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Large-scale simulations of the Zhang sandpile model

S. Lübeck*
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, Lotharstrabe 1, 47048 Duisburg, Germany

~Received 26 February 1997!

We consider the non-Abelian sandpile model introduced by Y.-C. Zhang@Phys. Rev. Lett.63, 470 ~1989!#
on a two-dimensional square lattice. The static and dynamical properties of the model are investigated and
compared to the Abelian sandpile model of Bak, Tang, and Wiesenfeld@Phys. Rev. Lett.59, 381~1987!; Phys.
Rev. A 38, 364 ~1988!#. A detailed analysis that takes the finite-size effects into account yields that the
exponents of the avalanche probability distribution are the same as in the Abelian model.
@S1063-651X~97!09008-9#
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I. INTRODUCTION

The idea that an externally driven physical system w
many degrees of freedom can be self-organized critical
introduced several years ago by Bak, Tang, and Wiesen
and realized theoretically using a stochastic cellular auto
ton @1#. The original Bak-Tang-Wiesenfeld~BTW! model
belongs to the Abelian sandpile models@2#. Here the se-
quence of relaxation processes is described by operators
satisfy a commutative algebra. This property allows the a
lytical calculation of some features of the system in t
steady state@2–5#. A continuous version of this model wa
introduced by Zhang to study the propagation of activa
energies@6#. In contrast to the BTW model, the Zhang mod
is a non-Abelian model, i.e., the steady-state configurati
depend on the sequence in which unstable sites are top
~see@7,8# and references therein!. Despite the different mi-
croscopic dynamics both models are expected to belon
the same universality class~see, for instance,@9#!. Up to now
nobody has proved this assumption by direct measurem
of the avalanche exponents on large lattice sizes, which
duces the finite-size effects sufficiently. We consider
Zhang model on lattice sizes that are significantly larger t
those sizes used in previous investigations@6,10–12#. The
energy distributionp(E), which characterizes the stat
properties of the model, is concentrated aroundz distinct
peaks, wherez is the number of nearest neighbors. We sh
that the peaks are located at multiples of (z11)/z2 and the
height of the peaks grow with increasing system size. N
merical simulations of the two-dimensional square and h
eycomb lattices confirm this result. We also investigated
avalanche distributions on lattice sizes up toL52048. A
finite-size analysis of the exponents of the avalanche di
butions yields values that correspond to those of the B
model.

II. MODEL

We consider a two-dimensional square lattice of line
sizeL. A continuous valueEi , j>0 representing the energy
associated with each lattice site (i , j ). The boundary sites ar
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fixed to zero@E(boundary)50# for all times. A configura-
tion $Ei , j% is stable ifEi , j,Ec for all lattice sites (i , j ). For
the sake of simplicity we choose in all simulationsEc51. A
quantum of energyd is added to a randomly chosen lattic
site (i , j ), i.e.,

Ei , j→Ei , j1d. ~1!

In the case that due to this perturbation a site exceeds
critical valueEc , an activation event will occur and the crit
cal site relaxes to zero and the energy is added to the
neighbors, i.e.,

Ei , j→0, ~2!

Ei , j ,NN→Ei , j ,NN1
Ei , j

z
, ~3!

wherez denotes the number of next neighbors. In that w
the transferred energy may activate the neighboring sites
thus an avalanche of relaxation events may take place.
ergy may leave the system only at the boundary.

In our simulations we use various values of the input e
ergies out of the intervaldP]0,Ec]. In the case ofd→0 all
lattice sites grow parallel. In order to implement this diffe
ent perturbation process one has to find the site with
largest energyEmax and then increment all sites b
Ec2Emax. In this case the Zhang model is identical to t
conservative limit of the ‘‘spring block’’ model of Chris
tensen and Olami@13#.

The concept of self-organized critical systems refers
driven systems that organize themselves into a steady s
We consider the average energy

^E~ t !&5
1

L2(i , j Ei , j~ t ! ~4!

to check if the system has reached the steady state. Sta
with an empty lattice, we consider the growth of the pile.
the beginning all sites are subcritical, i.e.,Ei , j!Ec , and no
toppling event occurs. Here no relaxation process takes p
~nonavalanche regime! and the average energy increases l
early in time~see Fig. 1!. With further perturbations the av
erage energy is still growing until one site reaches the crit
1590 © 1997 The American Physical Society
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56 1591LARGE-SCALE SIMULATIONS OF THE ZHANG . . .
valueEc . Now the behavior of the system changes and t
pling processes occur~avalanche regime!. After a certain
time the average energy reaches a constant value^E&, which
characterizes the steady state.

In Fig. 1 the average energy is plotted as a function of
rescaled timet5dL22t. One can see a data collapse of
curves corresponding to different values ofL andd. Devia-
tions from the collapse occur only at the pointt'0.63,
where the behavior changes from the nonavalanche reg
to the avalanche regime, characterized by a constant ave
energy. The avalanche regime occurs when the fluctuat
of the energies are greater than the difference of the crit
energyEc from the average energŷE(t)&, i.e., when

A^E2~ t !&2^E~ t !&2>Ec2^E~ t !&. ~5!

Decreasingd reduces the fluctuations and the critical tim
tends totc51. Larger system sizes result in a decreas
critical time.

We consider the system for lattice sizesL
P$64,128,256,512,1024,2048% ~in the case ofd50 the
maximum lattice size isL51024). Starting with an empty
lattice the system will be equilibrated afterL2d21 perturba-
tions. In order to provide a sufficient statistics all measu
ments are averaged over at least 106 nonzero avalanches.

III. ENERGY DISTRIBUTION

We measured the energy distributionp(E) in the steady
state fordP$0,12821,821,1% and various system sizesL. In
Fig. 2 the distributionp(E) is plotted for different system
sizes. The distribution is concentrated around four disti
peaks. It was assumed in previous works@6,11# that the finite
spreads of the peaks are caused by ‘‘intrinsic dynamical fl
tuations.’’ As one can see from Fig. 2, the peaks grow a
the spreads of the peaks decrease with increasing system
L.

We found that the maximumpmax(E) of each peak scale
with the system size as

pmax~E!;Ly, ~6!

with y'0.6. Since the distributionp(E) is normalized, we
assume that the peaks scale in the horizontal direction
L2y. The location of the maxima of the distributionp(E)

FIG. 1. Average energŷE(t)& as a function of the rescaled tim
t5dL22t for L<512 and various values ofd.
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depends slightly on the system sizeL. In order to produce a
scaling plot this drift has to be taken into account. In t
inset of Fig. 2 we plot L2yp(E) as a function of
Ly
„E2Emax(L)… and get a satisfying data collapse. Th

peaks of the energy distributionp(E) grow to infinity and
the spread of each peak vanishes forL→`. In the case of an
infinite system the energy distributionp(E) in the steady
state is given by

p~E!5(
i 50

3

f id~E2Ei !, ~7!

where f i denotes the statistical weight andEi denotes the
location of thed peaks.

One can calculate the discrete values of the energiesEi in
the following way@14#. Suppose that the energies are alrea
discretized with the allowed values

EP$0,E0 ,2E0 ,3E0 , . . . ,nE0 , . . . %. ~8!

Then a maximum value ofn exists with

nmaxE0<Ec,~nmax11!E0 . ~9!

The critical energyE5(nmax11)E0 relaxes andE/z should
be equal toE0, i.e.,

~nmax11!E0

z
5E0 . ~10!

In this way the number of peaks equals the lattice coordi
tion numbernmax115z. Based on his numerical investiga
tions of different lattice types, Dı´az-Guilera has already pro
posed this relation@12#.

Starting with a stable configuration, one perturbs the s
tem until one site becomes critical, i.e., one ad
DE5Ec2nmaxE0 on each lattice site~this is correct for
d→0). The energy of a given site is nowE5nE01DE. The
critical site relaxes andEc /z is added to thez next neighbors
of this site. Arguing that the new energy is the next allow
energy valueE5(n11)E0, one gets the relation

E05
Ec

nmax11

z11

z
5Ec

z11

z2
. ~11!

FIG. 2. Probability distributionp(E) for different system sizes
The inset displays the scaling plot of the third maximum ofp(E).
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1592 56S. LÜBECK
Note that the discretization of the energies is independen
the dimension of the system. The relevant term is the lat
coordination numberz. This is in contrast to the conclusion
drawn from previous investigations, which are based only
simulations of square lattices in different dimensionsd
where the coordination number is given byz52d @10#.

We compare Eq.~11! with the results obtained from com
puter simulations. Ind52 we found thatE0'0.3149 for
d512821, E0'0.3153 ford50, E0'0.3145 ford5821,
andE0'0.3140 ford51, which are in good agreement wit
Eq. ~11!. We also measured the energy distribution of a h
eycomb lattice in two dimensions (z53) and found for
d512821 the valueE0'0.443, which corresponds very we
to the exact valueE050.4̄. Pietroneroet al. have investi-
gated thed53 Zhang model on a square lattice and fou
six peaks in the energy distribution@11#. We measured the
average distance between two peaks from Fig. 2 of@11# and
determined in this wayE050.190, which agrees with th
E050.194̄ obtained from Eq.~11!.

Furthermore, we determined the statistical weightsf i of
the energy distribution@Eq. ~7!#. We divided the interval
@0,Ec# in four parts and measured in each part the a
f i(L) under the curvep(E) for various system sizesL. The
statistical weightsf i are given by an extrapolation toL→`
~see Fig. 3! and the obtained values are listed in Table
Analogous to the locations of the peaks, the statist
weights do not depend on the input energyd. On the other
hand one can see that the values differ from those of
BTW model, which are known exactly@4#.

Pietroneroet al. @15# introduced a renormalization-grou
approach for sandpile models where the density of the c
cal sites determines the fixed point of the renormalizat

FIG. 3. Statistical weightsf i as a function of the inverse syste
sizeL21 for d5821. The valuesf i(`) are obtained by an extrapo
lation to the vertical axis.

TABLE I. Statistical weights of the energy distribution.

BTW
f i d50 d512821 d5821 d51 model

f 0 0.077 0.076 0.076 0.077 0.074
f 1 0.197 0.196 0.194 0.195 0.174
f 2 0.365 0.362 0.366 0.364 0.306
f 3 0.362 0.366 0.364 0.364 0.446
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transformation. Here the density of the critical sites cor
sponds to the statistical weightf 3 in the sense that any per
turbation of a coarse-grained particle (E0) leads to a relax-
ation event. Following our results, both models a
characterized by different fixed points and thus one mi
expect that both models belong to different universa
classes. But one has to emphasize that this renormaliza
group approach and its improvement by Ivashkevich@8# ne-
glects fluctuations at the steady state. Due to this ‘‘me
field-type approximation’’@16# we think that the different
critical densities of the Zhang and the BTW model cann
lead to an answer of the universality question.

IV. AVALANCHE DISTRIBUTIONS

In this section we examine the probability distribution
an avalanche of sizes, areasd , duration t, and radiusr ,
wheres denotes the total number of toppled sites andsd is
the number of distinct sites that correspond to the area o
avalanche. The durationt of an avalanche is equal to th
number of update sweeps needed until all sites are st
again. The linear size of an avalancher is measured via the
radius of gyration of the avalanche cluster. In the critic
steady state the corresponding probability distributio
should obey a power-law behavior characterized by ex
nentsts , td , t t , andt r according to

Ps~s!;s2ts, ~12!

Pd~sd!;sd
2td, ~13!

Pt~ t !;t2t t, ~14!

Pr~r !;r 2tr. ~15!

The distributionPs(s) is plotted in Fig. 4 ford512821

and various system sizesL. All curves fit in the middle re-
gion to a straight line and the corresponding exponents
determined via regression of this region. First we investig
whether the exponents depend on the input energyd and
second we examine how the finite system size affects
results. Figure 5 shows the exponentts for L5256 and for
various values ofd. In the limit d!Ec51 the exponents are
independent of the input energy. This behavior chan

FIG. 4. Probability distributionPs(s) for different system sizes
for d512821. The curves forL,2048 are shifted in the downwar
direction.
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56 1593LARGE-SCALE SIMULATIONS OF THE ZHANG . . .
abruptly for d>3221, where the exponent displays a com
plex d dependence. In the following we focus our attenti
on the limit d!Ec .

The exponentsts corresponding to different valuesL and
d are plotted in Fig. 6. Significant differences between
values of the exponentsts(L,d50) andts(L,d512821) are
caused by the system size only and not by the input ene
Both exponents tend tots'1.28 with increasingL. In order
to determine the exact value of the exponentts we assume
that its system size dependence is given by

ts~L !5ts1
const

Lx
. ~16!

We tried several values ofx and got the best results fo
x51, i.e., the finite-size effects are of the relative magnitu
of the boundary (;L21). In the inset of Fig. 6 the exponen
ts(L) are plotted as a function of the inverse system s
The exponentts is given by an extrapolation toL→`,
which yieldsts51.28260.01.

The exponents of the avalanche probability distribution
the area and radius are characterized by the same finite
corrections. The exponents corresponding to different sys
sizes are plotted in Fig. 7. Except for the deviation
L564 in the case of the exponenttd , both exponents de

FIG. 5. Values of the exponentts as a function of the input
energyd for a fixed system sizeL. Note that the values of the
exponent are independent ofd in the limit d!Ec .

FIG. 6. System size dependence of the exponentts for d50 and
d512821. The inset displays the determination oft` according to
Eq. ~16! ~dashed line!.
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pend on the inverse system size@corresponding to Eq.~16!#.
From the extrapolation to the infinite system size we obt
the valuestd51.33860.015 andt r51.68260.018, respec-
tively. The finite-size dependence explains why lower valu
of the exponents were reported in previous works based
numerical simulations of one system size only~see, for in-
stance,@10#!.

The finite-size analysis described above fails in the c
of the duration exponentt t . Here the probability distribution
exhibits a finite curvature that makes it impossible to det
mine the exponent via regression~see Fig. 8!. Using a
momentum-space analysis of the corresponding Lange
equations, Dı´az-Guilera showed that the dynamical expone
of the BTW and Zhang’s model is given byz5(d12)/3 @9#.
This result allows one to determine the exponentt t because
the exponentsz, t t , andt r have to fulfill the scaling rela-
tion ~see, for instance,@17#!

z5
t r21

t t21
. ~17!

Using the above value oft r and z5 4
3 for the two-

dimensional model, we obtain the valuet t51.51260.014.
Recently, it has been shown numerically that the ex

nents of the BTW model are consistent with the valu

FIG. 7. Values of the exponenttd and t r as a function of the
inverse system sizeL21 for d512821. The dashed lines correspon
to the extrapolation according to Eq.~16!.

FIG. 8. Probability distributionPt(t) for a fixed system size.
The dashed line corresponds to a power law with the exponen
the BTW modelt t5

3
2 ~see@17#!.
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1594 56S. LÜBECK
t t5
3
2 , td5 4

3, andt r5
5
3 @17#. Because of the lack of a sca

ing relation, the exact value ofts is still unknown, but the
authors estimate the valuets51.29360.009. These value
are in agreement with our results, strongly suggesting
both models are characterized by the same exponents.

Note that we determined the exponents of the Zha
model for the limit d!Ec only. The measurements for
fixed system size and larger values of the input energd
yield different values of the exponents~see Fig. 5!. But this
does not mean that the exponents of the infinite system
depend ond. It is also possible that the finite-size behavi
@Eq. ~16!# changes outside the limitd!Ec . Further work has
to be done to examine how the finite system size affects
values of the avalanche exponents ford'Ec .

V. CONCLUSION

We have studied numerically the static and dynami
properties of the non-Abelian Zhang model on large sys
s.
at

g

ze

e

l
m

sizes. The steady-state energy distribution is concentr
around z distinct peaks that are located at multiples
(z11)/z2, wherez denotes the lattice coordination numbe
The statistical weights of the peaks are independent of
input energyd but differ from those of the BTW model. A
finite-size analysis of the avalanche probability distributio
in the limit d!Ec yields exponents that are in agreeme
with the values of the exponents of the BTW model. Bo
models belongs to the same universality class, i.e., both m
els displays the same large-scale behavior, characterize
the avalanche exponents.
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