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Large-scale simulations of the Zhang sandpile model

S. Libeck
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Univeréhaisburg, Lotharstr@e 1, 47048 Duisburg, Germany
(Received 26 February 1997

We consider the non-Abelian sandpile model introduced by Y.-C. Zhghgs. Rev. Lett63, 470(1989]
on a two-dimensional square lattice. The static and dynamical properties of the model are investigated and
compared to the Abelian sandpile model of Bak, Tang, and Wiesefffblgs. Rev. Lett59, 381(1987); Phys.
Rev. A 38, 364 (1988]. A detailed analysis that takes the finite-size effects into account yields that the
exponents of the avalanche probability distribution are the same as in the Abelian model.
[S1063-651%97)09008-9

PACS numbdis): 05.40:+j

l. INTRODUCTION fixed to zero[ E(boundary)=0] for all times. A configura-
tion {E; ;} is stable ifE; ;<E. for all lattice sites {,j). For

The idea that an externally driven physical system withthe sake of simplicity we choose in all simulatidis=1. A
many degrees of freedom can be self-organized critical waguantum of energy is added to a randomly chosen lattice
introduced several years ago by Bak, Tang, and Wiesenfelsite (,j), i.e.,
and realized theoretically using a stochastic cellular automa-
ton [1]. The original Bak-Tang-WiesenfelBTW) model Eij—Ei;+o. (N
belongs to the Abelian sandpile mod¢B|. Here the se- ) ) )
quence of relaxation processes is described by operators thHt the case that due to this perturbation a site exceeds the
satisfy a commutative algebra. This property allows the anacritical valueE., an activation event will occur and the criti-
lytical calculation of some features of the system in thecal site relaxes to zero and the energy is added to the next
steady stat§2—5]. A continuous version of this model was Neighbors, i.e.,
introduced by Zhang to study the propagation of activated
energieg6]. In contrast to the BTW model, the Zhang model
is a non-Abelian model, i.e., the steady-state configurations
depend on the sequence in Wr_]ich un_stable si.tes are toppled Eijn—Eijnnt i 3
(see[7,8] and references therginDespite the different mi- e i z
croscopic dynamics both models are expected to belong to .
the same universality clagsee, for instancd9]). Up to now wherez denotes the number of next ne|gh_bors. !n thgt way
nobody has proved this assumption by direct measurementge transferred energy may a_ctlvate the neighboring sites and
of the avalanche exponents on large lattice sizes, which réhus an avalanche of relaxation events may take place. En-
duces the finite-size effects sufficiently. We consider thee’dy may leave the system only at the boundary.
Zhang model on lattice sizes that are significantly larger than | our simulations we use various values of the input en-
those sizes used in previous investigatigfisl0—19. The  €rgies out of the intervade ]0,E]. In the case 0i6—0 all
energy distributionp(E), which characterizes the static lattice sites grow parallel. In order to |rr_1plement Fh|s Q|ffer—
properties of the model, is concentrated aroundistinct ~ €Nt perturbation process one ha_s to find the site with the
peaks, where is the number of nearest neighbors. We showl@rgest energyEq,, and then increment all sites by
that the peaks are located at multiples of-(1)/z2 and the Ec—Emax- In this case the Zhang model is identical to the
height of the peaks grow with increasing system size. NuSonservative limit of the “spring block” model of Chris-
merical simulations of the two-dimensional square and hontensen and Olanfil3]. _ N
eycomb lattices confirm this result. We also investigated the The concept of self-organized critical systems refers to
avalanche distributions on lattice sizes uplte-2048. A driven systems that organize themselves into a steady state.
finite-size analysis of the exponents of the avalanche distri¥Ve consider the average energy
butions yields values that correspond to those of the BTW

1
model. (E(U)ZFZJ Ei;(t) (4)

1. MODEL

Ei’j—>0, (2)

to check if the system has reached the steady state. Starting
We consider a two-dimensional square lattice of lineawith an empty lattice, we consider the growth of the pile. In
sizeL. A continuous valués; ;=0 representing the energy is the beginning all sites are subcritical, i.&;,;<E., and no
associated with each lattice sitej(). The boundary sites are toppling event occurs. Here no relaxation process takes place
(nonavalanche regimand the average energy increases lin-
early in time(see Fig. 1 With further perturbations the av-
*Electronic address: sven@thp.uni-duisburg.de erage energy is still growing until one site reaches the critical
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FIG. 1. Average energ§E(t)) as a function of the rescaled time ~ FIG. 2. Probability distributiorp(E) for different system sizes.
7= 8L 2t for L<512 and various values af. The inset displays the scaling plot of the third maximunp¢E).

valueE,. Now the behavior of the system changes and topdepends slightly on the system sizeln order to produce a
pling processes occufavalanche regime After a certain  scaling plot this drift has to be taken into account. In the
time the average energy reaches a constant &pewhich ~ inset of Fig. 2 we plotL Yp(E) as a function of
characterizes the steady state. LY(E—EnadL)) and get a satisfying data collapse. The
In Fig. 1 the average energy is plotted as a function of thgpeaks of the energy distribution(E) grow to infinity and
rescaled timer= 6L %t. One can see a data collapse of all the spread of each peak vanisheslfer . In the case of an
curves corresponding to different valueslofind . Devia-  infinite system the energy distribution(E) in the steady
tions from the collapse occur only at the point=0.63, state is given by
where the behavior changes from the nonavalanche regime
to the avalanche regime, characterized by a constant average
energy. The avalanche regime occurs when the fluctuations p(E):iZO fid(E—Ei), )
of the energies are greater than the difference of the critical

energyE. from the average enerdyg(t)), i.e., when where f; denotes the statistical weight ar] denotes the

location of thed peaks.

V(ES(1) —(E(1))*=E.— (E(1)). ®) One can calculate the discrete values of the enefgiés
Decreasing_& reduces the fluctua_ltions and t_he critical time Ijr;gcfgliozvgggv\i/:ﬁ ¥L1e4lilfjij%%oiglhhezist the energies are already
tends tor.=1. Larger system sizes result in a decreasing
critical time. _ _ Eec{0,Ey,2E0,3E,, ... NEy, ...} (8)

We consider the system for lattice sized
e{64,128,256,512,1024,2048(in the case of5=0 the Then a maximum value af exists with
maximum lattice size id. =1024). Starting with an empty
lattice the system will be equilibrated aftefs~* perturba- NmaxEo=<E.<(Npaxt 1)Eg. 9
tions. In order to provide a sufficient statistics all measure-
ments are averaged over at least h®nzero avalanches. ~ The critical energyE = (nmaxt 1)E, relaxes ande/z should
be equal tcEy, i.e.,

3

Ill. ENERGY DISTRIBUTION
(nmax+ 1)E0 _

: Eo. (10)

We measured the energy distributipQE) in the steady
state for6e{0,128 1,871,1} and various system sizés In
Fig. 2 the distributionp(E) is plotted for different system In this way the number of peaks equals the lattice coordina-
sizes. The distribution is concentrated around four distinction numbern,,,,+ 1=2z. Based on his numerical investiga-
peaks. It was assumed in previous wdiggl 1] that the finite  tions of different lattice types, Bz-Guilera has already pro-
spreads of the peaks are caused by “intrinsic dynamical flucposed this relatiofi12].

tuations.” As one can see from Fig. 2, the peaks grow and Starting with a stable configuration, one perturbs the sys-
the spreads of the peaks decrease with increasing system stegn until one site becomes critical, i.e., one adds

L. AE=E.—n,,Ey on each lattice sitdthis is correct for
We found that the maximurp,,,(E) of each peak scales §—0). The energy of a given site is nd#&~=nE,+ AE. The
with the system size as critical site relaxes anfl;/z is added to the next neighbors
of this site. Arguing that the new energy is the next allowed
Pmax E)~ L, ®  energy valueE=(n+1)E,, one gets the relation

with y=0.6. Since the distributiop(E) is normalized, we
assume that the peaks scale in the horizontal direction as E,
L™Y. The location of the maxima of the distributiqe(E)

E. z+1 z+1
Npaxtl z ¢ 2

(11)



1592 S. LUBECK 56

0.40 T T T 10°

L=64, 128, 256, 512, 1024, 2048

® f,(L), fy(=)=0.0760
0-30 | B (L), f,()=0.1940 1
@ fo(L), fy(0)=0.3656
Af(L), f3(~)=0.3644

“020 ) m g =

il RIS [ ~

A,

10™
0.10 e @-—-
L--@--®-— -~~~ ®- - .
5=8"
0.00 . . . 10 . . ‘ X
0.000 0.005 01;911 0 0.015 0.020 10° 107 10° 10° 10° 10"
hY

FIG. 3. Statistical weight$; as a function of the inverse system  F|G. 4. Probability distributiorP4(s) for different system sizes

sizeL~* for 5=87*. The valued (=) are obtained by an extrapo- for §=128"L. The curves foL <2048 are shifted in the downward
lation to the vertical axis. direction.

Note that the discretization of the energies is independent dfansformation. Here the density of the critical sites corre-
the dimension of the system. The relevant term is the latticeponds to the statistical weighj in the sense that any per-
coordination numbez. This is in contrast to the conclusions turbation of a coarse-grained particlEy) leads to a relax-
drawn from previous investigations, which are based only oration event. Following our results, both models are
simulations of square lattices in different dimensiotis characterized by different fixed points and thus one might
where the coordination number is given by 2d [10]. expect that both models belong to different universality
We compare Eq(11) with the results obtained from com- classes. But one has to emphasize that this renormalization-
puter simulations. Ind=2 we found thatE,~0.3149 for  group approach and its improvement by Ivashkey&hne-
5=1281, E,~0.3153 for5=0, Ey~0.3145 for6=8"1, glects fluctuations at the steady state. Due to this “mean-
andE,~0.3140 fors=1, which are in good agreement with field-type approximation”[16] we think that the different
Eq.(11). We also measured the energy distribution of a honcritical densities of the Zhang and the BTW model cannot
eycomb lattice in two dimensionsz€£3) and found for lead to an answer of the universality question.
5=128"1 the valueE,~0.443, which corresponds very well
to the exact valu€,=0.4. Pietroneroet al. have investi- IV. AVALANCHE DISTRIBUTIONS
gated thed=3 Zhang model on a square lattice and found
six peaks in the energy distributidd1]. We measured the

average distance between two peaks from Fig. Pléfand  \heres denotes the total number of toppled sites agds

determined in this wayg,=0.190, which agrees with the yhe nymper of distinct sites that correspond to the area of an
E(=0.194 obtained from Eq(11). avalanche. The duration of an avalanche is equal to the
Furthermore, we determined the statistical weight®f  number of update sweeps needed until all sites are stable
the energy distributiorfEq. (7)]. We divided the interval again. The linear size of an avalanahés measured via the
[0E.] in four parts and measured in each part the areaadius of gyration of the avalanche cluster. In the critical
fi(L) under the curvep(E) for various system sizés. The  steady state the corresponding probability distributions

statistical weightd; are given by an extrapolation to—>  should obey a power-law behavior characterized by expo-
(see Fig. 3 and the obtained values are listed in Table I.nents7g, 74, 7, and, according to
Analogous to the locations of the peaks, the statistical

In this section we examine the probability distribution of
an avalanche of size, areasy, durationt, and radiusr,

weights do not depend on the input ene@yOn the other Ps(s)~s™ s, 12

hand one can see that the values differ from those of the

BTW model, which are known exacty]. Pa(sg)~sq ™, (13
Pietroneroet al. [15] introduced a renormalization-group

approach for sandpile models where the density of the criti- Pu(t)~t™ ™, (14

cal sites determines the fixed point of the renormalization
P.(r)~r—T, (15

TABLE I. Statistical weights of the energy distribution. The distributionP(s) is plotted in Fig. 4 foro= 1281
BTW and various system sizés All curves fit in the middle re-

gion to a straight line and the corresponding exponents are

— — 1 —_q-1 —
fi o=0 0-128 o=8 o=1 model  Jetermined via regression of this region. First we investigate
fo 0.077 0.076 0.076 0.077 0.074 whether the exponents depend on the input enegtgnd
f, 0.197 0.196 0.194 0.195 0.174 second we examine how the finite system size affects the
f, 0.365 0.362 0.366 0.364 0.306 results. Figure 5 shows the exponegtfor L =256 and for
fa 0.362 0.366 0.364 0.364 0.446 Vvarious values ob. In the limit 5<E.=1 the exponents are

independent of the input energy. This behavior changes
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FIG. 5. Values of the exponent, as a function of the input FIG. 7. Values of the exponent; and 7, as a function of the
energy 6 for a fixed system sizé. Note that the values of the inverse system size™* for =128 *. The dashed lines correspond
exponent are independent &fin the limit 5<E.. to the extrapolation according to E(].6).

abruptly for =321, where the exponent displays a com- pend on the inverse system s{morresponding to Eq16)].

plex 6 dependence. In the following we focus our attentionfFrom the extrapolation to the infinite system size we obtain

on the limit 6<E. the valuesryg=1.338+0.015 andr,=1.682+0.018, respec-
The exponents; corresponding to different valuésand tively. The finite-size dependence explains why lower values

d are plotted in Fig. 6. Significant differences between theof the exponents were reported in previous works based on

values of the exponentg(L,5=0) andr{(L,6=128 ) are  numerical simulations of one system size ofége, for in-

caused by the system size only and not by the input energgtance[10])).

Both exponents tend te;~1.28 with increasingd.. In order The finite-size analysis described above fails in the case
to determine the exact value of the exponentve assume  of the duration exponent . Here the probability distribution

that its system size dependence is given by exhibits a finite curvature that makes it impossible to deter-
mine the exponent via regressiqsee Fig. 8 Using a

const momentum-space analysis of the corresponding Langevin

To(L) =75t NER (16) equations, Daz-Guilera showed that the dynamical exponent

of the BTW and Zhang’s model is given lzy= (d+2)/3[9].
We tried several values of and got the best results for This result allows one to determine the expongnbecause

x=1, i.e., the finite-size effects are of the relative magnituddn® €xponentg, 7, and 7, have to fulfill the scaling rela-
of the boundary ¢ L ~1). In the inset of Fig. 6 the exponents 10N (see, for instance,17])
7s(L) are plotted as a function of the inverse system size.
The exponentrg is given by an extrapolation td— o, 7= TF_l_
which yields 7s=1.282+0.01. 1

The exponents of the avalanche probability distribution of
the area and radius are characterized by the same finite-sikésing the above value ofr, and z=3 for the two-
corrections. The exponents corresponding to different systemiimensional model, we obtain the valag=1.512+0.014.
sizes are plotted in Fig. 7. Except for the deviation for Recently, it has been shown numerically that the expo-
L=64 in the case of the exponenj, both exponents de- nents of the BTW model are consistent with the values

(17)
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FIG. 6. System size dependence of the exporgfdr §=0 and FIG. 8. Probability distributionP,(t) for a fixed system size.

5=1281. The inset displays the determinationof according to  The dashed line corresponds to a power law with the exponent of
Eq. (16) (dashed ling the BTW modelr,= 2 (see[17)).
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r4=4%, andr,= 3 [17]. Because of the lack of a scal- Sizes. The steady-state energy distribution is concentrated
ing relation, the exact value of; is still unknown, but the around z distinct peaks that are located at multiples of

authors estimate the valug=1.293+0.009. These values (z+1)/22, wherez denotes the lattice coordination number.

are in agreement with our results, strongly suggesting tha}—he statistical welghts of the peaks are independent of the

both models are characterized by the same exponents.  InPut energys but differ from those of the BTW model. A
Note that we determined the exponents of the Zhanémlte-sae analysis of the avalanche probability distributions

model for the limit 5<E, only. The measurements for a N the limit 5<E. yields exponents that are in agreement

fixed system size and larger values of the input enefgy with the values of the exponerjts of the BTW .model. Both

yield different values of the exponen(see Fig. 5. But this mode_ls belongs to the same universality qlass, ie., both mod-

does not mean that the exponents of the infinite system siZglS displays the same large-scale behavior, characterized by

depend on. It is also possible that the finite-size behavior the avalanche exponents.

[Eq. (16)] changes outside the lim&<E.. Further work has

to be done to examine how the finite system size affects the ACKNOWLEDGMENTS

values of the avalanche exponents &t E;.

_3
Tt= 2

| would like to thank S. S. Manna for having interested
me in the Zhang model and for helpful discussions and K. D.
Usadel for a critical reading of the manuscript. This work

We have studied numerically the static and dynamicaWwas supported by the Deutsche Forschungsgemeinschaft
properties of the non-Abelian Zhang model on large systenthrough Sonderforschungsbereich 166, Germany.

V. CONCLUSION
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