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We present direct numerical simulations for nonlinear dynamos, based on a Lagrangian approach that allows
us to compute for relatively high effective magnetic Reynolds numtRgs;(1-3x10* The particular
systems we study and contrast are the stretch-twist(®&Id) and theABC flow dynamos. In the case of the
STF dynamo, we show that whereas small-scale magnetic fluctuations are suppressed in the nonlinear regime,
they still remain sufficiently large so that the STF dynamo still cannot be consi¢iartids nonlinear regime
a paradigm for a fast dynamo. Our numerical study of AlC flow dynamo indicates, first, that during the
period of kinematic behavior, there is no growth of a large-scale magnetic field, and that any large-scale field
components are subject to classical turbulent diffusion; second, we show that if back re@tt®tsmagnetic
tension are taken into account this diffusion is highly restricted. We refer to this behavior as “restricted
chaos.”[S1063-651X97)10508-4

PACS numbsgps): 05.45:+b, 52.30--q, 47.52+j, 47.53+n

I. INTRODUCTION is generally interpreted to mean that the growth rate of the
magnetic field becomes independent of the diffusivjtyn

The “fast” generation of magnetic fields remains an un-this limit [6], one might therefore hope that fast dynamo
solved problem, even in the linear approximation. In the lat-action could be found fo=0. More specifically, in spite of
ter limit, corresponding to the “kinematic” dynamo problem the strong likelihood of growing small-scale magnetic fluc-
(for which the velocity field is presumed to be givethis  tuations, one might nevertheless expect that appropriate
“dynamo problem” reduces to finding flow that lead to ex- flows would also generate large-scale magnetic flux, which
ponentially growing solutions for the magnetic field. This in turn would not be affected by a small diffusivity; such flux
problem has turned out to be remarkably difficult: it is growth at large scales would suggest the existence of a fast
known that it cannot be reduced to two dimensions becausgynamo for the large-scale field component.
one can show that no dynamo is possible in this lifi However, it has long been thoudi] that a finite, though
similarly, symmetric dynamos are also impossib¥. In-  small, diffusivity is crucial for the operation of fast dynamos.
deed, there are no known general solutions for the simpleshdeed, the notion of fast dynamos originated as an analog to
kinematic problem; and simple physical arguments are confast processes in fluid turbulence; for example, turbulent dif-
founded by the fact that the geometric and topological strucfusion (of, say, a scalar passive figlis a fast process; i.e.,
ture of the magnetic field quickly becomes very complicatecthe turbulent diffusion coefficient is independent of the mo-
as dynamo action proceeds. This seemingly intrinsic comtecular diffusivity. This happens because there exists an en-
plexity of dynamo-generated magnetic fields appears to bergy cascade to small scales, where diffusion acts, and thus
characteristic of virtually all numerical simulati¢of. [3,4]).  destroys inhomogeneities of scalar fields. It is usually pre-
A further fundamental difficulty arises because the eigensymed that fast dynamos work in the same way, i.e., that the
functions of the induction equation operator are characterscale of the magnetic field must be reduced to diffusive
ized by a diffusive scalé, rather than by the typical scale of scales by the flow before generation can start to work, pro-
the velocity fieldl [5]. The scales turns out to be typically vided generation is more efficient than diffusion. Thus,
very small when compared to the flow scale lerigth rough  roughly speaking, a dynamo creates new field lines, and one
estimate givesézlerlez, where R, is the magnetic Rey- would think that this can be done only on diffusive scales.
nolds number €uvl/%, with v atypical velocity andn the  This point of view explains why the eigenfunctions of the
magnetic diffusivity; as the magnetic Reynolds number is induction equation operator are characterized by diffusive
generally very large in most cases of interest, the séale scaleq5]. Presumably, laminar dynamos work analogously,
becomes very small. This difficulty also arises in numericalthat is, the field adjusts itself tsmall-scalg eigenfunctions
calculations, in which one attempts to compute with as largafter scale reduction, and only then the dynamo starts to
a magnetic Reynolds number as possible; as a result, thereaperate 7,8].
an enormous disparity between the smallest diffusive struc- A different perspective on this issue is obtained by con-
tures and the spatial scales characterifiiog example the  sidering the role of turbulent diffusion in fadurbuleny dy-
energy-containing eddies in the flow. This scale separationamos(cf. Parker[9]). Consider, for example, the case of
problem is a by now classic stumbling block for treating cyclic magnetic fields, as are encountered in studies of the

dynamo action accurately and realistically. solar cycle. In that case, turbulent diffusion is required in
One possibility for avoiding this problem is to solve the order to “get rid” of old magnetic flux from former cycles.
ideal case,n=0 (corresponding to the limiR,,—x), by There is no universal agreement as to which of these two

using the Cauchy solutidrB,4]. Since “fast dynamo” action approachesi.e., either the flux is generated on large scales,
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essentially independently of the diffusivity, or this genera-would tend to smooth out the fluctuations, thus diminishing
tion is actually produced on diffusive scalds correct. It  them; in fact, the numeratdB?) is restricted in the nonlin-
may be that both are correct, that is, that both of these prcear limit by the backreaction of the magnetic field, and there-
cesses operate in naturally occurring dynamos. One of thfare one might expect the critical parametetto decrease
cornerstones of the first approach is the stretch-twist-foldvhen compared to what one obtains in the kinematic STF
(STPH motion [6,10]. Indeed, the STF seems to generatelimit. Simulations reveal, however, a more complicated pic-
magnetic flux without invoking diffusivity. Amazingly ture, so that this simple expectation is realized only in part.
enough, this picture—which played such an important role in  Our paper is organized as follows: Sec. Il develops the
the development of dynamo theofgf. [3])—was based just basic formulation of the STF problem, Sec. llI gives a brief
on a simple illustration, that is, on a sketch of this processoverview of the kinematic limit, and Sec. IV treats the basic
Recent numerical simulations of the STF flo®1] showed, results of nonlinear calculations. We focus on the special
however, that the STF flow actually leads to very compli-case ofABC flows in Sec. V, discuss the effects on turbulent
cated fields; in other words, the STF flow is from this per-diffusion in Sec. VI, and summarize our results, and present
spective not special, but rather leads to the kind of fieldour conclusions, in Sec. VII.
behavior that other complefturbulen} flows also produce.
This result is true at least for the case in which the STF is Il. FORMULATION OF THE PROBLEM
represented by a continuous, and therefore realistic, velocity.
(If one allows for discontinuous flows, then there is no need In the linear limit, the dynamo problem reduces to looking
to appeal to the STF as there are much simpler flows thder (exponentially growing solutions of the induction equa-
result in fast dynamo actiof8].) tion

The question of whether or not there are strong magnetic
f!uctyations_during_ dyr_1amo a_ction is a matter of_pure seman- ﬁ =V X[vXB]+ 7V2B, )
tics if the discussion is restricted only to the kinematic re- at
gime. In this regime, all that matters is if the large-scale field ) ) o
B, grows rapidly; small-scale fields could then be smoothedn the kinematic approach, the velocity fieldis given, so
out by finite diffusivity, or by nonlinear effects not ac- that no dynam|cs is involved. |n. this paper, the velocity is
counted for in the kinematic regime. However, in the nonlin-9iven not directly, but as a solution of the Newton law,
ear regime the situation is quite different. In this case, field d

: . : v

growth might stop when the small-scale fields reach equipar- — =F+D, (3)
tition with the Kkinetic energy. Therefore, the ratio dt
(B?)/(B3) may play an important role in the dynamics. It has

been suggesteld] that this ratio scales as where F is a (time-dependentforcing and D represents

damping. The external forcing functidhis such as to gen-
(B?) erate the desired velocity field; the details of specifying the
—~Rn,, (1)  forcing functionF for the STF are given in the Appendix,
(Bo) and forABC flow are described in Sec. V. The damping is

) ) ) required in order to eliminate the possibility of unbounded
with an exponenn not small compared to unity. This con- g4, yelocities in the absence of any other forces besides the

jecture_ is sqpport_ed by various c_alculat_ions, including direcky o q) forcing(i.e., F). This can be accomplished by either
numerical simulation§12]. In particular, it became apparent adopting the “tau approximation,”

that in the two-dimensional case, turbulent diffusion is
strongly suppressed by a weak large-scale magnetic field. In Vv
three dimensions, the so-called alpha effect—the generation Ddamg= — 7 4)
of large-scale field—is suppressed in a very similar manner
[13]. These direct numerical simulations are restricted Gor some constant or, alternatively, by introducing viscos-
quite modest values of the magnetic Reynolds nun(tygi- ity damping, e.g.
cally, in the range 1B-10°) because of their extraordinary T
computational demands. One of the goals of this paper is to Damg= V2, (5)
study the processes of turbulent diffusion and turbulent gen-
eration in the limit ofR,,—, and in the fully developed the latter being understood in the Lagrangian sense: the de-
nonlinear regime; this requires a different computationalivatives are takein situ, that is, on the field line. Then by
strategy than reliance upon direct numerical simulation ofroperly choosing the forcing, and specifying the values of
the Navier-Stokes and induction equations, namely, oneither r or v, it is possible to generate any desired motion
based upon use of the Cauchy solutias developed by us with given amplitude. Most of the simulations presented
in an earlier paper on the linear growth of the JTH]). here, however, are based on damping of the fédm for

The main focus of this paper is therefore the nonlineaboth STF andABC flows; the only case when E(p) is used
STF flow. As shown previously11], the STF results in corresponds to the calculation of both velocity and magnetic
rather complicated, indeed chaotic, behavior of the fieldspectra in Sec. V B. We will return to the discussion of the
lines, instead of the highly symmetric field geometry origi- damping terms later in this section.
nally expected. As a result, one finds that the level of mag- Up to this point, the problem must be considered as kine-
netic field fluctuations is high, that is, the ratiB)/(B3) in  matic: although the velocity field is no longer given, and
Eqg. (1) is large. One might expect that the Lorentz forceobeys the Newton law3), the backreaction of the magnetic
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field is not taken into account. Nevertheless, in this kine-effective Reynolds number is defined by E§) rather than
matic regime, the velocity field following from Ed3) is  being limited by the numerical accuracy of the integration.
more realistic than an arbitrary, ad hoc, imposed flow. ForAs we shall show in the next section, this effective magnetic
example, one could ask if an actual velocity field of STF orReynolds number allows us to investigate the contribution of
ABC form can be constructed so as to satisfy the Newtorsmall-scale motions to the evolution of large magnetic
law; we consider this question in Secs. Ill and V A. scales. We further note that the effective Reynolds number
In order to reach a more completee., dynamical de-  reaches values of approximately*lifi [11], and in the non-
scription, we need to include the Lorentz force in the Mo-jinear case discussed below it reaches even larger vétties
mentum equation. We shall do this, subject to the followingsec vy Furthermore, as mentioned in Sec. I, solution of the
two assumptions: . full MHD is usually restricted to modest values Bf,; the
' (1).AS _|n [11], we shall delay only W'th one, or a fgw,_ solutions easily become unstable for large valueRpf The
field lines; one can therefore account for field line tension INotter undesirable behavior does not arise if one uses the

the evolution equations by writing Lagrangian approadi.e., Eqgs.(7) and (8)].

1 B2 An important question about our model dynamics is to
Fg=— . -’ (6)  what extent it captures the dynamical processes likely to be
mp I . .
important in the full problem. Thus, models such as ours
wherer is the principal vector normal to the curve. often used for dynamos cannot account for phenomena such

(2) We shall only consider incompressible flows. For thisas shear flow instabilities, usually because of the strong im-
reason, the forcing term is chosen to be incompressible, so posed forcing: the latter is time dependent, and it actually
that the generated velocity field is incompressible as welldoes not allow time enough for instabilities to develop; but it
and the potential part of the Lorentz for@iee., the gradient is readily shown that the model can simuléter examplé
of the magnetic pressurés supposed to be compensated by Alfvén waves. In fact, it is an ensemble of Alivevaves that

thermal pressure. . appears in the fully developed nonlinear regime we shall be
Given these assumptions, H8) reads studying.

dv 2 Because nonlinear effects generally result in the smooth-

—=F+D— —— —T. (7)  ing of magnetic field lines, our simulations are subject to a

dt 4mp 1 surprising simplification: the increased smoothness of mag-

The model dynamical equatia) is strikingly similar to netic field lines in this limit allows one to carry out simula-
the Lagrangian momentum equation. In addition, all simula-tions for much longer times. This is because, in the dynamic

tions are done in Lagrangian coordinates: i.e., we follow théimit, the field structure does not continue to become more
field line trajectories. To be more specific, we shall follow @hd more convoluted as the calculation proceeds, and there-

either a family of trajectories, starting with initial points fore the field geometry remains spatially fully resolvide
placed on an initial field line, ofin other experimeniswe recall from[11] that the field is considered to be well re-

shall follow several families of trajectories, starting on sev-S0lved if the distance between the neighboring points re-
eral magnetic field lines. mains small when compared to the smallest physical scale
The magnetic field is calculated by using the Lagrangiarﬁ; only then is the definition of the magnetic field based on

approach as well. As ifil1], the field is defined in terms of Ed- (8) reliable] Indeed, we find that in the nonlinear re-
the Lundquist solution gime, the field strength does n@ih a statistical sengeyrow

in time, i.e., the distance between two neighboring points on
B(x,t) ds a given field line remains statistically constant. As a result,
B(a) = ds(t=0)" (8 we are able to compute field line trajectories for much longer
times in the nonlinear case than in the linear regime.
whereds is an infinitesimal vector connecting two neighbor- ~ Another important consideration in nonlinear calculations
ing liquid particles, anc is the final position of the particle is related to the damping forces. As already mentioned, the
at the end of the trajectory, assuming it started at positiofiorces given by Eqsi4) and(5) are added in the kinematic
a. Solving Egs.(7) and (8) makes it possible to perform regime in order to make sure that there is no secular growth
nonlinear calculations in three dimensio@®®), with appar-  Of kinetic energy. Simple estimation of these damping terms
ently infinite magnetic Reynolds numbgince we are using in the nonlinear regime shows, however, that they are negli-
the Lundquist solution for the ideal probleém gible when compared with the other terms; that is, the exter-
In addition, as pointed out ifiL1], it is possible to define nal forcingF in Eq. (7) is balanced mainly by the magnetic
an effectiveR,,,, even for an ideal problem, as followsee tensionFg. This is especially true for viscous forcing in the
also Sec. )t form Eq.(5). For example, when studying the spectrum, Sec.

V B, we examined the stability of solutions for very small
(] values of v; thus, we decreased to values of order

Rm= Sl ©®  0.000 03, and found that the solution remained stable. Unfor-

tunately, this result cannot be interpreted to mean that we
wherel (the flow scale lengthand & (the correlation length have solved the problem for very large Reynolds numbers
of the magnetic fieldare both mathematically well-defined because, as just mentioned, the viscous term is simply small,
guantities. Note thaf must be well resolved by the numeri- and does not play any important role in the nonlinear stage;
cal integration; this latter condition is necessary so that thetability is instead ensured by the time-dependent forcing.

2
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. FIG. 1. Evolution of magnetic and kinetic en-
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lll. THE STRETCH-TWIST-FOLD: This field line chaos suggests the presence of a high level of
KINEMATIC APPROACH magnetic fluctuations.

. . . . ) . b As an illustration, we consider two initial lines, the first a
As a starting point, we consider again the kinematic prob<;cje with radiusr =0.51 placed in the=0 plane, and the

lem discussed in our first papgt1], but now based on the gecong(with the same radigsplaced in thez=0.1 plane.
case of the model dynamic equati(8), with damping based The first field line is “favored,” and thereforéas seen in

on Eqgs.(4) or (5). To begin with, we note that if the forcing Fig. 1) the associated magnetic energy grows as expected, at
is chosen in such a way that the forced motion performs thgaast for a few cycles; in the case of the second line, the
continuous STF cycle, the results[dfl] are duplicated. That gssociated magnetic energy grows substantially fater.

is, this forced STF flow results in a simple doubling of field 2).

line loops, as was expected before we presented our earlier In order to measure the parametelcf. Eq. (1)], we must
calculations[11], only for a few “favored” field lines, and measure the following quantitiesi) the magnetic energy
only for a limited number of the STF cycles. In the present(B?), which is easy to calculatéij) the large-scale magnetic
case, it is necessary to very carefully tune the parameters f(ﬁnergy(Bé}, which is nontrivial to compute because of the
the forcing, rather than for the velocity itself, in order to chaotic and highly irregular field structurgij) the effective
achieve this simple “expected” result for only a few se- magnetic Reynolds number, which we defined earlier via Eq.
lected field lines.(Most other field lines of course behave (9). (As an aside, we note that while the large-scale scale
drastically differently) As a result, essentially all field lines lengthl is mathematically well defined, it can be somewhat
again end up behaving chaotically after roughly four STFambiguous to measure; this is because the magnetic field has
cycles, while the “favored” lines behave in a “proper” a tendency to expand spatially as amplification proceeds, so
manner only for a few cycles, and then also become chaotithat| grows secularly.

2 — L — L e e | (LA —

L o 6 & o o ¢ Magnetic energy
[ Kinetic energy

L z=0.1 * x % Large scale 4
magnetic energy

r A ———pA —~—~4 Global energy 7
o _  The STF doubling

FIG. 2. Same As Fig. 1, but for a magnetic
field line starting in thez=0.1 plane.

Magnetic energy, log,, scale

Time, t
(number of STF cycles)
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Note that the parametar depends only logarithmically there are large-scale structures in the field that do grow, as
on the parameters mentioned above, and can be defined easen from Figs. 1 and 2, and therefore we must conclude that
ily if one can demonstrate scaling with the Reynolds numbea large-scale dynamo is realized by tk&TFH motion. The
Ry,; using this approach, we were able to estimatwith question is how we can understand this behavior, especially
relatively good accuracy in our earlier calculatiofisl], as one enters the dynamic regime. We explore this question
based on more than three decades of scaling. We shall take the next section.
advantage of these earlier results when comparing with the

present calcu_lations, which are focused primarily on the non- IV. THE STRETCH-TWIST-FOLD:
linear dynamics. L THE NONLINEAR STAGE
Returning to the large-scale magnetic field component
[which is related to pointii) abovd, we recall that in11] In this section, we shall consider in some detail the non-

B, was defined in terms of the long-range portion of thelinear behavior of the STF dynamo. To begin this discussion,
correlation function. The latter was constructed along fieldwe note once again that in the kinematic regime we based
lines. In the present calculations, we also measure the “cireur discussions on measurements of two quantitisand

culation” or, more precisely, I) that were themselves not well defined, but because of the
range of values of the Reynolds numiy, that was ex-
D=(By). (100 plored, we were able to recover meaningful scaling results

ith Ry, [11]. In the present case, we shall not be able to rely
pon calculations with such a wide range in Reynolds num-
bers, and will therefore need to adopt a different strategy for
'deciding the properties of the dynamo-produced fields. In
; : particular, we have adopted a slightly different definition for
order to understand the meaning ®f we note that if the e 3rge-scale fieltas discussed immediately abovenhich
STF would have resﬁ'ted n sn_nple doubling of magneticyiows us to investigate the field characteristics by examining
loops, ther® =& (0)2", wherem is the number of the STF the multifractal structure of the growing magnetic fields.
cycles, and therefore As discussed earlier, one of the keys to reaching such an
d2=p(0)222M (11) understanding is to estimate the parametedefined in Eq.
' (2); in principle, one would expect that we would have to

We will refer to the quantityd? as the “global” magnetic determine all of the _quant_itieéi)—(iii) listed in Sec. lll ir_1
energy(as opposed to the large-scale magnetic energy, d@rdgr to construct this estimate. I-_|owever, in the nonlinear
fined from along-field-lines correlationsand will use it ex- regime we know that the magnetic Reynolds numjaks-
clusively in the following. We prefer to use the circulation fined by Eq.(9)] reaches some asymptotic value because
@ as a measure of the large-scale magnetic energy becaus®fth the large-scale length scal@nd the diffusive scalé

is easily and reliably commutated, and because the result§emselves reach asymptotic values as the calculation pro-
derived indeed recover the expected properties of large-scaf€€ds. In other words, one must conduct a large number of
mean fields. For example, if one were to compute any a\,ersw_nula'glons in order to build up the statistics for determining
age magnetic field component other th@y), then the ex- N I this manner. In contrast, there exists a less computer-
pected result should be zero. Thus, one would expect thafitense method for determining, based on a study of the
(B,)=0 exactly. In simulations, however, such guantitiesdetailed spatial structure of magnetic field I|n¢s acted_ upon
never vanish exactly, but should be very small, e.g., of thdy the STF flow. We discuss this in the following section.
order of the round-off errors. Indeed, we find that while the

computed(B)~O(1), the computed components such as A. The large-scale magnetic field

(B)~0(10"%), many orders of magnitude smaller than
(Bg). Thus, the computed circulation is always well above
the noise, and can be well measured.

We end this section by noting a surprisifend discour-
aging result that appears even at the level of this kinematic p=—————— =
description: even cursory examination of the evolution of the (B(t=0)%)12
large-scale magnetic energseen in Fig. 1 for the case of a
field line starting from the=0 plang shows that the global so that the initial magnetic energy is four orders of magni-
energy grows rapidly only after the first cyclas expected tude below the kinetic energy. As seen from Figs. 1 and 2, all
from the construction: recall that we are dealing with one ofquantities saturate after approximately five STF cycles. As
the “favored” field lineg, and that soon afteibut well be- mentioned in Sec. Il, the distance between neighboring par-
fore one enters the dynamic regimehe global energy ticles on a given field line does not grow in the nonlinear
grows more slowly, and finally stops growing. If one exam-regime; this property of the nonlinear regimes has the happy
ines the corresponding evolution for the field line that startedconsequence that we do not lose spatial resolution for rela-
from the z=0.1 plane(Fig. 2), one sees that its associated tively long times when compared to the kinematic approach.
global energy does not grow at all. These results suggest th&pecifically, it was possible to proceed up to only six STF
the STF motion does not really work as was previously ex-cycles in the linear calculations presented 11], while in
pected even in the kinematic regime, i.e., the circulafmn the nonlinear regime discussed here we are able to compute
magnetic momentdoes not grow after all; yet, nevertheless, up to 12 cycles.

This quantity is computed as an average over all points, an
therefore can be computed fairly reliakiiyp contrast to the
large-scale field derived from the field correlation function
which we focused on in our earlier calculatiofikl]). In

Our simulations were carried out with a magnetic Mach

number
47Tp<1)2>1/2
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A few features of the results in this nonlinear regime arewhere AA is the distance between two points on a given
worthy of note. First, we observe that the circulatibncan field line (whose initial separation is given hys), and the
change sigrias marked with a{) sign in Figs. 1 and R fractal (or generalizefldimensions are denoted iy, . Note
This is of relatively little consequence, as it only means thathat by settingg=1, we recover the classical definition of
the magnetic loop turns around from its original orientation,the fractal length dimension; thus (ih A/As) shows scaling
and thus the magnetic moment changes sign. properties, them can be found. The Richardson-Mandelbrot

Of substantially greater significance is the fact that thedimensionD is then given by
global energy does not grow in the long time limit, indepen-
dent of where the original field line was started; i.e., this D=1+«k. (13
result holds for field lines started both in tke=0 and the
z=0.1 planes. For example, the first field line—which is After computing, all other dimension®, can be found
“favored”—does show, at least initiallfwhen the kine- from any extant scaling gffAA/As)%; indeed, as shown in
matic approach is still valig that the associated global field Fig. 3, we do find scaling for roughly 1.5 decades. Recall
grows (see previous sectignHowever, after a few cycles, that if the multifractal dimensions of a curve are not equal to
the energy in this case is seen to even diminishy. 1), unity, it is implied that the field line is stretchéstatistically
leading to the pessimistic conclusion that nonlinear effecténhomogeneously. As seen from FiggbBand 3d), the di-
may totally kill field line doubling. mensionsD, are systematically greater in the nonlinear re-

However, the large-scale field, when calculated along thgime than in the kinematic STF regime. In other words, they
field line, does grow in time, and its associated energy satuare closer to the trivial dimensiol,=1; indeed, the error
rates at a level about two magnitudes below the value of thbars are sufficiently large for the field line initially lying in
total magnetic energy. Note that the kinetic energy does ndhez=0 plane[Fig. 3(b)] that the dimension®, shown are
really change with time. These results support the idea thatonsistent with the trivial case.
nonlinear effects in the dynamo do not suppress the turbu- This increase of dimensions can be easily understood: The
lence as such, but rather suppress the transport coefficienfF stretches the field lines inhomogeneously and, as a re-
(such as the diffusion and generation coefficipmespon-  sult, the field line becomes multifractal. On the other hand,
sible for the large-scale field amplitudi@]. the field line tension tends to smooth out the inhomogene-
ities, and as a result of this second effect, the field line be-
comes less singular as one enters the nonlinear regime.

Our computation of the classical dimensibris also well

As in [11], we consider next the multifractal properties of determined, as can be seen from the relatively small error
the field lines. The generalized dimensions are defined as bars shown in Fig. 3. The field line initially lying in the

z=0 plane becomes more singular, that is, its classical di-
ﬂ d e Kari=Dga-) (12) mensionD is larger than its value for the kinematic case,
As As ' while the field line starting from the=0.1 plane is roughly

B. Fractal structure of magnetic field lines
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(o) (b}

FIG. 4. Evolution of a magnetic field line.
Panel(a) shows the magnetic field line at the start
(i.e., as a circle lying in the=0 planeg; panel(b)
shows the same field line after 12 STF cycles.
Panels(c) and (d) are the same a&) and (b),
respectively, but for an initial field line lying in
thez=0.1 plane.

as singular as in the kinematic regime. This behavior can b&n [11].) In order to appreciate what actually occurs, it is
understood by noting that there are two competing effects: useful to consider what one would naively expect to happen.

(i) As already noted, the line is stretched more homogeThus, for an initial magnetic field line starting in tlze=0
neously in the nonlinear regime. That is, instead of havingplane, we know that all of the points on this line are repre-
very complicated small-scale structure, highly stretched irsented by dots, which are all placed on top of each other at
only some places, i.e., in a very intermittent fashias is the {r=0.51z=0}; there are no pluses. After several STF
case in the kinematic regimethe line becomes stretched cycles, we would expectccording td6]) a “cloud” of dots
everywhere in the present dynamical regime. As a result, itfocated near the initial radial value=0.51, and slightly
length increases. spread in the vertical dimensioz)( Again, we would not

(i) The nonlinear forces limit the line stretching as aexpect any pluses because the field line is not supposed to
whole: the magnetic field cannot grow indefinitely in the reverse, i.e., the naive STF model assumes Bhatloes not

dynamic regime. This limits the total length of the line.  change its sign as the STF cycle proceeds. It is clear from
More quantitatively, these two requirements follow from Fig. 5a), however, that this simple picture is incorrect: The
the inequality(2.20 presented in Ref.14], field line is chaotic, and does go in the opposite direction;
i.e., B, does change its sign as the STF cycle proceeds.
k<D,. (14 (Indeed, one observes more pluses than dots, but this result is

obtained because the circulation changed sign for this par-

For a very intermittent process, such as the one described ficular case; see Fig.)1Similar considerations apply to the
[11], D., is substantially less than unity, and therefareas  case of a line starting in the=0.1 plane: its initial map
well as the dimensio, by Eq.(13), have to be small. In would look like that for thez=0 line, except all point¢and
other words, very singular processes in terms of intermitall dots would be lying on top of each other at
tency result in reducing the singularity of the length. In the(r=0.15z=0.1); and one would again naively assume that
nonlinear regime, the intermittency is reduced, i2,<1, after the application of the STF process, the “cloud” of dots
and« is therefore allowed to become greater; that is, the lineshould be centered around this point. As seen from Rig), 5
could be more singular as far as its length is concerned. this is again not the case. Thus, despite the fact that the

The corresponding field lines are depicted in Fig. 4. Panhonlinear regime has a tendency to reduce the convolute evo-
els (b) and(d) show the field lines after 12 STF cycles. We lution of any given field line, it is still true that the actual end
can see that the lines do not even barely resemble circles, btgsult of the STF process is a field geometry that does not at
nevertheless are not as complicated as compared to the r@ll resemble what one would expect on the basis of the clas-
sults of the kinematic regime. As explained above, this is dugical STF continuous “doubling” of circular field lines.
to the smoothing by Lorentz forces. Another way of illustrat- \We now proceed to the estimation of parametedis-
ing the growing geometric complexity of the magnetic field cussed in Sec.[le.g., Eq.(1)]. Nonlinear calculations do not
as the STF process proceeds is to plotfthe} coordinates provide any scaling for the rati@®?)/(Bg), and therefore we
of all of the computed points along a given field litgs can obtain only a rough estimate for Indeed, as seen from
shown and described in Fig),5after 12 STF cycles(This  Fig. 6, the values of thus obtainedi.e., from line correla-
figure is an analog of the polarized Poincamap introduced tions) show a wide range. In particular, these values are com-
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0.4l _
0.2 ; A
N —0.0 ] n
C 1 FIG. 5. lllustration of the geometric complex-
L ] ity of STF-distorted field lines. We show, for the
o2 7 case of two field lineglocated initially atz=0
L ] and z=0.1) distorted after 12 STF cycles, the
—041- ] location in the{r,z} plane of every computed
o point along each field line; this is an analog to the
polarized Poincarenaps discussed ifi1]. In or-
der to retain some sense of the field line orienta-
i 7 tion, we coded each such point according to the
i ] sign of the field componer,, at that point: we
0.5~ - use a dot for all points wher®,>0, and a plus
i Hf otherwise. Panela) shows what happens to a
- \— field line starting in the=0 plane;(b) shows the
N .00 M same result for a field line starting in thze=0.1
- : 1 plane.
~0.5 ]
o 1 2 3 4 5 l
pletely unreliable when calculated for a field line after few 1-D,
STF cycles: the lines are actually not chaotic, and therefore n=«x+ (15

there is insufficient statistical data to actually compute a re-
liable value forn. Nevertheless, there is some indication that
the “average” value ofh computed in this manner is around [15]. Each quantity in Eq(15) can be obtained from scaling
unity; i.e., it is definitely bigger than in the kinematic limit. laws, which is why this definition is relatively more reliable
In order to obtain a more reliable estimation for we  for computingn. Indeed, this quantity can be seen to behave

define this parameter using the formula more realistically[cf. Fig. 6b)]: it starts from very small
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i . . . .
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0.0 ' ! ! : : : ous ways, for(a) line starting in thez=0 plane,
0 z ‘ et C ° 'z and the saméb) for a line starting in the=0.1
(number of STF cycles) plane. The notation conventions are the same in
- . . . : : - both panels. Dotted sections of the lin@sdi-
1.5 ®) cated by plusescorrespond to regions on these
i ] field lines where our calculations tend to give un-
- . reliable results.
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values, increases, and reaches some asymptotic value. Whilerough reliable scaling. We then obtafim the nonlinear
these values still fall below those obtained from the lineregime R,,=11 966 for the line starting in the=0 plane,
correlation(which we regard as relatively unreliabléehey  andR,,=36 913 for the line starting from the=0.1 plane.
are still larger than those obtained in the kinematic limit.

However, there remains an ambiguity: if we calculatén o

the kinematic regime not using the procedures described in C. The small-scale structure of magnetic field

[11], but via formula(15), i.e., through scaling, then for the  Next we consider the intermittency properties of the mag-
line shown in Fig. éb) we obtain a value fon that is slightly  netic field, if any. As stressed above more than once, the
larger than for the nonlinear case. In order to resolve thisionlinear effects reduce intermittency, while we know that
discrepancy, we note that the valuerofor the z=0.1 line  the field is quite intermittent in the kinematic regirfd].
was obtained with considerable uncertainty: in particular, the Figure 7 gives some idea of how intermittent the magnetic
scaling was quite podrcf. Fig. 10d) of [11]]. Therefore, if  field is for the case of a field line started in the 0.1 plane,
we accept the new value of=0.73 for the kinematic re- and after 12 STF cycles. It depicts tBg componen{Fig.
gime, then it appears that the valueromay diminish inthe  7(g)] and the B, component[Fig. 7(b)], both computed
nonlinear regime when compared to the kinemgsiee Fig.  along the field line. Both components are normalized to the
6(b)]. initial field strength. In other words, the initi&l, component
This reduction was indeed expect@d. Sec. ). However,  would be a sinusoid with amplitude equal to unity, and hence
the line initially in thez=0 plane does not show this ex- would be indistinguishable from the zero line on this plot.
pected behavior: the value of computed for this case in- The initial B, would also be represented by tiie-1 line,
creases in the nonlinear limit; and this increase is actually.e., would be again indistinguishable from zero.
more convincing[cf. Fig. 6@] than the decreaskef. Fig. The two curves in Fig. 7 look quite similar. However,
6(b)]. Our previous discussions have shown how this seemdifferences appear if one calculates the mean value. For the
ingly puzzling conclusion can be reconciled with our earlierfirst curve[Fig. 7(a)], the mean is 8.£10 8, i.e., practically
result. In particular, we need to go back to the two poliits  zero(within round-off error$, while for theB,, curve in Fig.
and(ii) discussed in the earlier subsection. If we translate thg(b) the mean is 1.41. This result was already alluded to in
effects of nonlinear backreaction on the field line lengthd  Sec. I11: the mean 0B, (actually, the circulationis indeed
stretching to the implied magnetic field properties, we con- 3 reliably computed quantity.
clude the following.(i) It is clear that a very intermittent  These plots are similar in the sense that both reveal quite
field (in the kinematic regimehas a small filling factor, and intermittent structures. Indeed, the flatness factor
therefore the value ofB?) is substantially smaller than the
typical field energy. If we smooth out this fielgvhich is (B%)
what happens in the nonlinear regimehis average in- :W
creases. That is why this parametemight increase.
(i) On the other hand, the same nonlinear backreaction
limits the magnetic energy, which would result in a decreasés 7.97 for this magnetic field. The flatness is substantial,
of n. when compared with Gaussian value 3, although small com-
As we see from the simulations, these effects competepared with kinematic caséhe flathess was 258.4Thus,
sometimes one effect wins out over the other and sometime®onlinear effects do decrease intermittency, although it re-
it is the reverse. mains substantial.
At this point, we finally are able to estimate the effective  For this reason, it makes sense to measure intermittency
magnetic Reynolds number directly from formiila, where fractals. We measured correlations of magnitudes, §lih
all the quantities entering into this formula are obtainedand used the formula

f
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. . . i) UZ:C SII’ky-ﬁ-B COS(X, (17)
here the generalized dlmensmé are based on the mea-

sure we shall instead impose a forcing functigfollowing the
J|Bldx discu§§ion of Sec. I)!such that the flow(17) app_ears._Un—
u(C)="- , surprisingly, the forcing necessary to accomplish this must
Jv|Bldx itself have the form of Eq(17).

If the coefficientsA, B, C are constants, then the flow is
where the total volumé/ is divided exhaustively into dis- laminar in the Eulerian sense, but it is well known to exhibit
joint subsetsC; . Lagrangian chao&ee, e.g/[3]), which is referred to as “La-

Figure 8 shows the scaling and generalized dimensiograngian turbulence.” We are interested, however, in true
spectrum for two lines: one starting in tlze=0 plane, and turbulence, and therefore choose these coefficients as random
the other one in the=0.1 plane. We can see that the dimen-functions in time: specifically, we consider them uniformly
sions are systematically bigger in the nonlinear regime aslistributed on the intervdl0,1]. The wave vectors is fixed,
compared to the kinematic case. This trend is quite robusk= 10, corresponding to a characteristic scald0=0.31.
and definitely above the noise; one can compare this result The flow is not random in space, but is rather periodic in
with what is shown in Fig. 3, where a similar trend is ob- space, and random in time. If a very weak magnetic field is
served as well, but not as pronounced. As above, this treninposed, we would expect two effects. First, the field should
can be explained by appealing to the nonlinear smoothing dbe diffused by turbulent diffusion; second, a large-scale field
magnetic inhomogeneities—the magnetic field becomes lessomponent might be generated by helical turbulence. The
singular. turbulence is indeed helical because one can readily show

that

V. THE FORCED ABC FLOW

— 2 2 2
In order to understand the properties of the STF flow bet- (v VXV =(A"+ B+ CHk=0,
ter, we shall now compare the earlier results with what one
finds upon examining the nonlinear response of a system iand therefore field generation is possible via the so-called
which the underlying flow is the so-callediBC flow (cf. alpha effect(see, e.g.[16]). In addition, a small-scale dy-

[3]). namo is also possible, i.e., the generation of a small-scale
Whereas one usually prescribes thBC flow, i.e., one is component of the magnetic field, which is more effective

given the flow than scale reductiofsee[6,11]).
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" | FIG. 9. Evolution of magnetic and kinetic en-
g N ergies for both kinematic and dynamic cases
- i in Fig. 1) for the case oABC flowlike forcing.
|
' 15
(in units oflTuant—ovsr time)
A. Kinematic approximation The small-scale magnetic field is essentially nonintermit-

If the velocity field is defined by either E¢4) or Eq. (5) tent in this case. Indeed, measuring fractal length dimensions
then the magnetic field is found from E(B). We investi- PY formula(12) results inD,=1, and the difference between
gated a large number of cases, with a variety of differenfq @nd unity is within the noise. But the scaling itself is
parameters; the forcing used was always of the f61. good for about 5 decades. Therefore, following a construc-
The initial field was represented either by a single field linelion analogous to Fig.(&) should result in much better scal-
lying in thez=0 plane, characterized by a circle centered atnd: but all plots(except forq=1) lead to trivial generalized
the origin of radiusR=1 or R=3.5, or by several lines, all dimensions. Figure 18 depicts such a scaling fay=1,
circles also lying in the=0 plane, with radiR=1, 2, 3, 4, with nontrivial dimensionD =1.92+0.01, corresponding to
5, respectively. Qualitatively, the flow always results in a& Mmeasurement at=8 (t measured in units of the turnover
high level of fluctuations: this is not a new result, and is welltime)- . o _
known for theABC flow (see, e.g.[3,4]). As one example The temporal evolution of this dimension and of the pa-
Fig. 9 illustrates the results of this type of calculation. Thef@metern are depicted in Fig. 10) (analogous to Fig. )6
magnetic energy in the kinematic approach grows exponerNOte the very small error pars, resulting from the large scal-
tially (as denoted by asterigksNote that during the last few N9 range. The parameteris calculated from formulals).
turnover times, the energy growth seems to slow down; howd N€ CUrve is rather singular, the dimensbrbeing substan-
ever, this is an artifact of the calculation because we ar(I:‘Ially bigger than unity, although the length is not intermit-

simply starting to run out of spatial resolution at these Iatelfgrni' It means that the field line is “homogeneously singu-
stageqi.e., the distance between two neighboring pointsona™ | . . . : .
field line begins to be t0o large for the formu@—which We also constructed intermittency f_ract_al d|m_en3|ons, via

S : . Eqg. (16), analogous to Fig. 8. The scaling is again good, but
assumes infinitesimal distances—to be valid - . ) . -

: the deviations of the dimensioi,’ from unity are within
As for the global energy, it does not grow at all and, at . 9. . .

WO late st the i h i Fig. 9. The | the noise. The actual absence of intermittency can be ex-
WOI ate s ages,h. T] ux CI arllgtes(,jsga:eh 'Ig' ' ffe arge- plained as follows. Unlike the STF motion, which stretches
fi‘.”‘e energy, vtv 'C" IS calcula et 1ylath ef_m(:[:‘—to ) orcel Co_rre'the field line quite inhomogeneously, tHeBC motion is
ations, 15 practically zero except for the 1irst o cycles. 'n‘g\eriodic, and if the spatial scale of the magnetic field is much

the initial stage, because it is defined as a circle, and the ne | ger than that of the velocitywhich is the case in these
;tage, be_cause_ there 'S.nOt enough time as yet to change %ulations), then on average one would expect the field line
field configuration drastically. Thus, there is no Iarge—scalem be stretched homogeneously

dynamo in that case. There are some indications, though, that
the field does grow on scales comparable with the flow scale;
i.e., with w/k=0.31, we would not consider this scale
“large.” The ratio (B?)/(B3) attains an amplification of six We also carried out a large number of simulations using
orders of magnitudes, and so the level of fluctuations is infmomentum equation@), or (5), for a variety of parameters.
deed high. One example is illustrated in Fig. 9. The initial field line is a

The alpha effect does not seem to work in this case, precircle with radius 3.5, and the initial Mach number is
sumably because it has to compete with turbulent diffusiorM3=1632(so that the initial magnetic energy is 0.06% that
(see, e.g.[17]), and apparently fails to win. The latter pro- of the kinetic case After a few turnover times, the field is
cess, i.e., turbulent diffusion, is indeed present, and will besaturated. The global field remains more or less steady, and
discussed further below. does not change sign.

B. Nonlinear stage
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The magnetic field line, naturally, becomes more smooth, As in the case of the STF flow, we can estimate the ef-
due to nonlinear backreactions: the Lorentz force agaifective magnetic Reynolds number for tA® C flow directly
smears out very small-scale irregularities. This results in &om expressior(1), using all the values obtained from reli-
decrease of the scaling ranggee Fig. 1(c)]. As the smear- able scaling. This calculation givé,=13 865.
ing acts on bigger scales, although less effectively, the scal- We have also studied magnetic and velocity spectra.
ing slopes become gentler, resulting in a decrease of botlhese runs have been made with as low a viscosity as was
length dimensio® and parameten. This nonlinear smooth- possible. As a result, the Reynolds number Re reached few
ing, as usual, would decrease intermittency but, as alreadyillion. As mentioned in Sec. Il, this should not be mislead-
mentioned in Sec. V A, even in the kinematic approach thdéng, however, because the motion and its random character
intermittency is negligible. As might be expected, the generare defined by random forcingnd not be instabilities, etc.,
alized dimensions calculated by E@L2) are practically typical for real turbulence Recall that at the beginning, the
trivial, i.e., ~1 (within the computational erroxs magnetic field is large scal@.e., it is a loop with radius

As mentioned in Sec. IV B, there are two competing ef-R=3.5), and the velocity field is given by th&BC flow
fects, which may result in the nonlinear case in either in-with k=10. We can see from Fig. 14) that shortly after the
creasing of singularity of the line, i.e., increasing of thebeginning, velocity pulsations are created, but the magnetic
length dimensiorD, and parameten, or decreasing of sin- field is still large scale. After only one turnover tinjef.
gularity. These complications appeared, however, becaugeigs. 11b) and 11c)], the magnetic field reaches equiparti-
the STF motion results in highly intermittent structures. Astion. There is no real evolution of spectra after that, so that
we saw, this is not the case for tA8B C flow, and therefore the spectra depicted in Fig. ) present an average over
the singularity of magnetic field lines only decreases, as seetimes from 7.5 to 45.9 turnover times. The spectra show an
from comparison of the dimensio@ given in Figs. 10a) equipartition of magnetic and kinetic energies, suggesting
and 1@c). Both of these quantities, the dimensibnand the  the presence of Alfue waves with very large amplitudes. In
parametem for the nonlinear case after 16 turnover times,fact, the large-scale fielB, is weak, which means that the
are shown in Fig. 1®), in a comparison with the kinematic relative amplitude(B?)*%B,, is very large: in the present
situation. One can see that, indeed, they decrease in the casimulations, this number is a few thousand in value. In spite
of the nonlinear dynamo; this decrease is not substantiabf the large Reynolds numbers Re aRgl, it is hard to find
however. . an “inertial range.” Indeed, the spectra consist of two parts:

The intermittency fractal dimensionsg'), as defined by the first, fork=250, is rather steep;-k™ 4, and definitely
Eqg. (16), are also trivial in the nonlinear case, as in the ki-does not correspond to the inertial range; the second, for
nematic(see Sec. V A aboye 20<k=250, is more gentle, and therefore may be of more
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interest. However, the dispersion of data points is large, anihitial radius is insteadR= 3.5, then the final shagafter the

that would make any comparisons with power laws unreli-same time intervalis depicted in Fig. 1¢). For compari-

able (as discussed in Sec.)llWe note that the dynamics of son, we also show the same lines, but in the kinematic limit:

the motion simply reflects the random forcing, which over-panel(c) corresponds t&®= 1, and panel(d) to R=3.5. The

powers nonlinear interactions. Therefore, the spectrum iSime corresponds only to 8 turnover timgecall that in the

formed only in part by interactions of Alfvewaves. kinematic limit, the resolution is lost much sooner than in the
An example of a magnetic field line which is initially a dynamic case, and therefore we are not able to proceed to

circle with radiusR=1, after 16 turnover times, is depicted larger time intervals Note that all the lines depicted in Fig.

in Fig. 12a). The initial Mach number isV,=1C?. If the 12 seem to be unresolved, consisting of straight line seg-

FIG. 12. Final image of a field line that
started out at the beginning of a calculation as a
circle with radiusR=1 (a). Panel(b) corresponds
to the same result but for an initial radius of
R=3.5. Both panels depict the line after 16 turn-
over times of nonlinear evolution for thaBC
flow. Panelgc) and(d) correspond td¢a) and(b),
but for the kinematic case, and only after 8 turn-
over times.
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ments. This is, however, only in the image: the simulationdoop looks chaotic and dynamic, its shape is changing, but
are resolved, and we depicted only each fortieth point in théhe size does not. This should be compared with that on Fig.
plot. 12(c), the size of the magnetic loop being bigger than that on
panel(a), elapsed time being legsnly 8 turnover times
VI. TURBULENT DIEEUSION Panelgb) and(d) of Fig. 12 depict dynamics of magnetic
loop with initial radiusR=3.5. In the kinematic approach,
In the kinematic approach, the behavior of a magnetidhe particles are diffusing in any direc_tion, so that even_tually
field line is analogous to that of any scalar field inserted intcall the volumeV, Eq. (19), would be filled, paneld). This
the turbulent flow. Thus, as one would expect, the length ohappens when the radius of diffusion exceeds the initial size
the line grows exponentially, and becomes chafiis in-  ©f the loop. S
deed seen in Figs. 1@ and 12d)]. The line also “diffuses” If the strength of the magnetic field is finite, then the
in such a way that it occupies more than one dimension. mgdius of diffusion is restricted, and the_loop still Iooks_ like a
fact, the Kolmogorov capacity, that is, the box counting di-fing. or torus, panelb). In order to estimate the radius of
mension, corresponds to the length dimensibrigiven in  diffusion, note that the magnetic energy is growing,
Figs. 3 and 10 and simply equal® [11]. Finally, the char- N Dyre o AN2.2Ur
acteristic scale of the line, or its “size,” grows with time as (B =B(t=0)%"", (22)
t'% as is typical for a random walk. until it saturates in a fully developed nonlinear regime, at
As a result, the matter is mixed at the same rate. In othefime t=t,,. At this moment of time, the diffusion radius has
words, a passive scalar field would also mix in a distancgggched the value
d, which grows with time as-t'?2 i.e.,

t 1/2 d :I(t_n)llz
d(t)=|(;), (18) o)

Substituting the timd,, from Eq. (22) into this expression,
we get for the nonlinear radius of diffusion,

1 <BZ> 1/2
E |nm) . (23)

where 7 is the correlation tim&roughly, 7~1/v). The dis-

tanced may be regarded as a radius of diffusion, with the

property that all tracers would diffuse on this scale over a

time intervalt, and therefore any admixture would be mixed dy=I

on this scale. If the tracer is also characterized by spatial

structures larger thad, then these structures would be ex-  Recalling that in our simulations the large-scale compo-

pected to be conserved on this time scgl@nd any other nent of the field does not really change, we may W(mé)

structures whose spatial scales are smaller than, or compgstead ofB(t=0)? in Eq. (23). Then, this rough estimation

rable to,d would be mixed. would gived,=2I, andl = 7/10=0.31. Thusd,=0.63. The
From another perspective, the displacement of a particlgharacteristic thickness of the ring is thud,2 1.26, which

¢ also grows as'%. One may say that the particle occupies ajs indeed the case, as seen from the FigbLZThis size is

secularly increasing volume comparable with initial size of the loop depicted on pa(ag!
£\ 32 and therefore, we do not see a ring, but rather filled volume

v=d3=|3 _> , (19)  of the sized,+1 (the unity being the initial size of the lopp
T The process of mixing can be seen from Figs. 13 and 14.

Five magnetic field lines are painted in different colfitse
line in the middle is painted in the same color as the back-
ground, and therefore cannot be noticed on Fig$a)l@nd
14(a)]. In the kinematic approactiig. 13, the lightest field
e 1 line is mixed with the darkest, and after 16 turnover cycles
—— (20 everything is almost totally mixed up. In the nonlinear case
V32 (Fig. 14, the lines diffuse and spread, as in the kinematic
and the probability goes to zero s approach, but only at the beginning. A light “halo” remains

. ) P persistent, and dark field lines never mix with the light ones,
. Finally, the distance petween two infinitesimal close par'although neighboring lines do mix. This happens because the
ticles A grows exponentially,

distance between neighboring lines is less than, or compa-

or, in other words, there is a finite probability to find the
particle in this growing volume. Therefore, the probability of
finding the patrticle in a fixed volume is

A=A(t=0)e!" (21) rable to,d,, while the distance between the darkest and
' lightest lines is bigger. Thus, the radius of diffusion is re-
because of the positive Lyapunov exponent. stricted, and so is the diffusion itself.

The situation is different if the initially weak magnetic  In the kinematic approach, the probability of finding a
field is allowed to react back on the fluid. The simulationsparticle in some fixed volume goes to zero according to Eq.
show that a loop of radiuR=1 expands, but only initially. (20). In nonlinear restricted diffusion, the particle remains
When the magnetic field energy reaches equipartition, botinside a sphere of a radiak , centered at the initial position
the expansion and the diffusion stop. Indeed, the charactepf the particle. To be more specific, it may walk out from the
istic scale of the loop depicted in Fig. (8 is reached after sphere, but with low probability: it stays inside the sphere
a few turnover times, and then stays the same up to 16 turnmost of the time. Therefore, two particles that are initially
over times, the figure corresponding to the last moment. Thénfinitesimal close to each other are contained in two inter-
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bulence in a box of a sizd,,. Due to the boundary condi-
tions, the particles would not be able to travel distances big-
ger thand,. However, in highly conductive media, the
magnetic field would grow and, if the back reaction can be
neglected, this growth would be unlimited. Now, if the initial
strength of the magnetic field is weak but finite, then the
magnetic field would grow only up to a point, and after that
the magnetic energy is kept constéintthe statistical senge
Thus, in the “regular” casgwith infinitesimal field3, the
field grows, meaning that the distance between two infini-
tesimally close particles grows. In the nonlinear regime, the
field does not grow, nor does the distance between particles.

Roughly speaking, the probability to find two particles in
a volumeA?3, that is, the distance between them is no more
thanA, is

dTny

and, unlike expressio20), does not go to zero as— .
This means that the Lyapunov exponent is zero in the non-

FIG. 13. Turbulent diffusion in the kinematic approach. The !lnear lr.eglmtz. Note th"?“ supl)lpkressmn of Lyagungx expf2r1ents
initial lines (a) are painted in various shades of gray, as indicateq!" NON!inear dynamos 1s we now(see, e.g3], Chap. 12,

and references theregin

After the turbulence is switched on, turbulent mixing takes place : A .
[see paneléb), (c), and(d)]. In the final stage, the lightest field line M SPite of a vanishing Lyapunov exponent, the system is

(which was initially on the periphefypenetrates to the very center, "ather “chaotic.” First of all, the forcing is given as a ran-
and the darkest field linevhich was initially at the center, spreads dom (in time) field. If we define a trajectory of the forcing,

out to the periphery. Thus, everything is well mixed. via the equation

secting spheres so that, in the long run, they do not separate d_gz
farther than the diffusion radius. However, the process has a dt

quasioscillating character, because after separating for a diﬁ% he L Id b itive. M
tanced,,, the particles would approach each other. In fact,t en the Lyapunov exponent would be positive. Moreover,
the exact position of the particle at specific moment of time

this kind of turbulence is quite different from “normal” tur inside the sphere of radius,. is unpredictable: all one really
knows is the probability to find a particle within some vol-
ume. The particle has finite “memory” about its position,
although it moreover “memorizes” its initial position, and
so stays within the sphere.

The real displacement is defined by the equation

Fl

dé
a=v(x,t)=v|_(x0,t), (24

wherev| (Xg,t) is the Lagrangian velocity of a particle start-
ing at x=Xo. All the transport coefficients are defined
through appropriate moments of the displacement. In par-
ticular, turbulent diffusion is defined by the relation

d
DT=&<§2>' (29

In the kinematic approac&?)=1%t/r, by Eg. (18), so
thatD=12/7. In the nonlinear regimd £2) = d3= const, and
thereforeD;=0.

The same situation holds with another transport coeffi-
cient, «, which is actually the generation coefficient of clas-

FIG. 14. Same as on Fig. 13, but in the nonlinear regime, that isSical kinematic dynamo theory. According [tb6],
for an initial field with low but finite strength. It can be seen that the
light “stuff” is never mixed with the dark “stuff”’; thus magnetic a=— E<§ VX&)
field mixing and decay is inhibited. dt '
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and, as£ does not grow in the nonlinear regime, the genera-
tion coefficienta—0 [8]. More generally, as mentioned in
the Introduction, the generation is not possible without effec-

K(s)=J K(s,k)dw dk,

tive diffusion, and therefore, turbulent diffusion is vital to so that, by Eq(27),

understanding magnetic dynamo.

The turbulent diffusion coefficient can be defined directly

from the definition of the displacemef®4). In order to do
this, note that

t
<§2>=2f (t—s)K(s)ds, (26)
0
where
K(s)=(v (x,t)-v (X,t+5)).
Obviously, asymptotically, as—o, the right-hand side of

Eg. (26) behaves astd ;K (s)ds=t[” K(s)ds, so that, ac-
cording to Eq.(25),

D= fiK(s)ds. (27

In Fourier space,

vL(x,t)=f v(k,w)e' Tk Xdg dk,
and
(v(k,w) - v(k",0"))=1(w,k)(k+k") 5w+ w'),
wherel (w,k) is time-space spectrum. Now,
K(s,k)=f l(w,k)e "“dw,

and

DTzf 1(0k)dk. (28)

Thus, the spectrum at zeroth frequency defines the diffusion
coefficient[6]. As I(0k) is non-negative, the turbulent dif-
fusion coefficient vanishes if and only i{0k)=0 for all
wave vectork.

Figure 15 illustrates a few typical examples, for fixed
wave vectork. An ensemble of free waves corresponds to a
delta function dependencd,(w,k)~ §(w— w(k)), where
(k) is dispersion relationship for these waves. The system
has infinite memory, so that the correlation function, de-
picted in Fig. 1%b), “never forgets” its initial value(the
function is simple a cosinusoidIf the waves interact, the
process is referred to as weak turbulence, and the random
phase approximation is valid. The delta function is broad-
ened, and the memory time is large, but fijité the corre-
sponding correlation function in Fig. #&]. An important
feature of weak turbulence is thEt0,k) =0. Strongly inter-
acting waves lead to a loss of their identities, that is, the
dispersion relationship is no longer valid. Indeed, one should
not call these features waves any longer. Nevertheless, if the
equationl (0k)=0 is still satisfied, then the process may be
called “restricted chaos.” The corresponding correlation
function possesses finite correlation time, but always con-
tains an anticorrelation pafisee Fig. 18)]. This corre-
sponds to a return of all particles to their initial position.
Thus, on the one hand, the process does have finite memory,
because it “forgets” any specific position of the particle in
diffusion radius; but on the other hand, it does remember
forever the initial position of every particle, so that the dif-
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fusion sphere is centered at this point. Finally, regular turbueompared to what can be accomplished by numerically solv-
lence results in the usual random walk, diff,k)>0. ing the Eulerian equatiohs

It is noteworthy that restricted chaos is not a fundamen- Some of our results are not unexpected. Thus, the nonlin-
tally new concept. Consider, for example, turbulence as comear STF results show saturation of the magnetic energy as
monly understood. The correspondihgv,k) spectrum for the calculation proceeds, with the energy in the large-scale
the velocity fieldv is depicted by a dotted line in Fig. (8;  field component far below that associated with the small-
and we know that(0,k)>0. However, the spectrum for the scale magnetic fluctuations. In contrast, it was somewhat sur-
time derivative of the velocity, that is, for the accelerationprising that the exponemt in the relation[7]
field a=dv/dt, does vanish at the origin, because the spec-
trum for thea field is simply|(w,k)»?, and this expression (B?)
goes to zero atv=0. In spite of this fact, the acceleration @Nan
field is of course a random field. 0

Restricted chaos is peculiar because the Lyapunov expo- i ) L
nent vanishes. However, the exponent for this process i§ Of order unity. This result suggests that magnetic field

positive in phase specie: this is another way in which it reJines become less singular in the“sense ,(,)f intermittency, put
sembles regular chaos. Indeed, suppose we consider two dffiSO that they may become even “longer” as compared with

ferent realizations of the process, with the same forcing, but"€ stretching in the kinematic regime. We now understand
with different initial velocities. If the difference is infinitesi- WhY this is so: the nonlinear effects first suppress the very

mal small, then for a given initial position of a particle, the Small-scale line deformation. _ , ,
trajectories of these two processes would slightly differ only . e @IS0 studied randorBC flows in the kinematic re-
at the beginning. In spite of the fact that these two trajecto9iMe, With the result thaagain the magnetic energy grows
ries are kept within the same diffusive raditis, they even- exponentially, but without ‘any evidence for significant
tually diverge, and become completely different. In that cased™oWth of the large-scale field component. When we ex-
the final velocities of these two particles are different and€nded this study to the nonlinear regime, we also (asdin
uncorrelated as well. the STF casethat the magnetic energy saturates at levels
Thus, weak initial fields may result in suppression ofnear equipartition Wlth the kmetu; energy. Furthermore, we
transport coefficients, that is, in restricted chaos. It is interfind that the magnetic energy is mostly concentrated on
esting to note that this statement is valid if the initial mag-(Smal) diffusive scales. While we observe “regular” diffu-
netic energy is much less than the kinetic energy, that is, ifO" In the linear regime, we see instead strong suppression
the content of a dynamo. In other words, the initial magnetic®! diffusion in the nonlinear regime. This suppression has the
Mach numberM , should be big. In the opposite extreme interesting feature that the field is mixed only on intermedi-

M,<1, an ensemble of Alfue waves might result in the ate scalegof order ofl, the size of the cel)s because the

generation of convective cells, which are able to mix theshatial scale of the large-scale field is much larger than this

matter[18]: in that case, an Alfve wave decays into another Sc@l€ (by definition, it cannot be mixed. We refer to this
Alfvén wave pulse convective cell with zero frequency. Thebehawor as restncteq chaos, in Wh_'Ch the normal
spectruml (w,k) acquires a positive contribution at zeroth Ly&Punov exponentdefined in configuration spacean-

» because of this zero frequency convection cell, and thulShes: but the Lyapunov exponent defined for paths in the

mixing becomes possible. The most important requiremen’i’ha"se space Is positive.

for this process to occur is the geometry of field lines. That

is, it should be possible to interchange magnetic field lines, ACKNOWLEDGMENTS

and only then will the quasi-two-dimensional turbulence, i.e., ) ] ] )

these convective cells, appear. Obviously, this could happen We gratefully acknowledge dlscussmn_s with S. Childress,
if the field lines are simply straight lines, o if the field lines E: Ott, V. Zacharov, F. Cattaneo, E.-J. Kim, E. N. Parker, P.
are circles. It now becomes clearer why the conditionPiamond, C. Lindsey, E. Levy, and R. Jokipii.

Ma<<1 should be satisfied. Indeed, in this case, the field

lines are only slightly distorted by the motion, and these lines APPENDIX

can be interchanged. If this condition is not satisfied, as in

the case of a dynamo, then the magnetic field lines appear as In this appendix, we discuss the forcing necessary to
depicted in Fig. 12: they are very complicated and arechieve an STF-like flow. Not surprisingly, this forcing is
Close|y interwoven’ so that their interchange becomes impoéll."te similar to the STF VeIOCity field itself. We focus below

sible. That explains why the diffusion is restricted by thison the specific can described by dynamic equatiénin
weak field, as seen from Fig. 14. order to illustrate the general procedure. The first step,

“stretch,” is described by

VIl. SUMMARY AND CONCLUSIONS 5 F1=a1e‘x2’R§{x—2x22/R§,y—2y22/R2,—22
We have applied our Lagrangian approach to solving the _ )

magnetic dynamo equatioid1] to two distinct nonlinear +2(x°+y9)Z/Ri}.

dynamo models, the STF dynamo and #8C flow dy-

namo. This approach has the definite advantage that it allowBhe corresponding velocity stretches all field lines not far

us to work in the ideal MHD limit, so that the effective from thez=0 plane, andbecause of the assumed damping

magnetic Reynolds numbers are very lafgé least when exponent, or requirement that the motion is boundedds
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to the opposite process on the periphery, namely, compres- Now the loop should lie in th&XZ plane, and we want to
sion of field lines. Therefore, we have to restrict ourselves tdold it in the y direction. This can be accomplished by the

regions not far fronz=0.

Next, we make a figure “eight” from the loop, compress-

ing it along they axis,

Tl: FzzazefleRgf(y2+zz)/rg
x{0,— +2yZIr3,z—2z\PIr3}.

The next step is to twist about theaxis, described by

T,1 Fa=age ¥ /R{0,0(x)z— x2(y?+22)IR2,

— 0(X)y+xy(y?+2?)/R3},w(X) =xX.

motion
F: Fy= a4e‘y2’Ri‘(X2”2>”421{ —x+2(xy?*+cxy)/R3y
+3cx2—2(x?y+cxt)/r3,0b.

We end up with a loop in thg-z plane, centered at some
positive value ofy (andx=2z=0). We have to shift it back,
so that the center is 3t=0, and turn it about thg axis.

As a final aside regarding this STF flow, we note that
there are 12 distinct parameters which define this flayy:
a,, Az, au, 'y, 4, Ry, Ry, R3, Ry, ¢, and . In our simula-
tions, a;=1.8, a,=3.0, az=6.6, a,=1.0, R;=0.7,
R,=0.3,r,=1.0, R3=0.71,R4,=1.5,r,=0.7,c=1.9, and
7=0.1.
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