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Casimir forces in binary liquid mixtures

Michael Krech
Fachbereich Physik, Bergische Universita¨t Wuppertal, 42097 Wuppertal, Germany

~Received 12 December 1996!

If two or more bodies are immersed in a critical fluid, critical fluctuations of the order parameter generate
long-ranged forces between these bodies. Due to the underlying mechanism these forces are close analogs of
the well-known Casimir forces in electromagnetism. For the special case of a binary liquid mixture near its
critical demixing transition, confined to a simple parallel plate geometry, it is shown that the corresponding
critical Casimir forces can be of the same order of magnitude as the dispersion~van der Waals! forces between
the plates. In wetting experiments or by direct measurements with an atomic force microscope, the resulting
modification of the usual dispersion forces in the critical regime should therefore be easily detectable. Ana-
lytical estimates for the Casimir amplitudesD in d542« are compared with corresponding Monte Carlo
results ind53, and their quantitative effect on the thickness of critical wetting layers and on force measure-
ments is discussed.@S1063-651X~97!04207-4#

PACS number~s!: 64.60.Fr, 05.70.Jk, 68.35.Rh, 68.15.1e
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I. INTRODUCTION

The phase diagram of a fluid is influenced by the prese
of a surface in many different ways. Most prominent is t
modification of the critical behavior of a fluid near a wa
@1,2#, and the occurrence of new phase transitions induce
the wall such as wetting and drying@3#. For binary liquid
mixtures external walls usually manifest themselves b
preferential affinity of the wall material for one of the com
ponents@4#, which in the vicinity of the critical demixing
point leads to the phenomenon of critical adsorption of
preferred component@5,6#. If the system is made finite by th
introduction of a second wall or by confining the system
another finite geometry the critical behavior of the fluid
modified again if the correlation length becomes compara
to the system size@7–9#, where the size dependence of the
modynamic functions takes a scaling form. A finite geome
may also be generated spontaneously by a critical fluid
e.g., a binary liquid mixture near its critical demixing trans
tion forms a macroscopic wetting layer on the surface o
substrate@3,10#. With the introduction of the second surfac
the variety of phenomena in the confined fluid goes far
yond critical finite-size scaling. Apart from the shift of th
critical point of the system@11,12#, one encounters the phe
nomenon of capillary condensation@13# if the confining
walls of the film geometry consist of the same material. T
confinement of the fluid causes the liquid vapor coexiste
line to shift away from the coexistence line of the bulk flu
into the one-phase regime of, e.g., the bulk vapor@12,13#.
For not too small wall separations a first-order phase tra
tion occurs from a confined vapor to a confined fluid as
undersaturation of the vapor is lowered at fixed temperat
In a constant-temperature plane of the phase diagram the
of two-phase coexistence is terminated by a capillary crit
point characterized by a critical undersaturation, and a c
cal wall separation beyond which capillary condensation
longer occurs@13#. Fluid layers growing on the inner wall
of the capillary reduce its effective width, and therefore ge
erate correction terms to the well-known Kelvin equatio
which describes the aforementioned shift of the liquid va
561063-651X/97/56~2!/1642~18!/$10.00
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coexistence line as a function of the width of the capilla
@14,15#.

From the theoretical point of view these phenomena
be described using density-functional theory@13# and com-
puter simulations of lattice-gas models@12,15#. These lattice
gases are equivalent to Ising models, where the presenc
the walls is described bysurface fieldswhich impose a finite
surface magnetization on the Ising system. Density or c
centration profiles of confined fluids or binary liquid mix
tures, respectively, then translate to themagnetization profile
of the Ising model. For the description of capillary conde
sation an Ising model with surface fields of the same sign
appropriate. The behavior of the system changes drastic
if opposingsurface fields are considered. For a confined
nary liquid mixture this means that the walls perferdifferent
components. It turns out that in this case new quasiwet
transitions occur which can be first-order, critical, and t
critical, and converge to the usual wetting transitions
growing wall separation@16#. Furthermore, two phase coex
istence becomes restricted to temperatures locatedbelow the
wetting temperature, if the surface fields are equal in op
site @17,18#. The scaling behavior of the magnetization pr
file of an Ising model with opposing surface fields, and t
dependence of the interface position on the strength of
surface fields and the temperature, have been studied
oughly @19,20#. Capillary condensation no longer occurs; i
stead one observes the interface delocalization transit
i.e., the interface in the magnetization profile detaches fr
one of the walls and moves to the midplane of the film. T
transition is second order, and its critical point can be id
tified with the shifted critical point of the confined system
which in this case is located on the temperature axis@18#.
Above the critical temperature the magnetization profiles
come perfectly antisymmetric about the midplane of the fil
By increasing the strength of the surface fields the criti
temperature diminishes, and only in the limit of infinite
strong opposing surface fields does the interface deloca
tion transition become suppressed at all.

Confined critical fluids also generate long-ranged forc
between the confining walls@21#, a phenomenon which is a
1642 © 1997 The American Physical Society
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56 1643CASIMIR FORCES IN BINARY LIQUID MIXTURES
‘direct analog of the well-known Casimir effect in electr
magnetism@22#. Contrary to the usual dispersion force
which are still under investigation for bodies with curve
surfaces@23–25# and in the presence of surface roughne
@26,27#, critical Casimir forces are governed byuniversal
scaling functions@9,28#. At the bulk critical point these scal
ing functions reduce to the universal Casimir amplitud
@9,28#. Especially for the strip geometry a variety of exa
results are known from conformal invariance@29#. Away
from the critical point the scaling functions are only know
exactly for an Ising model confined to a strip ind52 @30#. In
higher dimensions only the spherical model has given ac
to further exact results for the scaling function of the Casim
force @31#. For the O(N) universality class ind53, so far
only approximate results are known based on real-sp
renormalization @32#, the field-theoretic renormalizatio
group @28#, and Monte Carlo simulations@33# for the film
geometry. More recently Casimir forces between spher
particles immersed in a critical O(N) symmetric system have
been investigated by field-theoretic methods augmented
conformal invariance considerations@34#. The field-theoretic
treatment of critical systems confined to finite geometrie
notoriously difficult, because the theory has to interpol
properly between critical behavior in different dimension
There has been remarkable progress in devising alterna
renormalization prescriptions beyond the standard mini
subtraction scheme@35#, and in constructing effective ac
tions for the Ising@36# and the more general O(N) univer-
sality classes@37#. However, these approaches have been
vised for finite systems with symmetry-conservingboundary
conditions; their implementation for systems with symmet
breakingboundary conditions~surface fields!, in which we
are interested here, is still lacking. Within the framework
Ginzburg-Landau descriptions of critical finite systems in
presence of surface fields, the theoretical treatment has
limited to mean-field considerations for the film geome
@8,11,32,38,39# and concentric spheres@40# which can be
mapped onto two-sphere and wall-sphere geometriesat the
bulk critical point by conformal transformations~see Ref.
@34#!. For tricritical systems between parallel plates, a th
ough mean-field analysis has also been performed@41#. In
this paper we will concentrate on the Casimir forces in cr
cal films in the presence of surface fields, which is an
equate description for confined binary liquid mixtures@4#.

The remainder of the presentation proceeds as follows
Sec. II we introduce the field-theoretic model of a confin
binary liquid mixture close to its critical demixing point, an
an adequate Ising model for which the Monte Carlo simu
tions of the Casimir force are performed. Section III is d
voted to a survey of mean-field results for the scaling fu
tions of the Casimir force. In Sec. IV we present one-lo
results and Monte Carlo estimates for the universal Cas
amplitudes which characterize the strength of the Cas
forces at bulk criticality. We restrict ourselves to the bul
critical point, because the one-loop calculations are base
the standard« expansion which cannot cope with the dime
sional crossover. In Sec. V we discuss implications of
results presented in Sec. IV for force measurements and
ting experiments with critical binary liquid mixtures, and w
summarize the main results in Sec. VI. The one-loop ca
lation requires a knowledge of the mean-field order para
s
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eter profiles which are rederived and discussed in Appen
A. The eigenmode spectra are derived in Appendix B, a
the regularization of the one-loop mode sums is describe
Appendix C.

II. MODEL

For the analytical part of the current investigation t
standardf4 Ginzburg-Landau HamiltonianH5Hb1Hs for
a O(N) symmetric critical system in a parallel plate geom
etry is used. Specifically, the model is defined by the b
Hamiltonian

Hb@F#5E dd21xE
0

L

dzH 1

2
~¹F !21

t

2
F21

g

4!
~F2!2J ,

~2.1!

where L is the Film thickness, F[
„F1(x,z), . . . ,FN(x,z)… is the N-component order param
eter at the lateral positionx and the perpendicular positio
z (0,z,L), t is the bare reduced temperature, andg is the
bare coupling constant. The presence of the surfaces g
rise to the surface contribution

Hs@F#5E dd21xH c1

2
@F~x,0!#21

c2

2
@F~x,L !#2

2h1•F~x,0!2h2•F~x,L !,J ~2.2!

to the Ginzburg-Landau Hamiltonian, wherec1 and c2 are
the surface enhancements which characterize the surface
versality class@2#. In mean-field theory and within the di
mensional regularization scheme for the field-theore
renormalization group,ci.0 defines theordinary ~O! sur-
face universality class andci,0 defines theextraordinary
(E) surface universality class. The leading critical behav
of a semi-infinitesystem with an O or anE surface is de-
scribed by the twostable renormalization-groupfixed-point
valuesc51` and c52`, respectively. Finite positive o
negative values ofci only yield corrections to the leading
behavior. Within this settingc50 is anunstablefixed point,
so that (t,c)5(0,0) has the meaning of amulticritical point
at which both the bulk and the surface of a semi-infin
systemsimultaneouslyundergo a second-order phase tran
tion @2#. This mulitcritical point defines a surface universali
class in its own right which is commonly denoted as t
surface-bulk~SB! or special universality class. In the lan
guage of a spin model,c denotes the deviation of the ex
change interaction between spins in the surface from
value at the multicritical point@see also Eq.~2.3! below#.

The quantitiesh1 andh2 denote surface fields which ex
plicitly break the O(N) symmetry of the model. In case of
broken symmetry at the surface in principle also cubic s
face fields need to be considered@5#. However, for the in-
vestigation of theleadingcritical behavior in the presence o
nonzero linear surface fields cubic surface fields can be
regarded@5#.

As pointed out in Sec. I, a wall which is in contact with
binary liquid mixture will in general show some preferenti
affinity for one of the components so that the composit
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1644 56MICHAEL KRECH
profile varies as a function of the perpendicular coordin
z. This situation can be represented by settingc1>0 and
c2>0 in Eq. ~2.2!, and prescribing finite values for the su
face fieldsh1 and h2. The phase transition in the bulk i
presence of nonzero surface fields is called thenormal tran-
sition @42#. As far as the leading critical behavior is co
cerned, the normal transition is equivalent to the usual
traordinary transition@2,42#, which can be represented b
setting h15h250 and choosingc1,0 and c2,0. In the
following we will therefore exclusively use the surface fie
picture of the extraordinary transition.

In the field-theoretic analysis only the cases of stric
parallel and strictly antiparallel surface field
hi5(hi ,0, . . . ,0), i 51 and 2, will be considered. For th
leading critical behavior it is sufficient to discuss only t
limiting casesh1 ,h2→6` @2#. The above restriction to par
allel and antiparallel surface fields then means that we o
consider the two casesh15h2→1` and h152h2→1`.
To simplify the notation, we will refer to the former case
the (1,1) boundary condition and to the latter case as
(1,2) boundary condition, which are the only combinatio
(E,E) of the E surface universality class in the film geom
etry considered here. One can also combine a symme
breakingE surface with a symmetry conserving O or S
surface. However, as will be demonstrated below, the co
binations~O,E) and (SB,E) can be extracted from the analy
sis of the cases (1,2) and (1,1), respectively.

For the numerical part of this investigation we restr
ourselves to the caseN51, which is the most interesting on
in view of applications of the results to binary liquid mix
tures. The simulations are performed for a spin-1

2 Ising model
confined to a film geometry ind53 dimensions defined by
the Hamiltonian

HI52J (
^~x,z!,~x8,z8!&

s~x,z!s~x8,z8!2H1(
x

s~x,1!

2H2(
x

s~x,L !, ~2.3!

where J is the excange coupling constant,^(x,z),(x8,z8)&
denotes a nearest-neighbor pair of spins, and the s
s(x,z) can take the values 1 and21. The underlying lattice
is supposed to be simple cubic withL8 lattices sites and
periodic boundary conditions in thex andy directions. In the
z direction the lattice hasL!L8 sites, and the missing bond
in the two surface layers atz51 andz5L are left open. In
order to simulate the model at the normal transition, Eq.~2.3!
contains two surface terms by which the spins in the t
surface layers are coupled to surface fieldsH1 and H2, re-
spectively. Infinite surface fields are simply realized by fi
ing all spins in the surface to a fixed value 1 or21 depend-
ing on the sign of the surface field. In the model defined
Eq. ~2.3! the surface exchange coupling constantJ1 has the
fixed valueJ15J. It has been shown by Monte Carlo sim
lations of spin-12 Ising models that the SB multicritical poin
is characterized by the special valueJ1c.1.50J @43# of the
surface coupling constantJ1. Apart from corrections to scal
ing the O surface universality class is represented by
condition J1,J1c @2# which is fulfilled by Eq.~2.3! due to
J15J,J1c . Therefore only the O surface universality cla
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(H150 or H250) and theE surface universality class
(H1Þ0 or H2Þ0) can be studied with the above Isin
model Hamiltonian. The film geometry underlying Eq.~2.3!
then allows the investigation of the four combinations~O,O!,
(O,E), (1,1), and (1,2) of boundary conditions by a
Monte-Carlo simulation, where the combination (O,E)
means (O,1) or, equivalently, (O,2). The principal setup
of a Monte Carlo algorithm for a measurement of the C
simir force in lattice models is described in Ref.@33#, to
which the reader is referred for further details.

III. LANDAU THEORY

The presence of a symmetry breaking surface field
plies a nonvanishing order-parameter profile for allt ~see
Appendix A!, which substantially complicates the field
theoretic analysis of the Casimir effect as compared to
case of symmetry-conserving boundary conditions discus
in Ref. @28#. On the other hand, the leading~mean field!
contribution to the Casimir amplitude can be determin
without any detailed knowledge about the functional form
the order-parameter profile. We briefly illustrate this for t
caset50 andN51, i.e.,F5(F,0, . . . ,0) in Eqs.~2.1! and
~2.2!. In the mean-field approximation the order-parame
profile has the formF̄(x,z)5„M (z),0, . . . ,0…, whereM (z)
solves the Euler-Lagrange equations given by Eqs.~A1! and
~A2!. Inserting F̄ into Eqs. ~2.1! and ~2.2! for t50 and
integrating by parts using Eqs.~A1!, ~A2!, and ~A4! H@F̄#
can be evaluated without solving the Euler-Lagrange eq
tions for M (z) explicitly. The result is the mean-field fre
energy of the film at bulk criticality, and is given by

H@F̄#5
c1

6
M2~0!1

c2

6
M2~L !2

2

3
h1M ~0!2

2

3
h2M ~L !

1
L

3F1

2
M 82~z0!2

g

4!
M4~z0!G , ~3.1!

whereh1 and h2 denote the first components ofh1 and h2,
respectively, and z0 is an arbitrary reference poin
0<z0<L between the two surfaces of the film. The terms
the first line of Eq.~3.1! constitute the surface contribution t
the mean-field free energy and the contribution in the sec
line of Eq. ~3.1! is the finite-size part, where the squa
bracket yields the Casimir force~see below!. As a direct
implication of Eq.~A4! one finds that the above expressio
for the Casimir force does not depend on the reference p
z0. Note that due tot50 the bulk contribution to Eq.~3.1!
vanishes identically. FortÞ0 H@F̄# cannot be expressed i
the same closed form as given by Eq.~3.1!, and we therefore
resort to the zz component T'' of the stress tensor
Tkl(x,z) in order to find a more general expression for t
Casimir force. The stress tensorTkl is given by@44#

Tkl5
]F

] xk
•

]F

] xl
2dklF1

2
~¹F !21

t

2
F21

g

4!
~F2!2G

2F d22

4~d21!
1O~g3!GF ]2

]xk]xl
2dkl¹

2GF2, ~3.2!

wheret andg have the same meaning as in Eq.~2.1!. The
scaling dimension ofTkl is given by the spatial dimensio
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56 1645CASIMIR FORCES IN BINARY LIQUID MIXTURES
d. In a film geometry^Tkl& is diagonal due to the latera
translational invariance of the film. From the conservat
property]^Tkl&/]xk50 one then concludes that^Tkl& does
not depend on position, and therefore^T''& can be directly
identified with the Casimir force per unit area. Note that t
evaluation of̂ Tkl& according to Eq.~3.2! for xk5xl5z and
for t50 within the mean field approximationF̄(x,z)
5„M (z),0, . . . ,0… for the order parameter yields the squa
bracket in Eq.~3.1!.

We now turn to the mean-field analysis of the Casim
force as a function of the reduced temperaturet, where we
first restrict ourselves to the caseN51 ~Ising universality
class!. In view of later applications of the results to bina
liquid mixtures near the critical demixing transition, this
the most relevant case. For the mean-field analysis alon
would not be neccessary to determine the full ord
parameter profiles. However, in order to perform the fluct
tion expansion~see Sec. IV and Appendix B!, a precise
knowledge of the profiles on the mean-field level is ind
pensable. Details of the calculation are summarized in
pendix A. In the course of the calculations for the ord
parameter profiles, one obtains the correspond
expressions for the Casimir forces as byproducts which
be discussed in the following paragraph.

As in Appendix A we write the mean-field contributio
^T''&0 to the Casimir force in the form
^T''&05(6/g)t'' , and we only considert'' in the follow-
ing for simplicity. From the general theory of critical finite
size scaling@7,9# we expectt'' to take the scaling form

t''5L2dF~y!, y5tL1/n, ~3.3!

where d54 and n5 1
2 within mean-field theory. Note tha

right at the upper critical dimensiond5dc54 the prefactor
6/g of the Casimir force generates logarithmic finite-size c
rections due to the fact that the renormalized counterpartu of
the coupling constantg vanishes according tou( l );1/lnl for
l→` at the renormalization-group fixed point@45#. How-
ever, logarithmic corrections to scaling ind54 will be dis-
regarded here, so that from the point of view of mean-fi
theory the above prefactor is treated as a constant.

For the case of (1,1) boundary conditions the scalin
function F1,1(y) can be read off from Eqs.~A12! and
~A14!. The result is

F1,1~y!52~2K !4k2~12k2!, y5~2K !2~2k221!,

~3.4!

F1,1~y!5~2K !4k2, y52~2K !2~k211!,

whereK[K(k) is the complete elliptic integral of the firs
kind, and 0<k,1. They dependence ofF1,1 according to
Eq. ~3.4! is given in the parametric formy5y(k), where
y(k) is a monotonic function ofk, so that the inverse
k5k(y) exists and constitutes they dependence ofF1,1 in
a unique way. As can be seen from Eq.~3.4! the parametri-
zations ofF1,1 andy for y>2p2 andy<2p2 are differ-
ent. The reason for this is purely technical, in the sense
negative values fork2 are avoided~see Appendix A for de-
tails!. There is no singularity ofF1,1(y) at the point
y52p2 (k50). In fact,F1,1(y) is analytic forall values
of y, because the critical point of the film„Tc(L),hc(L)… is
n
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locatedoff the temperature axis at a finite critical bulk fie
h5hc(L);L2D/n, where D is the gap exponent@8,11#.
Within mean-field theory one hasD5 3

2, so thatD/n53. For
(1,2) boundary conditions the corresponding result for t
scaling functionF1,2(y) can be read off from Eqs.~A19!
and ~A21!. One finds

F1,2~y!5~2K !4~12k2!2, y52~2K !2~k211!,
~3.5!

F1,2~y!5~2K !4, y522~2K !2~2k221!,

where a parametrization analogous to the one in Eq.~3.4! has
been used. The scaling functionF1,2(y) is also analytic for
all values ofy, although the critical point of the film in the
case of opposing surface fields is located on the tempera
axis and is associated with the interface delocalization tr
sition @18#. However, due to the limith152h2→` per-
formed here, this critical point has been formally shifted
yc52` so that it is no longer visible as a singularity
F1,2(y). Corresponding results for (SB,1) and (O,1)
boundary conditions can be constructed from Eqs.~3.4! and
~3.5! using the simple transformationL→2L ~see Appendix
A!. One obtains

FSB,1~y!5 1
16 F1,1~4y!, FO,1~y!5 1

16 F1,2~4y!.
~3.6!

The scaling functions obtained so far still contain a bu
contribution which corresponds to a bulk pressure given
t'',bulk52tmb

22mb
4 . For t>0 one has t'',bulk50

(mb50) and for t,0 one has t'',bulk5t2/4
(mb5A2t/2). The bulk contributionFbulk(y) to the scaling
functions given by Eqs.~3.4!, ~3.5!, and ~3.6! then has the
simple formFbulk(y)5u(2y)y2/4, which contains the usua
mean-field singularity of the bulk free energy att50. In
order to express the finite-size contribution to the Casi
force^T''&0 in scaling form, we define the scaling function

f a,b~y![Fa,b~y!2Fbulk~y! ~3.7!

which are displayed in Fig. 1 for (a,b)5(1,1) and
(1,2). Their shapes resemble those of the correspond
scaling functions for the Ising model confined to a strip
d52 @30#. The asymptotic behavior of the scaling functio
for y→6` is governed by an exponential decay accord
to

f 1,1~y→`!.216y2exp~2Ay!,

f 1,1~y→2`!.216y2exp~2A22y!,
~3.8!

f 1,2~y→`!.16y2exp~2Ay!,

f 1,2~y→2`!.16y2exp~2A2y/2!.

The scaling functions take quite sizable values over a s
prisingly broad range of the scaling argumenty. This may
serve as a first indication that the Casimir forces provid
strong modification of the usual dispersion forces in a pa
lel plate geometry at the extraordinary transition. Howev
in order to estimate the absolute strength of the Casi
forces in binary liquid mixtures close to their critical demi
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1646 56MICHAEL KRECH
ing transition a renormalization-group analysis off 1,1(y)
and f 1,2(y) is required~see Sec. IV!.

If the order parameter hasN.1 components, the case o
parallel surface fields is already covered by the above an
sis of the (1,1) boundary conditions forN51, because in
this case the order parameter only has one nonzero com
nent parallel to the surface fields. For antiparallel surfa
fields, however, this is not as obvious, because
order parameter has the additional freedom to rotate ac
the film by a position dependent anglew(z). We illustrate
this for the caseN>2 with h15(h1,0, . . . ,0) and h2
5h1(cosa,sina,0, . . . ,0! in the limit h1→` and fort50. A
similar situation has been been discussed in Ref.@39# for t
Þ0. If the order parameter profile is written in the for
M (z)5A12/gm(z)„cosw(z),sinw(z),0, . . . ,0… one finds the
Euler-Lagrange equations@see Eq.~A3! and Ref.@39##

@w8~z!m2~z!#850,
~3.9!

m9~z!5w82~z!m~z!12m3~z!.

As boundary conditions forw(z) we choosew(0)50 and
w(L)5a, because the order parameter should be paralle
h1 andh2, respectively, at the surfaces. The amplitude fu
tion m(z) is positive and its qualitative behavior resemb
that of the profilem1,1(z) @see Eqs.~A13! and~A15!#. From
Eq. ~3.2! we then find, for the Casimir force,

^T''&0[~6/g!t''5~6/g!@w82~L/2!m2~L/2!2m4~L/2!#.
~3.10!

Note that Eq.~3.10! allows a sign change of the Casim
force as a function of the anglea enclosed by the surfac
fields. Following Appendix A@see Eqs.~A4! and ~A5!#, the
first integral of Eq.~3.9! is given by

FIG. 1. Scaling functionsf 1,1(y) ~solid line! and f 1,2(y)
~dashed line! according to Eqs.~3.4!, ~3.5!, and~3.7!. The y range
influenced by the bulk critical pointy50 is very broad, and the
asymptotic decay fory→6` is dominated by an exponential@see
Eq. ~3.8!#. Note thatf 1,1(y) and f 1,2(y) take their extreme value
at y.10 andy.225, respectively.
ly-

o-
e
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ss
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-

w8~z!5c/m2~z!,
~3.11!

m82~z!52c2/m2~z!1m4~z!1t'' ,

where

t''5c2/m2~L/2!2m4~L/2!, ~3.12!

andc is a constant such that

a5w~L ! for w~z!5cE
0

z

dz8/m2~z8!. ~3.13!

Just as for Eq.~A6! we apply the substitutionP(z)[m2(z)
and eliminatec using Eq.~3.12!. All the information needed
to calculate the Casimir force, i.e.,t'' as a function ofa is
now contained in Eq.~3.13!, and

P82~z!54$P3~z!2P3~L/2!1t''@P~z!2P~L/2!#%,
~3.14!

which shows thatP(z)[`(z;g2 ,g3) is a Weierstrass elliptic
function, where the invariantsg2 andg3 can be read off from
Eq. ~3.14!. As we are focusing on the limit of infinite surfac
fields the film thicknessL is one of the basic periods o
P(z) @see Eqs.~A11! and ~A18!#, and thereforeP(z) has
double poles atz50 and z5L. Using Eq. ~3.14! we can
rewrite Eq. ~3.13! and find a representation forP(L/2) by
performing a separation of variables in Eq.~3.14!. Writing
t'' in the scaling form@see Eq.~3.3!#

t''5L24g~a!, ~3.15!

and using the abbreviationp[LAP(L/2), one finds

p5E
1

`

@x3211~x21!p24g~a!#21/2dx,

a5A11p24g~a!E
1

`

x21@x3211~x21!p24g~a!#21/2dx.

~3.16!

FIG. 2. Amplitude functiong(a) of the Casimir force according
to Eqs. ~3.15! and ~3.16!. g(a) smoothly interpolates betwee
g(0)5 f 1,1(0) andg(p)5 f 1,2(0) ~see the main text!. The am-
plitude vanishes ata5p/3.
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The solution of Eq.~3.16! is shown in Fig. 2. The Casimi
force @i.e., g(a)# grows monotonically froma50 to a5p
at fixedL and vanishes for the anglea5p/3 which can also
be derived directly from Eq.~3.16! by settingg(a)50. Fur-
thermore it should be noted that according to Eqs.~3.4! and
~3.7! one hasg(0)5F1,1(0)5 f 1,1(0), and, according to
Eqs. ~3.5! and ~3.7! one also has g(p)5F1,2(0)
5f 1,2(0). The function g(a) therefore smoothly interpo
lates between (1,1) and (1,2) boundary conditions, giv-
ing the same result for the Casimir force as the Ising univ
sality class (N51) in these two cases.

We close this section with a short discussion of the a
lytic solution of Eqs.~3.14! and ~3.16!. Following the deri-
vation described in Appendix A and using Eq.~3.13!, the
profile m(z)5AP(z), the amplitude functiong(a), and the
anglea can be parametrized in terms of the modulusk of the
Jacobian elliptic functions. One finds

m~z!5
2K

L Fdn2~z;k!

sn2~z;k!
1

2k221

3 G1/2

,

g~a!52
1

4
~2K !4F11

~2k221!2

3 G , ~3.17!

a52F ~122k2!~22k2!

3~11k2! G1/2

@P~1/31k2/3,k!2K#

and

m~z!5
2K

L F cn2~z;k!

sn2~z;k!dn2~z;k!
2

2~2k221!

3 G1/2

,

g~a!5~2K !4F12
4~2k221!2

3 G ,
~3.18!

a5A6~122k2!H F b

122k2 1
2

3G@P~a,k!2K#

2F a

122k2 1
2

3G@P~b,k!2K#J ,

wherez5(2K/L)z, 0<k2< 1
2, and the parametersa and b

are given by

a5 1
6 @114k21A928~2k221!2#,

~3.19!

b5 1
6 @114k22A928~2k221!2#.

FurthermoreK[K(k) and P(x,k) for x5a and b denote
the complete elliptic integrals of the first and the third kin
respectively. The anglea traverses the interval@0,p# by
decreasingk2 from k25 1

2 to k250 in Eq.~3.17!, changing to
Eqs. ~3.18! and ~3.19! at k250 and increasingk2 back to
k25 1

2 . The special pointk250 has no particular physica
significance, it only marks a singular point in the above pa
metric representation ofg(a). From Eq.~3.18! we identify
k25(22A3)/4 as the parameter value, whereg(a)50 or,
equivalently,a5p/3.

Setting k25 1
2 in Eq. ~3.17! yields m(z)5m1,1(z) @see

Eq. ~A13! for t50#, g(a50)5 f 1,1(y50) @see Eqs.~3.4!
r-

-

,

-

and ~3.7!#, and w(z)50 @see Eq.~3.13!#. This means that
the order parameter profile is given byM (z)
5A12/g„m1,1(z),0, . . . ,0… as anticipated from the cas
N51 for (1,1) boundary conditions. In the limitk2→ 1

2,
Eqs.~3.18! and~3.19! yield m(z)5um1,2(z)u @see Eq.~A20!
for t50#, g(a5p)5 f 1,2(y50) @see Eqs.~3.5! and~3.7!#,
whereas w(z) here is given by the step function
w(z)5pu(z/L21/2). The order parameter profile is the
given byM (z)5A12/g„m1,2(z),0, . . . ,0… which shows that
also for antiparallel surface fields mean field theory for a
N-component order parameter is already captured by
caseN51. We illustrate this remarkable behavior ofM (z)
for a/p50.98, i.e., a situation close to antiparallel surfa
fields. The corresponding modulusk @see Eqs.~3.18! and
~3.19!# is given byk2.0.499. The phasew(z) and the am-
plitudem(z) of the order parameter are shown in Fig. 3. T
order parameter rotates by almost the full amounta in a
narrow interval aroundz5L/2, wherem(z) is smallest. In
the limit a→p this interval shrinks to the pointz5L/2,
wherem(z) vanishes andw(z) becomes discontinuous.

Although the Casimir force is governed by universal sc
ing functions@28,9#, it is not possible to estimate their abs
lute magnitude within Landau~mean field! theory. The rea-
son is that for the boundary conditions considered here th
scaling functions contain a common prefactor which depe
on the bare coupling constantg, and therefore has a valu
inaccessible by pure mean-field arguments. In order to
least partly fill this gap, we now turn to the field theoret
analysis of the Casimir forceat bulk criticality.

IV. CASIMIR AMPLITUDES

At the bulk critical temperatureT5Tc (t50) the Casimir
forces in a film are governed by the universal Casimir a
plitudes Da,b which explicitly depend on the two surfac
universality classes combined in the film. ForN.1 order
parameter components the Casimir amplitudes may also
pend on continuously varying parameters, as demonstr
above for the caseN52 with tilted surface fields. ForT

FIG. 3. Amplitudem(z) ~solid line! and phasew(z) ~dashed
line! of a two-component order parameter for surface fields at
angle ofa50.98p @k2.0.499, see Eqs.~3.13! and~3.18! and main
text#. m(z) has been normalized tom(L/10), so thatm(z) and
w(z) can be plotted on the same scale.
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ÞTc (tÞ0) these amplitudes have to be replaced by univ
sal scaling functionsua,b(y) of a suitably chosen scalin
argumenty @28#, which will not be considered in this section

The Casimir amplitude is defined as the finite-size am
tude of thefree energyof a film at bulk criticality @9,28#.
Translating this definition to theforce, one finds

2
]

]L
f ~Tc ,L !5^T''&5~d21!Da,bL2d ~4.1!

in d dimensions and for t50, where f (Tc ,L)
[F(T5Tc ,L)/(AkBTc) is the critical part of the free energ
per unit areaA of the plates. Following Ref.@28#, kBTc is
used as the natural energy unit for the free ener
wherekB is the Boltzmann constant. As a first step beyo
Landau theory the contribution of Gaussian fluctuatio
to the Casimir force, i.e., to the amplitudesDa,b , will be
investigated here. We introduce the fluctuation partF̃ of the
order parameterF by F5F̄1F̃, where F̄[M (z)5
A12/g„m(z),0, . . . ,0… is the mean-field-order parameter pr
file discussed in Sec. III and Appendix A. Inserting t
above decomposition ofF into Eqs. ~2.1! and ~2.2! for
t50 andc15c250 and keeping only the quadratic terms
F̃5(f̃1 , . . . ,f̃N), we obtain

H@F#5H@F̄#1
1

2E dd21xE
0

L

dz$~¹F̃ !2

1@6m2~z!f̃ 1
212m2~z!~f̃ 2

21•••1f̃ N
2 !#%

1O~f̃1F̃2!1O„~F̃2!2
…, ~4.2!

whereh156h25(h1,0, . . . ,0) in the limith1→` is implic-
itly assumed. The mean-field contributionH@F̄# to Eq.~4.2!
has already been discussed in Eq.~3.1!. Following Eq.~4.2!
we decompose the Casimir force into the mean field par
Gaussian part, and higher-order corrections according to

^T''&5^T''&01^T''&11O~g!

5~6/g!t''1^T''&11O~g!. ~4.3!

In order to determinêT''&1 from Eq. ~3.2!, one also needs
the cubic terms in Eq.~4.2! and we will therefore not follow
this approach any further. It is much more convenient
determinê T''&1 from the Gaussian contribution to the fre
energy by taking its first derivative with respect to the fi
thicknessL @28#. Following Ref.@28# this can be done mos
easily in a spectral representation of the Gaussian Ha
tonian given by Eq.~4.2!. For the evaluation of̂T''&1 only
the eigenvalue spectrum is needed. According to Eq.~4.2!
the spectrum consists of a longitudinal parten

(2) characteriz-

ing the eigenmodes of the longitudinal fluctuationsf̃1 of the
order parameter, and a transverse parten

(1) which is the same

for each of theN21 transverse components (f̃2 , . . . ,f̃N)
of the order-parameter fluctuations. The spectraen

(1) and
en

(2) are determined in Appendix B. Once the eigenvalues
given, one can employ the dimensional regularizat
scheme, and according to Ref.@28# we find
r-

i-

y,
d
s

a

o

il-

re
n

f ~Tc ,L !5H@F̄#1
G@~32d!/2#

2d21p~d21!/2~d21!F (n53

`

~en
~2!!~d21!/2

1~N21! (
n52

`

~en
~1!!~d21!/2G ~4.4!

for the critical part free energy within the Gaussian appro
mation ind dimensions. TheL dependence of the Gaussia
contribution to f (Tc ,L) is completely determined by theL
dependence of the eigenvalues. From a simple dimensi
analysis one hasen

( i );L22, so thatden
( i )/dL52(2/L)en

( i ) for
i 51,2. From Eqs.~4.1! and ~4.4! we find

^T''&5
6

g
t''1

G@~32d!/2#

2d21p~d21!/2LF (
n53

`

~en
~2!!~d21!/2

1~N21! (
n52

`

~en
~1!!~d21!/2G1O~g! ~4.5!

for the Casimir force in the Gaussian approximation. T
mode sums in Eq.~4.5! diverge ford542«, and we there-
fore employ the dimensional regularization scheme. Furth
more, the above sums yield an UV singularity in the typic
form 1/« which must be treated analytically in order to f
cilitate the renormalization of Eq.~4.5!. Both objectives can
be achieved with the asymptotic expansions of the eigen
uesen

(1) anden
(2) for large mode numbersn which are given

by Eqs. ~B13! and ~B15!. The regularization of the mode
sums and the analytical treatment of the 1/« pole is summa-
rized in Appendix C. Using the results from Appendixes
and C, we now investigate the different boundary conditio
separately, where the mean-field results given by Eqs.~3.4!,
~3.5!, and~3.6! are only needed fork251/2 (t50).

For the renormalization of the Casimir force given by E
~4.5!, we use the conventions of Ref.@28# and define the
renormalized coupling constantu by

g52dpd/2m42dZuu, Zu511
N18

3

u

«
1O~u2!,

~4.6!

wherem is an arbitrary momentum scale andd542« in the
following. The infrared stable fixed point valueu* («) of the
renormalized coupling constantu is given by@2#

u* ~«!5
3

N18
«1

9~3N114!

~N18!3 «21O~«3!. ~4.7!

For later reference we also quote the three-loop estimate@46#

u1* ~«!5
«

3
1

17

81
«21S 709

17496
2

4

27
z~3! D «31O~«4!

~4.8!

of the fixed point value u* for N51, where
z(3).1.202 06 is a special value of the Riemann zeta fu
tion. In order to improve the predictive quality of a low-ord
« expansion for«51 (d53) in a simple way one may try to
include exact results for the quantity in question ind52 in
the sprit of a Pade´ approximant in the variable«. This can be
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TABLE I. Casimir amplitudes for the Ising universality class ind53. The values labeled by«51 are
obtained by evaluating Eqs.~4.17!, ~4.9!, ~4.10!, ~4.11!, and~4.12! for N51 and«51. The values labeled
d53 are obtained from Eqs.~4.18! and ~4.14! for d53 («51). The Monte Carlo estimates obtained fro
the serial version of the algorithm presented in Ref.@33# are labeled by MC~see also the main text!.
Statistical errors~one standard deviation! are in the last two digits, as indicated inside the parentheses.
last line shows Migdal-Kadanoff estimates taken from Ref.@32#.

Dper DO,O D1,1 D1,2 DSB,1 DO,1

«51 20.1116 20.0139 20.173 1.58 20.093 0.165
d53 20.1315 20.0164 20.326 2.39 0.208
MC 20.1526(10) 20.0114(20) 20.345(16) 2.450(32) 0.1873(70)
Ref. @32# 20.015 0 0.279 0.017 0.051
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applied rather successfully to the Casimir amplitudeDper
thus improving the agreement between the field-theor
prediction@28# and the Monte Carlo estimate@33# in d53.
We will therefore follow the same procedure here, where
case of (SB,1) boundary conditions must be excluded, b
cause the SB multicritical point does not exist ind52.

The renormalized expression for̂T''& for (1,1)
boundary conditions can be obtained by inserting the me
field result given by Eq.~3.4! for y50, and the regularized
mode sum given by Eq.~C5! into Eq. ~4.5! and by applying
the renormalization prescription given by Eq.~4.6!. After
expanding alld-dependent quantities to first order in« @see
Eq. ~C12!# the 1/« pole coming from Eq.~C5! is cancelled,
i.e., the UV singularity has been consistently removed fr
the theory. The Casimir force then follows by evaluating t
resulting renormalized expression for^T''& at the renormal-
ization group fixed pointu5u* («) given by Eq.~4.7!. The
« expansion of the universal Casimir amplitudeD1,1 ,
which characterizes the strength of the Casimir force i
critical film with parallel surface fields, is finally obtained b
applying the definition ofDa,b given by Eq.~4.1!. The alge-
braic manipulations involved here starting from Eqs.~4.5!,
~C5!, and ~4.6!, are absolutely elementary, so that we on
quote the final result

D1,152
pd/2G~d/2!

2u* ~«! S K

p D 4F12
9«

N18
0.6853

1«
N21

N18
0.12421O~«2!G , ~4.9!

where part of the« expansion has been resummed cons
tently to first order in« using Eq.~C13!. For (1,2) bound-
ary conditions the same procedure can be applied using
~3.5! for y50 and Eqs.~4.5! and ~C6!. One finds

D1,252
pd/2G~d/2!

u* ~«! S K

p D 4F12
9«

N18
0.2822

1«
N21

N18
0.40661O~«2!G . ~4.10!

From Eq.~3.6! for y50 and Eqs.~4.5! and~C9!, one has for
(SB,1) boundary conditions
ic

e
-

n-

e

a

-

q.

DSB,152
pd/2G~d/2!

32u* ~«! S K

p D 4F11
9«

N18
1.7141

1«
N21

N18
2.84481O~«2!G . ~4.11!

From Eq.~3.6! for y50 and Eqs.~4.5! and~C11!, one finally
has for (O,1) boundary conditions

DO,15
pd/2G~d/2!

8u* ~«! S K

p D 4F11
9«

N18
0.1988

1«
N21

N18
0.22891O~«2!G . ~4.12!

Note thatu* («) in the above expressions is given by E
~4.7!. It is remarkable that the coefficients of the Gauss
contribution toDSB,1 given by Eq.~4.11! are much larger
than the corresponding coefficients in Eqs.~4.9!, ~4.10!, and
~4.12!. This may be due to the fact that the order parame
near a SB surface is much more susceptible to fluctuat
than near O orE surfaces.

In the Ising universality class (N51) in d52 three of the
above Casimir amplitudes are known exactly from conform
field theory@29#. They are given by

D1,152
p

48
, D1,25

23

48
p, DO,15

p

24
. ~4.13!

The construction of a Pade´ approximant from Eqs.~4.9!,
~4.10!, and~4.12! for N51, which extrapolates to the ampl
tudes given by Eq.~4.13! for «52, is arbitrary to a certain
degree. If one uses Eq.~4.8! instead of Eq.~4.7! for N51,
and introduces an additional«2-contribution to the square
bracket of Eqs.~4.9!, ~4.10!, and~4.12! such that Eq.~4.13!
is reproduced for«52, one finds the interpolation formula

D1,152
pd/2G~d/2!

2u1* ~«!
S K

p D 4

@120.6853«10.1275«2#,

D1,252
pd/2G~d/2!

u1* ~«!
S K

p D 4

@120.2822«10.0914«2#,

~4.14!

DO,15
pd/2G~d/2!

8u1* ~«!
S K

p D 4

@110.1988«20.0707«2#.



d

lo

t

th

p
of
c
s
s

try
e
fo
e

a

ni
e
0

e

st

e

a-
For
-

de
-

r
en

line
ted

ate
est

in

this
for

ac-

a-
m

For

v via-

-

1650 56MICHAEL KRECH
Numerical estimates of the Casimir amplitudes ind53 ob-
tained from the above analytical formulas are summarize
Table I.

In d53 and for N51 the Casimir amplitudesDO,O,
DO,1 , D1,1 , andD1,2 can be measured by a Monte Car
simulation of the Ising model defined by Eq.~2.3!. The al-
gorithm and its special adaptation to the measurement of
Casimir amplitude is presented in Ref.@33# in detail. We
therefore only briefly describe the differences between
implementations used here and in Ref.@33#. The present
implementation of the algorithm utilizes aserial hybrid up-
date scheme which consists of a Metropolis update swee
the whole lattice followed by a Wolff update. The length
the equilibration and the measurement period used here
respond to those in Ref.@33#. The slab geometry contain
L823L lattice sites, whereL8/L must be chosen as large a
possible in order to approximate the infinite slab geome
In practice,L854L already turns out to be sufficient; i.e., th
results obtained for this choice agree with those
L856L within a fraction of one standard deviation. Th
thicknessL of the slab has been varied betweenL512 and
32 layers. As in Ref.@33# we use the multiple histogram
technique@47#, where the number of histograms taken h
been increased from 25 to 31 forL.24 in order to guarantee
sufficient overlap between adjacent histograms@33#. The
simulations were run on DEC Alpha workstations at the U
versity of Wuppertal and the total amount of CPU time us
is equivalent to about one year of CPU time on a DEC 30
workstation.

The serial implementation of the algorithm has be
tested for the Casimir amplitudeDper with L854L and
L856L for L520 andL524. The estimates forDper ob-
tained with these four lattice sizes agree within their stati
cal error, and give the final estimate

Dper520.152660.0010, ~4.15!

which is in perfect agreement with the estimate obtain
from the parallel algorithm@33#. The amplitudeDO,O has
been measured for the same lattices sizes and forDO,1 ad-

FIG. 4. Monte Carlo estimates of the Casimir amplitudeD1,1

as a function of the number of layersL in a L823L slab for
L854L. The size of the error bars represents one standard de
tion. The data point atL532 is taken as the final estimate~see
Table I!.
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ditional simulations were performed withL528 and
L854L. All individual measurements agree within their st
tistical error and the final estimates are shown in Table I.
(1,1) and (1,2) boundary conditions, however, the situ
ation is different. ForD1,1 measurements have been ma
for 12<L<32 andL854L, the individual estimates are dis
played in Fig. 4 as a function ofL. The estimates show a
clear systematic dependence onL, and apparently even fo
L532 layers the asymptotic regime has not yet be
reached. The last three data points fall onto a straight
within their error bars, so that the data cannot be extrapola
to an asymptotic value. As the current Monte Carlo estim
for D1,1 we therefore take the measurement for the larg
system (L532, L854L) ~see Table I!. The situation for
D1,2 is similar. The individual measurements are shown
Fig. 5 for 12<L<28 (L854L). Again, the asymptotic re-
gime has not been reached for the largest system, but
time it is possible to estimate the asymptotic value
D1,2 by a least-square fit of the function

D1,2
eff ~L !5D1,21Dexp~2kL ! ~4.16!

to the data forL>16 usingD1,2 , D, andk as fit param-
eters. The exponentialL dependence ofD1,2

eff (L) in Eq.
~4.16! is motivated by the short-ranged nature of the inter
tion in Eq. ~2.3!. The error of the amplitudeD1,2 is esti-
mated by taking the maximal error of the individual me
surements involved in the fit. All estimates obtained fro
Eqs.~4.9!, ~4.10!, and~4.12! for N51, from Eq.~4.14!, and
our Monte Carlo estimates are summarized in Table I.
completeness we also display estimates forDper and DO,O
obtained from the partially resummed« expansions@21#

Dper52N
G~d/2!z~d!

pd/2 S 12
5

4

N12

N18
«1O~«2! D ,

DO,O522dDper ~4.17!

for N51 and from the Pade´ approximants@21,33#

ia-

FIG. 5. Monte-Carlo estimates of the Casimir amplitudeD1,2

as a function of the number of layersL in a L823L slab for
L854L. The size of the error bars represents one standard de
tion. The dashed line shows a fit of Eq.~4.16! to the data for
L>16 giving the estimate ofD1,2 displayed in Table I. The abso
lute size of the error bars is about twice that in Fig. 4.
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Dper52
G~d/2!z~d!

pd/2 S 12
5

4

42d

72dD , DO,O522dDper,

~4.18!

which reproduce the exact results@29#

Dper52
p

12
, DO,O52

p

48
~4.19!

in d52. For comparison we also reproduce Migda
Kadanoff estimates for the Casimir amplitudes ind53 from
Ref. @32#. The agreement between the Pade´ approximants
and the Monte Carlo estimates is quite satisfactory, exc
for DO,O, which seems to be closer to the partially resumm
« expansion and the Migdal-Kadanoff estimate. Howev
the amplitude is rather small, and therefore the relative
tistical error of the Monte Carlo estimate, which is one sta
dard deviation, is very large~20%, see Table I!. In view of
Fig. 4 the Monte Carlo estimate forD1,1 given in Table I
constitutes only an upper bound for the true amplitude,
must therefore also be handled with caution. The fit pro
dure used to extractD1,2 from the data shown in Fig. 5 is
also susceptible to systematic errors to a certain extent. H
ever, compared to the parametersD andk in Eq. ~4.16!, the
resulting estimate forD1,2 is quite robust with respect to
e.g., changes in the number of data points included in the
The obtained variation ofD1,2 is in the same order of mag
nitude as the statistical error given in Table I. With regard
their reliability the analytical and the Monte Carlo estima
of D1,1 , D1,2 , andDO,1 seem to be a substantial improv
ment over the Migdal-Kadanoff results.

V. EXPERIMENTAL IMPLICATIONS

A typical experimental setting, within which the film ge
ometry considered here is of particular interest, is provid
by wetting experiments performed on plane and chemic
homogeneous substrates@3,10,48#. The equilibrium thick-
nessL of the wetting layer is determined by theminimumof
the effective interface potential@3#. It is given by the grand-
canonical free energy of a liquid layer of aprescribedthick-
nessl , which is in contact with the substrate on one side a
with the bulk vapor phase on the other side. In the limit
large interfacial areasA the effective interface potential ca
be written in the form@3,48,49#

lim
A→`

V~T,l !

A
[v~ l !5 l @r l~T!/rv~T!21#p0~T!dp1ssl~T!

1s lv~T!1dv~T,l !, ~5.1!

wherer l(T) andrv(T) are the liquid and the vapor densit
respectively andp0(T) denotes the liquid-vapor coexistenc
line in a p,T phase diagram. The quantitydp in Eq. ~5.1! is
a dimensionless measure of the undersaturation of the va
i.e., dp.0 indicates that in the bulk thevaporphase is ther-
modynamically stable. The substrate-liquid and liquid-vap
interfacial tensionsssl(T) and s lv(T) do not depend onl ,
anddv(T,l ) contains the dispersion~van der Waals! forces
and the critical Casimir forces in the liquid layer. For a b
nary liquid mixture as the wetting agent the critical point
pt
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interest is the critical end point of the line of critical demi
ing transitions on the liquid-vapor coexistence surface~see
Fig. 1 in Ref.@49#!. In order to discuss the effect of criticalit
on the equilibrium thicknessL of the wetting layer@10,48#
we assume in the following that the critical temperatu
Tcep associated with this critical end point is locatedabove
the wetting temperatureTw , so that the condition
Tw,T.Tcep guarantees amacroscopicwetting layer of a
critical binary liquid mixture. For large values ofl the van
der Waals contribution todv(T,l ) has the asymptotic form
@50#

dvvdW~T,l !5H W~T!l 221O~ l 23! ~nonretarded!

Wr~T!l 231O~ l 24! ~retarded!.
~5.2!

The explicit temperature dependence of the Hamaker c
stantW(T) and its retarded counterpartWr(T) is quite weak
and can be disregarded in the critical regime aroundTcep.
According to Eq.~5.1! one has withdv(T,l )5dvvdW(T,l )
taken from Eq.~5.2! L(dp)}(dp)21/3 in the nonretarded
case, andL(dp)}(dp)21/4 in the retarded case. Provided th
wetting layer becomes thick enough, one observes a cr
over from the former to the latter power law fordp→0 in a
wetting experiment, because the van der Waals forces
come retarded asL increases@50#. At the critical end point
dv is modified by the long-ranged Casimir forces accord
to

dv~Tcep,l !5dvvdW~Tcep,l !1kBTcepDa,bl 2~d21! ~5.3!

in d dimensions, wherekB is the Boltzmann constant an
Da,b is the Casimir amplitude for boundary conditions
type (a,b) as discussed in Sec. IV. If the van der Waa
forces are not retarded, one can combine Eqs.~5.2! and~5.3!
in d53 by defining the effective Hamaker constant@48#

Weff[W1kBTcepDa,b , ~5.4!

where the temperature dependence ofW has been disre-
garded. The effective Hamaker constantWeff replacesW in
the effective interface potential given by Eq.~5.1!, and thus
determines the equilibrium thicknessL of the wetting layer
for fixed undersaturationdp. The ratioR(dp) of the wetting
layer thicknessLcep(dp) at the critical end point and the
thicknessL(dp) of the wetting layeroutsidethe critical re-
gime is then determined by the ratioWeff /W @48#. One ob-
tains

R~dp![Lcep~dp!/L~dp!

5~Weff /W!1/35~11kBTcepDa,b /W!1/3, ~5.5!

which is independent of the undersaturationdp to leading
order in dp ~see Ref.@48# for details!. If both the liquid-
substrate and the liquid-vapor interface ‘‘prefer’’ the sam
component of the binary liquid mixture, one ha
(a,b)5(1,1), and Eq.~5.5! predicts a thinning of the wet
ting layer, becauseD1,1,0 ~see Table I!. In the opposite
case (a,b)5(1,2) applies, and Eq.~5.5! predicts an in-
crease in the wetting layer thickness due toD1,2.0. An
experimental realization for the latter case is provided b
methanol-hexane mixture on Si-SiO2 wafers as substrate
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@51#. The mixture wets the wafers at a temperature be
Tcep.300 K, where the methanol concentration is enhan
near the substrate and the hexane concentration is enha
near the liquid-vapor interface providing a realization of t
(1,2) boundary condition. The Hamaker constant for th
system is given byW.9310215 erg @51# and with
D1,2.2.4 taken from Table I one obtainsR(dp→0).2.3
from Eq.~5.5!. The corresponding value ofR for 4He on Ne
substrates at the lowerl point is R.0.995@48#. The expla-
nation for this drastic difference is twofold. First, there
the combined effect of the Hamaker constantW and the rel-
evant energy scale given bykBTc . For methanol hexane o
Si-SiO2, one has Tc5Tcep.300 K, so that
W/(kBTcep).0.2, whereas for 4He on Ne one has
Tc5Tl52.17 K, which impliesW/(kBTl).2 @48#. Second,
the relavant Casimir amplitude isD1,2.2.4 for methanol
hexane andDO,O.20.022 for 4He @48#. In the ratio
(Weff2W)/W @see Eqs.~5.4! and ~5.5!#, one therefore has
one factor;10 in favor of methanol hexane coming fro
W/(kBTc) and a second factor;100 in favor of methanol-
hexane from the Casimir amplitude, which combine to
observed drastic quantitative difference inR(dp).

For dp→0 the equilibrium thicknessL(dp) of the wet-
ting layer increases, so that the van der Waals forces
become retarded@see Eq.~5.2!#. In the retarded regime th
critical contribution todv(Tcep,l ) becomes the leading term
in Eq. ~5.3! for d53, and thereforeR(dp) defined by Eq.
~5.5! divergesfor dp→0 according to@48#

R~dp→0!

5S 2kBTcepD1,2

r l2rv
D 1/3S 3Wr

r l2rv
D 21/4S p0

rv
D 21/12

~dp!21/12.

~5.6!

For (1,1) boundary conditions one hasD1,1,0, and in
this case retardation of the van der Waals forces leads
finite value of Lcep(dp) for dp→0. The ratioR(dp) then
vanishesas

R~dp→0!5
r l2rv

22kBTcepD1,1
S 3Wr

r l2rv
D 3/4S p0

rv
D 1/4

~dp!1/4

~5.7!

for dp→0 @48#. The amplitudes of the power laws governin
R(dp→0), which according to Eqs.~5.6! and ~5.7!, depend
on the productkBTcepDa,b , show the same sensitivity to th
type of the wetting agent~methanol hexane or4He! as the
effective Hamaker constant~see above!. The drastic en-
hancement ofkBTcepDa,b observed for typical binary liquid
mixtures in comparison with4He makes critical effects on
wetting layers much easier to detect experimentally. A c
responding statement can be made for direct force meas
ments by atomic force microscopes@52#. If two parallel
plates at distanceL are immersed into a binary liquid mix
ture, which is close to its critical demixing transition, th
force per unit areaKc between the plates will deviate from
the bulk pressure due to thefinite distance between th
plates. This deviation is given by@48#
w
d
ced

e

ay

a

r-
re-

dKc~L !5Kc~L !2Kc~L5`!52
]

]L
dv~Tc ,L !52WeffL

23

~5.8!

if the van der Waals forces are not retarded@see Eqs.~5.3!
and ~5.4!#. Note thatTc in Eq. ~5.8! is not given by Tcep.
HereTc marks a second order phase transition from the
mixed to the mixed liquid, which takes placeinside the liq-
uid regime in the phase diagram away from the liquid-vap
coexistence surface~see Fig. 1 in Ref.@49#!. However, typi-
cally Tc is roughly about the same size asTcep. By inserting
the values forD1,1 and D1,2 ~see Table I!, Tc.300 K,
and W.9310215 erg for methanol-hexane into Eq.~5.4!
one finds

Weff /W.H 20.6 for ~1,1 ! boundary cond.

12 for ~1,2 ! boundary cond.
~5.9!

According to Eq.~5.9! the critical contribution todKc(L)
can lead to a sign reversal ofdKc(L) for equal plates, and
increasesdKc(L) by an order of magnitude for opposin
plates. The effects of criticality ondKc(L) should therefore
be detectable by direct force measurements in critical bin
liquid mixtures.

VI. SUMMARY AND DISCUSSION

If macroscopic bodies are immersed in a critical flu
long-ranged forces between these bodies are generate
critical fluctuations of the order parameter. For the spec
case of binary liquid mixtures confined to a parallel pla
geometry these forces have been analyzed for various bo
ary conditions involving surface fields in order to descri
chemical affinities of the confining walls or interfaces towa
one of the components of the mixture. In particular, the f
lowing results have been obtained:

~1! Within mean-field~Landau! theory for an Ising-like
system (N51 order parameter components! the universal
scaling functionsf 1,1(y) and f 1,2(y) of the Casimir force
can be easily obtained in a parameter representation wit
a detailed knowledge about the order parameter profile.
ther scaling function indicates that the corresponding C
simir forces should be visible over a surprisingly broad ran
in the scaling variabley5tL1/n. The scaling functions
f SB,1(y) and f O,1(y) can be obtained fromf 1,1(y) and
f 1,2(y) by applying a simple scale transformation tof and
y. In comparison with (1,1) and (1,2) boundary condi-
tions the Casimir forces for these mixed boundary conditio
are substantially reduced both in their magnitude and in
range of the scaling argumenty over which they are visible.
For (1,1) and (SB,1) boundary conditions the force i
attractive, for (1,2) and (O,1) boundary conditions it is
repulsive. ForN>2 an additional degree of freedom in th
choice of the boundary conditions~surface fields! is provided
by the introduction of an arbitrary tilt anglea between the
surface fields. ForN52 order-parameter components a
y50 it is shown that the amplitude functiong(a) smoothly
interpolates between the special values~Casimir amplitudes!
f 1,1(0) (a50) and f 1,2(0) (a5p) of the scaling func-
tions. The Casimir force vanishes fora5p/3. Fora5p the
order parameter profile is identical to the profile forN51
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and (1,2) boundary conditions. For critical binary liqui
mixtures only the caseN51 is relevant.

~2! For the special casey50 (T5Tc,bulk) the scaling
functions reduce to the universal Casimir amplitudesDa,b for
(a,b) boundary conditions which have been calculated a
lytically to one-loop order~Gaussian fluctuations! in order to
obtain quantitative estimates for the magnitude of the
simir force ind53. For the most relevant caseN51 and for
(1,1), (1,2), and (O,1) boundary conditions it is pos
sible to contruct Pade´-type approximants for the Casimir am
plitudes ind53 by including exact results from conforma
field theory in d52 into an interpolation scheme for th
amplitudes as a function ofd. If a three-loop estimate for the
fixed-point valueu* of the renormalized coupling consta
u is used in the interpolation scheme, the resulting values
D1,1 , D1,2 , andDO,1 in d53 agree quite well with cor-
responding numerical esitimates from a Monte Carlo sim
lation of an Ising model confined to a slab geometry
d53 with surface fields. The estimates indicate that fo
critical binary liquid mixture the Casimir amplitudes are b
tween one and two orders of magnitude larger than the
viously studied amplitudeDO,O for 4He at thel transition.

~3! For critical binary liquid mixtures confined betwee
equal or opposing walls the Casimir amplitudesD1,1 or
D1,2 , respectively, yield the absolute strength of the C
simir force in units ofkBTc . The film geometry considere
here is realized in a natural way in the course of a wett
transition on a plane and chemically homogeneous subst
The special case of (1,2) boundary conditions is realize
by the binary mixture methanol hexane which forms a m
roscopic wetting layer on Si-SiO2 wafers in the vicinity of
the critical end point of the demixing transitions. Disrega
ing any temperature dependence of the Hamaker constan
presence of critical fluctuations in the wetting layer leads
an increase of the equilibrium layer thickness by more tha
factor of 2. The corresponding critical effect on a wetti
layer of 4He at the lowerl point is several orders of mag
nitude weaker. In accordance with this observation, criti
fluctuations in binary liquid mixtures have a strong effect
the effective Hamaker constant which determines
strength of the force between two parallel plates immer
into the mixture. Therefore, critical binary liquid mixture
appear to be ideal candidates to probe the universal Cas
amplitudes and the associated universal scaling function
wetting experiments or by direct force measurements usin
suitably adapted version of the atomic force microscope.

ACKNOWLEDGMENTS

The author gratefully acknowledges useful corresp
dence with E. Eisenriegler, B.M. Law, and A. Mukho
padhyay.

APPENDIX A: ORDER-PARAMETER PROFILES

The order-parameter profiles in a critical film within me
field ~Landau! theory for the Ginzburg-Landau Hamiltonia
given by Eqs.~2.1! and~2.2! have already been discussed
the literature in some detail for various reasons@8,11,32,38#
~see also Sec. I!. Therefore we only summarize the ma
results of mean-field theory here for later reference. We
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strict the analysis to the caseN51 ~Ising universality class!.
The Euler-Lagrange equation for the order parameter pro
M (z) reads

M 9~z!5tM ~z!1
g

6
M3~z!, ~A1!

where the boundary conditions

M 8~0!5c1M ~0!2h1 , M 8~L !52c2M ~L !1h2
~A2!

must be fulfilled. In order to obtain the leading asympto
behavior ofM (z) in the critical regime, we only consider th
limiting casesh15h2→` @(1,1) boundary conditions# and
h152h2→` @(1,2) boundary conditions# in Eq. ~A2!. In
this limit the order-parameter profile has the singularit
M (z);1/z for z→0 and M (z);1/(L2z) for z→L. This
singularity ofM (z) at the system boundaries just constitut
the mean-field description of the asymptotic increa
F̄(z);z2b/n of the order-parameter profile asz→0 for
large ~or infinite! surface fields. For this asymptotic powe
law to be valid the conditiona!z!j must be fulfilled,
wherea is a typicalmicroscopiclength scale andj is the
correlation length. In a lattice model for examplea is given
by the lattice constant. The order-parameter profile for suc
model will deviate from this power-law increase on the sc
z;a away from the surface, and take afinite value right at
the surface even for an infinite surface field.

In order to simplify the notation for the following consid
erations we introduce the order-parameter functionm(z) by
setting M (z)5A12/gm(z) in Eq. ~A1!, wherem(z) solves
the modified Euler-Lagrange equation

m9~z!5tm~z!12m3~z!. ~A3!

We furthermore suppress the parametric dependence
m(z) on the reduced temperaturet in the notation. Multiply-
ing Eq. ~A3! by m8(z), one finds

m82~z!5tm2~z!1m4~z!1m82~z0!2tm2~z0!2m4~z0!
~A4!

as the first integral of Eq.~A3!, where z0 is an arbitrary
reference point 0,z0,L. For the combinations (1,1) and
(1,2) of boundary conditions considered herez05L/2 is a
convenient choice, becausem(z) is either a symmetric or an
antisymmetric function with respect to the midplan
z5L/2, respectively~see also Refs.@19,20,18#!. Up to an
overall factor the integration constant in Eq.~A4! can be
identified with ^T''& in the mean-field approximation
which we denote bŷT''&0 @see also Eq.~3.2!#. We define
^T''&0[(6/g)t'' , so that

t''5m82~L/2!2tm2~L/2!2m4~L/2! ~A5!

is just the integration constant on the right-hand side of
~A4!. With the substitutionm2(z)[P(z)2t/3, Eq. ~A4!
takes the form

P82~z!54@P~z!2e1#@P~z!2e2#@P~z!2e3#, ~A6!

where
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e152t/61At2/42t'',

e25t/3, e352t/62At2/42t''. ~A7!

From the obvious propertye11e21e350 and the structure
of Eq. ~A6!, it is immediately clear thatP(z)5m2(z)1t/3 is
given by a Weierstrass elliptic functioǹ(z;g2 ,g3) with the
invariants

g2524~e1e21e2e31e3e1!54~t2/32t''!,
~A8!

g354e1e2e354t~ t''22t2/9!/3.

Moreover,`(z;g2 ,g3) has double poles atz50 andz5L,
becausem(z) has simple poles at these positions, so that
film thicknessL is one of the periods of̀ (z;g2 ,g3). So far
our statements are valid for both the (1,1) and the
(1,2) boundary condition. In order to derive the speci
functional forms of the profiles, we now consider ea
boundary condition separately.

Turning to the (1,1) boundary condition first, we note
that m8(L/2)50 wherebyt''52tm2(L/2)2m4(L/2), and
Eq. ~A7! simplifies to

e15`~v1 ;g2 ,g3!5P1,1~L/2!5m1,1
2 ~L/2!1t/3,

e25`~v11v2 ;g2 ,g3!5t/3, ~A9!

e35`~v2 ;g2 ,g3!52P1,1~L/2!2t/3

52m1,1
2 ~L/2!22t/3.

The quantitiesv1 and v2 are the basic semiperiods o
`(z;g2 ,g3). From Eqs.~A7! and ~A9! we conclude that
e1.0 for all values of t, and therefore
P1,1(z)5`(z;g2 ,g3).0 for all 0,z,L. Therefore, the
first basic semiperiodv1 of the Weierstrass function can b
chosen asv15L/2. It is then convenient to choose the se
ond basic semiperiodv2 to be purely imaginary. We can
now define the modulik andk8 of the corresponding Jaco
bian elliptic functions by@53#

k25
e22e3

e12e3
5

m2~L/2!1t

2m2~L/2!1t
, k82512k2. ~A10!

According to Eq.~A10!, bulk criticality (t50) corresponds
to k25k825 1

2. The two basic semiperiods are then given
the complete elliptic integrals of the first kindK[K(k) and
K8[K(k8) according to@53#

v15
L

2
5

K

Ae12e2

5
K

A2m2~L/2!1t
, v25 i

K8

K
v1 .

~A11!

Combining Eqs.~A10! and~A11!, we find the useful param
etrization

tL25~2K !2~2k221!, t''52~2K/L !4k2~12k2!
~A12!

of the Casimir forcê T''&05(6/g)t'' as a function of the
film thicknessL and the scaling argumenttL1/n5tL2 within
e

-

the mean-field approximation. Finally, the order-parame
function m1,1(z) can be written in the form@53#

m1,1~z!5
2K

L

dn~z;k!

sn~z;k!
, z5

2K

L
z, ~A13!

where dn(z;k) and sn(z;k) are the JacobianD amplitude
and sine amplitude functions, respectively. A slight disa
vantage of Eqs.~A12! and ~A13! is that in order to param-
etrize valuestL2,2p2 one has to switch to negative value
of k2, i.e., to purely imaginary modulik in the Jacobian
elliptic functions dn and sn. An alternative parametrizati
can be found easily by interchanginge2 ande3 in Eq. ~A7!.
From the corresponding modification of Eqs.~A10! and
~A11!, we find the new parametrization (k2>0)

tL252~2K !2~k211!, t''5~2K/L !4k2 ~A14!

for tL2<2p2 and the corresponding order-parameter fun
tion reads

m1,1~z!5
2K

L

1

sn~z;k!
, z5

2K

L
z. ~A15!

From the symmetry of the order-parameter profile
(1,1) boundary conditions it is obvious that within th
mean-field approximation the case of (SB,1) boundary con-
ditions can be obtained from Eqs.~A12! and~A13! and their
counterparts Eqs.~A14! and~A15! by the simple transforma
tion L→2L. The corresponding order-parameter profile
then given by m1,1(z1L) evaluated in the interva
0<z<L.

We now turn to the case of (1,2) boundary conditions
by noting that in this casem(L/2)50, becausem(z) is an-
tisymmetric around z5L/2. Therefore, we now have
t''5m82(L/2), and instead of Eq.~A9! we find

e15`~v1 ;g2 ,g3!52t/62 iAm1,28 2~L/2!2t2/4,

e25`~v11v2 ;g2 ,g3!5P1,2~L/2!5t/3, ~A16!

e35`~v2 ;g2 ,g3!52t/61 iAm1,282 ~L/2!2t2/4,

indicating that this time the two basic semiperiods are co
plex conjugates withv11v252Rv15L/2. In this case it is
convenient to define the modulik andk8 as @53#

k251/22t/@4um1,28 ~L/2!u#, k82512k2. ~A17!

The basic semiperiods can then be obtained from@53#

v11v25
L

2
5

K

Aum1,28 ~L/2!u
, v22v15 i

K8

K
~v11v2!.

~A18!

Combining Eqs.~A17! and~A18! as above, we find the use
ful parametrizations

tL2522~2K !2~2k221!, t''5~2K/L !4 ~A19!

of the scaling argumenttL2 and the Casimir forcêT''&0
for (1,2) boundary conditions. The corresponding orde
parameter functionm1,2(z) can be written in the form@53#
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m1,2~z!5
2K

L

cn~z;k!

sn~z;k!dn~z;k!
, z5

2K

L
z, ~A20!

where in addition to Eq.~A13! the Jacobian cosine amplitud
cn(z;k) occurs. The parametrizations given by Eqs.~A19!
and ~A20! have the disadvantage that valuestL2.2p2 of
the scaling variable correspond to purely imaginary value
the modulusk. However, in analogy with the (1,1) bound-
ary conditions the alternative parametrizations

tL252~2K !2~k211!, t''5~2K/L !4~12k2!2

~A21!

can be found, wheretL2>2p2 corresponds tok2>0, and
the corresponding expression for the profilem1,2(z) reads

m1,2~z!5
2K

L

cn~z;k!dn~z;k!

sn~z;k!
, z5

2K

L
z. ~A22!

For (O,1) boundary conditions the Casimir force and t
profile can be extracted from Eqs.~A19! and ~A20! or Eqs.
~A21! and ~A22! by the same simple transformatio
L→2L as described above for (SB,1) boundary conditions.

We close this section with the remark that the ord
parameter profiles determined here can be written in the s
ing form m(z)5L2b/nh(x;y), wherex5z/L and y5tL1/n

are the scaling arguments andb5n5 1
2 within mean-field

theory. They dependence of the profiles is determined by
above parametrizationsy5y(k) in terms of the modulusk of
the Jacobian elliptic functions. The scaling functionsh1,1
andh1,2 can be easily read off from Eqs.~A13! and ~A15!
and Eqs.~A20! and ~A22!, respectively. One obtains

h1,1~x;y!52K
dn~2Kx;k!

sn~2Kx;k!
,

y5~2K !2~2k221!,
~A23!

h1,1~x;y!52K
1

sn~2Kx;k!
,

y52~2K !2~k211!

and

h1,2~x;y!52K
cn~2Kx;k!

sn~2Kx;k!dn~2Kx;k!
,

y522~2K !2~2k221!,
~A24!

h1,2~x;y!52K
cn~2Kx;k!dn~2Kx;k!

sn~2Kx;k!
,

y52~2K !2~k211!.

The functional forms ofh1,1 andh1,2 below, at, and above
bulk criticality are displayed in Figs. 6 and 7, respective
Bulk criticality meansy50, i.e.,k251/2 and off bulk criti-
cality the thick film limit uyu@1 (k→1) is shown. In terms
of the bulk correlation lengthj the limit uyu@1 in Figs. 6
and 7 is represented asL/j.15.
f

-
al-

e

.

APPENDIX B: EIGENMODE SPECTRA

The Gaussian Hamiltonian given by Eq.~4.2! can be con-
veniently diagonalized by solving the eigenvalue problem

2¹2C~x,z!1 l ~ l 11!m2~z!C~x,z!5EC~x,z!, ~B1!

wherel 51 for the transverse spectrum andl 52 for the lon-
gitudinal spectrum and 0<z<L. The film geometry is ho-
mogeneous and isotropic with respect tox, so that we can
write C(x,z) in the product form

C~x,z!5~2p!2~d21!/2eip•xcn
~ l !~z!, ~B2!

wherep is the longitudinal momentum, andcn
( l )(z) solves

the eigenvalue equation

2
d2

dz2 cn
~ l !~z!1 l ~ l 11!m2~z!cn

~ l !~z!5en
~ l !cn

~ l !~z!,

~B3!

FIG. 6. Scaling functionh1,1(x;y) for T,Tc (y,0) ~long
dashed line!, T5Tc (y50) ~solid line!, andT.Tc (y.0) ~short
dashed line! according to Eq.~A23! as a function ofx. Tc denotes
the bulk critical temperature. ForyÞ0 the thick-film limit
(uyu@1) is shown~see main text!.

FIG. 7. Scaling functionh1,2(x;y) for T,Tc (y,0) ~long
dashed line!, T5Tc (y50) ~solid line!, andT.Tc (y.0) ~short
dashed line! according to Eq.~A24! as a function ofx. Tc denotes
the bulk critical temperature. ForyÞ0 the thick-film limit
(uyu@1) is shown~see the main text!.
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so that the eigenvalueE in Eq. ~B1! takes the form
E5p21en

( l ) for l 51 and 2, respectively. As shown in Eq
~A6! and ~A7!, m2(z) is given by the Weierstrass ellipti
function `(z)[`(z;g2 ,g3), where g350 for the case
t50 considered here@see Eq.~A8!#. Therefore Eq.~B3! is
identical to the well-known Lame´ differential equation@54#
written in the form of an eigenvalue problem. The solutio
of Eq. ~B3! are known forl 51 and 2, and can be used
construct the eigenfunctionscn

( l )(z). Note that due to
m2(z)5`(z);1/z2 for z→0 one hascn

( l )(z);zl 11 for
z→0 by inspection of Eq.~B3!. Furthermore, (1,1) and
(1,2) boundary conditions can be treated on the same f
ing by noting that, according to Eqs.~A11! and ~A18!, one
has

v1
~11 !5L/2, v2

~11 !5 iL /2,
~B4!

v1
~12 !5~12 i !L/4, v2

~12 !5~11 i !L/4

for the basic semiperiods of the Weierstrass function. T
spectra for the cases (SB,1) and (O,1) can be constructed
from the spectra for (1,1) and (1,2) boundary condi-
tions, respectively.

First we turn to the transverse spectrum. According
Ref. @54# the eigenfunctionscn

(1)(z) up to a normalization
constant can be written in the form

cn
~1!~z!5@s~z1an!e2zz~an!1s~z2an!ezz~an!#/s~z!,

~B5!

where

en
~1!52`~an! ~B6!

yields the eigenvalues andz(z) and s(z) are the Weier-
strassz and s functions, respectively@53#. The spectral
parameter an can be obtained from the requireme
cn

(1)(z)56cn
(1)(z1L), i.e., the eigenfunctions are eithe

even or odd functions when continued analytically to t
interval @2L,L#. From Eq. ~B4! one has L52v1

(11)

52(v1
(12)1v2

(12)), and using the shift properties ofs(z)
@53# the above shift operation can be directly applied to E
~B5!. For the eigenvalue spectrum one obtains

2anz~L/2!2Lz~an!5np i , en
~1!52`~an!, n>2,

~B7!

where the lower bound on the mode indexn comes from the
requirementcn

(1)(z);z2 for z→0 for the transverse eigen
functions~see above!.

For the longitudinal spectrum (l 52), the eigenfunctions
take the form@54#

cn
~2!~z!5

d

dz
$@s~z1an!e2z[ z~an!1bn]

1s~z2an!ez[ z~an!1bn] #/s~z!%, ~B8!

where

bn5
`8~an!

2`~an!1en
~2!/3

, `~an!5
~en

~2!!3

27g229~en
~2!!2 ~B9!
s

t-

e

o

.

yields the eigenvalues and̀8(z) denotes the derivative o
the Weierstrass̀ function with respect toz. We again em-
ploy the symmetry requirementcn

(2)(z)56cn
(2)(z1L), and

the boundary behaviorcn
(2)(z);z3 for z→0, to obtain

2anz~L/2!2LF z~an!1
`8~an!

2`~an!1en
~2!/3G5np i ,

`~an!5
~en

~2!!3

27g229~en
~2!!2 , n>3. ~B10!

The solution of Eqs.~B7! and ~B10! for the eigenvalues
en

( i ) , i 51 and 2, cannot be obtained in a closed analy
form. In order to deal with the divergencies of the mo
sums in Eqs.~4.4! and ~4.5! ~see also Appendix C!, we de-
rive the asymptotic behavior of the eigenvalues from E
~B7! and ~B10! for largen. From the geometry of the prob
lem it is clear that the leading term in an expansion ofen

( i ) in
powers of 1/n is given by the spectrum (np/L)2 of a free
particle in a one-dimensional box of lengthL. Therefore the
spectral parameteran behaves as 1/n asn increases, so tha
the desired asymptotic form of then dependence of the ei
genvalues can be obtained from Eqs.~B7! and~B10! by ex-
panding the Weierstrass functionsz(an), `(an), and
`8(an) in powers ofan , where only the leading two term
are needed. Specifically, we use the expansions@53#

z~x!51/x2g2/60x31O~x7!,

`~x!51/x21g2/20x21O~x6!, ~B11!

where g350 is implicitly assumed. The calculation i
straightforward, so that we only briefly summarize the resu
for the eigenvaluesen

( i ) . Corresponding expansions are o
tained for the spectral parameteran , which will not be re-
produced here.

For (1,1) boundary conditions, one has

z~L/2!5z~v1
~11 !!5p/~2L !, g2524t''5~2K/L !4,

~B12!

whereK5K(1/A2) @see Eqs.~A8!, ~3.3!, and~3.4!#. By in-
sertion of Eqs.~B11! and ~B12! into Eqs.~B7! and ~B10!,
one obtains the expansions

en
~1!5S np

L D 2F12
2

pn2 1
1

p2n4S 4K4

3p2 21D1O~n26!G ,
~n>2!, ~B13!

en
~2!5S np

L D 2F12
6

pn2 1
9

p2n4S 4K4

3p2 21D1O~n26!G ,
~n>3!.

For (1,2) boundary conditions one has, correspondingl

z~L/2!5z~v1
~12 !1v2

~12 !!5p/L,
~B14!

g2524t''524~2K/L !4,
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whereK is given as above@see Eqs.~A8!, ~3.3!, and~3.5!#.
Insertion of Eqs.~B11! and ~B14! into Eqs.~B7! and ~B10!
yields the expansions

en
~1!5S np

L D 2F12
4

pn2 2
4

p2n4S 4K4

3p2 11D1O~n26!G ,
~n>2!, ~B15!

en
~2!5S np

L D 2F12
12

pn2 2
36

p2n4S 4K4

3p2 11D1O~n26!G ,
~n>3!.

The asymptotic expressions for the spectrum given by E
~B13! and ~B15! capture all divergent terms in the mod
sums in Eqs.~4.4! and~4.5!, as will be seen in Appendix C
Furthermore, Eqs.~B13! and~B15! provide very good initial
values for a numerical solution of Eqs.~B7! and ~B10! by
iterative schemes, e.g., the Newton procedure.

For (SB,1) boundary conditions, the eigenvalue spec
can be obtained from the case of (1,1) boundary condi-
tions by employing the transformationL→2L and by allow-
ing only evenindicesn for en

(1) and onlyodd indicesn for
en

(2) @see Eq.~C7!#. Likewise, the eigenvalue spectra fo
(O,1) boundary conditions can be obtained from the case
(1,2) boundary conditions by again employing the tran
formation L→2L and by allowing onlyodd indices n for
en

(1) and onlyeven indicesn for en
(2) @see Eq.~C10!#. The

reason for this simple rule is that for (1,1) boundary con-
ditions starting from the ground state every second eig
function has vanishing slope atz5L/2, so that, after rescal
ing L→2L, the eigenfunctions for (SB,1) boundary
conditions are already contained in the (1,1) case. An
analogous argument relates the spectra for (1,2) and
(O,1) boundary conditions starting from the first excite
state for the (1,2) case.

APPENDIX C: REGULARIZED MODE SUMS

The mode sums appearing in Eqs.~4.4! and ~4.5! are di-
vergent for any spatial dimensiond of interest. Within the
dimensional regularization scheme used throughout this
vestigation,d is used as a free parameter in order to find
analytic continuation of the mode sums as a function ofd,
where d542« is this case. On the other hand, the mo
sums in Eqs.~4.4! and~4.5! also constitute thez functions of
the eigenvalue spectrum with ad dependent argument@55#.
The z function regularization of mode sums, which is
widely used technique to treat divergent series like those
Eqs. ~4.4! and ~4.5! @55#, is therefore equivalent to the d
mensional regularization scheme.

The major obstacle toward an analytical treatment of
aforementioned mode sums has been removed in Appe
B by the derivation of the asymptotic behavior of the eige
value spectrum for large mode numbers given by Eqs.~B13!
and ~B15!. Using these results, one has, fori 51 and 2,
s.

a

f
-

n-

n-
n

in

e
ix

-

(
n5n0

` H ~en
~ i !!~d21!/22Fnp

L Gd21F12
2A

n2 1
B

n4G ~d21!/2J
; (

n5n0

`

nd27, ~C1!

which is convergent for anyd of physical interest, and can
thus be determined numerically from the solutions of E
~B7! and ~B10! for the transverse and longitudinal mod
sums, respectively. The problem of regularizing the mo
sums has therefore reduced to the regularization of the
responding sums over the large-n expansions given by Eqs
~B13! and ~B15!, i.e., one has to consider the series

(
n5n0

`

nd21F12
2A

n2 1
B

n4G ~d21!/2

~C2!

for d542«. If the lower summation boundn0 in Eq. ~C2! is
chosen to be sufficiently large, one can safely expand
term under the sum in powers of 1/n2, which leads to an
expansion of the series given by Eq.~C2! in terms of Hur-
witz functionsz(x,n0). One finds, ford542«,

(
n5n0

` Fn222A1
B

n2G ~32«!/2

5z~23,n0!23Az~21,n0!1
32«

2
@~12«!A21B#

3z~11«,n0!1
A

2
~A223B!z~3,n0!

1
3

8
~A22B!2z~5,n0!1

3

8
A~A22B!2z~7,n0!

1O~«!1O~1/n0
8!, ~C3!

where the« expansion has already been carried out up
terms O(«). The expansion shown in Eq.~C3! converges
quite fast already for 3<n0<5. The 1/« pole indicating the
UV singularity can be extracted from Eq.~C3! using the
expansion

z~11«,n0!51/«1g2 (
k51

n021

1/k1O~«!, ~C4!

whereg.0.577 216 is the Euler constant, andn0 is a posi-
tive integer. With the coefficientsA andB taken from Eqs.
~B13! and ~B15! the expressions given by Eqs.~C1!, ~C3!,
and ~C4! can be combined to the following regularized a
«-expanded expressions for the mode sums.

For (1,1) boundary conditions, one finds, wit
K[K(1/A2),
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(
n52

`

~en
~1!!~d21!/25FpL Gd21 2K4

p4«F12«S 3p2

4K4 1
1

3
2g

10.7494D G1O~«!,
~C5!

(
n53

`

~en
~2!!~d21!/25FpL Gd21 18K4

p4« F12«S 3p2

4K4 1
1

3
2g

11.5589D G1O~«!.

For (1,2) boundary conditions, the corresponding res
reads

(
n52

`

~en
~1!!~d21!/252FpL Gd21 8K4

p4«F11«S 3p2

4K4 2
1

3
1g

21.7198D G1O~«!,

(
n53

`

~en
~2!!~d21!/252FpL Gd21 72K4

p4« F11«S 3p2

4K4 2
1

3
1g

22.4086D G1O~«!. ~C6!

For (SB,1) boundary conditions we apply the simple tran
formation described in the last paragraph of Appendix B
the eigenvalue spectrum for (1,1) boundary conditions.
From Eq.~B13!, we find the expansions

en
~1!5S np

L D 2F12
1

2pn2 1
1

16p2n4S 4K4

3p2 21D1O~n26!G ,
~n>1!, ~C7!

en
~2!5S ~2n11!p

2L D 2F12
6

p~2n11!2 1
9

p2~2n11!4

3S 4K4

3p2 21D1O~n26!G , ~n>1!,

for the transverse and longitudinal spectra, respectively.
to the appearance of half-integer arguments in the Hurw
functions for the transverse mode sum, in this case one n
the expansion

z~11«, 3
2 !51/«1g12 ln2221O~«! ~C8!

instead of Eq.~C4!. Furthermore, the right-hand side of E
~C3! with n0 replaced by3

2 is needed in order to derive th
t

-
o

e
tz
ds

regularized longitudinal mode sum. The transverse m
sum, however, can be evaluated directly using Eqs.~C3! and
~C4!. One therefore finds, for (SB,1) boundary conditions,

(
n51

`

~en
~1!!~d21!/25FpL Gd21 K4

8p4«F12«S 3p2

4K4 1
1

3
2g

21.9712D G1O~«!,
~C9!

(
n51

`

~en
~2!!~d21!/25FpL Gd21 9K4

8p4«F12«S 3p2

4K4 1
1

3
2g

20.8405D G1O~«!.

For (O,1) boundary conditions we apply the same transf
mation to the eigenvalue spectrum for (1,2) boundary con-
ditions. From Eq.~B15!, we find the expansions

en
~1!5S ~2n11!p

2L D 2F12
4

p~2n11!2 2
4

p2~2n11!4

3S 4K4

3p2 11D1O~n26!G , ~n>1!,
~C10!

en
~2!5S np

L D 2F12
3

pn2 2
9

4p2n4S 4K4

3p2 11D1O~n26!G ,
~n>2!,

Using Eq.~C3!, with n0 replaced by3
2 in order to evaluate

the transverse mode sum, one therefore finds, for (O,1)
boundary conditions,

(
n51

`

~en
~1!!~d21!/252FpL Gd21 K4

2p4«F11«S 3p2

4K4 2
1

3
1g

21.8975D G1O~«!,
~C11!

(
n52

`

~en
~2!!~d21!/252FpL Gd21 9K4

2p4«F11«S 3p2

4K4 2
1

3
1g

21.9276D G1O~«!.

In order to facilitate the« expansion of Eq.~4.5!, we finally
note that

G@~32d!/2#522Ap@11«~12 ln22g/2!1O~«2!#
~C12!

and

G~d/2!512«~12g!/21O~«2! ~C13!

for d542« ~see also Ref.@28# for similar relations!.
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