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Elimination of chaotic behavior in the harmonically driven van der Pol oscillator by means of a compara-
tively weak additional forcing was studied through geometrical resonance analysis. We considered commen-
surate and incommensurate cases together with the effect of the phase difference between the forcings. The
analysis provided parameter-space regions for regularization that were corroborated by numerical experiments,
including instances with clearly large chaos-inducing forcing. A reinterpretation of a classical result, due to
Cartwright and LittlewoodJ. London Math. Soc20, 180(1945], was also derived by means of geometrical
resonance analysifS1063-651X97)06008-X|

PACS numbdss): 05.45+b

[. INTRODUCTION feedback control of chadsee, e.g., Ref$16-18) in terms
of an almost-adiabatic invariafthe action variable associ-
The periodically driven van der Pol oscillator is one of theated with each GR solution. Also, the stability of the re-
paradigms of chaos theoff—12|. In particular, it serves as sponses of an overdamped bistable system under a periodic
a simple model of self-excited oscillations in such diverseforcing of rectangular shape was explairfédd] in terms of
fields as physics, biology, and electronics, to quote just &R.
few. In this work we consider the problem of chaos suppres- In this present paper we consider the forcigcost)
sion for the van der Pol oscillator subjected to two harmonicas a chaos-inducing modulation, for given parameters and
forcing terms initial conditions, and the second modulatiar. cos{)t
. . +®), 0<a<l, as a chaos-suppressing excitation added
X+d(x* = 1)x+x=Fcogwt) + aFCogQt+ @), (1) 5 posteriori We then look for the parameter-space regions
whered,F.>0, 0<a<1, and time is regarded as dimension- {a.{2,®} in which the action variable is an almost-adiabatic
less, the framework of the study being the recently proposetfivariant, i.e., the regions in which one expects regularized

geometrical resonand€&R) analysis[13—15. dynamics. Notwithstanding the adiabatic character of the ac-
In the simple case of a one-dimensional, nonautonomougion conservation, we shall consider a situation in which the
dissipative, nonlinear oscillator chaos-inducing forcing amplitude, and the dissipation co-
. . efficientd are not necessarily small.
X=y, y=9(x)—d(x,y)+p(x,y)F(1), ) The organization of the paper is as follows. In Sec. Il we

where g(x)=—aV/dx, V(x) is an arbitrary time- first obtain the general GR temporal excitatibpg(t) cor-
independent potentiat-d(x,y) is the dissipation term, and "€SPonding to the autonomous counterpart of sysfém
p(x,y)F(t) is a generic temporal excitation, GR means thatThen we present the_almost-a_dlabatlc invariance approach
the period, amplitude, amgtave formof F(t) must be so as when the two harmonic excitations repIaF:gR(F). In Sec. .
to preserve am priori selected periodic response from the Il we discuss the problem of chaos suppression under adia-

underlying conservative system. Note, however, that the ng2alic conservation of the gpt(ijon. Co?merjsr,]urﬂte a}?d incforrr:—
tion of GR is not limited to periodic attractors, but is defined mensurate cases are studied together with the eflect of the

for any solution from the underlying integrable systeof. phase difference between the two excitations. Section 1V il-

Ref.[14]). Therefore, ifxgr(t) is a GR solution of Eq(2), it lustrates the scope and accuracy of the theoretical predictions
satiéfies ' »GR ' with some numerical examples for the commensurate case.

Finally, Sec. V gives a summary of the results.

—d(Xgr,Yer) T P(Xgr:Yer) Fer(t) =0, (©))
_ . . . Il. GEOMETRICAL RESONANCE ANALYSIS
which is equivalent to the local energy conservation require-
ment3yZq(t) + V(Xgr(t))= const. In Ref[13] it was conjec- To obtain the GR temporal modulatidtyr(t) associated

tured that GR provides the explanation of the so-called nonwith the autonomous part of Eql), let us note that the
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FIG. 1. Phase-space portraits for the parameter§, F.=5, ©=2.463, andb=2.7625[cf. Fig. 3b)]: (8) =0, (b) a=0.04,(c) «=0.07,
and(d) a=0.08. The quantity is in arbitrary current units andis a dimensionless variable, in all the pertinent figures.

corresponding unperturbed conservative system is just th® —dx in such a limit. Notice that the above expression for

simple harmonic oscillator:

Therefore, from Eq(3) one easily obtains

A%\ dA®
FGR(t)sz< 1- I)sm(ter)’)— T sin(3t+3d'),
5

which depends on the initial conditions throughand ®’'.

Fgr(t) is consistent with the well-known resuilt9] that the
autonomous van der Pol oscillator has a stable limit cycle,
for small d, closeto the circlex?(t)+x2(t)=4, i.e.,A=2
[cf. Egs.(4) and(5)].

Let us consider now the systefi), assuming that the
dynamics is chaotic for=0 (for given values ofl, F., o,
and a certain initial condition Under such conditions we
wish to find parameter valuegy,Q),®} that regularize the
entire systen{l). It is clear that no trida,{),®} provides an
exact GR forcingcf. Eq. (5)]. However, when dissipation
and external modulation are represented by small amplitude
terms, it is natural to suppose that the suitable values

For initial conditions on a given GR solution, i.e., the corre-{a,Q,®} for regularization will be those providing the best
sponding actionl = 7A? remaining constant, one gets just approximation(in the action-conservation senge the cor-

one Fggr(t), as expected. FOA—O0, Fgr(t)—dA sin(

responding GR solution, i.e., those values derived from the

+®") because of the nonlinear damping term approximate#ocal almost-adiabatic conservation of the acti@B]
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FIG. 2. Power spectra corresponding to the homonymous cases in kig=2.463(see the tejt
< d E )> B fgﬂ-( dE)dt lll. THE PROBLEM OF CHAOS SUPPRESSION
dt | UTgr TGRE27T_ o \dt In this section we first deduce the suppressory values
{a,Q2,®} for the commensurate case
2m .
zf Xer(D{XGrD[1—X&x(1)] q
0 pe=0=L @)
+F.coq wt) + aF coq Ot
_ i.e., we set Zr/Q=To=Tgr=27 and assume that there
T®)}dt=0, ® exist some integersq,p verifying To=(p/q)T, (T,
where xgr(t),Xer(t) are given by Eq.(4). Condition (6) =27/ ®). Then, substituting Eqg4) and (7) into Eq. (6),

holds for any relationship betweemand (), i.e., it is valid fthe resulting integrals can be easily evaluatgd from standard
for both commensurate and incommensurate cases. It {§tegral tableg20]. The final result can be written

worth noting that conditiofi6) provides a chaos threshold. In

other words, it represents, in generalpecessary condition o~ 1 [d_A (
for the suppression of chaos. This means, among other sin®’'—®) | F,
things, that one can determine tfeepriori effective lowest

values ofa for the elimination of chaos from that condition. where

A% 1
1_Z)+; R,(p!ql(b,)]v (8)
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0.50 the main driving excitation, the optimal values @&f must
045 - (a) verify sin(@’'—®)==1 [cf. Eq. (8)], i.e.,
0.40 — O=0'T7/2, 12
035 respectively. We have then instead of E(—(11)
0.30 —

+dA 1 A, 2 R P 13
0.20 —
0.15 —| R(p,q,®)=—m cosD, (14

OOk k kk QOO ® k kk kxk 000 @

0.05
2sin(wp/q) | [mp)
W T T T T 1 RP.4P)= T (prg)? { '”( q )S'”q’
0.00 0.80 1.60 240 3.20 400 4.80 560 6.40 D -
(I) + = cos{ —) cosb] (16)
q q
0.40 for p=q, p=nqg (n=2,3,4...), andp#nq (n=1,2,3...),
036 o (b) respectively.
We now make the following remarks. First, the phase
0.32 — differenced between the two harmonic forces plays a fun-
0.28 —| damental role in regularizing the dynamics as shown theo-
retically in Ref.[18(b)-18(d)]. Observe, however, that for
024 — the subharmonic casp=nq (n=2,3,4...) the predicted
|OL| 0.20 — amplitude « does not depend o’ [i.e., or on®d, from
condition(12)]. This is a consequence of the GR solutidh
0.16 — being formed by only one harmonfgust the main oneT
0.12 — =2qr; then the corresponding integral in E) cancels
out]. Second, after substituting from Eqgs.(13)—(16) into
0.08 —p ** *oge ees o F[cos@t) +a cosQt+®d)] and taking into consideration
0.04 — Eq. (12), one straightforwardly obtains for the whole forcing
he ! | | | | ! ! dAl 1—A2 int+®’)+F t+®")cosh’, (1
220 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 7 /s )+ Fecod Jcosb’,  (17)
¢ - {5
_ . o dAl 1— —sin(t+®')+F.cog —|, (18
FIG. 3. (a) Theoretical boundarysolid line) for stabilization in 4 q
the |af-® plane ford=5, F.=5, p=2463,q= 1000, and the same
initial conditions as in Fig. 1. AsteriskKghaotic motion and circles A? . pt
(periodic motions represent numerical results far=0.08. (b) En- dA( 1- Z) sin(t+®")+ FcCOS{ E)
largement of the region of thigy-® plane showing the analytical
tongue with a minimum a®=2.7625. (2Fc>sin( wp/q) (p {wp) )
——F—{|=|cog —|sind’
. m J1=(p/a)” [\q q
R'(p,q,®')=—m sind’, 9
o
R'(p,q,®')=0, (10 —sin(Fp) cosb’]sin(HdD’) (19

, for p=q, p=nq (n=2,3,4...), andp#nq (n=1,2,3...),
T1-(plq)? sIn cosp respectively. The first of the two terms formifgg(t) thus
appears in all the approximations to the GR forcing. More-

p mp\ over, for p=3q and the initial conditionx(0)=0, x(0)=

~q %% g /s (1) _(4F,/d)Y3 obtained forA=(4F./d)3, &' =m/2 [cf. Eq.

(4)], the bichromatic modulatiofiL8) exactlycoincides with

for p=q, p=nq (n=2,3,4...), andp#nq (n=1,23...), Fer(l), i.e. for

respectively. As in the problem of chaos suppression one is o

interested first in the situation where the amplitude of the a:+41/3[(5) _2—2/3} d=0 (20)

inhibitory excitation is much smaller than the amplitude of - d ' Y

R (p.q0")= —2sin(7p/q) [ . (wp
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FIG. 4. Phase-space portraits for the parameters, F.=5, ¥=2.463, andx=0.08:(a) ®=2.4, (b) $=2.53,(c) ®=2.63,(d) »=2.71,

and(e) ®=2.7625[see Fig. 1d)].

respectivelyfcf. Egs.(12), (13), and(15)]. For the particular
caseF.=2d, Eq.(20) yields «=0 and alscA=2; in other
words, the monochromaticallyw=3) forced van der Pol os-
cillator has, for the initial conditiox(0)=0, x(0)=—2, an
exact limit cycle given byx2z+x4g=4. Thus this agrees
with the aforementionedcf. Sec. I) result concerning the
autonomous van der Pol oscillator, namely, thatsioiall d it
has a stable limit cycleloseto the solutionx®+ x?=4. In-
deed, because of the relationsiiip=2d, F.—0 is equiva-

lent to d— 0. Another point concerning this particular case
refers to a classical result due to Cartwright and Littlewood

(CL) [2,21]: if F./d>2w/3 andd>dy(F,®), Eq.(1) with
a=0 has a stable periodic solution of period/@ to which
all trajectories converge as— -+« (a globally stable limit

cycle). Note that the result is stated without restrictions as to S(w,®)=
how larged can be, i.e., it is only required to surpass a lower

result of CL requires also, for the specific case=3, an
upper threshold fod, derived from a GR analysis of the
problem. Similarly, the casé>dgg, d large enough, corre-
sponds to the situation for which CL noted the possibility of
“strange” behavior{2,3,21].

Let us now consider the incommensurate case, i.e., where
 is now an irrational number. Similarly to the commensu-
rate case, from Eqg6) and (12) one straightforwardly ob-
tains

dA [ A% 1
a=rg-|1m7 )t 5 S, (21)
2sinrw) . _
=7 (Si(mw)sind+ o cogmw)cosh}.

(22

threshold. However, in the above discussion for the case
w=3, we deducedd=dgg=F.2 so that the condition We remark that taking into account the well-known theorem
F./d>2w/3 is now writtendgg>d. In other words, the that for any irrational numbe® there exist arbitrarily accu-
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FIG. 5. Power spectra associated with the homonymous cases in Fig. 4.

rate rational approximationg/q such thatjw—p/q|<1/q?>  for which the subsequent motigffior «=0) is chaotic, we
[22], one finds, for a given irrational frequeney, that the  then let the inhibitory forcing act on the system and study the
functions S(®) and R(®) will be, in general, very close resulting orbits as the forcing parameter,® are varied(()
wheneveR(®) corresponds to the best rational approxima-=1). Generally, the computer simulations of the driven van
tion p/q to w [cf. Eq. (16)]. Consequently, the associated der Pol oscillator(1) showed overall good agreement with
values will also be very similar. The discussion of this resultthe theoretical predictions, even when the damping and
in the context of the routes to chaos in quasiperiodicallychaos-inducing amplitudes were clearly not small. It is worth

forced system$23] will be considered elsewhere. mentioning that one cannot expect exact quantitative agree-
ment between the two types of results due to the adiabatic
IV. NUMERICAL RESULTS character of the action conservatisee Ref[13] for more

detail9, which is the physical foundation of the regulariza-

We performed some numerical experiments on the drivetion. Figure 1 shows an illustrative sequence of regulariza-
van der Pol oscillatofl). A systematic numerical survey of tion from an initial chaotic state a&=0 [Fig. 1(a@)]. The
its parameter space was beyond the scope of the presePbincarecross section of this chaotic attractor consists of
work. Therefore, we chose arbitrary sets of parameters iffour very thin islands, as was previously reported in R@f.
order to see the scope and accuracy of the predictions frolts « increases the chaotic response steadily weakeigs.
the almost-adiabatic invariant approach. In particular, with al(b) and Xc)] and a symmetry restoring occurs prior to com-
fixed set of parametersl(F.,w) and given initial conditions plete regularizatiofiFig. 1(d)]. Thus, while the initial chaotic
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FIG. 6. Phase-space portraits for the same parameters as in F&y.#=3.84,(b) ®=4.47,(c) $=5.1, and(d) $=5.73.

orbit arose for a fairljfarge amplitude of the chaos-inducing cal curve in thda|-® plane. In particularall the points(®,«
forcing (F.=5), it was, however, eliminated by using a =0.08) inside the theoretical tongues represent periodic mo-
relatively small amplitude @F.=0.4) of the chaos- tions[see Fig. 8)]. The numerically obtained ranges for
suppressing forcing. The power spectra corresponding to theegularization are wider than those expected from the adia-
x series of the respective cases of Fig. 1 are presented in Figatic invariance of the action due to the perturbative nature
2. We have plotted log|S(w/ w¢)| versusw/ ws with w; de-  of the theoretical approadef. the discussion at the end of
noting the chaos-inducing forcing frequen@imensionless Sec. I). Figure 4 shows a regularization sequence that
variable. Notice the gradual rise of the peak associated withcrosses the theoretical curve of Fig. 3, #+0.08 and in-

the frequencyw= w¢/10 asa« increases. Figure 3 shows a creasing values ob corresponding to four of the cases de-
plot of |a| versus® [cf. Egs. (13) and (16)] for the case picted by asterisks or circles in Fig. 3. The respective power
(d,F.,p,q)=(5,5,2463,1000), i.ep=2.463, and the same spectra are shown in Fig. 5. Notice thlew character of the
initial conditions for which the motion is chaotic at=0 [cf. regularization seen in the gradual decrease of the almost con-
Fig. 1(a)]. Asterisks and circles represent numerical resultginuous background of the spectrum. Figure 6 shows another
(chaotic behavior and periodic motion, respectiydty the  similar sequence for several values ®fand the same re-
value =0.08 and the same remaining parameters, includingnaining parameters as in Fig. 4. In this cadeyaries in an

the initial conditions. Regularization is only possible within a unfavorable range for stabilizatideee Fig. 8)]. In fact, for

few ranges of phase differences that correspond to thos@=4.47[Fig. 6(b)], the most unfavorable value for regular-
points (®,a=0.09 that aresufficientlyclose to the theoreti- ization [see Fig. 8)], one sees that the system response is
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FIG. 7. Power spectra associated with the homonymous cases in Fig. 6.

the most clearly chaotic, as is also evident from the correaction associated with each geometrical resonance solution.
sponding power spectruffrig. 7(b)]. A symmetry breaking Computer simulations of the bichromatically driven system
followed by a symmetry restoring occurs for successive peshowed overall good agreement with the theoretical predic-
riodic responses as the poii,a=0.08 approaches the the- tions, even when the dissipation term and the chaos-inducing
oretical curve in thga|-® plane. Therefore, it seems that a forcing had large amplitudes. A reinterpretation of a well-
symmetry restorings a hallmark of the stabilization of the known result on the monochromatically driven van der Pol
dynamics under the adiabatic conservation of the action, asscillator, due to CL, was also derived by using geometrical
expected from the definition of GR. resonance analysis.
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