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Stretch-twist-fold and ABC nonlinear dynamos: Restricted chaos
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We present direct numerical simulations for nonlinear dynamos, based on a Lagrangian approach that allows
us to compute for relatively high effective magnetic Reynolds numbers,Rm;~1–3!3104. The particular
systems we study and contrast are the stretch-twist-fold~STF! and theABC flow dynamos. In the case of the
STF dynamo, we show that whereas small-scale magnetic fluctuations are suppressed in the nonlinear regime,
they still remain sufficiently large so that the STF dynamo still cannot be considered~in this nonlinear regime!
a paradigm for a fast dynamo. Our numerical study of theABC flow dynamo indicates, first, that during the
period of kinematic behavior, there is no growth of a large-scale magnetic field, and that any large-scale field
components are subject to classical turbulent diffusion; second, we show that if back reactions~due to magnetic
tension! are taken into account this diffusion is highly restricted. We refer to this behavior as ‘‘restricted
chaos.’’ @S1063-651X~97!10508-6#

PACS number~s!: 05.45.1b, 52.30.2q, 47.52.1j, 47.53.1n
n
lat

x-
is
is
u

le
o
u
te
m
b

en
te
f

is
e
ca
rg
re

ru

tio
ng

e

the

o

c-
iate
ich
x
fast

s.
g to
dif-
,
o-
en-
thus
re-
the

ive
ro-
s,
one
s.
e
ive
ly,

to

n-

of
the
in

.
two
es,
I. INTRODUCTION

The ‘‘fast’’ generation of magnetic fields remains an u
solved problem, even in the linear approximation. In the
ter limit, corresponding to the ‘‘kinematic’’ dynamo problem
~for which the velocity field is presumed to be given!, this
‘‘dynamo problem’’ reduces to finding flow that lead to e
ponentially growing solutions for the magnetic field. Th
problem has turned out to be remarkably difficult: it
known that it cannot be reduced to two dimensions beca
one can show that no dynamo is possible in this limit@1#;
similarly, symmetric dynamos are also impossible@2#. In-
deed, there are no known general solutions for the simp
kinematic problem; and simple physical arguments are c
founded by the fact that the geometric and topological str
ture of the magnetic field quickly becomes very complica
as dynamo action proceeds. This seemingly intrinsic co
plexity of dynamo-generated magnetic fields appears to
characteristic of virtually all numerical simulation~cf. @3,4#!.
A further fundamental difficulty arises because the eig
functions of the induction equation operator are charac
ized by a diffusive scaled, rather than by the typical scale o
the velocity fieldl @5#. The scaled turns out to be typically
very small when compared to the flow scale lengthl : a rough
estimate givesd5 l /Rm

1/2, where Rm is the magnetic Rey-
nolds number ([v l /h, with v atypical velocity andh the
magnetic diffusivity!; as the magnetic Reynolds number
generally very large in most cases of interest, the scald
becomes very small. This difficulty also arises in numeri
calculations, in which one attempts to compute with as la
a magnetic Reynolds number as possible; as a result, the
an enormous disparity between the smallest diffusive st
tures and the spatial scales characterizing~for example! the
energy-containing eddies in the flow. This scale separa
problem is a by now classic stumbling block for treati
dynamo action accurately and realistically.

One possibility for avoiding this problem is to solve th
ideal case,h50 ~corresponding to the limitRm→`), by
using the Cauchy solution@3,4#. Since ‘‘fast dynamo’’ action
561063-651X/97/56~2!/1605~18!/$10.00
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is generally interpreted to mean that the growth rate of
magnetic field becomes independent of the diffusivityh in
this limit @6#, one might therefore hope that fast dynam
action could be found forh50. More specifically, in spite of
the strong likelihood of growing small-scale magnetic flu
tuations, one might nevertheless expect that appropr
flows would also generate large-scale magnetic flux, wh
in turn would not be affected by a small diffusivity; such flu
growth at large scales would suggest the existence of a
dynamo for the large-scale field component.

However, it has long been thought@6# that a finite, though
small, diffusivity is crucial for the operation of fast dynamo
Indeed, the notion of fast dynamos originated as an analo
fast processes in fluid turbulence; for example, turbulent
fusion ~of, say, a scalar passive field! is a fast process; i.e.
the turbulent diffusion coefficient is independent of the m
lecular diffusivity. This happens because there exists an
ergy cascade to small scales, where diffusion acts, and
destroys inhomogeneities of scalar fields. It is usually p
sumed that fast dynamos work in the same way, i.e., that
scale of the magnetic field must be reduced to diffus
scales by the flow before generation can start to work, p
vided generation is more efficient than diffusion. Thu
roughly speaking, a dynamo creates new field lines, and
would think that this can be done only on diffusive scale
This point of view explains why the eigenfunctions of th
induction equation operator are characterized by diffus
scales@5#. Presumably, laminar dynamos work analogous
that is, the field adjusts itself to~small-scale! eigenfunctions
after scale reduction, and only then the dynamo starts
operate@7,8#.

A different perspective on this issue is obtained by co
sidering the role of turbulent diffusion in fast~turbulent! dy-
namos~cf. Parker@9#!. Consider, for example, the case
cyclic magnetic fields, as are encountered in studies of
solar cycle. In that case, turbulent diffusion is required
order to ‘‘get rid’’ of old magnetic flux from former cycles

There is no universal agreement as to which of these
approaches~i.e., either the flux is generated on large scal
1605 © 1997 The American Physical Society
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1606 56VAINSHTEIN, SAGDEEV, AND ROSNER
essentially independently of the diffusivity, or this gene
tion is actually produced on diffusive scales! is correct. It
may be that both are correct, that is, that both of these
cesses operate in naturally occurring dynamos. One of
cornerstones of the first approach is the stretch-twist-f
~STF! motion @6,10#. Indeed, the STF seems to genera
magnetic flux without invoking diffusivity. Amazingly
enough, this picture—which played such an important role
the development of dynamo theory~cf. @3#!—was based jus
on a simple illustration, that is, on a sketch of this proce
Recent numerical simulations of the STF flow@11# showed,
however, that the STF flow actually leads to very comp
cated fields; in other words, the STF flow is from this pe
spective not special, but rather leads to the kind of fi
behavior that other complex~turbulent! flows also produce.
This result is true at least for the case in which the STF
represented by a continuous, and therefore realistic, velo
~If one allows for discontinuous flows, then there is no ne
to appeal to the STF as there are much simpler flows
result in fast dynamo action@3#.!

The question of whether or not there are strong magn
fluctuations during dynamo action is a matter of pure sem
tics if the discussion is restricted only to the kinematic
gime. In this regime, all that matters is if the large-scale fi
B0 grows rapidly; small-scale fields could then be smooth
out by finite diffusivity, or by nonlinear effects not ac
counted for in the kinematic regime. However, in the nonl
ear regime the situation is quite different. In this case, fi
growth might stop when the small-scale fields reach equip
tition with the kinetic energy. Therefore, the rat
^B2&/^B0

2& may play an important role in the dynamics. It h
been suggested@7# that this ratio scales as

^B2&

^B0
2&

;Rm
n , ~1!

with an exponentn not small compared to unity. This con
jecture is supported by various calculations, including dir
numerical simulations@12#. In particular, it became apparen
that in the two-dimensional case, turbulent diffusion
strongly suppressed by a weak large-scale magnetic field
three dimensions, the so-called alpha effect—the genera
of large-scale field—is suppressed in a very similar man
@13#. These direct numerical simulations are restricted
quite modest values of the magnetic Reynolds number~typi-
cally, in the range 102– 103) because of their extraordinar
computational demands. One of the goals of this paper i
study the processes of turbulent diffusion and turbulent g
eration in the limit ofRm→`, and in the fully developed
nonlinear regime; this requires a different computatio
strategy than reliance upon direct numerical simulation
the Navier-Stokes and induction equations, namely,
based upon use of the Cauchy solution~as developed by us
in an earlier paper on the linear growth of the STF@11#!.

The main focus of this paper is therefore the nonlin
STF flow. As shown previously@11#, the STF results in
rather complicated, indeed chaotic, behavior of the fi
lines, instead of the highly symmetric field geometry orig
nally expected. As a result, one finds that the level of m
netic field fluctuations is high, that is, the ratio^B2&/^B0

2& in
Eq. ~1! is large. One might expect that the Lorentz for
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would tend to smooth out the fluctuations, thus diminishi
them; in fact, the numerator^B2& is restricted in the nonlin-
ear limit by the backreaction of the magnetic field, and the
fore one might expect the critical parametern to decrease
when compared to what one obtains in the kinematic S
limit. Simulations reveal, however, a more complicated p
ture, so that this simple expectation is realized only in pa

Our paper is organized as follows: Sec. II develops
basic formulation of the STF problem, Sec. III gives a br
overview of the kinematic limit, and Sec. IV treats the ba
results of nonlinear calculations. We focus on the spe
case ofABC flows in Sec. V, discuss the effects on turbule
diffusion in Sec. VI, and summarize our results, and pres
our conclusions, in Sec. VII.

II. FORMULATION OF THE PROBLEM

In the linear limit, the dynamo problem reduces to looki
for ~exponentially! growing solutions of the induction equa
tion

]B

]t
5“3@v3B#1h¹2B. ~2!

In the kinematic approach, the velocity fieldv is given, so
that no dynamics is involved. In this paper, the velocity
given not directly, but as a solution of the Newton law,

dv

dt
5F1D, ~3!

where F is a ~time-dependent! forcing and D represents
damping. The external forcing functionF is such as to gen-
erate the desired velocity field; the details of specifying
forcing functionF for the STF are given in the Appendix
and forABC flow are described in Sec. V. The damping
required in order to eliminate the possibility of unbound
flow velocities in the absence of any other forces besides
external forcing~i.e., F). This can be accomplished by eithe
adopting the ‘‘tau approximation,’’

Ddamp[2
v

t
~4!

for some constantt or, alternatively, by introducing viscos
ity damping, e.g.,

Ddamp[n¹2v, ~5!

the latter being understood in the Lagrangian sense: the
rivatives are takenin situ, that is, on the field line. Then by
properly choosing the forcing, and specifying the values
either t or n, it is possible to generate any desired moti
with given amplitude. Most of the simulations present
here, however, are based on damping of the form~4!, for
both STF andABC flows; the only case when Eq.~5! is used
corresponds to the calculation of both velocity and magn
spectra in Sec. V B. We will return to the discussion of t
damping terms later in this section.

Up to this point, the problem must be considered as ki
matic: although the velocity field is no longer given, an
obeys the Newton law~3!, the backreaction of the magnet
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56 1607STRETCH-TWIST-FOLD ANDABC NONLINEAR . . .
field is not taken into account. Nevertheless, in this kin
matic regime, the velocity field following from Eq.~3! is
more realistic than an arbitrary, ad hoc, imposed flow. F
example, one could ask if an actual velocity field of STF
ABC form can be constructed so as to satisfy the New
law; we consider this question in Secs. III and V A.

In order to reach a more complete~i.e., dynamical! de-
scription, we need to include the Lorentz force in the m
mentum equation. We shall do this, subject to the follow
two assumptions:

~1! As in @11#, we shall delay only with one, or a few
field lines; one can therefore account for field line tension
the evolution equations by writing

FB[2
1

4pr

B2

r 2 r , ~6!

wherer is the principal vector normal to the curve.
~2! We shall only consider incompressible flows. For th

reason, the forcing termF is chosen to be incompressible, s
that the generated velocity field is incompressible as w
and the potential part of the Lorentz force~i.e., the gradient
of the magnetic pressure! is supposed to be compensated
thermal pressure.

Given these assumptions, Eq.~3! reads

dv

dt
5F1D2

1

4pr

B2

r 2 r . ~7!

The model dynamical equation~7! is strikingly similar to
the Lagrangian momentum equation. In addition, all simu
tions are done in Lagrangian coordinates; i.e., we follow
field line trajectories. To be more specific, we shall follo
either a family of trajectories, starting with initial point
placed on an initial field line, or~in other experiments! we
shall follow several families of trajectories, starting on se
eral magnetic field lines.

The magnetic field is calculated by using the Lagrang
approach as well. As in@11#, the field is defined in terms o
the Lundquist solution,

B~x,t !

B~a!
5

ds

ds~ t50!
, ~8!

whereds is an infinitesimal vector connecting two neighbo
ing liquid particles, andx is the final position of the particle
at the end of the trajectory, assuming it started at posi
a. Solving Eqs.~7! and ~8! makes it possible to perform
nonlinear calculations in three dimensions~3D!, with appar-
ently infinite magnetic Reynolds number~since we are using
the Lundquist solution for the ideal problem!.

In addition, as pointed out in@11#, it is possible to define
an effectiveRm , even for an ideal problem, as follows~see
also Sec. I!:

Rm[S l

d D 2

, ~9!

wherel ~the flow scale length! andd ~the correlation length
of the magnetic field! are both mathematically well-define
quantities. Note thatd must be well resolved by the numer
cal integration; this latter condition is necessary so that
-
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effective Reynolds number is defined by Eq.~9! rather than
being limited by the numerical accuracy of the integratio
As we shall show in the next section, this effective magne
Reynolds number allows us to investigate the contribution
small-scale motions to the evolution of large magne
scales. We further note that the effective Reynolds num
reaches values of approximately 104 in @11#, and in the non-
linear case discussed below it reaches even larger values~cf.
Sec. IV!. Furthermore, as mentioned in Sec. I, solution of t
full MHD is usually restricted to modest values ofRm ; the
solutions easily become unstable for large values ofRm . The
latter undesirable behavior does not arise if one uses
Lagrangian approach@i.e., Eqs.~7! and ~8!#.

An important question about our model dynamics is
what extent it captures the dynamical processes likely to
important in the full problem. Thus, models such as o
often used for dynamos cannot account for phenomena s
as shear flow instabilities, usually because of the strong
posed forcing: the latter is time dependent, and it actua
does not allow time enough for instabilities to develop; bu
is readily shown that the model can simulate~for example!
Alfvén waves. In fact, it is an ensemble of Alfve´n waves that
appears in the fully developed nonlinear regime we shall
studying.

Because nonlinear effects generally result in the smoo
ing of magnetic field lines, our simulations are subject to
surprising simplification: the increased smoothness of m
netic field lines in this limit allows one to carry out simula
tions for much longer times. This is because, in the dyna
limit, the field structure does not continue to become m
and more convoluted as the calculation proceeds, and th
fore the field geometry remains spatially fully resolved.@We
recall from @11# that the field is considered to be well re
solved if the distance between the neighboring points
mains small when compared to the smallest physical s
d; only then is the definition of the magnetic field based
Eq. ~8! reliable.# Indeed, we find that in the nonlinear re
gime, the field strength does not~in a statistical sense! grow
in time, i.e., the distance between two neighboring points
a given field line remains statistically constant. As a res
we are able to compute field line trajectories for much lon
times in the nonlinear case than in the linear regime.

Another important consideration in nonlinear calculatio
is related to the damping forces. As already mentioned,
forces given by Eqs.~4! and ~5! are added in the kinemati
regime in order to make sure that there is no secular gro
of kinetic energy. Simple estimation of these damping ter
in the nonlinear regime shows, however, that they are ne
gible when compared with the other terms; that is, the ex
nal forcingF in Eq. ~7! is balanced mainly by the magnet
tensionFB . This is especially true for viscous forcing in th
form Eq.~5!. For example, when studying the spectrum, S
V B, we examined the stability of solutions for very sma
values of n; thus, we decreasedn to values of order
0.000 03, and found that the solution remained stable. Un
tunately, this result cannot be interpreted to mean that
have solved the problem for very large Reynolds numb
because, as just mentioned, the viscous term is simply sm
and does not play any important role in the nonlinear sta
stability is instead ensured by the time-dependent forcing
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FIG. 1. Evolution of magnetic and kinetic en
ergies for a magnetic field line that started in th
z50 plane.
ob

th
t
ld
rl

n
s
to
e-
e
s
TF
’
ot

l of

a

d, at
the

c
e

Eq.
ale
at
has

, so
III. THE STRETCH-TWIST-FOLD:
KINEMATIC APPROACH

As a starting point, we consider again the kinematic pr
lem discussed in our first paper@11#, but now based on the
case of the model dynamic equation~3!, with damping based
on Eqs.~4! or ~5!. To begin with, we note that if the forcing
is chosen in such a way that the forced motion performs
continuous STF cycle, the results of@11# are duplicated. Tha
is, this forced STF flow results in a simple doubling of fie
line loops, as was expected before we presented our ea
calculations@11#, only for a few ‘‘favored’’ field lines, and
only for a limited number of the STF cycles. In the prese
case, it is necessary to very carefully tune the parameter
the forcing, rather than for the velocity itself, in order
achieve this simple ‘‘expected’’ result for only a few s
lected field lines.~Most other field lines of course behav
drastically differently.! As a result, essentially all field line
again end up behaving chaotically after roughly four S
cycles, while the ‘‘favored’’ lines behave in a ‘‘proper’
manner only for a few cycles, and then also become cha
-

e

ier

t
for

ic.

This field line chaos suggests the presence of a high leve
magnetic fluctuations.

As an illustration, we consider two initial lines, the first
circle with radiusr 50.51 placed in thez50 plane, and the
second~with the same radius! placed in thez50.1 plane.
The first field line is ‘‘favored,’’ and therefore~as seen in
Fig. 1! the associated magnetic energy grows as expecte
least for a few cycles; in the case of the second line,
associated magnetic energy grows substantially faster~Fig.
2!.

In order to measure the parametern @cf. Eq. ~1!#, we must
measure the following quantities:~i! the magnetic energy
^B2&, which is easy to calculate;~ii ! the large-scale magneti
energy^B0

2&, which is nontrivial to compute because of th
chaotic and highly irregular field structure;~iii ! the effective
magnetic Reynolds number, which we defined earlier via
~9!. ~As an aside, we note that while the large-scale sc
length l is mathematically well defined, it can be somewh
ambiguous to measure; this is because the magnetic field
a tendency to expand spatially as amplification proceeds
that l grows secularly.!
ic
FIG. 2. Same As Fig. 1, but for a magnet
field line starting in thez50.1 plane.
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56 1609STRETCH-TWIST-FOLD ANDABC NONLINEAR . . .
Note that the parametern depends only logarithmically
on the parameters mentioned above, and can be defined
ily if one can demonstrate scaling with the Reynolds num
Rm ; using this approach, we were able to estimaten with
relatively good accuracy in our earlier calculations@11#,
based on more than three decades of scaling. We shall
advantage of these earlier results when comparing with
present calculations, which are focused primarily on the n
linear dynamics.

Returning to the large-scale magnetic field compon
@which is related to point~ii ! above#, we recall that in@11#
B0 was defined in terms of the long-range portion of t
correlation function. The latter was constructed along fi
lines. In the present calculations, we also measure the ‘
culation’’ or, more precisely,

F5^Bf&. ~10!

This quantity is computed as an average over all points,
therefore can be computed fairly reliably~in contrast to the
large-scale field derived from the field correlation functio
which we focused on in our earlier calculations@11#!. In
order to understand the meaning ofF, we note that if the
STF would have resulted in simple doubling of magne
loops, thenF5F(0)2m, wherem is the number of the STF
cycles, and therefore

F25F~0!222m. ~11!

We will refer to the quantityF2 as the ‘‘global’’ magnetic
energy~as opposed to the large-scale magnetic energy,
fined from along-field-lines correlations!, and will use it ex-
clusively in the following. We prefer to use the circulatio
F as a measure of the large-scale magnetic energy beca
is easily and reliably commutated, and because the res
derived indeed recover the expected properties of large-s
mean fields. For example, if one were to compute any a
age magnetic field component other than^Bf&, then the ex-
pected result should be zero. Thus, one would expect
^Bx&50 exactly. In simulations, however, such quantiti
never vanish exactly, but should be very small, e.g., of
order of the round-off errors. Indeed, we find that while t
computed^Bf&;O(1), the computed components such
^Bx&;O(1029), many orders of magnitude smaller tha
^Bf&. Thus, the computed circulation is always well abo
the noise, and can be well measured.

We end this section by noting a surprising~and discour-
aging! result that appears even at the level of this kinema
description: even cursory examination of the evolution of
large-scale magnetic energy~seen in Fig. 1 for the case of
field line starting from thez50 plane! shows that the globa
energy grows rapidly only after the first cycle~as expected
from the construction: recall that we are dealing with one
the ‘‘favored’’ field lines!, and that soon after~but well be-
fore one enters the dynamic regime!, the global energy
grows more slowly, and finally stops growing. If one exa
ines the corresponding evolution for the field line that star
from the z50.1 plane~Fig. 2!, one sees that its associate
global energy does not grow at all. These results suggest
the STF motion does not really work as was previously
pected even in the kinematic regime, i.e., the circulation~or
magnetic moment! does not grow after all; yet, nevertheles
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there are large-scale structures in the field that do grow
seen from Figs. 1 and 2, and therefore we must conclude
a large-scale dynamo is realized by this~STF! motion. The
question is how we can understand this behavior, espec
as one enters the dynamic regime. We explore this ques
in the next section.

IV. THE STRETCH-TWIST-FOLD:
THE NONLINEAR STAGE

In this section, we shall consider in some detail the no
linear behavior of the STF dynamo. To begin this discussi
we note once again that in the kinematic regime we ba
our discussions on measurements of two quantities (B0 and
l ) that were themselves not well defined, but because of
range of values of the Reynolds numberRm that was ex-
plored, we were able to recover meaningful scaling res
with Rm @11#. In the present case, we shall not be able to r
upon calculations with such a wide range in Reynolds nu
bers, and will therefore need to adopt a different strategy
deciding the properties of the dynamo-produced fields.
particular, we have adopted a slightly different definition f
the large-scale field~as discussed immediately above!, which
allows us to investigate the field characteristics by examin
the multifractal structure of the growing magnetic fields.

As discussed earlier, one of the keys to reaching such
understanding is to estimate the parametern, defined in Eq.
~1!; in principle, one would expect that we would have
determine all of the quantities~i!–~iii ! listed in Sec. III in
order to construct this estimate. However, in the nonlin
regime we know that the magnetic Reynolds number@de-
fined by Eq. ~9!# reaches some asymptotic value becau
both the large-scale length scalel and the diffusive scaled
themselves reach asymptotic values as the calculation
ceeds. In other words, one must conduct a large numbe
simulations in order to build up the statistics for determini
n in this manner. In contrast, there exists a less compu
intense method for determiningn, based on a study of the
detailed spatial structure of magnetic field lines acted up
by the STF flow. We discuss this in the following section

A. The large-scale magnetic field

Our simulations were carried out with a magnetic Ma
number

MA5
4pr^v2&1/2

^B~ t50!2&1/2
5102,

so that the initial magnetic energy is four orders of mag
tude below the kinetic energy. As seen from Figs. 1 and 2
quantities saturate after approximately five STF cycles.
mentioned in Sec. II, the distance between neighboring p
ticles on a given field line does not grow in the nonline
regime; this property of the nonlinear regimes has the ha
consequence that we do not lose spatial resolution for r
tively long times when compared to the kinematic approa
Specifically, it was possible to proceed up to only six S
cycles in the linear calculations presented in@11#, while in
the nonlinear regime discussed here we are able to com
up to 12 cycles.
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FIG. 3. Multifractal dimensions of the mag
netic field line length.~a! Scaling for an initial
magnetic field line lying in thez50 plane.~b!
The corresponding dimension spectrumDq . For
comparison, we also show the correspondi
spectrum for the kinematic STF@11# ~asterisks!.
D is the classical line dimension; we provide~in
parentheses! the dimensions previously obtaine
for the kinematic case. Panels~c! and ~d! are the
same as~a! and~b!, respectively, but for an initial
field line that lies in thez50.1 plane.
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A few features of the results in this nonlinear regime a
worthy of note. First, we observe that the circulationF can
change sign@as marked with a (2) sign in Figs. 1 and 2#.
This is of relatively little consequence, as it only means t
the magnetic loop turns around from its original orientatio
and thus the magnetic moment changes sign.

Of substantially greater significance is the fact that
global energy does not grow in the long time limit, indepe
dent of where the original field line was started; i.e., th
result holds for field lines started both in thez50 and the
z50.1 planes. For example, the first field line—which
‘‘favored’’—does show, at least initially~when the kine-
matic approach is still valid!, that the associated global fiel
grows ~see previous section!. However, after a few cycles
the energy in this case is seen to even diminish~Fig. 1!,
leading to the pessimistic conclusion that nonlinear effe
may totally kill field line doubling.

However, the large-scale field, when calculated along
field line, does grow in time, and its associated energy s
rates at a level about two magnitudes below the value of
total magnetic energy. Note that the kinetic energy does
really change with time. These results support the idea
nonlinear effects in the dynamo do not suppress the tu
lence as such, but rather suppress the transport coeffic
~such as the diffusion and generation coefficients! respon-
sible for the large-scale field amplitude@8#.

B. Fractal structure of magnetic field lines

As in @11#, we consider next the multifractal properties
the field lines. The generalized dimensions are defined a

K S DL

Ds D qL ;S 1

DsD
kq1~12Dq!~q21!

, ~12!
e

t
,

e
-

ts

e
u-
e
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where DL is the distance between two points on a giv
field line ~whose initial separation is given byDs), and the
fractal ~or generalized! dimensions are denoted byDq . Note
that by settingq51, we recover the classical definition o
the fractal length dimension; thus, if^DL/Ds& shows scaling
properties, thenk can be found. The Richardson-Mandelbr
dimensionD is then given by

D511k. ~13!

After computingk, all other dimensionsDq can be found
from any extant scaling of̂(DL/Ds)q&; indeed, as shown in
Fig. 3, we do find scaling for roughly 1.5 decades. Rec
that if the multifractal dimensions of a curve are not equa
unity, it is implied that the field line is stretched~statistically!
inhomogeneously. As seen from Figs. 3~b! and 3~d!, the di-
mensionsDq are systematically greater in the nonlinear r
gime than in the kinematic STF regime. In other words, th
are closer to the trivial dimension,Dq51; indeed, the error
bars are sufficiently large for the field line initially lying in
thez50 plane@Fig. 3~b!# that the dimensionsDq shown are
consistent with the trivial case.

This increase of dimensions can be easily understood:
STF stretches the field lines inhomogeneously and, as a
sult, the field line becomes multifractal. On the other ha
the field line tension tends to smooth out the inhomoge
ities, and as a result of this second effect, the field line
comes less singular as one enters the nonlinear regime.

Our computation of the classical dimensionD is also well
determined, as can be seen from the relatively small e
bars shown in Fig. 3. The field line initially lying in the
z50 plane becomes more singular, that is, its classical
mensionD is larger than its value for the kinematic cas
while the field line starting from thez50.1 plane is roughly
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FIG. 4. Evolution of a magnetic field line
Panel~a! shows the magnetic field line at the sta
~i.e., as a circle lying in thez50 plane!; panel~b!
shows the same field line after 12 STF cycle
Panels~c! and ~d! are the same as~a! and ~b!,
respectively, but for an initial field line lying in
the z50.1 plane.
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as singular as in the kinematic regime. This behavior can
understood by noting that there are two competing effec

~i! As already noted, the line is stretched more homo
neously in the nonlinear regime. That is, instead of hav
very complicated small-scale structure, highly stretched
only some places, i.e., in a very intermittent fashion~as is the
case in the kinematic regime!, the line becomes stretche
everywhere in the present dynamical regime. As a result
length increases.

~ii ! The nonlinear forces limit the line stretching as
whole: the magnetic field cannot grow indefinitely in th
dynamic regime. This limits the total length of the line.

More quantitatively, these two requirements follow fro
the inequality~2.20! presented in Ref.@14#,

k<D` . ~14!

For a very intermittent process, such as the one describe
@11#, D` is substantially less than unity, and thereforek, as
well as the dimensionD, by Eq. ~13!, have to be small. In
other words, very singular processes in terms of interm
tency result in reducing the singularity of the length. In t
nonlinear regime, the intermittency is reduced, i.e.,D`&1,
andk is therefore allowed to become greater; that is, the l
could be more singular as far as its length is concerned.

The corresponding field lines are depicted in Fig. 4. P
els ~b! and ~d! show the field lines after 12 STF cycles. W
can see that the lines do not even barely resemble circles
nevertheless are not as complicated as compared to th
sults of the kinematic regime. As explained above, this is
to the smoothing by Lorentz forces. Another way of illustra
ing the growing geometric complexity of the magnetic fie
as the STF process proceeds is to plot the$r ,z% coordinates
of all of the computed points along a given field line~as
shown and described in Fig. 5!, after 12 STF cycles.~This
figure is an analog of the polarized Poincare´ map introduced
e
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in @11#.! In order to appreciate what actually occurs, it
useful to consider what one would naively expect to happ
Thus, for an initial magnetic field line starting in thez50
plane, we know that all of the points on this line are rep
sented by dots, which are all placed on top of each othe
$r 50.51,z50%; there are no pluses. After several ST
cycles, we would expect~according to@6#! a ‘‘cloud’’ of dots
located near the initial radial valuer 50.51, and slightly
spread in the vertical dimension (z). Again, we would not
expect any pluses because the field line is not suppose
reverse, i.e., the naive STF model assumes thatBf does not
change its sign as the STF cycle proceeds. It is clear fr
Fig. 5~a!, however, that this simple picture is incorrect: Th
field line is chaotic, and does go in the opposite directio
i.e., Bf does change its sign as the STF cycle procee
~Indeed, one observes more pluses than dots, but this res
obtained because the circulation changed sign for this
ticular case; see Fig. 1!. Similar considerations apply to th
case of a line starting in thez50.1 plane: its initial map
would look like that for thez50 line, except all points~and
all dots! would be lying on top of each other a
(r 50.15,z50.1); and one would again naively assume th
after the application of the STF process, the ‘‘cloud’’ of do
should be centered around this point. As seen from Fig. 5~b!,
this is again not the case. Thus, despite the fact that
nonlinear regime has a tendency to reduce the convolute
lution of any given field line, it is still true that the actual en
result of the STF process is a field geometry that does no
all resemble what one would expect on the basis of the c
sical STF continuous ‘‘doubling’’ of circular field lines.

We now proceed to the estimation of parametern dis-
cussed in Sec. I@e.g., Eq.~1!#. Nonlinear calculations do no
provide any scaling for the ratiôB2&/^B0

2&, and therefore we
can obtain only a rough estimate forn. Indeed, as seen from
Fig. 6, the values ofn thus obtained~i.e., from line correla-
tions! show a wide range. In particular, these values are co
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FIG. 5. Illustration of the geometric complex
ity of STF-distorted field lines. We show, for th
case of two field lines~located initially atz50
and z50.1) distorted after 12 STF cycles, th
location in the $r ,z% plane of every computed
point along each field line; this is an analog to th
polarized Poincare´ maps discussed in@11#. In or-
der to retain some sense of the field line orien
tion, we coded each such point according to t
sign of the field componentBf at that point: we
use a dot for all points whereBf.0, and a plus
otherwise. Panel~a! shows what happens to
field line starting in thez50 plane;~b! shows the
same result for a field line starting in thez50.1
plane.
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pletely unreliable when calculated for a field line after fe
STF cycles: the lines are actually not chaotic, and there
there is insufficient statistical data to actually compute a
liable value forn. Nevertheless, there is some indication th
the ‘‘average’’ value ofn computed in this manner is aroun
unity; i.e., it is definitely bigger than in the kinematic limi

In order to obtain a more reliable estimation forn, we
define this parameter using the formula
re
-
t

n5k1
12D2

2
~15!

@15#. Each quantity in Eq.~15! can be obtained from scalin
laws, which is why this definition is relatively more reliab
for computingn. Indeed, this quantity can be seen to beha
more realistically@cf. Fig. 6~b!#: it starts from very small
in

e
n-
FIG. 6. The exponentn as calculated in vari-
ous ways, for~a! line starting in thez50 plane,
and the same~b! for a line starting in thez50.1
plane. The notation conventions are the same
both panels. Dotted sections of the lines~indi-
cated by pluses! correspond to regions on thes
field lines where our calculations tend to give u
reliable results.
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FIG. 7. Plots of theBx component~a! and
Bf component~b! along the field line that started
in the z50.1 plane, but after 12 STF cycles.
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values, increases, and reaches some asymptotic value. W
these values still fall below those obtained from the li
correlation~which we regard as relatively unreliable!, they
are still larger than those obtained in the kinematic lim
However, there remains an ambiguity: if we calculaten in
the kinematic regime not using the procedures describe
@11#, but via formula~15!, i.e., through scaling, then for th
line shown in Fig. 6~b! we obtain a value forn that is slightly
larger than for the nonlinear case. In order to resolve
discrepancy, we note that the value ofn for the z50.1 line
was obtained with considerable uncertainty: in particular,
scaling was quite poor@cf. Fig. 10~d! of @11##. Therefore, if
we accept the new value ofn50.73 for the kinematic re-
gime, then it appears that the value ofn may diminish in the
nonlinear regime when compared to the kinematic@see Fig.
6~b!#.

This reduction was indeed expected~cf. Sec. I!. However,
the line initially in the z50 plane does not show this ex
pected behavior: the value ofn computed for this case in
creases in the nonlinear limit; and this increase is actu
more convincing@cf. Fig. 6~a!# than the decrease@cf. Fig.
6~b!#. Our previous discussions have shown how this se
ingly puzzling conclusion can be reconciled with our earl
result. In particular, we need to go back to the two points~i!
and~ii ! discussed in the earlier subsection. If we translate
effects of nonlinear backreaction on the field line length~and
stretching! to the implied magnetic field properties, we co
clude the following.~i! It is clear that a very intermitten
field ~in the kinematic regime! has a small filling factor, and
therefore the value of̂B2& is substantially smaller than th
typical field energy. If we smooth out this field~which is
what happens in the nonlinear regime!, this average in-
creases. That is why this parametern might increase.

~ii ! On the other hand, the same nonlinear backreac
limits the magnetic energy, which would result in a decre
of n.

As we see from the simulations, these effects comp
sometimes one effect wins out over the other and someti
it is the reverse.

At this point, we finally are able to estimate the effecti
magnetic Reynolds number directly from formula~1!, where
all the quantities entering into this formula are obtain
ile
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through reliable scaling. We then obtain~in the nonlinear
regime! Rm511 966 for the line starting in thez50 plane,
andRm536 913 for the line starting from thez50.1 plane.

C. The small-scale structure of magnetic field

Next we consider the intermittency properties of the ma
netic field, if any. As stressed above more than once,
nonlinear effects reduce intermittency, while we know th
the field is quite intermittent in the kinematic regime@11#.

Figure 7 gives some idea of how intermittent the magne
field is for the case of a field line started in thez50.1 plane,
and after 12 STF cycles. It depicts theBx component@Fig.
7~a!# and the Bf component@Fig. 7~b!#, both computed
along the field line. Both components are normalized to
initial field strength. In other words, the initialBx component
would be a sinusoid with amplitude equal to unity, and hen
would be indistinguishable from the zero line on this plo
The initial Bf would also be represented by they51 line,
i.e., would be again indistinguishable from zero.

The two curves in Fig. 7 look quite similar. Howeve
differences appear if one calculates the mean value. For
first curve@Fig. 7~a!#, the mean is 8.131028, i.e., practically
zero~within round-off errors!, while for theBf curve in Fig.
7~b! the mean is 1.41. This result was already alluded to
Sec. III: the mean ofBf ~actually, the circulation! is indeed
a reliably computed quantity.

These plots are similar in the sense that both reveal q
intermittent structures. Indeed, the flatness factor

f 5
^B4&

^B2&2

is 7.97 for this magnetic field. The flatness is substant
when compared with Gaussian value 3, although small co
pared with kinematic case~the flatness was 258.4!. Thus,
nonlinear effects do decrease intermittency, although it
mains substantial.

For this reason, it makes sense to measure intermitte
fractals. We measured correlations of magnitudes, as in@11#,
and used the formula
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FIG. 8. Intermittency fractals of the magnet
field after 12 STF cycles. Panel~a! shows the
scaling, and panel~b! the corresponding fracta
dimensionsDq

( i ) ; both results are obtained for
line that started initially in thez50 plane. Panels
~c! and ~d! are the same as~a! and ~b!, respec-
tively, but for an initial field line lying in the
z50.1 plane. For comparison, we also show pr
viously obtained spectra for the kinematic ST
@11# ~asterisks!.
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^@B~x1r !2B~x!2#1/4&;r ~32Dq/2
~ i !

!~q/221!22~32Dq
~ i !

!~q21!;
~16!

here the generalized dimensionsDq
( i ) are based on the mea

sure

m~C!5
*Ci

uBudx

*VuBudx
,

where the total volumeV is divided exhaustively into dis
joint subsetsCi .

Figure 8 shows the scaling and generalized dimens
spectrum for two lines: one starting in thez50 plane, and
the other one in thez50.1 plane. We can see that the dime
sions are systematically bigger in the nonlinear regime
compared to the kinematic case. This trend is quite rob
and definitely above the noise; one can compare this re
with what is shown in Fig. 3, where a similar trend is o
served as well, but not as pronounced. As above, this tr
can be explained by appealing to the nonlinear smoothin
magnetic inhomogeneities—the magnetic field becomes
singular.

V. THE FORCED ABC FLOW

In order to understand the properties of the STF flow b
ter, we shall now compare the earlier results with what o
finds upon examining the nonlinear response of a system
which the underlying flow is the so-calledABC flow ~cf.
@3#!.

Whereas one usually prescribes theABC flow, i.e., one is
given the flow
n

-
s
t,

ult

nd
of
ss

t-
e
in

vx5A sinkz1C cosky, vy5B sinkx1A coskz,

vz5C sinky1B coskx, ~17!

we shall instead impose a forcing function~following the
discussion of Sec. III! such that the flow~17! appears. Un-
surprisingly, the forcing necessary to accomplish this m
itself have the form of Eq.~17!.

If the coefficientsA, B, C are constants, then the flow i
laminar in the Eulerian sense, but it is well known to exhi
Lagrangian chaos~see, e.g.,@3#!, which is referred to as ‘‘La-
grangian turbulence.’’ We are interested, however, in t
turbulence, and therefore choose these coefficients as ran
functions in time: specifically, we consider them uniform
distributed on the interval@0,1#. The wave vectors is fixed
k510, corresponding to a characteristic scalep/1050.31.

The flow is not random in space, but is rather periodic
space, and random in time. If a very weak magnetic field
imposed, we would expect two effects. First, the field sho
be diffused by turbulent diffusion; second, a large-scale fi
component might be generated by helical turbulence. T
turbulence is indeed helical because one can readily s
that

^v•“3v&5^A21B21C2&kÞ0,

and therefore field generation is possible via the so-ca
alpha effect~see, e.g.,@16#!. In addition, a small-scale dy
namo is also possible, i.e., the generation of a small-s
component of the magnetic field, which is more effecti
than scale reduction~see@6,11#!.
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FIG. 9. Evolution of magnetic and kinetic en
ergies for both kinematic and dynamic cases~as
in Fig. 1! for the case ofABC flowlike forcing.
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A. Kinematic approximation

If the velocity field is defined by either Eq.~4! or Eq.~5!,
then the magnetic field is found from Eq.~8!. We investi-
gated a large number of cases, with a variety of differ
parameters; the forcing used was always of the form~17!.
The initial field was represented either by a single field l
lying in thez50 plane, characterized by a circle centered
the origin of radiusR51 or R53.5, or by several lines, al
circles also lying in thez50 plane, with radiiR51, 2, 3, 4,
5, respectively. Qualitatively, the flow always results in
high level of fluctuations: this is not a new result, and is w
known for theABC flow ~see, e.g.,@3,4#!. As one example,
Fig. 9 illustrates the results of this type of calculation. T
magnetic energy in the kinematic approach grows expon
tially ~as denoted by asterisks!. Note that during the last few
turnover times, the energy growth seems to slow down; h
ever, this is an artifact of the calculation because we
simply starting to run out of spatial resolution at these la
stages~i.e., the distance between two neighboring points o
field line begins to be too large for the formula~8!—which
assumes infinitesimal distances—to be valid!.

As for the global energy, it does not grow at all and,
two late stages, the flux changes sign~see Fig. 9!. The large-
scale energy, which is calculated via the line-of-force cor
lations, is practically zero except for the first two cycles:
the initial stage, because it is defined as a circle, and the
stage, because there is not enough time as yet to chang
field configuration drastically. Thus, there is no large-sc
dynamo in that case. There are some indications, though,
the field does grow on scales comparable with the flow sc
i.e., with p/k50.31, we would not consider this sca
‘‘large.’’ The ratio ^B2&/^B0

2& attains an amplification of six
orders of magnitudes, and so the level of fluctuations is
deed high.

The alpha effect does not seem to work in this case, p
sumably because it has to compete with turbulent diffus
~see, e.g.,@17#!, and apparently fails to win. The latter pro
cess, i.e., turbulent diffusion, is indeed present, and will
discussed further below.
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The small-scale magnetic field is essentially noninterm
tent in this case. Indeed, measuring fractal length dimens
by formula~12! results inDq&1, and the difference betwee
Dq and unity is within the noise. But the scaling itself
good for about 5 decades. Therefore, following a constr
tion analogous to Fig. 3~a! should result in much better sca
ing, but all plots~except forq51) lead to trivial generalized
dimensions. Figure 10~a! depicts such a scaling forq51,
with nontrivial dimensionD51.9260.01, corresponding to
a measurement att58 (t measured in units of the turnove
time!.

The temporal evolution of this dimension and of the p
rametern are depicted in Fig. 10~b! ~analogous to Fig. 6!.
Note the very small error bars, resulting from the large sc
ing range. The parametern is calculated from formula~15!.
The curve is rather singular, the dimensionD being substan-
tially bigger than unity, although the length is not interm
tent. It means that the field line is ‘‘homogeneously sing
lar.’’

We also constructed intermittency fractal dimensions,
Eq. ~16!, analogous to Fig. 8. The scaling is again good,
the deviations of the dimensionsDq

( i ) from unity are within
the noise. The actual absence of intermittency can be
plained as follows. Unlike the STF motion, which stretch
the field line quite inhomogeneously, theABC motion is
periodic, and if the spatial scale of the magnetic field is mu
bigger than that of the velocity~which is the case in thes
simulations!, then on average one would expect the field li
to be stretched homogeneously.

B. Nonlinear stage

We also carried out a large number of simulations us
momentum equations~4!, or ~5!, for a variety of parameters
One example is illustrated in Fig. 9. The initial field line is
circle with radius 3.5, and the initial Mach number
MA

251632~so that the initial magnetic energy is 0.06% th
of the kinetic case!. After a few turnover times, the field is
saturated. The global field remains more or less steady,
does not change sign.
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FIG. 10. Line scaling for the kinematic ap
proach applied to theABC flow, shown after 8
turnover times~a!. Panel ~b! shows the corre-
sponding temporal evolution of the line fract
dimensionD, and the evolution of the paramete
n. As in Fig. 6, the latter parameter grows sec
larly. The corresponding nonlinear values for t
parameterD ~dashed–double-dotted line!, to-
gether with its error bars, and for the parame
n ~dashed line!, together with its error bars, ar
also provided for comparison. It is important
note that these results are obtained after 16 tu
over times, well outside the domain of this figur
and therefore their position along the abscissa
arbitrary. Panel~c! depicts the same result as~a!,
but for the nonlinear stage, after 16 turnov
times.
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The magnetic field line, naturally, becomes more smoo
due to nonlinear backreactions: the Lorentz force ag
smears out very small-scale irregularities. This results i
decrease of the scaling range@see Fig. 10~c!#. As the smear-
ing acts on bigger scales, although less effectively, the s
ing slopes become gentler, resulting in a decrease of b
length dimensionD and parametern. This nonlinear smooth-
ing, as usual, would decrease intermittency but, as alre
mentioned in Sec. V A, even in the kinematic approach
intermittency is negligible. As might be expected, the gen
alized dimensions calculated by Eq.~12! are practically
trivial, i.e., ;1 ~within the computational errors!.

As mentioned in Sec. IV B, there are two competing
fects, which may result in the nonlinear case in either
creasing of singularity of the line, i.e., increasing of t
length dimensionD, and parametern, or decreasing of sin-
gularity. These complications appeared, however, beca
the STF motion results in highly intermittent structures.
we saw, this is not the case for theABC flow, and therefore
the singularity of magnetic field lines only decreases, as s
from comparison of the dimensionD given in Figs. 10~a!
and 10~c!. Both of these quantities, the dimensionD and the
parametern for the nonlinear case after 16 turnover time
are shown in Fig. 10~b!, in a comparison with the kinemati
situation. One can see that, indeed, they decrease in the
of the nonlinear dynamo; this decrease is not substan
however.

The intermittency fractal dimensionsDq
( i ) , as defined by

Eq. ~16!, are also trivial in the nonlinear case, as in the
nematic~see Sec. V A above!.
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As in the case of the STF flow, we can estimate the
fective magnetic Reynolds number for theABC flow directly
from expression~1!, using all the values obtained from rel
able scaling. This calculation givesRm513 865.

We have also studied magnetic and velocity spec
These runs have been made with as low a viscosity as
possible. As a result, the Reynolds number Re reached
million. As mentioned in Sec. II, this should not be mislea
ing, however, because the motion and its random chara
are defined by random forcing~and not be instabilities, etc.
typical for real turbulence!. Recall that at the beginning, th
magnetic field is large scale~i.e., it is a loop with radius
R53.5), and the velocity field is given by theABC flow
with k510. We can see from Fig. 11~a! that shortly after the
beginning, velocity pulsations are created, but the magn
field is still large scale. After only one turnover time@cf.
Figs. 11~b! and 11~c!#, the magnetic field reaches equipar
tion. There is no real evolution of spectra after that, so t
the spectra depicted in Fig. 11~d! present an average ove
times from 7.5 to 45.9 turnover times. The spectra show
equipartition of magnetic and kinetic energies, suggest
the presence of Alfve´n waves with very large amplitudes. I
fact, the large-scale fieldB0 is weak, which means that th
relative amplitudê B2&1/2/B0 is very large: in the presen
simulations, this number is a few thousand in value. In sp
of the large Reynolds numbers Re andRm , it is hard to find
an ‘‘inertial range.’’ Indeed, the spectra consist of two par
the first, for k>250, is rather steep,;k24, and definitely
does not correspond to the inertial range; the second,
20<k<250, is more gentle, and therefore may be of mo
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FIG. 11. Evolution of the magnetic and ki
netic spectra. Panels~a!–~c! correspond to spe-
cific moments of time, as noted in the pane
Panel~d! shows the time average of such spect
the average taken over the period fromt57.5 to
t545.9, in units of the turnover time.
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interest. However, the dispersion of data points is large,
that would make any comparisons with power laws unr
able ~as discussed in Sec. II!. We note that the dynamics o
the motion simply reflects the random forcing, which ove
powers nonlinear interactions. Therefore, the spectrum
formed only in part by interactions of Alfve´n waves.

An example of a magnetic field line which is initially
circle with radiusR51, after 16 turnover times, is depicte
in Fig. 12~a!. The initial Mach number isMA5102. If the
d
-

-
is

initial radius is insteadR53.5, then the final shape~after the
same time interval! is depicted in Fig. 12~b!. For compari-
son, we also show the same lines, but in the kinematic lim
panel~c! corresponds toR51, and panel~d! to R53.5. The
time corresponds only to 8 turnover times~recall that in the
kinematic limit, the resolution is lost much sooner than in t
dynamic case, and therefore we are not able to procee
larger time intervals!. Note that all the lines depicted in Fig
12 seem to be unresolved, consisting of straight line s
t
a

f
n-

n-
FIG. 12. Final image of a field line tha
started out at the beginning of a calculation as
circle with radiusR51 ~a!. Panel~b! corresponds
to the same result but for an initial radius o
R53.5. Both panels depict the line after 16 tur
over times of nonlinear evolution for theABC
flow. Panels~c! and~d! correspond to~a! and~b!,
but for the kinematic case, and only after 8 tur
over times.
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ments. This is, however, only in the image: the simulatio
are resolved, and we depicted only each fortieth point in
plot.

VI. TURBULENT DIFFUSION

In the kinematic approach, the behavior of a magne
field line is analogous to that of any scalar field inserted i
the turbulent flow. Thus, as one would expect, the length
the line grows exponentially, and becomes chaotic@as is in-
deed seen in Figs. 12~a! and 12~d!#. The line also ‘‘diffuses’’
in such a way that it occupies more than one dimension
fact, the Kolmogorov capacity, that is, the box counting
mension, corresponds to the length dimensionD ~given in
Figs. 3 and 10!, and simply equalsD @11#. Finally, the char-
acteristic scale of the line, or its ‘‘size,’’ grows with time a
t1/2, as is typical for a random walk.

As a result, the matter is mixed at the same rate. In o
words, a passive scalar field would also mix in a distan
d, which grows with time as;t1/2, i.e.,

d~ t !5 l S t

t D 1/2

, ~18!

wheret is the correlation time~roughly, t; l /v). The dis-
tanced may be regarded as a radius of diffusion, with t
property that all tracers would diffuse on this scale ove
time intervalt, and therefore any admixture would be mixe
on this scale. If the tracer is also characterized by spa
structures larger thand, then these structures would be e
pected to be conserved on this time scalet, and any other
structures whose spatial scales are smaller than, or com
rable to,d would be mixed.

From another perspective, the displacement of a part
j also grows ast1/2. One may say that the particle occupies
secularly increasing volume

V5d35 l 3S t

t D 3/2

, ~19!

or, in other words, there is a finite probability to find th
particle in this growing volume. Therefore, the probability
finding the particle in a fixed volumee is

e

V
;

1

t3/2
, ~20!

and the probability goes to zero ast→`.
Finally, the distance between two infinitesimal close p

ticles D grows exponentially,

D5D~ t50!et/t, ~21!

because of the positive Lyapunov exponent.
The situation is different if the initially weak magnet

field is allowed to react back on the fluid. The simulatio
show that a loop of radiusR51 expands, but only initially.
When the magnetic field energy reaches equipartition, b
the expansion and the diffusion stop. Indeed, the charac
istic scale of the loop depicted in Fig. 12~a! is reached after
a few turnover times, and then stays the same up to 16 t
over times, the figure corresponding to the last moment.
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loop looks chaotic and dynamic, its shape is changing,
the size does not. This should be compared with that on
12~c!, the size of the magnetic loop being bigger than that
panel~a!, elapsed time being less~only 8 turnover times!.

Panels~b! and~d! of Fig. 12 depict dynamics of magneti
loop with initial radiusR53.5. In the kinematic approach
the particles are diffusing in any direction, so that eventua
all the volumeV, Eq. ~19!, would be filled, panel~d!. This
happens when the radius of diffusion exceeds the initial s
of the loop.

If the strength of the magnetic field is finite, then th
radius of diffusion is restricted, and the loop still looks like
ring, or torus, panel~b!. In order to estimate the radius o
diffusion, note that the magnetic energy is growing,

^B2&5B~ t50!2e2t/t, ~22!

until it saturates in a fully developed nonlinear regime,
time t5tn . At this moment of time, the diffusion radius ha
reached the value

dn5 l S tn

t D 1/2

.

Substituting the timetn from Eq. ~22! into this expression,
we get for the nonlinear radius of diffusion,

dn5 l S 1

2
ln

^B2&
B~ t50!2D 1/2

. ~23!

Recalling that in our simulations the large-scale comp
nent of the field does not really change, we may write^B0

2&
instead ofB(t50)2 in Eq. ~23!. Then, this rough estimation
would givedn52l , andl 5p/1050.31. Thus,dn50.63. The
characteristic thickness of the ring is thus 2dn51.26, which
is indeed the case, as seen from the Fig. 12~b!. This size is
comparable with initial size of the loop depicted on panel~a!,
and therefore, we do not see a ring, but rather filled volu
of the sizedn11 ~the unity being the initial size of the loop!.

The process of mixing can be seen from Figs. 13 and
Five magnetic field lines are painted in different colors@the
line in the middle is painted in the same color as the ba
ground, and therefore cannot be noticed on Figs. 13~a! and
14~a!#. In the kinematic approach~Fig. 13!, the lightest field
line is mixed with the darkest, and after 16 turnover cyc
everything is almost totally mixed up. In the nonlinear ca
~Fig. 14!, the lines diffuse and spread, as in the kinema
approach, but only at the beginning. A light ‘‘halo’’ remain
persistent, and dark field lines never mix with the light on
although neighboring lines do mix. This happens because
distance between neighboring lines is less than, or com
rable to, dn , while the distance between the darkest a
lightest lines is bigger. Thus, the radius of diffusion is r
stricted, and so is the diffusion itself.

In the kinematic approach, the probability of finding
particle in some fixed volume goes to zero according to
~20!. In nonlinear restricted diffusion, the particle remai
inside a sphere of a radiusdn , centered at the initial position
of the particle. To be more specific, it may walk out from t
sphere, but with low probability: it stays inside the sphe
most of the time. Therefore, two particles that are initia
infinitesimal close to each other are contained in two int
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secting spheres so that, in the long run, they do not sepa
farther than the diffusion radius. However, the process ha
quasioscillating character, because after separating for a
tancedn , the particles would approach each other. In fa
this kind of turbulence is quite different from ‘‘normal’’ tur

FIG. 13. Turbulent diffusion in the kinematic approach. T
initial lines ~a! are painted in various shades of gray, as indicat
After the turbulence is switched on, turbulent mixing takes pla
@see panels~b!, ~c!, and~d!#. In the final stage, the lightest field lin
~which was initially on the periphery! penetrates to the very cente
and the darkest field line~which was initially at the center, spread
out to the periphery. Thus, everything is well mixed.

FIG. 14. Same as on Fig. 13, but in the nonlinear regime, tha
for an initial field with low but finite strength. It can be seen that t
light ‘‘stuff’’ is never mixed with the dark ‘‘stuff’’; thus magnetic
field mixing and decay is inhibited.
ate
a

is-
t,

bulence in a box of a sizedn . Due to the boundary condi
tions, the particles would not be able to travel distances b
ger than dn . However, in highly conductive media, th
magnetic field would grow and, if the back reaction can
neglected, this growth would be unlimited. Now, if the initi
strength of the magnetic field is weak but finite, then t
magnetic field would grow only up to a point, and after th
the magnetic energy is kept constant~in the statistical sense!.
Thus, in the ‘‘regular’’ case~with infinitesimal fields!, the
field grows, meaning that the distance between two infi
tesimally close particles grows. In the nonlinear regime,
field does not grow, nor does the distance between partic

Roughly speaking, the probability to find two particles
a volumeD3, that is, the distance between them is no mo
thanD, is

D3

dn
3 ,

and, unlike expression~20!, does not go to zero ast→`.
This means that the Lyapunov exponent is zero in the n
linear regime. Note that suppression of Lyapunov expone
in nonlinear dynamos is well known~see, e.g.,@3#, Chap. 12,
and references therein!.

In spite of a vanishing Lyapunov exponent, the system
rather ‘‘chaotic.’’ First of all, the forcing is given as a ran
dom ~in time! field. If we define a trajectory of the forcing
via the equation

dj

dt
5F,

then the Lyapunov exponent would be positive. Moreov
the exact position of the particle at specific moment of tim
inside the sphere of radiusdn , is unpredictable; all one really
knows is the probability to find a particle within some vo
ume. The particle has finite ‘‘memory’’ about its positio
although it moreover ‘‘memorizes’’ its initial position, an
so stays within the sphere.

The real displacement is defined by the equation

dj

dt
5v~x,t !5vL~x0 ,t !, ~24!

wherevL(x0 ,t) is the Lagrangian velocity of a particle star
ing at x5x0. All the transport coefficients are define
through appropriate moments of the displacement. In p
ticular, turbulent diffusion is defined by the relation

DT5
d

dt
^j2&. ~25!

In the kinematic approach,̂j2&5 l 2t/t, by Eq. ~18!, so
thatDT5 l 2/t. In the nonlinear regime,^j2&5dn

25const, and
thereforeDT50.

The same situation holds with another transport coe
cient,a, which is actually the generation coefficient of cla
sical kinematic dynamo theory. According to@16#,

a52
d

dt
^j•“3j&,

.
e

s,
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FIG. 15. Illustration of typical spectrum func
tions ~a!, and correlation functions~b! for a fixed
wave vectork.
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and, asj does not grow in the nonlinear regime, the gene
tion coefficienta→0 @8#. More generally, as mentioned i
the Introduction, the generation is not possible without eff
tive diffusion, and therefore, turbulent diffusion is vital
understanding magnetic dynamo.

The turbulent diffusion coefficient can be defined direc
from the definition of the displacement~24!. In order to do
this, note that

^j2&52E
0

t

~ t2s!K~s!ds, ~26!

where

K~s!5^vL~x,t !•vL~x,t1s!&.

Obviously, asymptotically, ast→`, the right-hand side of
Eq. ~26! behaves as 2t*0

`K(s)ds5t*2`
` K(s)ds, so that, ac-

cording to Eq.~25!,

DT5E
2`

`

K~s!ds. ~27!

In Fourier space,

vL~x,t !5E v~k,v!eivt1 ik•xdv dk,

and

^v~k,v!•v~k8,v8!&5I ~v,k!d~k1k8!d~v1v8!,

whereI (v,k) is time-space spectrum. Now,

K~s,k!5E I ~v,k!e2 ivsdv,

and
-

-
K~s!5E K~s,k!dv dk,

so that, by Eq.~27!,

DT5E I ~0,k!dk. ~28!

Thus, the spectrum at zeroth frequency defines the diffus
coefficient@6#. As I (0,k) is non-negative, the turbulent dif
fusion coefficient vanishes if and only ifI (0,k)50 for all
wave vectorsk.

Figure 15 illustrates a few typical examples, for fixe
wave vectork. An ensemble of free waves corresponds to
delta function dependence,I (v,k);d„v2v(k)…, where
v(k) is dispersion relationship for these waves. The syst
has infinite memory, so that the correlation function, d
picted in Fig. 15~b!, ‘‘never forgets’’ its initial value~the
function is simple a cosinusoid!. If the waves interact, the
process is referred to as weak turbulence, and the ran
phase approximation is valid. The delta function is broa
ened, and the memory time is large, but finite@cf. the corre-
sponding correlation function in Fig. 15~b!#. An important
feature of weak turbulence is thatI (0,k)50. Strongly inter-
acting waves lead to a loss of their identities, that is,
dispersion relationship is no longer valid. Indeed, one sho
not call these features waves any longer. Nevertheless, i
equationI (0,k)50 is still satisfied, then the process may
called ‘‘restricted chaos.’’ The corresponding correlati
function possesses finite correlation time, but always c
tains an anticorrelation part@see Fig. 15~b!#. This corre-
sponds to a return of all particles to their initial positio
Thus, on the one hand, the process does have finite mem
because it ‘‘forgets’’ any specific position of the particle
diffusion radius; but on the other hand, it does remem
forever the initial position of every particle, so that the d
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fusion sphere is centered at this point. Finally, regular tur
lence results in the usual random walk, andI (0,k).0.

It is noteworthy that restricted chaos is not a fundam
tally new concept. Consider, for example, turbulence as c
monly understood. The correspondingI (v,k) spectrum for
the velocity fieldv is depicted by a dotted line in Fig. 15~a!;
and we know thatI (0,k).0. However, the spectrum for th
time derivative of the velocity, that is, for the accelerati
field a5dv/dt, does vanish at the origin, because the sp
trum for thea field is simply I (v,k)v2, and this expression
goes to zero atv50. In spite of this fact, the acceleratio
field is of course a random field.

Restricted chaos is peculiar because the Lyapunov e
nent vanishes. However, the exponent for this proces
positive in phase specie: this is another way in which it
sembles regular chaos. Indeed, suppose we consider two
ferent realizations of the process, with the same forcing,
with different initial velocities. If the difference is infinitesi
mal small, then for a given initial position of a particle, th
trajectories of these two processes would slightly differ o
at the beginning. In spite of the fact that these two trajec
ries are kept within the same diffusive radiusdn , they even-
tually diverge, and become completely different. In that ca
the final velocities of these two particles are different a
uncorrelated as well.

Thus, weak initial fields may result in suppression
transport coefficients, that is, in restricted chaos. It is int
esting to note that this statement is valid if the initial ma
netic energy is much less than the kinetic energy, that is
the content of a dynamo. In other words, the initial magne
Mach numberMA should be big. In the opposite extrem
MA!1, an ensemble of Alfve´n waves might result in the
generation of convective cells, which are able to mix t
matter@18#; in that case, an Alfve´n wave decays into anothe
Alfvén wave pulse convective cell with zero frequency. T
spectrumI (v,k) acquires a positive contribution at zero
v because of this zero frequency convection cell, and t
mixing becomes possible. The most important requirem
for this process to occur is the geometry of field lines. T
is, it should be possible to interchange magnetic field lin
and only then will the quasi-two-dimensional turbulence, i
these convective cells, appear. Obviously, this could hap
if the field lines are simply straight lines, or if the field line
are circles. It now becomes clearer why the condit
MA!1 should be satisfied. Indeed, in this case, the fi
lines are only slightly distorted by the motion, and these lin
can be interchanged. If this condition is not satisfied, as
the case of a dynamo, then the magnetic field lines appea
depicted in Fig. 12: they are very complicated and
closely interwoven, so that their interchange becomes imp
sible. That explains why the diffusion is restricted by th
weak field, as seen from Fig. 14.

VII. SUMMARY AND CONCLUSIONS

We have applied our Lagrangian approach to solving
magnetic dynamo equations@11# to two distinct nonlinear
dynamo models, the STF dynamo and theABC flow dy-
namo. This approach has the definite advantage that it all
us to work in the ideal MHD limit, so that the effectiv
magnetic Reynolds numbers are very large~at least when
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compared to what can be accomplished by numerically s
ing the Eulerian equations!.

Some of our results are not unexpected. Thus, the non
ear STF results show saturation of the magnetic energy
the calculation proceeds, with the energy in the large-sc
field component far below that associated with the sm
scale magnetic fluctuations. In contrast, it was somewhat
prising that the exponentn in the relation@7#

^B2&

^B0
2&

;Rm
n

is of order unity. This result suggests that magnetic fi
lines become less singular in the sense of intermittency,
also that they may become even ‘‘longer’’ as compared w
line stretching in the kinematic regime. We now understa
why this is so: the nonlinear effects first suppress the v
small-scale line deformation.

We also studied randomABC flows in the kinematic re-
gime, with the result that~again! the magnetic energy grow
exponentially, but without any evidence for significa
growth of the large-scale field component. When we e
tended this study to the nonlinear regime, we also find~as in
the STF case! that the magnetic energy saturates at lev
near equipartition with the kinetic energy. Furthermore,
find that the magnetic energy is mostly concentrated
~small! diffusive scales. While we observe ‘‘regular’’ diffu
sion in the linear regime, we see instead strong suppres
of diffusion in the nonlinear regime. This suppression has
interesting feature that the field is mixed only on interme
ate scales~of order of l , the size of the cells!; because the
spatial scale of the large-scale field is much larger than
scale ~by definition!, it cannot be mixed. We refer to thi
behavior as ‘‘restricted chaos,’’ in which the norm
Lyapunov exponent~defined in configuration space! van-
ishes, but the Lyapunov exponent defined for paths in
phase space is positive.
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APPENDIX

In this appendix, we discuss the forcing necessary
achieve an STF-like flow. Not surprisingly, this forcing
quite similar to the STF velocity field itself. We focus belo
on the specific can described by dynamic equation~4! in
order to illustrate the general procedure. The first st
‘‘stretch,’’ is described by

Ŝ: F15a1e2x2/R1
2
$x22xz2/R1

2 ,y22yz2/R1
2 ,22z

12~x21y2!z/R1
2%.

The corresponding velocity stretches all field lines not
from thez50 plane, and~because of the assumed dampi
exponent, or requirement that the motion is bounded! leads
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to the opposite process on the periphery, namely, comp
sion of field lines. Therefore, we have to restrict ourselves
regions not far fromz50.

Next, we make a figure ‘‘eight’’ from the loop, compres
ing it along they axis,

T̂1 : F25a2e2x2/R2
2
2~y21z2!/r 2

2

3$0,212yz2/r 2
2 ,z22zy2/r 2

2%.

The next step is to twist about thex axis, described by

T̂2 : F35a3e2x2/R3
2
$0,v~x!z2xz~y21z2!/R3

2 ,

2v~x!y1xy~y21z2!/R3
2%,v~x!5x.
t

-

-

im

-
,
d

s-
o

Now the loop should lie in theXZ plane, and we want to
fold it in the y direction. This can be accomplished by th
motion

F̂: F45a4e2y2/R4
2
2~x21z2!/r 4

2
$2x12~xy21cx3y!/R4

2 ,y

13cx222~x2y1cx4!/r 4
2,0%.

We end up with a loop in they-z plane, centered at som
positive value ofy ~andx5z50). We have to shift it back,
so that the center is aty50, and turn it about they axis.

As a final aside regarding this STF flow, we note th
there are 12 distinct parameters which define this flow:a1,
a2, a3, a4, r 2, r 4, R1 , R2 , R3, R4, c, andt. In our simula-
tions, a151.8, a253.0, a356.6, a451.0, R150.7,
R250.3, r 251.0, R350.71, R451.5, r 450.7, c51.9, and
t50.1.
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