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Casimir forces in binary liquid mixtures
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If two or more bodies are immersed in a critical fluid, critical fluctuations of the order parameter generate
long-ranged forces between these bodies. Due to the underlying mechanism these forces are close analogs of
the well-known Casimir forces in electromagnetism. For the special case of a binary liquid mixture near its
critical demixing transition, confined to a simple parallel plate geometry, it is shown that the corresponding
critical Casimir forces can be of the same order of magnitude as the dispéraioder Waalsforces between
the plates. In wetting experiments or by direct measurements with an atomic force microscope, the resulting
modification of the usual dispersion forces in the critical regime should therefore be easily detectable. Ana-
lytical estimates for the Casimir amplituddsin d=4—¢ are compared with corresponding Monte Carlo
results ind=3, and their quantitative effect on the thickness of critical wetting layers and on force measure-
ments is discussefiS1063-651X97)04207-4

PACS numbe(s): 64.60.Fr, 05.70.Jk, 68.35.Rh, 68.1%

[. INTRODUCTION coexistence line as a function of the width of the capillary
[14,15.

The phase diagram of a fluid is influenced by the presence From the theoretical point of view these phenomena can
of a surface in many different ways. Most prominent is thebe described using density-functional the¢tyd] and com-
modification of the critical behavior of a fluid near a wall puter simulations of lattice-gas modé¢k2,15. These lattice
[1,2], and the occurrence of new phase transitions induced bgases are equivalent to Ising models, where the presence of
the wall such as wetting and dryiri@]. For binary liquid the walls is described bgurface fieldsvhich impose a finite
mixtures external walls usually manifest themselves by aurface magnetization on the Ising system. Density or con-
preferential affinity of the wall material for one of the com- centration profiles of confined fluids or binary liquid mix-
ponents[4], which in the vicinity of the critical demixing tures, respectively, then translate to thagnetization profile
point leads to the phenomenon of critical adsorption of theof the Ising model. For the description of capillary conden-
preferred componeib,6]. If the system is made finite by the sation an Ising model with surface fields of the same sign is
introduction of a second wall or by confining the system toappropriate. The behavior of the system changes drastically,
another finite geometry the critical behavior of the fluid isif opposingsurface fields are considered. For a confined bi-
modified again if the correlation length becomes comparabl@ary liquid mixture this means that the walls perfififerent
to the system sizg7—9], where the size dependence of ther-components. It turns out that in this case new quasiwetting
modynamic functions takes a scaling form. A finite geometrytransitions occur which can be first-order, critical, and tri-
may also be generated spontaneously by a critical fluid ifcritical, and converge to the usual wetting transitions for
e.g., a binary liquid mixture near its critical demixing transi- growing wall separatiofil6]. Furthermore, two phase coex-
tion forms a macroscopic wetting layer on the surface of d@stence becomes restricted to temperatures lodadémivthe
substratd 3,10]. With the introduction of the second surface wetting temperature, if the surface fields are equal in oppo-
the variety of phenomena in the confined fluid goes far besite[17,18. The scaling behavior of the magnetization pro-
yond critical finite-size scaling. Apart from the shift of the file of an Ising model with opposing surface fields, and the
critical point of the systenil1,12, one encounters the phe- dependence of the interface position on the strength of the
nomenon of capillary condensatidi3] if the confining surface fields and the temperature, have been studied thor-
walls of the film geometry consist of the same material. Theoughly[19,20. Capillary condensation no longer occurs; in-
confinement of the fluid causes the liquid vapor coexistencatead one observes the interface delocalization transition;
line to shift away from the coexistence line of the bulk fluid i.e., the interface in the magnetization profile detaches from
into the one-phase regime of, e.g., the bulk vajis,13. one of the walls and moves to the midplane of the film. This
For not too small wall separations a first-order phase transitransition is second order, and its critical point can be iden-
tion occurs from a confined vapor to a confined fluid as thdified with the shifted critical point of the confined system,
undersaturation of the vapor is lowered at fixed temperaturevhich in this case is located on the temperature ax§.

In a constant-temperature plane of the phase diagram the lirbove the critical temperature the magnetization profiles be-
of two-phase coexistence is terminated by a capillary criticatome perfectly antisymmetric about the midplane of the film.
point characterized by a critical undersaturation, and a critiBy increasing the strength of the surface fields the critical
cal wall separation beyond which capillary condensation ndemperature diminishes, and only in the limit of infinitely
longer occurd13]. Fluid layers growing on the inner walls strong opposing surface fields does the interface delocaliza-
of the capillary reduce its effective width, and therefore gen-+ion transition become suppressed at all.

erate correction terms to the well-known Kelvin equation, Confined critical fluids also generate long-ranged forces
which describes the aforementioned shift of the liquid vapobetween the confining wall1], a phenomenon which is a
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‘direct analog of the well-known Casimir effect in electro- eter profiles which are rederived and discussed in Appendix
magnetism[22]. Contrary to the usual dispersion forces, A. The eigenmode spectra are derived in Appendix B, and
which are still under investigation for bodies with curved the regularization of the one-loop mode sums is described in
surfaceg23-29 and in the presence of surface roughnesgAppendix C.

[26,27], critical Casimir forces are governed lniversal

scaling functiong9,28]. At the bulk critical point these scal- Il. MODEL

ing functions reduce to the universal Casimir amplitudes
[9,28]. Especially for the strip geometry a variety of exact
results are known from conformal invarian€29]. Away
from the critical point the scaling functions are only known
exactly for an Ising model confined to a stripdr- 2 [30]. In
higher dimensions only the spherical model has given acce
to further exact results for the scaling function of the Casimir Lo(1 - g

force [31]. For the O(N) universality class id=3, so far Hb[‘l’]:f ddfle dz[_(vcp)2+ —P2+— (P22},
only approximate results are known based on real-space 0 2 2 4!

For the analytical part of the current investigation the
standardg* Ginzburg-Landau Hamiltoniaf{=H,+ H, for

a O(N) symmetric critical system in a parallel plate geom-
etry is used. Specifically, the model is defined by the bulk
ggamiltonian

renormalization [32], the field-theoretic renormalization (2.1
group [28], and Monte Carlo simulationg33] for the film , , ,

geometry. More recently Casimir forces between sphericaj/ere L is ~ the  Film  thickness, ®=
particles immersed in a critical ®) symmetric system have (P1(X.2), ... ®\(x,2)) is the N-component order param-

been investigated by field-theoretic methods augmented b§ter at the lateral positior and the perpendicular position
conformal invariance consideratiof@4]. The field-theoretic 2 (0<z<L), 7 is the bare reduced temperature, gnid the
treatment of critical systems confined to finite geometries i@areé coupling constant. The presence of the surfaces gives
notoriously difficult, because the theory has to interpolatdise to the surface contribution
properly between critical behavior in different dimensions. c c
There has been remarkable progress in devising alternative _ d-1,) -1 2,72 2
renormalization prescriptionspbe?/ond the standa?rd minimal HS[(I)]_J d X[ 2 [POOT+ 2 [POL)]
subtraction schemg35], and in constructing effective ac-
tior_15 for the Ising[36] and the more general ®) univer- —hl~<I)(x,O)—h2~<I>(x,L),} 2.2
sality classe$37]. However, these approaches have been de-
vised for finite systems with symmetgenservingooundary
conditions; their implementation for systems with symmetry-to the Ginzburg-Landau Hamiltonian, whete and c, are
breakingboundary conditiongsurface fields in which we  the surface enhancements which characterize the surface uni-
are interested here, is still lacking. Within the framework ofversality clasg2]. In mean-field theory and within the di-
Ginzburg-Landau descriptions of critical finite systems in themensional regularization scheme for the field-theoretic
presence of surface fields, the theoretical treatment has be&@normalization groupg;>0 defines theordinary (O) sur-
limited to mean-field considerations for the film geometryface universality class and <0 defines theextraordinary
[8,11,32,38,3p and concentric spherg€0] which can be (E) surface universality class. The leading critical behavior
mapped onto two-sphere and wall-sphere geome#ighe  of a semi-infinitesystem with an O or afE surface is de-
bulk critical point by conformal transformationsee Ref. scribed by the twastable renormalization-grougixed-point
[34]). For tricritical systems between parallel plates, a thorvaluesc=+« andc= —«, respectively. Finite positive or
ough mean-field analysis has also been perforfddd In  negative values o€; only yield corrections to the leading
this paper we will concentrate on the Casimir forces in criti-behavior. Within this setting= 0 is anunstablefixed point,
cal films in the presence of surface fields, which is an adso that ¢,c)=(0,0) has the meaning ofraulticritical point
equate description for confined binary liquid mixtufds. at which both the bulk and the surface of a semi-infinite
The remainder of the presentation proceeds as follows. Isystemsimultaneouslyundergo a second-order phase transi-
Sec. Il we introduce the field-theoretic model of a confinedtion [2]. This mulitcritical point defines a surface universality
binary liquid mixture close to its critical demixing point, and class in its own right which is commonly denoted as the
an adequate Ising model for which the Monte Carlo simula-surface-bulk(SB) or special universality class. In the lan-
tions of the Casimir force are performed. Section Il is de-guage of a spin modekt denotes the deviation of the ex-
voted to a survey of mean-field results for the scaling funcchange interaction between spins in the surface from its
tions of the Casimir force. In Sec. IV we present one-loopvalue at the multicritical poinfsee also Eq(2.3) below].
results and Monte Carlo estimates for the universal Casimir The quantitiesh; andh, denote surface fields which ex-
amplitudes which characterize the strength of the Casimiplicitly break the ON) symmetry of the model. In case of a
forcesat bulk criticality. We restrict ourselves to the bulk broken symmetry at the surface in principle also cubic sur-
critical point, because the one-loop calculations are based dace fields need to be considergsl. However, for the in-
the standar@ expansion which cannot cope with the dimen- vestigation of thdeadingcritical behavior in the presence of
sional crossover. In Sec. V we discuss implications of thenonzero linear surface fields cubic surface fields can be dis-
results presented in Sec. IV for force measurements and wetegarded 5].
ting experiments with critical binary liquid mixtures, and we  As pointed out in Sec. |, a wall which is in contact with a
summarize the main results in Sec. VI. The one-loop calcubinary liquid mixture will in general show some preferential
lation requires a knowledge of the mean-field order paramaffinity for one of the components so that the composition
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profile varies as a function of the perpendicular coordinat§H,;=0 or H,=0) and theE surface universality class
z. This situation can be represented by settnge0 and (H;#0 or H,#0) can be studied with the above Ising
c,=0 in Eqg.(2.2), and prescribing finite values for the sur- model Hamiltonian. The film geometry underlying 8.3
face fieldsh; and h,. The phase transition in the bulk in then allows the investigation of the four combinatig@s0O),
presence of nonzero surface fields is calledrtbemaltran-  (O,E), (+,+), and (+,—) of boundary conditions by a
sition [42]. As far as the leading critical behavior is con- Monte-Carlo simulation, where the combination EY,
cerned, the normal transition is equivalent to the usual exmeans (O ) or, equivalently, (Os-). The principal setup
traordinary transitior[2,42], which can be represented by of a Monte Carlo algorithm for a measurement of the Ca-
setting h;=h,=0 and choosingc;<0 and c,<0. In the simir force in lattice models is described in R¢83], to
following we will therefore exclusively use the surface field which the reader is referred for further details.
picture of the extraordinary transition.

In the field-theoretic analysis only the cases of strictly Ill. LANDAU THEORY
parallel and strictly antiparallel surface fields
h;=(h;,0, ...,0),i=1 and 2, will be considered. For the
leading critical behavior it is sufficient to discuss only the
limiting casesh, ,h,— = [2]. The above restriction to par-
allel and antiparallel surface fields then means that we onl

consider the two casds;=h,— +o andh;=—h,— +oo, ) . )
To simplify the notation, we will refer to the former case as' Rgf. [.28]' On the oth.er. hand, _the leadirigrean f|eld_
contribution to the Casimir amplitude can be determined

?f (—+)’;())ugggrfsgﬁgizgﬁmv?/ﬂi?: grft;,leolagt,egoﬁts,ﬁ];isot]hSeWithOUt any detailed knowledge about the functional form of

: : . : the order-parameter profile. We briefly illustrate this for the
(E,E) of the E surface universality class in the film geom- - P = ;
etry considered here. One can also combine a symmetr)?—aseT_o andN=1, !,e,,q>_(¢>,p, e ,0) in Eqs(2.1) and
breakina E surface with a svmmetry conserving O or SB 2.2). In the mean-field approximation the order-parameter
g Yy y g :

surface. However, as will be demonstrated below, the comProfile has the formb(x,z)=(M(2).0, . . . ,0, whereM(z)
binations(O,E) and (SBE) can be extracted from the analy- SClves the Euler-Lagrange equations given by E4$) and
sis of the cases,—) and (+,+), respectively. (A2). Inserting ® into Egs. (2.1 and (2.2) for 7=0 aEd

For the numerical part of this investigation we restrictintegrating by parts using EqéAl), (A2), and (A4) H[P]
ourselves to the cage= 1, which is the most interesting one can be evaluated without solving the Euler-Lagrange equa-
in view of applications of the results to binary liquid mix- tions for M(z) explicitly. The result is the mean-field free
tures. The simulations are performed for a spising model  energy of the film at bulk criticality, and is given by
confined to a film geometry id=3 dimensions defined by

The presence of a symmetry breaking surface field im-
plies a nonvanishing order-parameter profile for al(see
Appendix A), which substantially complicates the field-

eoretic analysis of the Casimir effect as compared to the
case of symmetry-conserving boundary conditions discussed

i — C c 2 2
the Hamiltonian H[¢]:€1M2(0)+ EZMZ(L)_§h1M(O)_ §h2M(L)
Hi=—3 X s(x2)s(x,2)—H>, s(x,1) L[1 9
((x,2),(x",2")) X + § EM '2(20)— HM4(ZO) , (3.1
—H,>, s(x,L), (2.3  whereh; andh, denote the first components bf andh,,
X

respectively, andz, is an arbitrary reference point
0=<zy=<L between the two surfaces of the film. The terms in
the first line of Eq(3.1) constitute the surface contribution to

e mean-field free energy and the contribution in the second
line of Eq. (3.1) is the finite-size part, where the square
bracket yields the Casimir forcésee below. As a direct
L ! e o implication of Eq.(A4) one finds that the above expression
z d|rr]ect|on theflattlcle hals<l__ls|tes(,j, af'ﬁ the T':’S'ng bolnds for the Casimir force does not depend on the reference point
In the two surface layers =1 andz=L are left open. In zy. Note that due tar=0 the bulk contribution to Eq(3.1)

order to simulate the model at the normal transition, ) . . . :
contains two surface terms by which the spins in the twovan'SheS identically. For#0 H[®] cannot be expressed in

surface layers are coupled to surface fidttisand H,, re- the same closed form as given by £§.1), and we therefore

spectively. Infinite surface fields are simply realized by ﬁx__rresort to th%zztcc;mgonent T, of tTe stress te?so;h
ing all spins in the surface to a fixed value 1-od depend- «(x,2) in order to find a more general expression for the

ing on the sign of the surface field. In the model defined byC@Simir force. The stress tensdy, is given by[44]

where J is the excange coupling constaitx,z),(x’,z'))
denotes a nearest-neighbor pair of spins, and the spi
s(x,z) can take the values 1 andl. The underlying lattice
is supposed to be simple cubic with' lattices sites and
periodic boundary conditions in theandy directions. In the

Eq. (2.3 the surface exchange coupling constapnhas the P oD 1 T g

fixed valueJ,;=J. It has been shown by Monte Carlo simu- T= g 75 O E(V®)2+ §<1>2+E(<I>2)2}
lations of spinj Ising models that the SB multicritical point k @A '

is characterized by the special vallig.=1.5Q) [43] of the - 5 32 o] s
surface coupling constady. Apart from corrections to scal- - m+0(g ) XX oV }‘I’ , (3.2

ing the O surface universality class is represented by the
condition J;<<J;. [2] which is fulfilled by Eq.(2.3) due to  where7 andg have the same meaning as in Ef.1). The
J;=J<J;.. Therefore only the O surface universality classscaling dimension off, is given by the spatial dimension
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d. In a film geometry(T,,) is diagonal due to the lateral locatedoff the temperature axis at a finite critical bulk field
translational invariance of the film. From the conservationh=h(L)~L%/*, where A is the gap exponenf8,11].
property (Ty)/9x,=0 one then concludes théT,;) does  Within mean-field theory one has= 3, so thatA/v»=3. For
not depend on position, and therefdfg, , ) can be directly (+,—) boundary conditions the corresponding result for the
identified with the Casimir force per unit area. Note that thescaling functionF, _(y) can be read off from EqgA19)
evaluation of(T,,) according to Eq(3.2) for x,2=x,=z and  and(A21). One finds
for =0 within the mean field approximatiornb(x,z) _ 4 22 _ 22
=(M(2),0, ... ,0 for the order parameter yields the square Fi-(y)=(2K)*(1=K9)%  y=2(2K)%(k"+1), 3.5
bracket in Eq(3.1).

We now Ecqurn to the mean-field analysis of the Casimir F+',(y)=(2K)4, y=—2(2K)*(2k*~ 1),

f_orce asa function of the reduced tempe_ratnre\_/here WE  where a parametrization analogous to the one in(&d) has
first restrict ourselves to the cade=1 (Ising universality

: S . been used. The scaling functién. _(y) is also analytic for
clas. In view of later applications of the resuits to blnar_y all values ofy, although the critical point of the film in the

liquid mixtures near the critical demixing transition, this is case of opposing surface fields is located on the temperature

the most relevant case. For the mean—f'|eld analysis alone gxis and is associated with the interface delocalization tran-
would not be neccessary to determine the full order-

i fles. H in order t ‘ the fluct sition [18]. However, due to the limih;=—h,—o~ per-
Eggagfp;zirgnl(:é é);vcevﬁ;’ ';ngr :[;pgnpd?:( ())én; p?ec?s%uahrmed here, this critical point has been formally shifted to
knowledge of the profiles on the mean-field level is indis-Y¢~ % So that it is no longer visible as a singularity in

) . ; . F. _(y). Corresponding results for (S8, and (O;t+)
pensgble. Details of the calculation are .summanzed in Apboundary conditions can be constructed from Easd) and
pendix A. In the course of the calculations for the order-

parameter profiles, one obtains the correspondin 3.5) using the simple transformatidn-—2L. (see Appendix

expressions for the Casimir forces as byproducts which wil ). One obtains
be discussed in the following paragraph. _ 1 1
As in Appendix A we write the mean-field contribution Feer(¥)= 16F++(4Y), Fo+(¥)= 1 F+,_(4y)(.3 )

(T, ) to the Casimir force in the form '
(T.1)o=(6/g)t,, , and we only consider; , in the follow-  The scaling functions obtained so far still contain a bulk
ing for simplicity. From the general theory of critical finite- contribution which corresponds to a bulk pressure given by
size scalind7,9] we expect, , to take the scaling form t ) puk=— rmi—mi. For 7=0 one has t, ) puk=0

L =L-9F(y).  y=rl W 33 (my=0) and for 7<0 one has t, pu=77/4

“ ). y=r 33 (m,=\/—7/2). The bulk contributiorF,,(y) to the scaling
whered=4 and =3 within mean-field theory. Note that functions given by Eqs(3.4), (3.5, and(3.6) then has the
right at the upper critical dimensiod=d.=4 the prefactor ~simple formFy(y) = 6(—y)y*/4, which contains the usual
6/g of the Casimir force generates logarithmic finite-size cor-mean-field singularity of the bulk free energy at0. In
rections due to the fact that the renormalized counterpaft ~ order to express the finite-size contribution to the Casimir
the coupling constarg vanishes according (1)~ 1/Inl for ~ force(T, )o in scaling form, we define the scaling functions
| -0 at the renormalization-group fixed poifd5]. How- _
ever, logarithmic corrections to scaling i=4 will be dis- fan(Y)=Fan(y) = Fpux(y) (3.7
regarded here, so that from the point of view of mean'f'el%hich are displayed in Fig. 1 fora(b)=(+,+) and

thelgry :Ee above ;f)ref:ictok; IS trdeated asdi'cons:[tr(]amt. i (+,—). Their shapes resemble those of the corresponding
or the case of £,+) boundary conditions the scaling scaling functions for the Ising model confined to a strip in

firll(iftio?rhlz+'+(yl)t can be read off from Eqs(Al2) and d=2 [30]. The asymptotic behavior of the scaling functions
(A14). The result is for y— =00 is governed by an exponential decay according

For()=—(2K)*(1-Kk?), y=(2K)*(2k*-1), to
(3.4 fi o (y—o)=—16y%exp(—\y),
Fir()=2K)*%? y=—(2K)4(k*+1),
fo (y——o0)=—16y%exp — - 2y),

whereK=K(k) is the complete elliptic integral of the first 3.8
kind, and Gsk<1. They dependence df . , according to fi _(y—o)=16y2%exp — \/37),
Eqg. (3.4) is given in the parametric forny=y(k), where '
y(k) is a monotonic function ofk, so that the inverse fo _(y— —o)=16y%exp — - y/2).

k=Kk(y) exists and constitutes thedependence df , . in

a unique way. As can be seen from K8.4) the parametri- The scaling functions take quite sizable values over a sur-
zations ofF . , andy for y=— w2 andy<— = are differ-  prisingly broad range of the scaling argumentThis may
ent. The reason for this is purely technical, in the sense thaterve as a first indication that the Casimir forces provide a
negative values fok? are avoidedsee Appendix A for de- strong modification of the usual dispersion forces in a paral-
tails). There is no singularity ofF, ,(y) at the point lel plate geometry at the extraordinary transition. However,
y=—m? (k=0). In fact,F, L (y) is analytic forall values in order to estimate the absolute strength of the Casimir
of y, because the critical point of the filT.(L),h,(L)) is  forces in binary liquid mixtures close to their critical demix-
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y FIG. 2. Amplitude functiorg(«) of the Casimir force according

to Egs. (3.19 and (3.16. g(a) smoothly interpolates between
FIG. 1. Scaling functionsf, . (y) (solid line) and f, (y)  9(0)=f. .(0) andg(m)=f, _(0) (see the main text The am-

(dashed lingaccording to Eqs(3.4), (3.5), and(3.7). They range  Plitude vanishes at= /3.
influenced by the bulk critical poing=0 is very broad, and the

asymptotic decay foy— = is dominated by an exponentigee @' (z)=clm?(2),
Eq.(3.9)]. Note thatf . . (y) andf, _(y) take their extreme values 311
aty=10 andy=— 25, respectively. m'2(z)=—c’m?(z)+m*(2)+t, , ,

ing transition a renormalization-group analysis fof . (y) where
andf, _(y) is required(see Sec. V.

If the order parameter hd$>1 components, the case of
parallel surface fields is already covered by the above analyéndc is a constant such that
sis of the (+,+) boundary conditions foN=1, because in
this case the order parameter only has one nonzero compo- z
nent parallel to the surface fields. For antiparallel surface a=¢(L) for zp(z):cf dz'/m?(z"). (3.13
fields, however, this is not as obvious, because the 0
order parameter has the additional freedom to rotate acro
the film by a position dependent angi€z). We illustrate
this for the caseN=2 with h;=(h4,0,...,0) andh,
=h;(cos,sine,0, . . . ,0 in the limit h;—o and forr=0. A
similar situation has been been discussed in B for 7
#0. If the order parameter profile is written in the form 120\ — 35\ _ p3 _

M (2) = V12lgm(2) (cose(2),sine(2),0, . . . ,0 one finds the PA=4P 2 -PAL2+1,[P@) P(le)]%é_m
Euler-Lagrange equatiorjsee Eq.(A3) and Ref.[39]]

t,, =c?/m?(L/2)—m*(L/2), (3.12

?Jsust as for Eq(A6) we apply the substitutioR(z)=m?(z)
and eliminatec using Eq.(3.12. All the information needed
to calculate the Casimir force, i.¢,,, as a function ofx is
now contained in Eq(3.13, and

which shows thaP(z)=g¢(z;9,,03) is a Weierstrass elliptic
[¢'(2)m?(2)]’ =0, function, where the invariantg, andg; can be read off from
3.9 Eq. (3.14. As we are focusing on the limit of infinite surface
pro 12 3 fields the film thicknesd. is one of the basic periods of
m'(2)=¢"(2M(2) +2m*(2). P(z) [see Egs(Al1l) and (A18)], and thereforeP(z) has
double poles az=0 andz=L. Using Eq.(3.14 we can
As boundary conditions fotp(z) we choosep(0)=0 and  rewrite Eq.(3.13 and find a representation fé¥(L/2) by
¢(L)=a, because the order parameter should be parallel tperforming a separation of variables in E8.14). Writing
h; andh,, respectively, at the surfaces. The amplitude func+, , in the scaling forn{see Eq(3.3)]
tion m(z) is positive and its qualitative behavior resembles
that of the profilem, . (z) [see Eqs(A13) and(A15)]. From t,, =L *g(a), (3.19
Eq. (3.2 we then find, for the Casimir force,

and using the abbreviatign=L P(L/2), one finds
(TLi)o=(6/g)t, = (6lg)[ ¢"*(L/2)M*(LI2)—m*(L/2)]. -
.10 p=f =1+ (x=1)p “g(a)] *dx,

1

Note that Eq.(3.10 allows a sign change of the Casimir

force as a function of the angle enclosed by the surface ,— 17757 %5(a) fwxfl 3—1+(x—1)p~4 ~124x
fields. Following Appendix A'see Eqs(A4) and (A5)], the “ Pg(a) 1 [ ( )P rg(a@)] '
first integral of Eq.(3.9) is given by (3.1
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The solution of Eq(3.16 is shown in Fig. 2. The Casimir 1.4 E———————————————— .
force[i.e., g(«)] grows monotonically frome=0 to a=m m(z) / m(L10) —
at fixedL and vanishes for the angte= /3 which can also t2r o@)/m - - -

be derived directly from Eq3.16) by settingg(a)=0. Fur-
thermore it should be noted that according to E§s4) and

(3.7) one hasg(0)=F, . (0)=f, .(0), and, according to o8l
Egs. (3.5 and (3.7 one also hasg(m)=F, _(0)
=f, _(0). Thefunction g(«) therefore smoothly interpo- 0.6 |
lates between<,+) and (+,—) boundary conditions, giv-
ing the same result for the Casimir force as the Ising univer- 04r
sality class N=1) in these two cases. ozl
We close this section with a short discussion of the ana-
lytic solution of Egs.(3.14) and (3.16). Following the deri- ol . - : . . -
vation described in Appendix A and using E®.13, the 01 02 03 04 05 06 07 08 09

profile m(z) = JyP(2), the amplitude functiom(«), and the o

anglea can be parametrized in terms of the modutusf the

FIG. 3. Amplitudem(z) (solid line) and phasep(z) (dashed
Jacobian elliptic functions. One finds P (2) ( ) phasep(z) (

line) of a two-component order parameter for surface fields at an
angle ofa=0.987 [k?=0.499, see Eq$3.13 and(3.18 and main

. 2_ 17102
m(z)= % dnz(g,k) + 2K l} text]. m(z) has been normalized tm(L/10), so thatm(z) and
L [ srf(4:ik) 3 ’ ©(z) can be plotted on the same scale.
1 (2k?—1)? _ -
gla)=—>(2K)4 1+ (3.17) and (3.7)], and ¢(z)=0 [see Eq.(3.13]. This means that
4 3 ’ the order parameter profile is given byM(2)

=y12g(m; ,(2),0,...,0 as anticipated from the case

_[@A-2k)(2-K3) ]2 ) N=1 for (+,+) boundary conditions. In the limik?>— %,
a=2|————>—| [II(1/3+k*/3,k)—K] .
3(1+k%) Eqgs.(3.18 and(3.19 yield m(z) =|m,. _(2)| [see Eq(A20)
for 7=0], g(a=m)=f, _(y=0) [see Eqgs(3.5 and(3.7)],
and whereas ¢(z) here is given by thestep function
) 2 A\1102 ¢(2)=m70(z/L—-1/2). The order parameter profile is then
m(z)= 2_K er(£:k) — 2(2k 1)} , given byM(z) = y12g(m, _(2),0, .. .,0Q which shows that
L [srf(£;k)dr(£k) 3 also forantiparallel surface fields mean field theory for an

) 5 N-component order parameter is already captured by the
4(2k°—1) } caseN=1. We illustrate this remarkable behavior Mf(z)
3 ' for a/7r=0.98, i.e., a situation close to antiparallel surface
(3.18 fields. The corresponding modulks[see Eqs.(3.18 and
(3.19] is given byk?=0.499. The phase(z) and the am-
plitudem(z) of the order parameter are shown in Fig. 3. The
order parameter rotates by almost the full amounin a

g(a)=(2K)4[1—

[II(a,k)—K]

b 2
a=\6(1—2k )|[m+§

_[ n z [TI(b k)—K]] narrow interval around=L/2, wherem(z) is smallest. In
1-2k2" 3 ' ' the limit «— 7 this interval shrinks to the point=L/2,
wherem(z) vanishes an@(z) becomes discontinuous.
where {=(2K/L)z, 0<k®<3, and the parameters and b Although the Casimir force is governed by universal scal-
are given by ing functions[28,9], it is not possible to estimate their abso-
. 5 5 5 lute magnitude within Landatmean field theory. The rea-
a=z[1+4k"+9—-8(2k"-1)7], (319 SO is that for the boundary conditions considered here these
' scaling functions contain a common prefactor which depends
b= 1[1+4k’— \/9—8(2k7—1)7]. on the bare coupling constagt and therefore has a value

inaccessible by pure mean-field arguments. In order to at

FurthermoreK=K(k) andII(x,k) for x=a andb denote least partly fill this gap, we now turn to the field theoretic
the complete elliptic integrals of the first and the third kind, analysis of the Casimir forcat bulk criticality.
respectively. The anglex traverses the intervdl0,7] by
decreasing? from k?= 3 to k?=0 in Eq.(3.17), changing to
Egs. (3.18 and (3.19 at k=0 and increasind? back to IV. CASIMIR AMPLITUDES
k?=3 . The special poink?=0 has no particular physical At the bulk critical temperaturé =T, (7=0) the Casimir
significance, it only marks a singular point in the above paratqrces in a film are governed by the universal Casimir am-
rgetnc representation af(«). From Eq.(3.18 we identify iy, des A, which explicitly depend on the two surface
k?= (2~ 3)/4 as the parameter value, whegéx)=0 or,  yniversality classes combined in the film. Ade1 order
equivalently,a= /3. parameter components the Casimir amplitudes may also de-

Settingk®=1 in Eq. (3.17) yields m(z)=m. ,(z) [see pend on continuously varying parameters, as demonstrated
Eqg. (A13) for 7=0], g(a=0)=f, ,(y=0) [see Eqs(3.4  above for the casédl=2 with tilted surface fields. Fof
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#T. (7#0) these amplitudes have to be replaced by univer- _ I[(3—d)/2] [

sal scaling functionsd, ,(y) of a suitably chosen scaling f(T;,L)=H[®]+

argumenty [28], which will not be considered in this section.
The Casimir amplitude is defined as the finite-size ampli- %

tude of thefree energyof a film at bulk criticality [9,28]. +(N—1)2 (6511>)<d—1>/2 (4.4)

Translating this definition to théorce one finds n=2

(2)\(d—1)/2
2d—1w(d—1)/2(d_1)[n§3 (er”)

9 for the critical part free energy within the Gaussian approxi-
— —f(Te,L)=(T, )=(d—1)A, ,L ¢ (4.)  mation ind dimensions. Thé. dependence of the Gaussian
L contribution tof(T;,L) is completely determined by the
_ _ ) dependence of the eigenvalues. From a simple dimensional
in d dimensions and for 7=0, where f(T.,L) analysis one hael’~ L2, so thatde/dL=— (2/L) (" for
=F(T=T.,L)/(AkgT,) is the critical part of the free energy ; _ 175 From Eqgs(4.1) and(4.4) wenﬁnd "
per unit areaA of the plates. Following Refl.28], kgT, is ’

used as the natural energy unit for the free energy, 6 r[(3-d)y2] [ &
wherekg is the Boltzmann constant. As a first step beyond (T, )=t +5a1 @17, RGO
Landau theory the contribution of Gaussian fluctuations 9 m L[A=3

to the Casimir force, i.e., to the amplitudés, ;,, will be s
investigated here. We introduce the fluctuation idawof the +(N=1) 2, (el)yd-nr
order parameter® by ®=®+®d, where ®=M(2)= n=2
J12lg(m(z),0, . .. ,0 is the mean-field-order parameter pro-
file discussed in Sec. Ill and Appendix A. Inserting the

above decomposition ofP m_to Egs. (2.1 and (2.'2) for . fore employ the dimensional regularization scheme. Further-
7=0 andc, =¢,=0 and keeping only the quadratic terms in ., 0 ‘the above sums yield an UV singularity in the typical
®=(¢1, ...,4n), we obtain form 1/c which must be treated analytically in order to fa-
cilitate the renormalization of Eq4.5). Both objectives can

be achieved with the asymptotic expansions of the eigenval-
ueseM) and e® for large mode numbens which are given

by Egs.(B13) and (B15). The regularization of the mode

+0(9) (4.9

for the Casimir force in the Gaussian approximation. The
mode sums in Eg4.5) diverge ford=4—¢, and we there-

H@1= @]+ [ @[z (v

+[6m3(2)d2+2m2(2)(h5+ -+ 2]} sums and the analytical treatment of the pble is summa-
o - rized in Appendix C. Using the results from Appendixes B
+0(h1P%) +0((P%)?), (4.2 and C, we now investigate the different boundary conditions

separately, where the mean-field results given by Ej9),
whereh;=*+h,=(h,0, ... ,0) in the limith,—o isimplic-  (3.5), and(3.6) are only needed fok’=1/2 (r=0).
ity assumed. The mean-field contributiéfj ®] to Eq.(4.2) For the renormalization of the Casimir force given by Eq.
has already been discussed in E}1). Following Eq.(4.2) (4.5, we use the conventions of Red8] and define the
we decompose the Casimir force into the mean field part, &normalized coupling constaatby

Gaussian part, and higher-order corrections according to
g=29792u4" 97 u, Z,=1+ BE+0(u2),
(TL)=(T1)ot(TL1)1+0O(9) 3 ¢

=(6lg)t, | +(T,,1)1+0(9). 4.3

(4.6

whereu is an arbitrary momentum scale adet4— ¢ in the
In order to determinéT, | ), from Eq.(3.2), one also needs following. The infrared stable fixed point valug (&) of the
the cubic terms in Eq4.2) and we will therefore not follow renormalized coupling constaatis given by[2]
this approach any further. It is much more convenient to
determing(T, | ), from the Gaussian contribution to the free U (8) = 3 ot 9(3N+14) 524 0(s%) @7
energy by taking its first derivative with respect to the film N+8 (N+8)3 ' '
thicknessL [28]. Following Ref.[28] this can be done most
easily in a spectral representation of the Gaussian HamilFor later reference we also quote the three-loop estifd#te
tonian given by Eq(4.2). For the evaluation ofT, | ); only
the eigenvalue spectrum is needed. According to Bd®) Ut (s)= E+ 1_7
the spectrum consists of a longitudinal paﬁ) characteriz- 1 3

81°
ing the eigenmodes of the longitudinal fluctuatighsof the
order parameter, and a transverse pﬁﬁtwhich is the same of the fixed point value u* for N=1, where

for each of theN—1 transverse componentgy, . ..,#n)  £(3)=1.202 06 is a special value of the Riemann zeta func-
of the order-parameter fluctuations. The speatfl and  tion. In order to improve the predictive quality of a low-order
eﬁf) are determined in Appendix B. Once the eigenvalues are expansion foe =1 (d=3) in a simple way one may try to
given, one can employ the dimensional regularizationinclude exact results for the quantity in questiondis 2 in
scheme, and according to RE28] we find the sprit of a Padapproximant in the variable. This can be

709

2 _
T\ 17206 27¢®

e3+0(e
(4.8
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TABLE I. Casimir amplitudes for the Ising universality classdr 3. The values labeled by=1 are
obtained by evaluating Eq#4.17), (4.9), (4.10, (4.11), and(4.12 for N=1 ande=1. The values labeled
d=3 are obtained from Eq$4.18 and(4.14 for d=3 (¢=1). The Monte Carlo estimates obtained from
the serial version of the algorithm presented in R&B] are labeled by MC(see also the main text
Statistical errorgone standard deviatigrare in the last two digits, as indicated inside the parentheses. The
last line shows Migdal-Kadanoff estimates taken from R&2].

Aper AO,O A+,+ A+,f ASB,+ AO,+

e=1 —0.1116 —0.0139 —0.173 1.58 —0.093 0.165

d=3 —0.1315 —0.0164 —0.326 2.39 0.208

MC —~0.1526(10) —0.0114(20) —0.345(16)  2.450(32) 0.1873(70)

Ref.[32] —0.015 0 0.279 0.017 0.051
applied rather successfully to the Casimir amplitulig,, w92 (dr2) [ K\ * 9¢
thus improving the agreement between the field-theoretic Asp =~ Bk (o) \ 7 |1 NTel M
prediction[28] and the Monte Carlo estimaf&3] in d=3.
We will therefore follow the same procedure here, where the N—-1 )
case of (SBy) boundary conditions must be excluded, be- +8N+82'8448+ O(=5)|- (4.1

cause the SB multicritical point does not existdi 2.

The renormalized expression fofT, ) for (+,+) From Eq.(3.6) for y=0 and Eqs(4.5) and(C11), one finally
boundary conditions can be obtained by inserting the mearhas for (O;+) boundary conditions
field result given by Eq(3.4) for y=0, and the regularized

mode sum given by EqC5) into Eq. (4.5) and by applying :wd’ZF(d/Z) K| n 9 01088

the renormalization prescription given by E@.6). After O+ 8ur(e) \ar N+8"

expanding alld-dependent quantities to first order én[see N_1

Eqg. (C12] the 1k pole coming from Eq(C5) is cancelled, L 0.2289+ O( &2 41
i.e., the UV singularity has been consistently removed from *N+8 (&) (412

the theory. The Casimir force then follows by evaluating the . . ) o

resulting renormalized expression GF, | ) at the renormal-  Note thatu®(e) in the above expressions is given by Eg.
ization group fixed pointi=u* (&) given by Eq.(4.7). The (4.7). It is remarkable that the coefficients of the Gaussian
¢ expansion of the universal Casimir amplitude, ,, ~ contribution t0Asg . given by Eq.(4.11 are much larger
which characterizes the strength of the Casimir force in ghan the corresponding coefficients in E¢89), (4.10, and
critical film with parallel surface fields, is finally obtained by (4-12. This may be due to the fact that the order parameter
applying the definition oft, , given by Eq.(4.1). The alge- néar a SB surface is much more susceptible to fluctuations
braic manipulations involved here starting from E¢s5, than near O oE surfaces.

(C5), and (4.6), are absolutely elementary, so that we only N the Ising universality classN=1) ind=2 three of the
quote the final result above Casimir amplitudes are known exactly from conformal

field theory[29]. They are given by

A= DT KT % ) e A S VAR Y |
N TS IAT T R w7 gy Ae-Tagm BosTg (W13
N—1 The construction of a Padapproximant from Eqs(4.9)
2 ’
+8N+80'1242+ O(e%)|, (4.9 (4.10, and(4.12 for N=1, which extrapolates to the ampli-

tudes given by Eq4.13 for e=2, is arbitrary to a certain

. ._degree. If one uses E¢.9) instead of Eq(4.7) for N=1,
where part of thes expansion has been resummed consisy g inroduces an additionaf-contribution to the square

tently todfirst ordher ine using Eq(.j(Cl3). Fokr) (+,_I) %ound- bracket of Egs(4.9), (4.10, and(4.12 such that Eq(4.13
ary conditions the same procedure can be applied using Egy renroduced foe =2, one finds the interpolation formulas
(3.5 for y=0 and Eqgs(4.5 and(C6). One finds P ' P

_ 7Pr(di) K\ ,
7920 (d/2) [ K\ 4 9 A+,+—_m = [1-0.6853+0.127%“],
A, =2—F——|—]| |1-+—-50.2822
: u*(e) T N+8 o .
A, =27 F(dlz)(K) 1-0.2822:+0.0914>
+8;10.4066|—O(82) . (4.10 T uf(e) \m [1-0. ' I
N+8 (4.14
d/2 4
From Eq.(3.6) for y=0 and Eqgs(4.5 and(C9), one has for Ao +=—Tr E(dIZ)(S [1+0.1988 —0.070%2].
(SB,+) boundary conditions ’ 8uj(e) \m
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FIG. 4. Monte Carlo estimates of the Casimir amplitulle . FIG. 5. Monte-Carlo estimates of the Casimir amplitukle _

as a function of the number of layets in a L'?XL slab for as a function of the number of layets in a L'2XL slab for
L’'=4L. The size of the error bars represents one standard devid-'=4L. The size of the error bars represents one standard devia-
tion. The data point at. =32 is taken as the final estimatsee tion. The dashed line shows a fit of E¢.16 to the data for
Table ). L=16 giving the estimate ok , _ displayed in Table I. The abso-

lute size of the error bars is about twice that in Fig. 4.

Numerical estimates of the Casimir amplitudesdin 3 ob-
tained from the above analytical formulas are summarized iflitional simulations were performed with. =28 and
Table I. L'=4L. All individual measurements agree within their sta-
In d=3 and for N=1 the Casimir amplitudes\o, tistical error and the final estimates are shown in Table I. For
Ao+, A, 4, andA, _ can be measured by a Monte Carlo (+,+) and (+,—) boundary conditions, however, the situ-
simulation of the Ising model defined by E@.3. The al-  ation is different. ForA, , measurements have been made
gorithm and its special adaptation to the measurement of thior 12<L <32 andL’=4L, the individual estimates are dis-
Casimir amplitude is presented in R¢B3] in detail. We played in Fig. 4 as a function df. The estimates show a
therefore only briefly describe the differences between the&lear systematic dependence bpand apparently even for
implementations used here and in RE33]. The present L=32 layers the asymptotic regime has not yet been
implementation of the algorithm utilizesserial hybrid up-  reached. The last three data points fall onto a straight line
date scheme which consists of a Metropolis update sweep a¥ithin their error bars, so that the data cannot be extrapolated
the whole lattice followed by a Wolff update. The length of to an asymptotic value. As the current Monte Carlo estimate
the equilibration and the measurement period used here cofer A, | we therefore take the measurement for the largest
respond to those in Ref33]. The slab geometry contains system (=32, L'=4L) (see Table ) The situation for
L’2XL lattice sites, wher& '/L must be chosen as large as A . _ is similar. The individual measurements are shown in
possible in order to approximate the infinite slab geometryFig. 5 for 12<L. <28 (L' =4L). Again, the asymptotic re-
In practice L’ =4L already turns out to be sufficient; i.e., the gime has not been reached for the largest system, but this
results obtained for this choice agree with those fortime it is possible to estimate the asymptotic value for
L'=6L within a fraction of one standard deviation. The A, _ by a least-square fit of the function
thicknessL of the slab has been varied betwdes 12 and
32 layers. As in Ref[33] we use the multiple histogram AT (L)y=A, _+Dexp(—«L) (4.16
technique[47], where the number of histograms taken has ) )
been increased from 25 to 31 for>24 in order to guarantee 0 the data fol. =16 usingA, _, D, and« as fit param-
sufficient overlap between adjacent histograf88]. The eters. The exponentidl dependence oA%"_(L) in Eq.
simulations were run on DEC Alpha workstations at the Uni-(4.16) is motivated by the short-ranged nature of the interac-
versity of Wuppertal and the total amount of CPU time usedion in Eq. (2.3). The error of the amplituda , _ is esti-
is equivalent to about one year of CPU time on a DEC 3000nated by taking the maximal error of the individual mea-
workstation. surements involved in the fit. All estimates obtained from

The serial implementation of the algorithm has beenEds.(4.9), (4.10, and(4.12 for N=1, from Eq.(4.14, and
tested for the Casimir amplitudd e, with L'=4L and  our Monte Carlo estimates are summarized in Table I. For
L'=6L for L=20 andL=24. The estimates fo,, ob- ~completeness we also display estimates Qg and Ao o
tained with these four lattice sizes agree within their statisti-obtained from the partially resummedexpansiong21]
cal error, and give the final estimate

P(d2¢(d)( | 5N+2

= — - 2
A per= —0.1526+ 0.0010, (4.15 Aper el AN+t o)),

which is in perfect agreement with the estimate obtained Ao =2 A e (4.19
from the parallel algorithn{33]. The amplitudeAg o has
been measured for the same lattices sizes and for ad- for N=1 and from the Padapproximant§21,33
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per— ar

F(d/2)§(d)( 54—d interest is the critical end point of the line of critical demix-
a

2 ﬁ) AO,OZZ_dAper- ing transitions on the liquid-vapor coexistence surféaee
(4.18 Fig. 1 in Ref[49]). In order to discuss the effect of criticality
' on the equilibrium thicknesk of the wetting laye{10,4§

which reproduce the exact resuf9] we assume in the following that the critical temperature
Tcep associated with this critical end point is locatabove
T T the wetting temperatureT,,, so that the condition
Ape=—75 Boo=" 73 (419 T,<T=T,, guarantees anacroscopicwetting layer of a

critical binary liquid mixture. For large values ¢fthe van
in d=2. For comparison we also reproduce Migdal-der Waals contribution téw(T,l) has the asymptotic form
Kadanoff estimates for the Casimir amplitudesiia 3 from  [50]
Ref. [32]. The agreement between the Paafgproximants s 3
and the Monte Carlo estimates is quite satisfactory, exceg{g ATD= W(MI™“+0( %)  (nonretardey
for A o, which seems to be closer to the partially resumme Dodwi 1 W(T)I73+0(1"%) (retarded.
e expansion and the Migdal-Kadanoff estimate. However,
the amplitude is rather small, and therefore the relative stalhe explicit temperature dependence of the Hamaker con-
tistical error of the Monte Carlo estimate, which is one stan-stantW(T) and its retarded counterpaft,(T) is quite weak
dard deviation, is very largé0%, see Table)l In view of ~ and can be disregarded in the critical regime aroligg.
Fig. 4 the Monte Carlo estimate fdr, | given in Table |  According to Eq.(5.1) one has withSw (T,1) = Swygw(T.I)
constitutes only an upper bound for the true amplitude, anteken from Eq.(5.2 L(8p)<(sp) Y* in the nonretarded
must therefore also be handled with caution. The fit procecase, andL(8p) = (8p) ~Y*in the retarded case. Provided the
dure used to extrack, _ from the data shown in Fig. 5 is Wwetting layer becomes thick enough, one observes a cross-
also susceptible to systematic errors to a certain extent. Howpsver from the former to the latter power law fép—0 in a
ever, compared to the paramet&sand« in Eq. (4.16, the  wetting experiment, because the van der Waals forces be-
resulting estimate foA, _ is quite robust with respect to, come retarded ak increaseg50]. At the critical end point
e.g., changes in the number of data points included in the fitdw is modified by the long-ranged Casimir forces according
The obtained variation of , _ is in the same order of mag- to
nitude as the statistical error given in Table I. With regard to

(5.2

their reliability the analytical and the Monte Carlo estimates®®(Tcep:!) = 8@yaw( Teeps!) +KeTeephapl ~ @Y (5.3
of AL ., A, _,andAg ;. seem to be a substantial improve- . . . )
ment over the Migdal-Kadanoff results. in d dimensions, wherdg is the Boltzmann constant and

A, is the Casimir amplitude for boundary conditions of
type (a,b) as discussed in Sec. IV. If the van der Waals
forces are not retarded, one can combine E§&) and(5.3
A typical experimental setting, within which the film ge- in d=3 by defining the effective Hamaker const§8]

ometry considered here is of particular interest, is provided

by wetting experiments performed on plane and chemically Weii=W+KgTcepAan, (5.4
homogeneous substrat¢3,10,44. The equilibrium thick-
nessL of the wetting layer is determined by th@nimumof

the effective interface potentifB]. It is given by the grand- 7 A
canonical free energy of a liquid layer ofpaescribedthick- the effective interface potential given by E§.1), and thus

nessl, which is in contact with the substrate on one side ancfetgrmines the equiliprium thickngissof the wetting Iayer
with the bulk vapor phase on the other side. In the limit of " fixed undersaturatioap. The ratioR(Jp) of the wetting

large interfacial aread the effective interface potential can layer thicknessLcf 5p) at the critical end point and the

V. EXPERIMENTAL IMPLICATIONS

where the temperature dependenceVéfhas been disre-
garded. The effective Hamaker const&f; replacesw in

be written in the forn{3,48,49 thickn_essL( op) of th_e wetting Iayerputsidethe critical re-
gime is then determined by the rat.+/W [48]. One ob-
tains
QT
lim =w(D)=1[p|(T)/p,(T)—1]po(T)op+0os(T)
A—oo R( 5p)ELcep( 5p)/|-(5p)
+oy(T)+ Sw(T,1), (5.2) = (Wert/W)B= (14K TeeAap /W3, (5.5

wherep,(T) andp,(T) are the liquid and the vapor density, which is independent of the undersaturatiép to leading
respectively angy(T) denotes the liquid-vapor coexistence order in 5p (see Ref[48] for detail9. If both the liquid-
line in ap, T phase diagram. The quantifip in Eq.(5.1) is  substrate and the liquid-vapor interface “prefer” the same
a dimensionless measure of the undersaturation of the vaparpmponent of the binary liquid mixture, one has
i.e., 8p>0 indicates that in the bulk theaporphase is ther- (a,b)=(+,+), and Eq.(5.5 predicts a thinning of the wet-
modynamically stable. The substrate-liquid and liquid-vapotting layer, becausé . , <0 (see Table)l In the opposite
interfacial tensionsrg(T) and o,(T) do not depend o, case @,b)=(+,—) applies, and Eq(5.5 predicts an in-
and Sw(T,l) contains the dispersiofvan der Waalsforces crease in the wetting layer thickness dueAq@ _>0. An
and the critical Casimir forces in the liquid layer. For a bi- experimental realization for the latter case is provided by a
nary liquid mixture as the wetting agent the critical point of methanol-hexane mixture on Si-SjQvafers as substrates
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[51]. The mixture wets the wafers at a temperature below J

Tee=300 K, where the methanol concentration is enhanced®Kc(L) =Kc(L) —K(L=2)=— (9_L5w(TCaL):2WeffL_3

near the substrate and the hexane concentration is enhanced (5.9

near the liquid-vapor interface providing a realization of the

(+,—) boundary condition. The Hamaker constant for thisif the van der Waals forces are not retardede Eqs(5.3)

system is given byW=9x10"' erg [51] and with and(5.4)]. Note thatT. in Eq. (5.8 is not given by Tce.

A, _=2.4 taken from Table | one obtai®sp—0)=2.3  HereT, marks a second order phase transition from the de-

from Eq.(5.5). The corresponding value & for *He on Ne  mixed to the mixed liquid, which takes plageside the lig-

substrates at the lower point is R=0.995[48]. The expla-  uid regime in the phase diagram away from the liquid-vapor

nation for this drastic difference is twofold. First, there is coexistence surfadsee Fig. 1 in Ref[49]). However, typi-

the combined effect of the Hamaker constahiand the rel-  cally T, is roughly about the same size B, By inserting

evant energy scale given tgT.. For methanol hexane on the values forA, . andA, _ (see Table), T,=300 K,

Si-Si0;, one  has T, =T=300 K, so that andW=9x10 '° erg for methanol-hexane into E¢5.4)

W/(KgTeep=0.2, whereas for “He on Ne one has one finds

T.=T,=2.17 K, which impliesW/(kgT,)=2 [48]. Second,

the relavant Casimir amplitude &, =2.4 for methanol —0.6 for (+,+) boundary cond.

hexane andAgo=—0.022 for “He [48]. In the ratio Wet/ W= 12 for (+,—) boundary cond. (5.9

(Wei—W)/W [see Egs(5.4) and (5.5)], one therefore has '

one factor~10 in favor of methanol hexane coming from According to Eq.(5.9) the critical contribution tosK (L)

WI/(kgT.) and a second factor 100 in favor of methanol- can lead to a sign reversal 6K(L) for equal plates, and

hexane from the Casimir amplitude, which combine to theincreasessK (L) by an order of magnitude for opposing

observed drastic quantitative differenceR(op). plates. The effects of criticality 0AK (L) should therefore
For 6p—0 the equilibrium thicknes (op) of the wet-  be detectable by direct force measurements in critical binary

ting layer increases, so that the van der Waals forces majytuid mixtures.

become retardefsee Eq.(5.2)]. In the retarded regime the

pritical contribution todw(T¢ep,|) becomes thelleading term VI. SUMMARY AND DISCUSSION
in Eq. (5.3 for d=3, and therefordR(5p) defined by Eq.
(5.5 divergesfor Sp—0 according td48] If macroscopic bodies are immersed in a critical fluid,

long-ranged forces between these bodies are generated by
R critical fluctuations of the order parameter. For the special
(6p—0) ; O . ;
case of binary liquid mixtures confined to a parallel plate
2kgTeeA 1 — V3 3w, \ Y4 p,\ ~V12 P geometry these forces have been analyzed for various bound-
=( ) (p ) ( ) (6p)~ "% ary conditions involving surface fields in order to describe
chemical affinities of the confining walls or interfaces toward
(5.6 one of the components of the mixture. In particular, the fol-
lowing results have been obtained:
For (+,+) boundary conditions one has, . <0, and in (1) Within mean-field(Landay theory for an Ising-like
this case retardation of the van der Waals forces leads to @stem (=1 order parameter componentte universal
finite value of Lo Sp) for sp—0. The ratioR(dp) then  scaling functionsf, . (y) andf, _(y) of the Casimir force

P17~ Py 1~ Py Py

vanishesas can be easily obtained in a parameter representation without
a detailed knowledge about the order parameter profile. Ei-
_ / W, | 34 14 ther scaling function indicates that the corresponding Ca-
R(8p—0)= PI—Po r ) (@) (Sp)Y4 simir forces should be visible over a surprisingly broad range
—2kgTeeA+ \pi—pu) \py in the scaling variabley=7L'". The scaling functions

(57 fgs.(y) and fo_ (y) can be obtained fronf, . (y) and
f+ _(y) by applying a simple scale transformationft@nd

for 6p— 0 [48]. The amplitudes of the power laws governing y. In comparison with ¢,+) and (+,—) boundary condi-
R(8p—0), which according to Eqg5.6) and(5.7), depend tions the Casimir forces for these mixed boundary conditions
on the produckgTeAa . Show the same sensitivity to the are substantially reduced both in their magnitude and in the
type of the wetting agentmethanol hexane ofHe) as the range of the scaling argumeytover which they are visible.
effective Hamaker constarisee above The drastic en- For (+,+) and (SB;) boundary conditions the force is
hancement okg T, A, Observed for typical binary liquid attractive, for (+,—) and (O;+) boundary conditions it is
mixtures in comparison witifHe makes critical effects on repulsive. FolN=2 an additional degree of freedom in the
wetting layers much easier to detect experimentally. A corchoice of the boundary conditioftsurface fieldsis provided
responding statement can be made for direct force measurby the introduction of an arbitrary tilt angle between the
ments by atomic force microscopg¢S2]. If two parallel surface fields. FoIN=2 order-parameter components and
plates at distance are immersed into a binary liquid mix- y=0 it is shown that the amplitude functi@{«) smoothly
ture, which is close to its critical demixing transition, the interpolates between the special val@€ssimir amplitudes
force per unit ared& . between the plates will deviate from f, .(0) («=0) andf, _(0) (a«=m) of the scaling func-
the bulk pressure due to thinite distance between the tions. The Casimir force vanishes far= /3. Fora=  the
plates. This deviation is given Hy8] order parameter profile is identical to the profile fdr=1
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and (+,—) boundary conditions. For critical binary liquid strict the analysis to the cade=1 (Ising universality clags

mixtures only the casbl=1 is relevant. The Euler-Lagrange equation for the order parameter profile
(2) For the special casg=0 (T=T;py) the scaling M(z) reads

functions reduce to the universal Casimir amplitudgs, for

(a,b) boundary conditions which have been calculated ana-

lytically to one-loop ordefGaussian fluctuationsn order to

obtain quantitative estimates for the magnitude of the Ca-

simir force ind= 3. For the most relevant cade=1 and for ~ Where the boundary conditions

(+,+), (+,—), and (O;+) boundary conditions it is pos- , ,

sible to contruct Padgype approximants for the Casimir am- M’(0)=c:M(0)=hy,  M'(L)==cM(L)+hy )

plitudes ind=3 by including exact results from conformal (A2)

field theory ind=2 into an interpolation scheme for the myst pe fulfilled. In order to obtain the leading asymptotic
amplitudes as a function af. If a three-loop estimate for the - penhavior ofVi(z) in the critical regime, we only consider the
fixed-point valueu* of the renormalized coupling constant limiting casesh, = h,— [(+,+) boundary conditionsand

u is used in the interpolation scheme, the resulting values fohl: —h,— [(+,-) boundary conditiorisin Eq. (A2). In

A4, Ay_, andAg . in d=3 agree quite well with cor-  thjs |imit the order-parameter profile has the singularities
responding numerical esitimates from a Monte Carlo simuj(z)~1/z for z—0 and M(z)~1/(L—2) for z—L. This
lation of an Ising model confined to a slab geometry ingjngylarity ofM(z) at the system boundaries just constitutes

d=3 with surface fields. The estimates indicate that for ane mean-field description of the asymptotic increase
critical binary liquid mixture the Casimir amplitudes are be-——

tween one and two orders of magnitude larger than the prqc—p(z)wziﬁlv of the order-parameter profile a0 for
viously studied amplitudd o o for e at thek. transition. arge (or infinite) surface fields. For this asymptotic power-

(3) For critical binary liquid mixtures confined between law to be valid the conditiora<z<¢ must be fulfilled,

equal or opposing walls the Casimir amplitudas , or wherea is a typical microscopiclength scale and is the

A, _, respectively, yield the absolute strength of the Ca_correlatlon length. In a lattice model for exampglas given

simir force in units ofkoT. . The film aeometry considered by the lattice constant. The order-parameter profile for such a
B c 9 y model will deviate from this power-law increase on the scale

here is realized in a natural way in the course of a WettingZNa away from the surface, and takefiaite value right at
transition on a plane and chemically homogeneous substra\tﬁ1e surface even for an infin’ite surface field

The special case of,—) boundary conditions is realized In order to simplify the notation for the following consid-

by the binary mixture methanol hexane which forms a mac-, _.. . i .
roscopic wetting layer on Si-SiPwafers in the vicinity of erations we introduce the order-parameter functig) by

the critical end point of the demixing transitions. Disregard-settmgM(Z): V12/gm(z) in Eq. (A1), wherem(z) solves

ing any temperature dependence of the Hamaker constant tHée modified Euler-Lagrange equation

presence of critical fluctuations in the wetting layer leads to m'(z)=m(2) + 2m3(2). (A3)
an increase of the equilibrium layer thickness by more than a

factor of 2. The corresponding critical effect on a wettingwe furthermore suppress the parametric dependence of
layer of “He at the lowen point is several orders of mag- m(z) on the reduced temperaturén the notation. Multiply-
nitude weaker. In accordance with this observation, criticaing Eq. (A3) by m’(z), one finds

fluctuations in binary liquid mixtures have a strong effect on

the effective Hamaker constant which determines the m’2(z)=7m?(z)+m*(z)+m’?2(zy)— rm?(zy) —m*(zo)
strength of the force between two parallel plates immersed (A4)
into the mixture. Therefore, critical binary liquid mixtures o ) .
appear to be ideal candidates to probe the universal CasimfiS the first integral of EQ(A3), wherez, is an arbitrary
amplitudes and the associated universal scaling functions HyFference point &z,<L. For the combinations<, +) and
wetting experiments or by direct force measurements using &> —) Of boundary conditions considered hexge=L/2 is a

suitably adapted version of the atomic force microscope. Cconvenient choice, becausgz) is either a symmetric or an
antisymmetric function with respect to the midplane

z=L/2, respectively(see also Refs[19,20,18). Up to an
ACKNOWLEDGMENTS overall factor the integration constant in E@h4) can be

The author gratefully acknowledges useful corresponidentified with (T, ) in the mean-field approximation,
dence with E. Eisenriegler, B.M. Law, and A. Mukho- which we denote byT, | ), [see also Eq(3.2)]. We define
padhyay. (T, )o=(6/g)t,, , so that

t,, =m’?(L/2)— rm?(L/2) — m*(L/2) (A5)

M"(z):TM(z)JrgW(z), (A1)

APPENDIX A: ORDER-PARAMETER PROFILES
o . . o is just the integration constant on the right-hand side of Eq.
The order-parameter profiles in a critical film within mean (a4). with the substitutionm?(z)=P(z)— /3, Eq. (Ad)
field (Landay theory for the Ginzburg-Landau Hamiltonian i5kes the form

given by Egs(2.1) and(2.2) have already been discussed in

the literature in some detail for various reas¢8d1,32,38 P'2(z)=4[P(z)—e,][P(2)—e,][P(2)—e3], (AB)
(see also Sec.).| Therefore we only summarize the main

results of mean-field theory here for later reference. We rewhere
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e,= — 716+ 74—t |, the mean-field approximation. Finally, the order-parameter
functionm_. , (z) can be written in the formi53]
_ = — 66— A=
e,=17/3, ez=—7/6—\7/4—1t . (A7) 2K dn(£:k) oK a13)
m, (2)=———~, {(=—2,
From the obvious propertg; +e,+e;=0 and the structure ++(2) L sn({;k) ¢ L

of Eq. (A6), it is immediately clear tha®(z) =m?(z) + 7/3 is

given by a Weierstrass elliptic functign(z;g,,gs) with the ~ Where dn{;k) and sn{;k) are the Jacobiad amplitude

and sine amplitude functions, respectively. A slight disad-

invariants . .
vantage of Eqs(A12) and (A13) is that in order to param-
g,=—4(ee,+e,e3+eze;)=4(73—1, ), etrize valuesrL?< — 7% one has to switch to negative values
(A8) of k?, i.e., to purely imaginary modulk in the Jacobian
gz=4ejee;=47(t, , —27%9)/3. elliptic functions dn and sn. An alternative parametrization

can be found easily by interchangieg ande; in Eq. (A7).

Moreover,p(z;9,,93) has double poles &=0 andz=L, From the corresponding modification of Eg&\10) and
becausen(z) has simple poles at these positions, so that théA11), we find the new parametrizatiok{=0)
film thicknessL is one of the periods ab(z;9,,93). So far 5 5 s 4o
our statements are valid for both thet(+) and the L= —(2K)*(k“+1), t,, =(2K/L)*k* (Al4)
(+,—) boundary condition. In order to derive the specific
functional forms of the profiles, we now consider each
boundary condition separately.

Turning to the (+,+) boundary condition first, we note 2K 1 2K
thatm’(L/2)=0 wherebyt, , = — rm?(L/2)—m*(L/2), and my (2)=——3-, (=12 (A15)
Eq. (A7) simplifies to L sn(Zik) L

for 7L2<— 72 and the corresponding order-parameter func-
tion reads

From the symmetry of the order-parameter profile for
(+,+) boundary conditions it is obvious that within the
mean-field approximation the case of (SB, boundary con-

e1=9(w1;92,93) =P (L/2)=m? ,(L/2)+ 7/3,

&2=p (w11 ®2,92.93) =713, (A9) " itions can be obtained from Eq#\12) and(A13) and their
_ ) _ counterparts Eq$A14) and(A15) by the simple transforma-
€3=9(®2:02,09) = ~ P+ +(L/2) =713 tion L—2L. The corresponding order-parameter profile is
=—m? ,(L/2)—27/3. then given by m, ,(z+L) evaluated in the interval
' O=z=<L.

The quantitiesw; and w, are the basic semiperiods of ~ We now turn to the case oft(,—) boundary conditions
9(2:95,93). From Egs.(A7) and (A9) we conclude that by noting that in this casen(L/2)=0, becausen(z) is an-
e,>0 for all values of 7, and therefore tisymmetric aroundz=L/2. Therefore, we now have
P, .(2)=9(2,0,,95)>0 for all 0<z<L. Therefore, the t.;=m’'?(L/2), and instead of EqA9) we find

first basic semiperio@, of the Weierstrass function can be
chosen asv,=L/2. It is then convenient to choose the sec-
ond basic semiperiod, to be purely imaginary. We can
now define the modulk andk’ of the corresponding Jaco-
bian elliptic functions by[53]

e1=p(w1;02,05) = — 7/6—im/, _¥(L/2)— /4,

82:@((1)14'0)2;92,93):P+‘_(L/2):T/3, (A16)

e3=(w7,02,95) = — 7/6+im'?_(L/2)— /4,
e,—e; ML)+ 7

k2= =
e;—e; 2m3(L/12)+ 7’

k'?=1—k?. (A10) indicating that this time the two basic semiperiods are com-
plex conjugates withw; + w,=2%Rw,=L/2. In this case it is

convenient to define the modWiandk’ as[53]

According to Eq.(A10), bulk criticality (7=0) corresponds

to k>=k’?=1. The two basic semiperiods are then given by K2=1/2— A[4m, _(LI2)[]], K?=1-K. (AL7)
the complete elliptic integrals of the first kirgi=K (k) and ’
K'=K(k") according tg53] The basic semiperiods can then be obtained ff68j
L K K K’ N L K K’ (01 @)
w1=5= = y W=l Ty W TWy=5=—F————, wry—w1=l—(w1Twy).
Y2 Je—e, 2mA(Li)+r - K™! VU2 ml (L P KT
(A11) (A18)
Combining Egqs(A10) and(A11), we find the useful param- Combining Eqs(A17) and(A18) as above, we find the use-
etrization ful parametrizations
L2=(2K)2(2k>—1), t,, =—(2K/L)*k*(1—k?) mL?=-2(2K)*(2k*~1), t,;=(2K/L)* (A19)
(A12)

of the scaling argumentL? and the Casimir forcéT, )
of the Casimir forcg(T, | )o=(6/g)t,, as a function of the for (+,—) boundary conditions. The corresponding order-
film thicknessL and the scaling argument. Y= 7L.? within parameter functiom, _(z) can be written in the formp53]



2K en(gk)
L sn(Z;kydn(g;k)’
where in addition to EqA13) the Jacobian cosine amplitude

cn(¢;k) occurs. The parametrizations given by E¢819)
and (A20) have the disadvantage that valuds®>27? of

2K
m,,(2)= (=77, (A20)

the scaling variable correspond to purely imaginary values of

the modulusk. However, in analogy with the+,+) bound-
ary conditions the alternative parametrizations
L2=2(2K)?(k?+1), t,, =(2K/L)*(1—k?)?
(A21)

can be found, wherel.>=27? corresponds t&?=0, and
the corresponding expression for the profite _(z) reads

2K en(Z;k)dn(£;k)

2K
T —Sl'(g,k) , (= TZ (AZZ)

m, (z)=

For (O,+) boundary conditions the Casimir force and the

profile can be extracted from Eg@\19) and (A20) or Egs.
(A21) and (A22) by the same simple transformation
L—2L as described above for (SB) boundary conditions.

We close this section with the remark that the order-
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FIG. 6. Scaling functiorh, ,(x;y) for T<T. (y<0) (long

dashed ling T=T, (y=0) (solid ling), and T>T, (y>0) (short

dashed lingaccording to Eq(A23) as a function ok. T, denotes

the bulk critical temperature. Foy+#0 the thick-film limit
(ly|>1) is shown(see main text

APPENDIX B: EIGENMODE SPECTRA

The Gaussian Hamiltonian given by Eg.2) can be con-

parameter profiles determined here can be written in the scaleniently diagonalized by solving the eigenvalue problem

ing form m(z)=L"#h(x;y), wherex=2z/L andy=7L"
are the scaling arguments amE v=31 within mean-field

theory. They dependence of the profiles is determined by the

above parametrizations=y(k) in terms of the moduluk of
the Jacobian elliptic functions. The scaling functidns .,
andh, _ can be easily read off from EqéA13) and (A15)
and Eqgs.(A20) and(A22), respectively. One obtains

dn(2Kx; k)

he +(5Y)=2K S k%)

y=(2K)*(2k*~ 1),

(A23)
o 1
he +(6Y)=2K Gk
y=—(2K)2(k?+1)
and
N cn(2Kx; k)
h+,_(X,y)—2KSrfsz;k)dn(ZKX?k) ’
_ 2 2_
y=—2(2K)%4(2k?—1), (A24)

cn(2Kx;k)dn(2Kx;k)
sn(2Kx; k) '

hy —(x5y)=2K

y=2(2K)?(k?+1).

The functional forms oh,. | andh, _ below, at, and above

bulk criticality are displayed in Figs. 6 and 7, respectively.

Bulk criticality meansy=0, i.e.,k?=1/2 and off bulk criti-
cality the thick film limit |y|>1 (k—1) is shown. In terms
of the bulk correlation lengtl¥ the limit |y|>1 in Figs. 6
and 7 is represented &ag&>15.

V2 (x,2)+1(1+1)m?(2)¥(x,z) =EV¥(x,2), (B1)

wherel =1 for the transverse spectrum and2 for the lon-
gitudinal spectrum and €z=<L. The film geometry is ho-
mogeneous and isotropic with respectxtoso that we can
write W (x,2z) in the product form
W(x,2)=(2m) ("D Xyl (z), (B2)

wherep is the longitudinal momentum, ang)(z) solves
the eigenvalue equation

2
—f—zz¢<n'><z)+l<l+1)m2<z>w<n”<z):e&”a/f(n”(z),
(B3)

02 03 04 05 06 07 08 09
X

0.1

FIG. 7. Scaling functionh, _(x;y) for T<T. (y<0) (long
dashed ling T=T. (y=0) (solid line), and T>T, (y>0) (short
dashed lingaccording to Eq(A24) as a function ok. T, denotes
the bulk critical temperature. Foy#0 the thick-film limit
(ly|>1) is shown(see the main text



1656 MICHAEL KRECH 56
so that the eigenvalu& in Eq. (B1) takes the form vyields the eigenvalues ang’(z) denotes the derivative of
E=p?+€) for I=1 and 2, respectively. As shown in Egs. the Weierstrasg function with respect ta. We again em-
(A6) and (A7) m?(z) is given by the Weierstrass elliptic ploy the symmetry requwemen‘ﬁ(z)(z) +y{?(z+L), and
function p(2)=¢(z;9,,95), Where g;=0 for the case the boundary behaviap®(z)~z3 for z—0, to obtain

7=0 considered hergsee Eq.(A8)]. Therefore Eq(B3) is

identical to the well-known Lamdifferential equatior{54 !
quatior{ 54} 2a,0(LI2)—L| E(ay) + % —nmi,

written in the form of an eigenvalue problem. The solutions 20 (an)+ €23
of Eq. (B3) are known forl=1 and 2, and can be used to
construct the eigenfunctiong/{’(z). Note that due to (e2)3

m?(z)=p(2)~1/z? for z—0 one hasy(z)~2"* for p(ay)=sc———m3, n=3. (B10)
z—0 by inspection of Eq(B3). Furthermore, ¢,+) and 2192=9(eq”)

(+,—) boundary conditions can be treated on the same foot-|-he solution of Eqs(B7) and (B10) for the eigenvalues
ing by noting that, according to Eqeh11) and (A18), one e i=1 and 2, cannot be obtained in a closed analytic

n ’
has form. In order to deal with the divergencies of the mode
o =L2 ot =iL/2 sums in Egs(4.4) and (4.5 (see also Appendix Cwe de-
! ' 2 ’ (B4) rive the asymptotic behavior of the eigenvalues from Egs.
w(1+_)=(1—i)L/4, w<2+ )=(1+i)L/4 (B7) and(B10) for largen. From the geometry of the prob-

lem it is clear that the leading term in an expansior&ﬁ{)‘fin
for the basic semiperiods of the Weierstrass function. Thgowers of 1 is given by the spectrumn@r/L)? of a free
spectra for the cases (SB) and (O+) can be constructed particle in a one-dimensional box of lendth Therefore the
from the spectra for {,+) and (+,—) boundary condi- spectral parametet, behaves as fi/asn increases, so that
tions, respectively. the desired asymptotic form of the dependence of the ei-

First we turn to the transverse spectrum. According togenvalues can be obtained from E{B7) and (B10) by ex-
Ref. [54] the eigenfunctions){)(z) up to a normalization panding the Weierstrass functions(ey), ¢(ay,), and
constant can be written in the form @' (ap) in powers ofa,, where only the leading two terms

are needed. Specifically, we use the expansj68$
U (2)=[o(z+ ap)e” ¥+ o(z— ay) e W]/ (2),

(B5) L(X)=1/x—g,/60x3+ O(x),
where 0(X) = X2+ g,/20x2 + O(x9), (B1D)
(H— _
én =~ 9(an) (B6) where g;=0 is implicity assumed. The calculation is

straightforward, so that we only briefly summarize the results
for the eigenvalue&ﬁ,'). Corresponding expansions are ob-
tained for the spectral parametey,, which will not be re-
produced here.

For (+,+) boundary conditions, one has

yields the eigenvalues ani{z) and o(z) are the Weier-
strass¢ and o functions, respectivelyf53]. The spectral
parameter «,, can be obtained from the requirement
yW(2)=+yW(z+L), ie., the eigenfunctions are either
even or odd functions when continued analytically to the

interval [—L,L]. From Egq. (B4) one hasL=2w{"" L/2)= (ol ) = m/ (2L — At =(2K/L)*
=2(w{" )+’ 7)), and using the shift properties of(z) (L= Loy ) =l2l), 6 1= (giz)
[53] the above shift operation can be directly applied to Eq.
(B5). For the eigenvalue spectrum one obtains WhereKzK(ll\/i) [see Eqs(A8), (3.3), and(3.4)]. By in-
. 1 sertion of Egs(B11) and (B12) into Egs.(B7) and (B10),
2ap{(LI)=L{(an)=nmi, e~'=—p(an), ”22(' ) one obtains the expansions
B7
2 4
where the lower bound on the mode indexomes from the ell= mT) — iz+ %(4—K2— 1) +0(n" %,
requirementy{")(z) ~z% for z—0 for the transverse eigen- L mn®  7°n*\ 37
functions(see above
For the longitudinal spectrum € 2), the eigenfunctions (n=2), (B13y
take the form[54] 5 4
@ (nw) {1 © (4K 1/+0(n~%)
d il T2t A2 ;
W(2)= SAlo(zt agle Ao - ™" A dw
(n=3).

+o(z— an)ezm”‘”)*ﬁ”]]/(f(z)}a (B8)

For (+,—) bound diti has, dingly,
where or ( ) boundary conditions one has, correspondingly

( €2)3 {(LI2)={(of" '+ ol )=mlL,

(B9)
—9(eP)2 g,= —4t, | = —4(2K/L)*,

9'(ayn)
20(ap)+ €23’

(B14)

Bn= p(ay)=
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whereK is given as abovésee Eqs(A8), (3.3, and(3.5)]. * _ nald-1 oA B1E-DR2
Insertion of Eqs(B11) and(B14) into Egs.(B7) and (B10) > [(ef{))(dl)’z— — { ——+— ]
yields the expansions n=ng n- n
W (nm\¥ 4 4 (ak* ] ~ 2 (CD
I R e e e A A U

which is convergent for ang of physical interest, and can
(n=2), (B15)  thus be determined numerically from the solutions of Egs.
(B7) and (B10) for the transverse and longitudinal mode
sums, respectively. The problem of regularizing the mode

2 [N\ 12 36 [4K* . -
ed=|—| |1- —5——53 s+1|+0(n" %], sums has therefore reduced to the regularization of the cor-
L 7n° w3 responding sums over the largeexpansions given by Egs.
(B13) and(B15), i.e., one has to consider the series
(n=3)
* i1 2A B (d—1)/2
The asymptotic expressions for the spectrum given by Egs. nzzno n R (C2)

(B13) and (B15) capture all divergent terms in the mode

sums in Eqs(4.4) and(4.5), as will be seen in Appendix C.

Furthermore, EqgB13) and(B15) provide very good initial ~ for d=4—¢. If the lower summation bound, in Eq.(C2) is

values for a numerical solution of EqéB7) and (B10) by  chosen to be sufficiently large, one can safely expand the

iterative schemes, e.g., the Newton procedure. term under the sum in powers ofn®/ which leads to an
For (SB,+) boundary conditions, the eigenvalue spectragxpansion of the series given by EE2) in terms of Hur-

can be obtained from the case of (+) boundary condi- witz functions{(x,ng). One finds, fod=4—¢,

tions by employing the transformatidan—2L and by allow-

ing only evenindicesn for ef}) and onlyodd indicesn for .

eﬁf) [see EQ.(C7)]. Likewise, the eigenvalue spectra for

(O,+) boundary conditions can be obtained from the case o&zno

(+,—) boundary conditions by again employing the trans-

formation L—2L and by allowing onlyodd indicesn for

eV and onlyevenindicesn for € [see Eq.(C10]. The

reason for this simple rule is that for-(+) boundary con-

ditions starting from the ground state every second eigen-

function has vanishing slope atL/2, so that, after rescal-

ing L—2L, the eigenfunctions for (SB;) boundary

conditions are already contained in the ,(+) case. An

analogous argument relates the spectra fer,) and + §(A2—B)2§(5n0)+ §A(A2—B)2§(7 No)

(O,+) boundary conditions starting from the first excited 8 ’ 8 ’

state for the ¢,—) case.

B (3—¢)/2

n2—2A+ —
n

3—¢
={(—3ng)—3AZ(—1ng)+ T[(1—8)A2+ B]

A
X {(1+¢€,ng)+ E(A2—3|3)g(3,n0)

+0(g)+0(1/nd), (C3

APPENDIX C: REGULARIZED MODE SUMS . .
where thee expansion has already been carried out up to

The mode sums appearing in E¢4.4) and (4.5 are di- termsO(e). The expansion shown in EGC3) converges
vergent for any spatial dimensiah of interest. Within the quite fast already for &ny<5. The 1£ pole indicating the
dimensional regularization scheme used throughout this inJV singularity can be extracted from E¢C3) using the
vestigationd is used as a free parameter in order to find arexpansion
analytic continuation of the mode sums as a functiord of
whered=4-—¢ is this case. On the other hand, the mode
sums in Eqs(4.4) and(4.5) also constitute thé functions of
the eigenvalue spectrum withcadependent argumefb5].

The ¢ function regularization of mode sums, which is a
widely used technique to treat divergent series like those in
Egs. (4.4 and (4.5) [55], is therefore equivalent to the di- wherey=0.577 216 is the Euler constant, anglis a posi-
mensional regularization scheme. tive integer. With the coefficientd andB taken from Eqgs.

The major obstacle toward an analytical treatment of théB13) and (B15) the expressions given by Eg&1), (C3),
aforementioned mode sums has been removed in Appendand (C4) can be combined to the following regularized and
B by the derivation of the asymptotic behavior of the eigen-e-expanded expressions for the mode sums.
value spectrum for large mode numbers given by E§$3) For (+,+) boundary conditions, one finds, with
and (B15). Using these results, one has, ferl and 2, K=K(1/2),

no—1

{(1+e,ng)=1le+y— k}_‘,l 1/k+0(e), (C4)
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d-1oK4 372 1 regularized longitudinal mode sum. The transverse mode
Z (elL)yd=1r [L} —1 s(er 377 sum, however, can be evaluated directly using £G8) and
e (C4). One therefore finds, for (SB,) boundary conditions,
* d-1 4 2
+074919 +0O(e), 2 d 1)2_ ™ K_ e 3l+1_’)’
(C5) = L] 8% 4K* " 3
d-1 4
18K 37 1
2 (el?)d= W—M — —s(m-l-g—y —1.971% +0(e),
(C9Y
+1.5589 |+ O(¢). .
w]d-1 gK* 372 1
S, (e T ol agat 37
For (+,—) boundary conditions, the corresponding result =1 L] 87 4K* 3
reads
—0.84059 +0(e).
- w9 18K 37 1 o
2 (,5(1) (d=1)/ — —1 1— =+ For (O,+) boundary conditions we apply the same transfor-
n=2 L T 4K" 3 mation to the eigenvalue spectrum for (—) boundary con-
ditions. From Eq(B15), we find the expansions
—1.7198) +0(e), w_[(@2n+ D)7 2 4 4
S ST m(2n+1)2  72(2n+1)*
o d—17oc 4 2 X aK’ O(n~8 1
- =
S (e@ya-veo |7 T2 3T L 372 (M) (n=1),
i=s " L e 4K* 3 (C10
—2.4086) +0(s). (C6) @ (M), 3 9 (4K e
“ T [P a3 T O )
(n=2),

For (SB,+) boundary conditions we apply the simple trans-
formatlon described in the last paragraph of Appendlx B toUSlng Eq.(C3), with n, replaced by2 in order to evaluate
From Eq.(B13), we find the expanS|ons boundary conditions,

W n7721 1 1 4K* s orm-e
€ T\ 272 " 16m2n%| 372 (n")

ﬂ_:|dl K4

y d 1)/2 _
S (e 1k

1 372 1+
flakd 377

27

+0(e),

- 1.897%

2_[@n+7 2 6 . 9 (C11)
S T T m2n+1)2 " 7(2n+1)* P Ll S 372 1
2, (&) :_H 2% S(W‘ﬁﬂ
4
X|3=-1 +0(n"%) |, (n=1),
T —1.927(% +0(e).

for the transverse and longitudinal spectra, respectively. Due 3 _ _
to the appearance of half-integer arguments in the Hurwitdn order to facilitate the: expansion of Eq(4.5), we finally

functions for the transverse mode sum, in this case one nee@iote that

" :
(he expansion T[(3—d)/2]= —2\a[1+e(1—In2— /2)+ O(£?)]
(C12

[(1+e,3)=1le+y+2In2—2+0(e) (C8  and
I'(df2)=1—¢e(1—y)/2+0(&?) (C13

instead of Eq(C4). Furthermore, the right-hand side of Eq.
(C3) with n, replaced by2 is needed in order to derive the for d=4—¢ (see also Ref.28] for similar relations.
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