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Geometrical resonance analysis of chaos suppression
in the bichromatically driven van der Pol oscillator
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Elimination of chaotic behavior in the harmonically driven van der Pol oscillator by means of a compara-
tively weak additional forcing was studied through geometrical resonance analysis. We considered commen-
surate and incommensurate cases together with the effect of the phase difference between the forcings. The
analysis provided parameter-space regions for regularization that were corroborated by numerical experiments,
including instances with clearly large chaos-inducing forcing. A reinterpretation of a classical result, due to
Cartwright and Littlewood@J. London Math. Soc.20, 180 ~1945!#, was also derived by means of geometrical
resonance analysis.@S1063-651X~97!06008-X#
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I. INTRODUCTION

The periodically driven van der Pol oscillator is one of t
paradigms of chaos theory@1–12#. In particular, it serves as
a simple model of self-excited oscillations in such dive
fields as physics, biology, and electronics, to quote jus
few. In this work we consider the problem of chaos suppr
sion for the van der Pol oscillator subjected to two harmo
forcing terms

ẍ1d~x221!ẋ1x5Fccos~vt !1aFccos~Vt1F!, ~1!

whered,Fc.0, 0,a!1, and time is regarded as dimensio
less, the framework of the study being the recently propo
geometrical resonance~GR! analysis@13–15#.

In the simple case of a one-dimensional, nonautonom
dissipative, nonlinear oscillator

ẋ5y, ẏ5g~x!2d~x,y!1p~x,y!F~ t !, ~2!

where g(x)[2]V/]x, V(x) is an arbitrary time-
independent potential,2d(x,y) is the dissipation term, and
p(x,y)F(t) is a generic temporal excitation, GR means th
the period, amplitude, andwave formof F(t) must be so as
to preserve ana priori selected periodic response from th
underlying conservative system. Note, however, that the
tion of GR is not limited to periodic attractors, but is defin
for any solution from the underlying integrable system~cf.
Ref. @14#!. Therefore, ifxGR(t) is a GR solution of Eq.~2!, it
satisfies

2d~xGR,yGR!1p~xGR,yGR!FGR~ t !50, ~3!

which is equivalent to the local energy conservation requ
ment 1

2 yGR
2 (t)1V„xGR(t)…5const. In Ref.@13# it was conjec-

tured that GR provides the explanation of the so-called n
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feedback control of chaos~see, e.g., Refs.@16–18#! in terms
of an almost-adiabatic invariant~the action variable! associ-
ated with each GR solution. Also, the stability of the r
sponses of an overdamped bistable system under a per
forcing of rectangular shape was explained@14# in terms of
GR.

In this present paper we consider the forcingFc cos(vt)
as a chaos-inducing modulation, for given parameters
initial conditions, and the second modulationaFc cos(Vt
1F), 0,a!1, as a chaos-suppressing excitation add
a posteriori. We then look for the parameter-space regio
$a,V,F% in which the action variable is an almost-adiaba
invariant, i.e., the regions in which one expects regulariz
dynamics. Notwithstanding the adiabatic character of the
tion conservation, we shall consider a situation in which
chaos-inducing forcing amplitudeFc and the dissipation co
efficient d are not necessarily small.

The organization of the paper is as follows. In Sec. II w
first obtain the general GR temporal excitationFGR(t) cor-
responding to the autonomous counterpart of system~1!.
Then we present the almost-adiabatic invariance appro
when the two harmonic excitations replaceFGR(t). In Sec.
III we discuss the problem of chaos suppression under a
batic conservation of the action. Commensurate and inc
mensurate cases are studied together with the effect of
phase difference between the two excitations. Section IV
lustrates the scope and accuracy of the theoretical predict
with some numerical examples for the commensurate c
Finally, Sec. V gives a summary of the results.

II. GEOMETRICAL RESONANCE ANALYSIS

To obtain the GR temporal modulationFGR(t) associated
with the autonomous part of Eq.~1!, let us note that the
1541 © 1997 The American Physical Society
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FIG. 1. Phase-space portraits for the parametersd55, Fc55, v52.463, andF52.7625@cf. Fig. 3~b!#: ~a! a50, ~b! a50.04,~c! a50.07,
and ~d! a50.08. The quantityx is in arbitrary current units andt is a dimensionless variable, in all the pertinent figures.
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corresponding unperturbed conservative system is just
simple harmonic oscillator:

xGR~ t !5A cos~ t1F8!, ẋGR~ t !52A sin~ t1F8!. ~4!

Therefore, from Eq.~3! one easily obtains

FGR~ t !5dAS 12
A2

4 D sin~ t1F8!2
dA3

4
sin~3t13F8!,

~5!

which depends on the initial conditions throughA and F8.
For initial conditions on a given GR solution, i.e., the corr
sponding actionI 5pA2 remaining constant, one gets ju
one FGR(t), as expected. ForA→0, FGR(t)→dA sin(t
1F8) because of the nonlinear damping term approxima
he

-

s

to 2dẋ in such a limit. Notice that the above expression f
FGR(t) is consistent with the well-known result@19# that the
autonomous van der Pol oscillator has a stable limit cyc
for small d, close to the circlex2(t)1 ẋ2(t)54, i.e., A52
@cf. Eqs.~4! and ~5!#.

Let us consider now the system~1!, assuming that the
dynamics is chaotic fora50 ~for given values ofd, Fc , v,
and a certain initial condition!. Under such conditions we
wish to find parameter values$a,V,F% that regularize the
entire system~1!. It is clear that no trio$a,V,F% provides an
exact GR forcing@cf. Eq. ~5!#. However, when dissipation
and external modulation are represented by small amplit
terms, it is natural to suppose that the suitable val
$a,V,F% for regularization will be those providing the be
approximation~in the action-conservation sense! to the cor-
responding GR solution, i.e., those values derived from
local almost-adiabatic conservation of the action@13#
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FIG. 2. Power spectra corresponding to the homonymous cases in Fig. 1;v f52.463~see the text!.
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2p

ẋGR~ t !$ẋGR~ t !@12xGR
2 ~ t !#

1Fccos~vt !1aFccos~Vt

1F!%dt50, ~6!

where xGR(t),ẋGR(t) are given by Eq.~4!. Condition ~6!
holds for any relationship betweenv andV, i.e., it is valid
for both commensurate and incommensurate cases.
worth noting that condition~6! provides a chaos threshold. I
other words, it represents, in general, anecessary condition
for the suppression of chaos. This means, among o
things, that one can determine the~a priori effective! lowest
values ofa for the elimination of chaos from that condition
is

er

III. THE PROBLEM OF CHAOS SUPPRESSION

In this section we first deduce the suppressory val
$a,V,F% for the commensurate case

q

p
v5V[1, ~7!

i.e., we set 2p/V[TV5TGR[2p and assume that ther
exist some integersq,p verifying TV5(p/q)Tv (Tv

[2p/v). Then, substituting Eqs.~4! and ~7! into Eq. ~6!,
the resulting integrals can be easily evaluated from stand
integral tables@20#. The final result can be written

a.
1

sin~F82F! H dA

Fc
S 12

A2

4 D1
1

p
R8~p,q,F8!J , ~8!

where
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R8~p,q,F8!52p sinF8, ~9!

R8~p,q,F8!50, ~10!

R8~p,q,F8!5
22 sin~pp/q!

12~p/q!2 H sinS pp

q D cosF8

2
p

q
cosS pp

q D sinF8J ~11!

for p5q, p5nq (n52,3,4,...), andpÞnq (n51,2,3,...),
respectively. As in the problem of chaos suppression on
interested first in the situation where the amplitude of
inhibitory excitation is much smaller than the amplitude

FIG. 3. ~a! Theoretical boundary~solid line! for stabilization in
the uau-F plane ford55, Fc55, p52463,q51000, and the same
initial conditions as in Fig. 1. Asterisks~chaotic motion! and circles
~periodic motions! represent numerical results fora50.08. ~b! En-
largement of the region of theuau-F plane showing the analytica
tongue with a minimum atF52.7625.
is
e
f

the main driving excitation, the optimal values ofF must
verify sin(F82F)561 @cf. Eq. ~8!#, i.e.,

F5F87p/2, ~12!

respectively. We have then instead of Eqs.~8!–~11!

a.6
dA

Fc
S 12

A2

4 D1
1

p
R~p,q,F!, ~13!

R~p,q,F!52p cosF, ~14!

R~p,q,F!50, ~15!

R~p,q,F!5
2 sin~pp/q!

12~p/q!2 H sinS pp

q D sinF

1
p

q
cosS pp

q D cosFJ ~16!

for p5q, p5nq (n52,3,4,...), andpÞnq (n51,2,3,...),
respectively.

We now make the following remarks. First, the pha
differenceF between the two harmonic forces plays a fu
damental role in regularizing the dynamics as shown th
retically in Ref. @18~b!–18~d!#. Observe, however, that fo
the subharmonic casep5nq (n52,3,4,...) the predicted
amplitude a does not depend onF8 @i.e., or on F, from
condition~12!#. This is a consequence of the GR solution~4!
being formed by only one harmonic@just the main one:T
52p; then the corresponding integral in Eq.~6! cancels
out#. Second, after substitutinga from Eqs.~13!–~16! into
Fc@cos(vt) 1a cos(Vt1F)] and taking into consideration
Eq. ~12!, one straightforwardly obtains for the whole forcin

dAS 12
A2

4 D sin~ t1F8!1Fccos~ t1F8!cosF8, ~17!

dAS 12
A2

4 D sin~ t1F8!1FccosS pt

q D , ~18!

dAS 12
A2

4 D sin~ t1F8!1FccosS pt

q D
1S 2Fc

p D sin~pp/q!

12~p/q!2 H S p

qD cosS pp

q D sinF8

2sinS pp

q D cosF8J sin~ t1F8! ~19!

for p5q, p5nq (n52,3,4,...), andpÞnq (n51,2,3,...),
respectively. The first of the two terms formingFGR(t) thus
appears in all the approximations to the GR forcing. Mo
over, for p53q and the initial conditionx(0)50, ẋ(0)5
2(4Fc /d)1/3, obtained forA5(4Fc /d)1/3, F85p/2 @cf. Eq.
~4!#, the bichromatic modulation~18! exactlycoincides with
FGR(t), i.e., for

a.641/3F S Fc

d D 22/3

2222/3G , F50,p, ~20!
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FIG. 4. Phase-space portraits for the parametersd55, Fc55, v52.463, anda50.08:~a! F52.4, ~b! F52.53,~c! F52.63,~d! F52.71,
and ~e! F52.7625@see Fig. 1~d!#.
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respectively@cf. Eqs.~12!, ~13!, and~15!#. For the particular
caseFc52d, Eq. ~20! yields a50 and alsoA52; in other
words, the monochromatically~v53! forced van der Pol os
cillator has, for the initial conditionx(0)50, ẋ(0)522, an
exact limit cycle given byxGR

2 1 ẋGR
2 54. Thus this agrees

with the aforementioned~cf. Sec. II! result concerning the
autonomous van der Pol oscillator, namely, that forsmall d it
has a stable limit cyclecloseto the solutionx21 ẋ254. In-
deed, because of the relationshipFc52d, Fc→0 is equiva-
lent to d→0. Another point concerning this particular ca
refers to a classical result due to Cartwright and Littlewo
~CL! @2,21#: if Fc /d.2v/3 andd.d0(Fc ,v), Eq. ~1! with
a50 has a stable periodic solution of period 2p/v to which
all trajectories converge ast→1` ~a globally stable limit
cycle!. Note that the result is stated without restrictions as
how larged can be, i.e., it is only required to surpass a low
threshold. However, in the above discussion for the c
v53, we deducedd5dGR[Fc/2 so that the condition
Fc /d.2v/3 is now written dGR.d. In other words, the
d

o
r
e

result of CL requires also, for the specific casev53, an
upper threshold ford, derived from a GR analysis of th
problem. Similarly, the cased.dGR, d large enough, corre-
sponds to the situation for which CL noted the possibility
‘‘strange’’ behavior@2,3,21#.

Let us now consider the incommensurate case, i.e., wh
v is now an irrational number. Similarly to the commens
rate case, from Eqs.~6! and ~12! one straightforwardly ob-
tains

a.6
dA

Fc
S 12

A2

4 D1
1

p
S~v,F!, ~21!

S~v,F!5
2 sin~pv!

12v2 $sin~pv!sinF1v cos~pv!cosF%.

~22!

We remark that taking into account the well-known theore
that for any irrational numberv there exist arbitrarily accu-
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FIG. 5. Power spectra associated with the homonymous cases in Fig. 4.
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rate rational approximationsp/q such thatuv2p/qu,1/q2

@22#, one finds, for a given irrational frequencyv, that the
functions S(F) and R(F) will be, in general, very close
wheneverR(F) corresponds to the best rational approxim
tion p/q to v @cf. Eq. ~16!#. Consequently, the associateda
values will also be very similar. The discussion of this res
in the context of the routes to chaos in quasiperiodica
forced systems@23# will be considered elsewhere.

IV. NUMERICAL RESULTS

We performed some numerical experiments on the dri
van der Pol oscillator~1!. A systematic numerical survey o
its parameter space was beyond the scope of the pre
work. Therefore, we chose arbitrary sets of parameters
order to see the scope and accuracy of the predictions f
the almost-adiabatic invariant approach. In particular, wit
fixed set of parameters (d,Fc ,v) and given initial conditions
-

lt
y

n

ent
in
m
a

for which the subsequent motion~for a50! is chaotic, we
then let the inhibitory forcing act on the system and study
resulting orbits as the forcing parametersa,F are varied~V
51!. Generally, the computer simulations of the driven v
der Pol oscillator~1! showed overall good agreement wi
the theoretical predictions, even when the damping a
chaos-inducing amplitudes were clearly not small. It is wo
mentioning that one cannot expect exact quantitative ag
ment between the two types of results due to the adiab
character of the action conservation~see Ref.@13# for more
details!, which is the physical foundation of the regulariz
tion. Figure 1 shows an illustrative sequence of regulari
tion from an initial chaotic state ata50 @Fig. 1~a!#. The
Poincare´ cross section of this chaotic attractor consists
four very thin islands, as was previously reported in Ref.@9#.
As a increases the chaotic response steadily weakens@Figs.
1~b! and 1~c!# and a symmetry restoring occurs prior to com
plete regularization@Fig. 1~d!#. Thus, while the initial chaotic
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FIG. 6. Phase-space portraits for the same parameters as in Fig. 4:~a! F53.84, ~b! F54.47, ~c! F55.1, and~d! F55.73.
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orbit arose for a fairlylarge amplitude of the chaos-inducin
forcing (Fc55), it was, however, eliminated by using
relatively small amplitude (aFc50.4) of the chaos-
suppressing forcing. The power spectra corresponding to
ẋ series of the respective cases of Fig. 1 are presented in
2. We have plotted log10uS(v/v f)u versusv/v f with v f de-
noting the chaos-inducing forcing frequency~dimensionless
variable!. Notice the gradual rise of the peak associated w
the frequencyv5v f /10 asa increases. Figure 3 shows
plot of uau versusF @cf. Eqs. ~13! and ~16!# for the case
(d,Fc ,p,q)5(5,5,2463,1000), i.e.,v52.463, and the sam
initial conditions for which the motion is chaotic ata50 @cf.
Fig. 1~a!#. Asterisks and circles represent numerical resu
~chaotic behavior and periodic motion, respectively! for the
valuea50.08 and the same remaining parameters, includ
the initial conditions. Regularization is only possible within
few ranges of phase differences that correspond to th
points ~F,a50.08! that aresufficientlyclose to the theoreti-
he
ig.

h

s

g

se

cal curve in theuau-F plane. In particular,all the points~F,a
50.08! inside the theoretical tongues represent periodic m
tions @see Fig. 3~b!#. The numerically obtainedF ranges for
regularization are wider than those expected from the a
batic invariance of the action due to the perturbative nat
of the theoretical approach~cf. the discussion at the end o
Sec. II!. Figure 4 shows a regularization sequence t
crosses the theoretical curve of Fig. 3, fora50.08 and in-
creasing values ofF corresponding to four of the cases d
picted by asterisks or circles in Fig. 3. The respective pow
spectra are shown in Fig. 5. Notice theslow character of the
regularization seen in the gradual decrease of the almost
tinuous background of the spectrum. Figure 6 shows ano
similar sequence for several values ofF and the same re
maining parameters as in Fig. 4. In this case,F varies in an
unfavorable range for stabilization@see Fig. 3~b!#. In fact, for
F54.47 @Fig. 6~b!#, the most unfavorable value for regula
ization @see Fig. 3~a!#, one sees that the system response
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FIG. 7. Power spectra associated with the homonymous cases in Fig. 6.
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the most clearly chaotic, as is also evident from the co
sponding power spectrum@Fig. 7~b!#. A symmetry breaking
followed by a symmetry restoring occurs for successive
riodic responses as the point~F,a50.08! approaches the the
oretical curve in theuau-F plane. Therefore, it seems that
symmetry restoringis a hallmark of the stabilization of th
dynamics under the adiabatic conservation of the action
expected from the definition of GR.

V. SUMMARY

We have studied the inhibition of chaos in the driven v
der Pol system due to a small-amplitude added forcing. A
lytical estimates of the ranges of parameters for stabiliza
were deduced from the almost-adiabatic conservation of
-

-

as

a-
n
e

action associated with each geometrical resonance solu
Computer simulations of the bichromatically driven syste
showed overall good agreement with the theoretical pre
tions, even when the dissipation term and the chaos-indu
forcing had large amplitudes. A reinterpretation of a we
known result on the monochromatically driven van der P
oscillator, due to CL, was also derived by using geometri
resonance analysis.
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@17# A. W. Hübler, Helv. Phys. Acta62, 343~1989!; J. L. Breeden,
F. Dinkelacker, and A. W. Hu¨bler, Phys. Rev. A42, 5827
~1990!; E. A. Jackson,ibid. 44, 4839 ~1991!; Physica D50,
341 ~1991!.

@18# ~a! R. Chaco´n and J. Dı´az Bejarano, Phys. Rev. Lett.71, 3103
~1993!; ~b! R. Chaco´n, Phys. Rev. E51, 761 ~1995!; ~c! 52,
2330 ~1995!; ~d! R. Chaco´n, F. Balibrea, and M. A. Lo´pez, J.
Math. Phys.~N.Y.! 37, 5518~1996!.

@19# See, e.g., V. I. Arnold,Geometrical Methods in the Theory o
Ordinary Differential Equations~Springer-Verlag, New York,
1983!, p. 153.

@20# I. Gradshteyn and I. Ryzhik,Table of Integrals, Series and
Products~Academic, New York, 1994!.

@21# E. A. Jackson,Perspectives of Nonlinear Dynamics~Ref.
@11#!, p. 332.

@22# V. I. Arnold, Geometrical Methods in the Theory of Ordinar
Differential Equations~Ref. @19#!, p. 112.

@23# C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, Physica D13,
261 ~1984!; F. J. Romeiras, A. Bondeson, E. Ott, T. M. An
tonsen, and C. Grebogi,ibid. 26, 277 ~1987!; M. Ding, C.
Grebogi, and E. Ott, Phys. Rev. A39, 2593~1989!; M. Ding,
C. Grebogi, and E. Ott, Phys. Lett. A137, 167 ~1989!; W. L.
Dito, M. L. Spano, H. T. Savage, S. N. Rauseo, J. Heagy,
E. Ott, Phys. Rev. Lett.65, 533 ~1990!; T. Kapitaniak,Attrac-
tors in Quasiperiodically Forced Systems~World Scientific,
Singapore, 1993!.


