

To verify our predictions given in Eqs.~12!–~14!, we plot
2 ln@PB(r ,t;Nav)/PB(0,t;Nav)# vs r /j r

B in double logarithmic
form in Fig. 8 ford52 andd53. The shown lines indicate
our predicted exponentsg1

B1d2df
B for r ,r 1

B , dw
B/(dw

B21)
for r 1

B,r ,r 3
B (Nav), anddw

B/(dw
Bl 21) for r .r 3(Nav). The

numerical data are well described by our analytical resul

IV. SUMMARY

In this paper we present extensive numerical simulati
concerning the structural and dynamical properties of
backbone of percolation clusters at criticality in two a
three dimensions. An improved burning algorithm, intr
duced in this work, enables us to study much larger syst
than before, therefore leading to improved estimates for
fractal dimensions of the backbonedl

B anddf
B , as well as for

the corresponding fractal dimensions of the random w
dw

Bl and dw
B . We also calculate the structural distributio

function FB(r ,l ), the length of the minimal shortest pa
l min

B (r ,Nav), and the distribution function of a random
walker in chemical and Euclidean spacePB(l ,t) and
PB(r ,t;Nav), respectively.

We note that fromdf
B and dw

B the conductivity exponen

m̃, which describes the scaling behavior of the conductiv
s of a percolation system near criticality as a function of t
system size L, i.e., s;L2m̃, can be calculated by
m̃5dw

B2df
B1d22 @5,6#. Our results fordf

B and dw
B yield

m̃50.9860.03 in d52 and m̃52.2260.03 in d53. These
results are in very good agreement with the valu
m̃50.9760.01 andm̃52.260.1 for d52 andd53, respec-
tively, obtained from other simulations@3#.
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APPENDIX A: IMPROVED ‘‘BURNING’’ ALGORITHM

The backbones studied in this paper are generated u
an improved version of the burning algorithm. The ba
burning algorithm was first introduced in@8#. We review the
above algorithm and consider its improvement.

To use the burning algorithm, one has to find the chem
distancesl to the starting site of the backbone and the si
where loops of cluster sites relative to the starting site cl
up ~loop sites!. Using the Leath method, the sites of th
cluster are generated with increasing chemical distancl

from the seed. Therefore it is convenient to define the ba
bone between the seed~starting site! and one randomly cho
sen site on the last grown chemical shell of the cluster~end
site! @20#. In such a case the chemical distancesl to the
starting site are trivially identical to those obtained by Lea
growth. By choosing the end site of the backbone on the
grown chemical shell we ensure that no sites with a lar
chemical distancel to the starting site than the end si
exists. In addition, the loop sites are easy to identify dur
Leath growth, as they occur with increasing chemical d
tancel from the seed.

The burning algorithm is divided into two parts. In th
first part we start burning the end site, becoming a burn
site. Then, its nearest-neighbor cluster sites are burnt,
become the new burning sites. This process is repeated
each burning site, with the condition that only neare
neighbor sites are burnt which have a chemical distancel to
the starting site smaller than the burning site itself. This p
of the burning algorithm ends when the starting site
reached. The thus obtained burnt sites are located along
shortest path between the starting and the end site, and
the so-called skeleton or elastic backbone@8,21#; an example
is shown in Fig. 9~a!.

In the second part of the algorithm we deal with the lo
sites. At the beginning all loop sites are considered as ac
and stored in a list sorted by increasing chemical dista
l to the starting site. We start burning the first loop site, i.
the one with the smallest chemical distancel to the starting
site, and proceed in the same way as for the skeleton
during this process two or more different sites are reac
which are known to be part of the backbone, then the bu
sites~including the loop site! belong to the backbone, and th
corresponding loop site is no longer active and is remo
from the list. Otherwise it cannot be decided yet wheth
these sites belong to the backbone or not, and one ha
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FIG. 9. Example for a configu
ration of a cluster and its back
bone. The two end sites definin
the backbone are colored in ligh
gray, the sites found so far whic
belong to the backbone are in da
gray, and the remaining cluster i
black. The cluster sites marked b
a white square are loop site
named ‘‘1,’’ ‘‘2,’’ and ‘‘3.’’ The
white arrows indicate the burnin
processes and their directions,
discussed in Appendix A. The row
at the top of the figure shows th
different steps of the sequentia
burning algorithm with the errone
ous result ~d1!, the row in the
middle the ‘‘back-start’’ algo-
rithm, and the row at the bottom
the improved burning algorithm
with the correct results~e2! and
~e3!, respectively.
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restore the previous state of the burnt sites including the l
site, which remains active. In both cases one can cont
treating the next loop site~having a chemical distancel to
the starting site equal or larger than the previous one! in the
same way as described above. If the active loop site with
largest chemical distancel has been considered, one sta
from the active loop site with the smallestl . The algorithm
ends when no new site has been found belonging to
backbone during a complete run through the list of act
loop sites.

However, this sequential algorithm described above g
erally produces erroneous results, such that sites not bel
ing to the backbone are added to it@see Fig. 9~c1! and~d1!#.
To avoid such failures, one has to start again at the ac
loop site with the smallest chemical distancel to the starting
site whenever adding a new part to the backbone, instea
proceeding sequentially. By doing this, the backbone is
termined correctly@see Fig. 9~c2!, ~d2!, and~e2!#. Unfortu-
nately this ‘‘back-start’’ algorithm is very time consuming
since now the computing time depends quadratically on
number of loop sites@22#.

The improvement of the algorithm is based on a sim
observation: The reason for the erroneous outcome of
sequential version is due to the likely existence of so-ca
‘‘tadpoles,’’ i.e., a group of sites which is linked to the actu
backbone through a singly connected path. According to
9~a!, the burning starting at the first loop site~denoted ‘‘1’’
in the figure! reaches the so far known backbone in o
point, which coincides with the starting site. Therefore, t
burnt sites are not identified as backbone sites and are
stored to their previous state. A new burning process, star
from the next loop site,~denoted ‘‘2’’!, as shown in Fig.
9~b!, reaches the backbone in two points, one is the star
site and the second a skeleton site~nearest-neighbor site o
‘‘2’’ to the right !, and these burnt sites are correctly iden
fied as backbone sites. Proceeding sequentially in the lis
active loop sites in such a situation, i.e., by starting a burn
process from the site ‘‘3,’’ as shown in Fig. 9~c1!, instead of
p
e

e

e
e

n-
g-

e

of
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e

e
e

d
l
g.

e
re-
g

g

-
of
g

starting again at the active loop site with the smallest che
cal distancel to the starting site~i.e., site ‘‘1’’!, as shown in
Fig. 9 ~c2!, yield the erroneous result shown in Fig. 9~d1!.
This failure can be easily prevented, if it is realized during
burning process that only one site is burning during a bu
ing step, reflecting the singly connected structure of the p
and the backbone has not yet been reached, see Fig. 9~c3!.
In such a case, one can immediately stop the burning pro
from this loop site, keep the loop site active, and restore
previous state of the corresponding burnt sites. In addit
one can always proceed sequentially, even after addin
new part to the backbone, as shown in Fig. 9~c3!, ~d3!, and
~e3!, and as a result the computing time scales only linea
with the number of loop sites.

APPENDIX B: ESTIMATE FOR THE LATTICE SIZE
FOR PERCOLATION CLUSTERS AT CRITICALITY

To minimize the computer memory needed for the sim
lations, we estimate the minimum lattice sizeL52R11 re-
quired to generate a cluster ofl max shells, with the condition
that its radial extentr max will not exceedR. To this end, we
employ the relationl min(r ,Nav)5amin(Nav)r

dmin @cf. Eq.~5!#
valid in the regime r .r c(Nav), where amin(Nav)
5a@r c(Nav)#12dmin, a>1, and r c(Nav)5(lnz1lnNav)/
ln(1/pc) @11#. From these relations one can estima
r max>(l max/@r c(Nav)#12dmin)1/dmin. In our simulations we
consider typicallyNav>106 configurations, so that for deter
mining, e.g., structural properties withl max52000 and
l max51000 for d52 and d53, respectively, we estimat
r max>1228 andr max>309. We have actually usedR51400
and R5342 in d52 andd53, respectively, which in both
cases are much smaller thanl max, and actually correspond
to the value ofr max obtained with the above formula fo
more than 109 configurations.
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