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Evolving artificial neural networks to control chaotic systems
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We develop a genetic algorithm that produces neural network feedback controllers for chaotic systems. The
algorithm was tested on the logistic andrid@ maps, for which it stabilizes an unstable fixed point using small
perturbations, even in the presence of significant noise. The network training ni&th&d Moriarty and R.
Miikkulainen, Mach. Learn22, 11 (1996] requires no previous knowledge about the system to be controlled,
including the dimensionality of the system and the location of unstable fixed points. This is the first dimension-
independent algorithm that produces neural network controllers using time-series data. A software implemen-
tation of this algorithm is available via the World Wide Wé¢B1063-651X97)05308-1

PACS numbes): 05.45+b, 07.05.Mh

I. INTRODUCTION The OGY method generally is inadequate when the sys-
tem is far from the fixed point and the linear map is no
Chaotic behavior in a dynamical system can be supionger valid. The original OGY method is also limited to
pressed by periodically applying small, carefully chosen percontrolling only one- or two-dimensional maps. However,
turbations, often with the goal of stabilizing an unstable pethe method has been extended to higher dimengibhs13
riodic orbit of the systen{1-3]. Control of this type has and to cases where multiple control parameters are available
been successfully applied to many experimental systerr[sgm]
[3—7]. In this paper we demonstrate a robust method of train-  Several other analytical methods exist for controlling
|ng neural networks to control chaos. The method makes NBhaos. Hunt deve|0ped the method of occasional propor-
assumptions about the system; the training algorithm opetional feedback, a modification of the OGY algoritH5i.
ates without knowledge of either the dimensionality of thepyragas developed a method that provides small control per-
dynamics or the location of any unstable fixed points. Thewrbations for continuous systerfis5]. This elegant method
structure of the controller is not fixed and the neural I”IetWOI'kuses a linear feedback based on an external signa| or time-
is free to adopt nonlinear forms. delayed feedback and requires little analytical preparation.
After reviewing previous work in Sec. Il, we present the Hibler reported on the “dynamical key” method in which
details of our method in Sec. Ill. We use a modified VerSionnatura| system dynamics may be time reversed and con-
of Symbiotic Adaptive Neuro-EvolutiofSANE), developed  verted into perturbations to drive the system back to an un-
by Moriarty and Miikkulainer{8—10]. This method uses ge- stable fixed poinf16]. Petrov and Showalter presented a
netic algorithms to create neural networks with desirablewonlinear method that relies on the construction of an
characteristics, in this case the ability to stabilize unstablextended-dimension, nonlinear control surféeffectively a
fixed points of a Poincarmap. SANE has proved to be fast |ookup tablé by taking into account the final state of the
and efficient in a variety of cases unrelated to chaos contradystem after the application of a perturbat[d].
[8-10. In Sec. IV we present results for control of the one- ~ An alternative to analytical control algorithms involves
dimensional logistic map and the two-dimensionalnbie  the use of neural networks to discovgossibly novel con-
map. In Sec. V we discuss extensions of our method ango| techniques. Neural networks are well known for provid-
conclusions. ing solutions to some complex problems, even when an ana-
lytical solution cannot be founfil8]. Neural networks have
Il. PREVIOUS WORK been_used to control chaos in various systems, including the
logistic map[19-21], the Haon map[22,23, other maps
A commonly applied method for control of chaotic dy- [23], and continuous systemi24-—-27. Several of these
namical systems was discovered by Ott, Grebogi, and Yorkenethods require the perturbation to be lafgé,23—-26 in
(OGY) [1]. The OGY method requires an analytical descrip-contrast to methods such as the OGY algorithm. In some
tion of the linear map describing the behavior near the fixednethods additional computation is required, such as prepro-
point [2]. This map is used to determine small perturbationscessing to find the algorithm to train the netw$gR,26,21,
that, when periodically applied, use the system’s own dypostprocessing to translate the output of a network into a
namics to send the system towards an unstable fixed pointlesired perturbatiofi20,21], or an additional “switch” to
Continued application of these perturbations keeps the sysctivate the network when the system is close to the fixed
tem near the fixed point, thereby stabilizing the unstablgoint[20,23. In some cases, the location of the fixed point
fixed point even in a noisy system. must be precisely specifi¢d9,20,22,27. In other cases, tar-
get dynamics such as a limit cycle must be specif&d25.
In one case all of the system variables must be available and
*Electronic address: weeks@chaos.ph.utexas.edu controllable, although several different maps were control-
TElectronic address: jburgess@chaos.ph.utexas.edu lable by this algorithnj23].
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In this paper we present a method that combines the ad- OUT
vantages of several of these methods. Our method uses sma
perturbations to stabilize unstable fixed points in chaotic
maps with no additional computation required before or after
the network has been trained. The training algorithm does
not know the correct perturbations that need to be applied,
does not use the location of the target state, and is dimensior
independent. In addition, we use an algorithgj that pro-
vides for great flexibility in specifying the network topology.
The method is easily extended to systems with all system Hidden
variables known, with the location of a fixed point known, or
with multiple control parameters available. Previous methods
often require careful study to choose the structure of the
network for a given systefi22,27]. Our training algorithm is Input
used to avoid this concern. Our method is distinct from
methods that use a neural network to model the system anc
then analytically determine a control formula for the neural
network model[20,28. To our knowledge, no previous IN1 IN2 IN3
method can train controller neural networks for multiple sys- ) _
tems without requiring system-dependent modifications to_ FIG. 1. Typical neural network. This feed-forward network con-

the training algorithm and/or the neural network structure sists of an input layer, one hidden layer, and an output layer. The
" lines represent the weighted connections between nodes in succes-

sive layers. “IN” represents information given to the neural net-
Il. OUR METHOD work and “OUT” is the information the network returns to the
environment; these are the only external connections.
We give a brief introduction to neural networks in Sec.

lll A and to genetic algorithms in Sec. 111 B. Our implemen- Neural networks are reasonable candidates for providing a
tation of these ideas is based on SANE, discussed in Sec, P 9

[ll C. Our use of SANE to solve the chaos control problem isCOntrOI algorithm to a chaotic system. System Observations
. ) . are presented to the network via the input layer. The output
discussed in detail in Secs. Il D and IIl E.

layer determines a perturbation to the system, whose modi-
fied behavior is then presented to the network as a new set of
A. Neural networks input information. This process is iterated to stabilize the
system. Methods such as the OGY method rely on a linear
tional construc{18]. A network may be hardware or soft- desc_riptio_n of the system near the fixed pointz whereas the
nonlinearity of a neural networfdue to the nonlinear func-

ware based and consists of several nodes)emurons con- . L . ;

nected by weighted communication lines 2 neur; networ| t!on g(x)] allows for the p0_55|b|I|ty of a nonlinear _descrlp-

is a structure whoséth neuron has in ut.valug outout l&|on of the system. By varying the structure of the input and

i ) P K put qoutput layers of a neural network, it can be easily modified to

valuey;=g(x;), and connections to other neurons describe . . d

by weightsw;; . The envelope functiog(x;) is commonly a cases for which different numbers of system variables can be

siy moigal fu:fjlc.tion (X)= (1& &1 T%]e Iin Ut valuex %f observed and cases for which multiple control parameters are
9 9(X) = ' P ! available(see Sec. Il E We use the network topology with

neuroni is given by the formulag=3..;wjjy; . C AL e : A
We use a feed-forward network, in which the neurons ar%hgﬁgelr?tyers shown in Fig. 1; this topology is system inde

organized into layers: an input layer, hidden lggerand
output layer. The input layer input values are set by the en-
vironment, while the output layer output values are returned
to the environmenisee Fig. 1 For example, the output A genetic algorithn[29,3Q is a method for rapidly and
information may be interpreted as a control signal. The hidefficiently searching through the space of all possible solu-
den layers have no external connections: they only have cortions to a given problem. In many problems ftiteessof a
nections with other layers in the network. In a feed-forwardgiven solution can be determined; a solution with a high
network, a weighw;; is nonzero only if neurom is in one  fitness value is better than a solution with a low fitness value,
layer and neuron is in the previous layer. This ensures that although the maximum possible fithess might not be known.
information flows forward through the network, from the in- Genetic algorithms perform well in cases for which gradient
put layer to the hidden lay&y to the output layer. More information is not available; in such situations, algorithms
complicated forms for neural networks exist and can besuch as the conjugate-gradient method cannot be used to find
found in standard textbooks such as Rdf8]. Training a maxima in the solution space.

neural network involves determining the weights; such The basic idea of a genetic algorithm is to consider an
that an input layer presented with information results in theensemble, opopulation of possible solutions to the prob-
output layer having a correct response. This training is théem. For our particular method, the population consists of
fundamental concern when attempting to construct a usefulidden layer neurons from which we construct controller net-
network. The training method we use is presented in Seawvorks; see Sec. Il C. For any genetic algorithm, a popula-
I cC. tion of randomly generated solutions is formed and the fit-

Output

A neural network is a biologically motivated computa-

B. Genetic algorithms
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ness of each solution is determined. After the population hagesting of neurons that work well together. See the Appendix
been evaluated, the best solutions are copied. These copifes the details of our algorithm. Note that we are not directly
are changed slightly, with the hope that some of these rarevolving the networks; the evolving population consists of
dom changes will produce a better solution; this process itidden layer neurons from which we construct the networks.
mutation Additionally, randomly chosen elements from

pairs of good solutions are combined to form new solutions; D. Fitness function for controlling chaos

this process irossover A new population is assembled

. : The fitness function is a statement of the goals of a ge-
from the mutated copies, the new solutions formed from_ . : . i :
i o netic algorithm. The proper choice of the fitness function
crossover, and the best solutions from the original popul

tion 8determines the speed with which the geneti(_: algorithr_n can
i converge on the correct solution. In our algorithm the fitness
of new solutions is repeated until an adequate solution ir?unction evaluates Fhe ability of an individual neur_al network
found. Each evaluation of the population igi@neration In To control a dynamical syst.em. To better generah;e the con-
this manner, the process is “evolving” the population into trol method to many chaotic systems, we use a fitness func-
. . i tion that assumes little about the dynamics of the system and
one contammg SO|UII.OnS that are better suited for the task'q robust even in the presence of significant noise. The goal
hand. Genetic algorithms have the advantage of searchln& our algorithm is to find a neural network that can control

multiple areas in solution space in parallel, which often pre- gpecific system such that the dynamics eventually reaches a

vents focusing on a solution that is a local, rather than 3ixed point. A period-1 fixed point is defined bg,~X,,_; at
g_IobaI, maximu_m_in fitness. _A ge_netic aIgoriFhm then con-g5ch step, wherX is an observable variable andis the
sists of a description of solutionsfitness functionto evalu-  nth observation(The actual location of the fixed point is not
ate the solutions, and metho@sich as crossover and muta- g required part of the fitness functiphe fitness function

tion) to produce new solutions from old solutions. evaluates a network through observations of its attempts to
control the system.
C. Symbiotic adaptive neuro-evolution The fitness function we use has three parts: the fitRess

We use a genetic algorithm to evolve neurons that ar@iven byF=AF;,+BF,+CF;, whereA, B, andC are ad-
used to form networks that can stabilize an unstable fixedUStable parameters that are system independent. The map to
point. Our genetic algorithm method is a replacement fofde controlled is iterated many tlmé:;'p!cal[y 1000 and the
other methods of determining network weigtgse Ref[18] yalue of each part of the fithess function is set by the behav-
for a discussion of backpropagation, which requires gradienr of the map and the network. N
information, and other training methaddhe advantage of _ F1 is determined by whether the network has stabilized a
the genetic algorithm approach for the chaos control problen_leEd point by thg end of the 100_0 iterations. The dlffe_rences
is that the network weights can be found by examining thdn @ System variable are examined for the last few itera-
performance of a network as a controller rather than by protions of the map. To stabilize a period-1 fixed point, define
viding correct control signals for various input data. An=|X,—=X,_41|/S, whereS is the size of the uncontrolled

The specific method we use is based on symbiotic adaattractor of the systenf;=1—(A,), where the average is
tive neuro-evolutio[8—10). The crux of SANE is to use a taken over the last few iterations of the mappically 40.
genetic algorithm to evolve a population of individual hidden Thus small values ofA, (successive iterations remaining
layer neurons rather than networks as a whole. Each hiddetear each othgresult in a larger fitnesg,. _
layer neuron is specified by its weights; fully connecting F2 quantifies the growth rate df, near the fixed point. If
it to the input and output layers. Each hidden layer neuror is small(less than 0.04 the values ofA, are stored until
specification is independent since neurons are not laterall$n grows larger than 0.10F,=1-In(\), where\ is the
interconnected. A network is formed with several neuronggeometric mean of the quantitiels,, 1 /A, for all A, that
selected from the population; this selection can be either rarfave been stored. is similar to the largest Lyapunov expo-
dom or directed(see the Appendix for detajlsThis algo-  nent, although for higher-dimensional systems it may be in-
rithm may result in the production of specialized neuronsfluenced by other Lyapunov exponents. When the fixed point
that work symbiotically with each other to produce usefulis successfully stabilized by the neural netwolk:=1. If
networks[8]. The fitness of a network is used to determineA is never smaller than 0.01, is undefined and,=0. A
the fitness of the individual neurons. The advantage ofarge number of iteration€l 000 is used to allow the system
SANE is that it is specifically designed to maintain a diverseample opportunity to be near the fixed poif(<0.01) so
population of neurons, which aids the parallel searchinghatF, can be determined.
power of genetic algorithmE8]. In addition, resultant net- F5 rewards networks that are optimal controllers, which
works are able to ignore useless inputs and the size of theely on small perturbations to establish contfel depends
hidden layer does not need to be precisely predeternigeed on the behavior of the network itself and not the dynamics of
the specialization of neurons can result in neurons that arthe system. Many randomly chosen network weights lead to
redundant a network that applies the largest possible perturbai®ro

Our specific algorithm differs slightly from the original the system. However, chaos control usually requires a
SANE algorithm. The primary difference is that our algo- smaller perturbation; for example, in the absence of noise, if
rithm has a short-term memory that forms some networkshe system is exactly on the fixed point, then the necessary
from neurons that worked well together in the previous genperturbation is6P=0. Near the fixed point only small per-
eration or from their transformed copies. This allows focusedurbations are needéd]. Thus a reward is given to networks
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that favor smaller perturbations. Defifig to be the fraction TABLE I. Typical parameters for the evolution.

of iterations for which|SP| is smaller than 0.95P .,

where 8P ., is the magnitude of the maximum allowed per- Population size 100 neurons

turbation. P, is chosen before evolution begins; in prac- Neurons preserved each generation 30% of population

tical applications, the size 08P, may be limited by the Neurons formed by mutation 60% of population

system) Neurons formed by crossover 10% of popula.tion
We find that the size oBP is less important than the Neworks formed 100 per generation

behavior near the fixed point, so if the system is able to get

near the fixed pointand thusF, is nonzerg F3 is set to
point 2 0Fs rons, and one output neuron, although the results appear to

zero. Trials with bothF; and F, nonzero occasionally re- : . X
ited i works that hasP=0. ind dent of the input be nearly independent of the number of input and hidden
sufted in networks tha =1, Independent of the Inputs neurons(see Sec. IV C for detailsEach hidden neuron re-

to the network. Such networks were trapped at a local maXigejyes input from all neurons in the input layer and outputs

mum of fitness space because they were rewarde#y 1, ol neurons in the output layer. The input neurons are
variations due td-, were insufficient to move the networks assigned the values,, X, 1, X,_,, andX,_s (whereX is
n» n—1» Mn—2» n-—

away from this local maximum. Settings to zero when g yariaple from the system and the four valueXare taken
F2 |shnor|12er_ohsqlve%}h|s pr?btljem. d ks d d from four successive measurements X¥. These lagged
The algorithm’s ability to find good networks depends on, g japjes provide the network with a useful description of the

thS paramh_eterA, :3 ?‘”dc-h""? useA}:hZO?, B=10fOO, "?mdb system[31]. The valuey of the output neuron sets the per-
C=20. This results in each piece of the fitness function €iurbation applied to the systefP= 5P, .(2y—1). The en-

ing roughly the same order of magnitude, with an emph<';13|§/e|ope functiony=g(x) (see Sec. Ill Ais a sigmoidal func-
on F,, which is the most sensitive to small improvements intion so that @2 y<1 and|sP|< 5P
1 max-*

tEe control ability dOf a netly]vork. Srr]nall v?rlatlons n fthr:ase The typical details of the genetic algorithm parameters are
three parameters do not change the performance of the Gfieq in Taple I. These parameters were chosen to be similar
hetic algo_rlthm. Note that. the f|tne_ss functibris used only to the parameters for the original pole-balancing work dis-

to determine the appropriate ranking of neurons, sofhiat cussed in Ref[8]. We find our results were not sensitive to

' H H H H O A
defined only to within a linear transformatioR; =aF+b  e550nable changes in these parameters. Some variations
will give the same ranking and work equally well as a fitnesst,y 1, these parameters are discussed in Sec. IV D.
function. In this sense, one of the paramet&rsB, andC

can be rescaled: the fitness function has only two indepen-
dent parameters. These parameters appear to be system inde-
pendent; see the discussion in Sec. IV D. A. Logistic map
In noisy systems, the same network can be tested multiple The logistic map is a one-dimensional map that exhibits
times with different results. To make the fithess measurezy - otic behavior. The map is given by
ment more robust, each network is tested twice and is as- '
signed an average fitness. Xps1=PoXn(1=X,). )
The fitness function can be easily adapted to find orbits
with higher periodicity. By redefinings,=|X,—X,_,|/S a
period p orbit can be found. An additional redefinition of
A, is useful if the exact location of the fixed point is known.
By defining A,=|X,— Xiixed/S, the evolution proceeds
much faster(typically reducing the number of generations formly to be in the range £ e/2,e/2). We restrict
needed to create a successful network by an order of magnb-<anr 7.<1. With e<0.001 andéPr;aX=6 01, our algo-

tuedried d:rlh;;elzl azl)sir?tsu\?v?tf#iln 'Ihtehﬁ:ﬁ;;(llzt r?:ﬁ:;géeo# Phséiblg_rithm is successful; for higher noise levels, typically no net-
P P y YS“works were found that could successfully control chaos. The

tem and stabilization of a specific fixed point is desired. algorithm usually takes 300—700 generations to find a suc-
Given this fitness function, we can calculate the max"cessful network

mum achievable network fitness. A successful network will For 6P,,,—0.01, the unstable period-1 fixed point can be

have(An)~0 (F1~1), A\~1 (F,~1), andFs=0. There- )t o g forPy,>3.66. For 3<P,<3.66, the natural dy-

fore Fae~A+B=1200. In practice(A,)>0 and) can be namics of the logistic map is never sufficiently near the fixed

il.g;tzilistf tgi?fre]réhf?roamsgggsf/t/ue! gigsoJregiEeh%\;Z;ngoint to allow the small perturbations to stabilizé€see Fig.
gntly : ). However, forP,<3.66 anddP,,=0.1, the algorithm

the OGY method by replacing the neural network with thefinds successful networks. In these cases,Rheortion of

correct analytical OGY algorithm for the Hen map. We the fitness function remains zero until the neurons have

flozuonéj that the OGY method has a fitness of approxmatelyevolved significantlsee Sec. lll ). TheF, portion acts to

squeeze|X,—X,_;| to smaller values untilX is near
Xiixed, &t which pointF, begins to reward good networks.
Typically the stabilized fixed points are not identical to
The structure of the neural network and parameters for théhe fixed points of the uncontrolled system. The fitness func-
evolution must be set before generating the initial populatiortion penalizes networks that produce extremely large pertur-
of neurons. We use four input neurons, seven hidden nelbations but does not reward networks for having small per-

IV. RESULTS

We consider 3xPy=<4 (for which the map has a nontrivial
unstable period-1 fixed pointand 0s=X<1 (see Fig. 2
Noise is added to the system by adding a random variable
7, to X,, for each iteration of the mapy, is chosen uni-

E. Parameters
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FIG. 2. Bifurcation diagram for the logistic map. The dashed FIG. 3. Strange attractor for the ‘Hen map @y=1.29,
line indicates the location of the unstable period-1 fixed point. by=0.3). The circled points are the period-1 fixed points of the
system.
turbations, soS6P does not tend exactly to zero for the
controlled system. With5P+#0, the fixed point location is 200-1100 generations. The evolution is slower whgris
shifted slightly from the uncontrolled location. We have triednear 1.24, where the unperturbed dynamics are period-7
modifying the fitness function to reward networks that pro-rather than chaotic, but the algorithm is still able to stabilize
duce small perturbations, but this often resulted in networkshe period-1 behavior.
that hadéP=0 independent of the inputs. In situations for  The number of generations needed for control may be of
which the leGd-pOlnt location is known, the fitness function concern. In real world experimentsy parameters may drift
can use this knowledge as discussed in Sec Ill D. In suchjightly during the course of the experiment. We examined
cases the controllers found do not change the location of thgarameter drift by changing over the course of the evolu-
fixed point. tion. Evolution succeeds even in cases vétiarying sinu-
soidally with a period of 10-1000 generations, as well as
B. Hénon map cases witha chosen randomly from the intervél.29,1.40

The Heon map is a two-dimensional map that exhibits
chaotic behaviof32]. The map is given by

Xn+1=89+boY,— X2, (2)
Yoi1=Xp. 3

For many values of, andbg, the dynamics of this map are
chaotic. Figure 3 shows for the’"Hen map a strange attrac-

tor, an attracting set with fractal dimensipd3]. Embedded
within this attractor is an unstable period-1 fixed point where 5
Xn=X,4+1 (see Fig. 3 By applying small perturbations to

the parametea,, we wish to stabilize the fixed point located

at X~0.8. As for the logistic map, we add noise to tKe
variable at each iteration, typically witb= 0.001.

We consider the range 1.18@&,<1.415 ancth,=0.3; the
bifurcation diagram for this range is shown in Fig. (For
ap>1.415 the Haon map with noise is often unstable; for
a0<1.130 the natural dynamics of the map is never suffi-
ciently near the fixed point to allow small perturbations to
stabilize it) Our algorithm successfully stabilizes the un-
stable fixed point in the Hen map in this range without a
changing any training parameters. For the same network to-
pology and fitness function as used for the logistic map, the FIG. 4. Bifurcation diagram for the H®n map. The dashed line
algorithm finds successful neural networks, typically takingindicates the location of the unstable period-1 fixed point.
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FIG. 5. History of the evolution for the H®n map with ~ generations. These data correspond to Fig. 5. The origins of the
ay=1.29,by=0.3, 5a,,,=0.01, and a noise level af=0.001. For ~ abscissas are arbitrary; the portion of the data shown is chosen to
other parameters see the text. As the fitness value increases, the bdlgstrate the behavior near the fixed point. Iterations before the
networks in the population have better performance, but a succesgynamics approach the fixed point are not pictured. As the evolu-
ful controller is only found after the rapid increase seen aroundion proceeds, the neural networks are learning to apply appropriate

generation 400. Note that the maximum possible fitness is obtained€rturbations when the system is near the fixed point. Not@l)in

Fmax~1200. The results shown are similar to the evolution for thethat the control perturbations needed are small once control has

logistic map. been established.

each generation. For trials discussed in this paper, all parantevel €. The spread in the required number of generations
eters are held fixed for the course of the evolution unlesseeded200-1100 reflects the underlying uncertainty of the
otherwise noted. We also examined some controllers foundvolution process; the variation appears independently of
with fixed parameters and tested them with parameter valuasoise level. Fore=0.01 no successful networks are formed
for which they were not trained. We found that the networksin the 2000 generations allowed. An additional 10 000-
could still control a system for which the parameter wasgeneration trial withe=0.02 failed to form a successful net-

within 10% of the training parameter. work (although see Sec. IV)C Above e~0.17, noise fre-
Figure 5 shows the typical evolution of the population of
neurons for the Heon map withay=1.29,b,=0.3, and per- 1200 ——rr ——rrrr

turbations limited toda,,,= 0.01. In the example shown, the
population took approximately 400 generations to construct
neural networks that could stabilize the unstable fixed point

of the Hevon map. A series of 100 runs with identical con- 2 900 - 4

ditions (but different random number seedegere performed, e

and 100-1700 generations were needed to accomplish re = . o« "o

sults similar to Fig. &); the mean was 550 generations and % .

the median was 412 generations. Four of these runs failed tc O g L -

find a successful controller in 2000 generations. s . *
The progress of the evolution is seen in Fig. 6. Initially 5 o o N o .

networks are formed randomly and the behavior of the sys- ’§ * o R . e

tem looks similar to the unperturbed dynam[¢sg. 6(a)]. 2 300 * LA B i

After 250 generations, the best networks formed in each gen- .
eration can slow the escape of the system from the unstable
fixed point, but the dynamics remain uncontrollgBig.
6(b)]. Around generation 400, a rapid change is seen in the 0 T
evolution(Fig. 5). At this point, the best networks are learn- 107 - 107 10°
ing to keep the system near the unstable fixed point for many
iterations[Fig. 6(c)]. By generation 450, the best networks
are able to stabilize the system as soon as the system is FiG. 7. Number of generations needed to control the system
sufficiently close to the unstable fixed point. Small perturba-ersus the noise level imposed. Fer0.01, no networks were
tions are maintained to continue the control despite the pregroduced in 2000 generations that could successfully control the
ence of noise. system. For these data,=1.29 andb,=0.3, and| sa| was limited

Figure 7 shows the graph of the number of generationso 0.01. For largetsa| allowed, systems with higher noise levels
needed to evolve successful controllers for varying noiseould be controlled; see the text.

Noise Level ¢
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quently kicks the Heon map dynamics out of the basin of
attraction, which often results i,— —cc. Such behavior is
unphysical and not considered here.

We test the robustness of these results for theddeand
logistic map by varying the structure of the neural network
and varying the genetic algorithm parameters. These varia-,
tions are discussed in the following two subsections.
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C. Variations in the neural network

Three variations of the neural network architecture are
considered: varying the input, hidden, and output layers. The
results discussed for the logistic map and the@étemap are
for networks that typically include three or four input neu-
rons, seven hidden layer neurons, and one output neuron.

Several trials were done with five or more input neurons.
In the first set of trials, the input neurons were given addi- , , e
tional lagged variables(,,. The evolution was slowed in 1010'2 10"

n
most cases by approximately 20%, but still found networks .
that successfully controlled the system. This is promising for Maximum 6P Allowed
cases for which the dimension of the dynamics is unknown, FiG. 8. Number of generations needed to stabilize thedde
as a larger number of lagged variables can be addrger  map with one control parametéeircle), the Haon map with two
input layey. If the system is high dimensional, then thesecontrol parameterétriangle, and the logistic magsquarg, versus
lagged variables may all be usefdl]. If the system is low the maximum allowed perturbation size. For thenbie map results,
dimensional, the extra variables are ignored. We also testes}=1.29, b,=0.3, and the abscissa #a,,,,, and for the two-
the performance of the networks with underspecified inputsparameter Heon map resultsgb,=0.35a,.. For the logistic
The Henon map could be controlled even with only one in- map resultsPy=3.7. The noise level for these casesis0.001.
put neuron, a somewhat surprising result given that the map

is two dimensional _ .
L " . O08may and 8b . limited to 1% ofay andbg, respectively.
'T‘ a second set of trials, the a_ddltlonal mput_neuro_ns were rInnaxadditionmtaznX varying the I;yersoof the %eurail)netwoyk, we
assigned the values of the previous perturbatidRs with- .,y ease the restriction on the perturbation s2g,,. With

out significantly changing the results; Reff8,17] show that |5 qer berturbations, many control methods can stabilize the

:)heertﬁfl:t)grt]ingoerI method typically does depend on earllersystem for larger noise levels and achieve faster control.

! . " . With our algorithm, we found that for the Hen map, with
In a third set of trials, additional input neurons were

.0aha=0.03 a noise level up te=0.03 could be controlled;

?hdded tlh"ti_t were aslsigne(:jd Tar;]?lt)mbn??:]bers t?; irllpult. Aga({/‘/ith dama—0.05 a noise level up te=0.05 could be con-
€ evolution was slowed slightly, but the Networks 1earmneq,, a4 \We tested the OGY algorithm and found identical

to ignor(_a these meaningless inputs. Thus the evolution aResults. As seen in Fig. 8, our algorithm often finds good
pears fairly robust to over specified input layers. '

o . neural networks faster when larger perturbations are allowed.
The results addltl_onally appear robust to_changes n th%)nce found, the good neural networks have the advantages
number of neurons in the hldd_en layer. Typically eVOIUt'Onany control method has when allowed larger perturbations.
was_fas:elr Ift the ntr]mber OJ h'd??n Iiyekneturon?hwistﬁpl':igure 9 shows the typical number of iterations needed by
gfl)\(lllrfnzuz gritvr;”rzeis teha?tug]veir ﬁf ;nﬁil:jgén l;;:pghasomorinetworks to control chaos; larger allowed perturbations gen-
LT e erally result in faster control. These are typical results; the
neurons than needed, it will still find a solutigwith some y P

neurons acting redundantij]. The neurons are evaluated best networks found were often twice as fast, as Fig. 9 indi-
) . . , cates.
for their ability to work in a network with each other, so
neurons will be selected that work well in a network with
superfluous hidden neurons. This is a useful feature as the
necessary number of hidden neurons is often unknown. The parameters listed in Table | were varied in order to
The output layer was the one critical part of the neuraltest the robustness of the evolutionary algorithm. We typi-
networks. As the only information returning to the system iscally use a population of 100 neurons to form the networks
from the controller, changes to the representation of sucin each generation. The results are fairly independent of the
information could have significant consequences on the pepopulation size, as long as the number of networks tested in
formance of the network. Trials with different arrangementseach generation is roughly the same as the population size.
for the output layer(such as using two or three neurons to This ensures that each individual neuron gets tested approxi-
specify the perturbation in some wayere unsuccessful and mately a number of times equal to the number of hidden
often could not control the system at all. However, the netdayer neurons each generati(see the Appendix for detajls
work was successful when allowed to control two parameters Both mutation and crossover appear to be important for
of the Henon map. For example, control is possible if the successful evolution. In most cases a good solution is not
network has two output neurons, specifyifig and b, with ~ found if either of these operations is removed. Varying the
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D. Variations in the genetic algorithm
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FIG. 9. Average number of iterations needed by the best neural FIG. 10. Fitness of the best network each generation for the
networks to stabilize the H®n map with one control parameter '0gistic map with Pg=3.7, 6P,,=0.03, and a noise level of
(circle), the Henon map with two control parameteftsiangle), and €=0.001. For this trial, the goal is to stabilize a period-2 orbit. The
the logistic mag(squarg, versus the maximum allowed perturbation fitness of the networks shown in Fig. 11 is indicated.
size. For the Heon map resultsag=1.29, by=0.3, and the ab-
scissa isdamax, and for the two-parameter 'Hen map results, yjided for the training of the networks.

D= 0.358max. FOr the logistic map result®o=3.7. The noise The neural networks developed by our method have use-
level is €=0.001. ful characteristics. They are able to use small perturbations to

number of neurons created with each operatae Table)l ~ control a system and the network inputs depend only on
does not affect the results significantly, although it appeargrevious observations of a system variable, similar to other
that a low level of crossover is sufficient. control method$1,3]. Other characteristics of our controllers
Some variations of the fitness function were checked. Inare not reproduced by some control methods. For example,
dependent variations of 20% to the parameters, B, and  the networks succeed even when the system starts far from
C in the fitness function do not change the results. In mosthe fixed point, without having to be activated only near the
cases larger variations prevent the algorithm from evolving dixed point. A possible use for our method is to examine the
successful controller for one or both of the two maps. TheéPehavior of the neural networks to determine the control
parametelC, related to the size of the applied perturbationmemOd the network is applylng to a given system; th|s could
5P, is the least important of the parameters, although it€@d to a better understanding of that system or to ideas for

seems necessary in cases for whity,,,, is allowed to be ~©Other control algorithms. _
large. Additionally, stabilization of higher-periodicity orbits A concem about using our method to control a physical
is possible by modifying the fitness function appropriatelySyStem is the time needed to find a good controlling network.

(see Sec. Il D. Results are shown in Figs. 10 and 11. For the Hamon map, the algorithm takes approximately 500
generations to find a network that effectively stabilizes the

unstable fixed point. Each generation 100 networks are each
evaluated twice and each evaluation requires theodemap

We have developed a method for controlling chaos usingo be iterated 1000 timgsee the Appendix Thus 1§ itera-
neural networks formed with a genetic algorithm. Thistions of the map are needed, which for experimental obser-
method requires a fithess function that, for any given chaotiwation frequencies ranging from 1 kHz to 1 Hz would require
system, can direct the creation of a successful neural netwofkom 1 day to 3 yr of training. However, information about
controller. Our fitness function works effectively with both the physical system to be controlled may supplement our
the one-dimensional logistic map and the two-dimensionaturrent assumptions, allowing the training process to proceed
Henon map. The fitness function appears to depend neithdaster. First, loosening the constraint of small perturbations
on the size of the controlling perturbations allowed nor onmay speed the evolution; see Fig. 8. Second, if the location
the dimensionality of the map. Future work will further in- of the unstable fixed point is known and used in the fitness
vestigate the applicability to other systems. The methodunction, evolution is faster by approximately a factor of 10.
works both in chaotic case@he natural dynamics of the Third, many physical systems can be modeled and the neural
system approach a fixed point many times well as in  networks pretrained on the model. Future work will focus on
periodic cases when large perturbations are alloté combining neural networks with a Petrov-Showalter model-
natural dynamics never approach a fixed ppisee Sec. IV. ing techniqud17] to obtain an algorithm that trains rapidly
The method is reasonably robust to noise. The locations ofvhile retaining the advantages of our current metfigdo-
unstable fixed points of the dynamical system are not prorance of dimensionality and of fixed point locatjon

V. CONCLUSION
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(a) APPENDIX: DETAILS OF DIRECTED SYMBIOTIC
ADAPTIVE NEURO-EVOLUTION

1.0 T T T T T
%ﬁmﬁm@m* We use a variation of the original SANE algoritHis,9],
SE O RSN 3,.'1,.-.}.',}}’."-_ which we term directed SANE. This appendix details the
X 03 ,7_' N I L A R AT software implementation of this method.
" prie o AR WIS e The networks are formed with the connections shown
0 PR I NS AU schematically in Fig. 1. We can vary the number of neurons
I N in each layer; see Sec. IV C. The individual elements in the
003 P = I? M T evolving population are the hidden layer neurons, which
&P, 0 -'; . .'2-' - .. 1’ have weights fully connecting them to the input and output
IR T ) 3 layers. The program starts by creating a population of neu-
-0.03 = 4 : . rons with random weights. The neurons are evaluated and
0 200 400 600 800 1000 then evolved.
Iteration n (i) Ny (typically 7) neurons from the population are used
b to construct the hidden layer of a network.
(b) (i) The evolutionary fitness of the network is determined
W 77— T T T (see Sec. Il D for detai)s
-;?..\ ‘ (iii) Steps(i) and (ii) are repeated many timétypically
05 ;,:" B 100) to test e_lll neurons in the current populatic_m. The fiFness
X, o of a neuron is the fitness of the best network in which it has
ha participated.
0 PR N NN TR AR B (iv) The population of neurons is ranked by fithess and
divided into two subpopulations, the *“good” and the
b3 =T T T T T 7 1T 73 “bad.” All of the neurons in the good subpopulation are
P WN‘M&WM retained for the next generation. The neurons in the bad sub-
n - ] population are replaced.
-0.03 e e e e e e s (a) Mutation. A portion of the replacement neurons are
0 200 400 600 800 1000 formed by making copies of good neurons and multiplying

each weight by a random number close to (afd occasion-
ally changing the sign of the weight

FIG. 11. Performance of the best network afi@r262 genera- (b) Crossover.The rest of the replacement neurons are
tions and(b) 300 generations. For the first 30 iterations, the outputformed by selecting two good neurons and assigning the new
of the neural network is ignored an#P=0 is used to allow pos- Weights by choosing each weight from one of the two good
sible transients from the initial state to disappear. Notéointhat ~ neurons at random.
for every second map iteration a maximal perturbation (v) The two subpopulations are then taken as the new
(6P=—-0.03) is applied. The spread &P around zero reflects the population for the next generation. Note that all of the neu-
variations needed to control against the noise in the system. Thesens in the good subpopulation remain unchanged in the new
data correspond to Fig. 10. population. With this new population, the proc¢steps(i)—

(iv)] is restarted.

The computer program to implement our algo- (vi) T_his process is repeatgd for as many generations as
rithm is available on the World Wide Web at needed in order to produce a single network that has a fitness
http://chaos.ph.utexas.ediwieeks/dsane/. We have tested _that is_satisfactory. Wh(_an this occurs, that particular network
our program on UNIX computers. We believe that our ap-IS rétained as the solution to the problem. _
proach will allow enough flexibility to apply this method o 1he selection oy, neurons from the population to form
many different chaotic systems and may lead to a “black® network can be either random or directed. By considering

box” controller that can find a control method for a systemWhich networks performed well in the previous generation,
without any fine tuning. we may bias the selection of neurons to favor previously

successful networks. This is the reason we name our method
directed SANE.
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tion and thus there is some continuity in the definitions as aescribing weights could be broken in the middle by
side effect. Our short-term memory is similar in concept tocrossover. In directed SANE, the crossover transformation
Moriarty and Miikkulainen’s “hierarchical SANE'[9], al-  selects weights from both parent neurons and treats each
though different in implementation. The short-term nature ofindividual weight as an unbreakable piece. Thus crossover
the memory allows for great flexibility as the evolution pro- does not result in loss of the information represented by
ceeds, allowing new improvements to be extensively testethe weight. Second, in SANE, at each generation the
as better networks are found. We find that forming half ofentire population of neurons is mutated. In directed SANE,
the networks randomly and the other half from the defini-unchanged copies of the best neurons remain in the
tions works better than forming all of the networks from population for the next generation. The best neurons in a
either method exclusively. population are frequently better than most mutated versions

Directed SANE differs in three other ways from the of those neurons; it is best to replace neurons only with
original SANE algorithm.(For the details of their method, neurons that have been tested and found to be better. Third,
see Refs[8,9,34.) First, SANE neurons are encoded asthe fithess of a neuron is the fithess of the best network
bit strings; directed SANE neurons are encoded as weighté participated in rather than the average of all of the
and each weight is stored by the program as a floatingnetworks. These three changes result in faster evolution for
point variable. For example, in SANE, bit strings our problem.
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