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Evolving artificial neural networks to control chaotic systems

Eric R. Weeks* and John M. Burgess†

Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712
~Received 7 April 1997!

We develop a genetic algorithm that produces neural network feedback controllers for chaotic systems. The
algorithm was tested on the logistic and He´non maps, for which it stabilizes an unstable fixed point using small
perturbations, even in the presence of significant noise. The network training method@D. E. Moriarty and R.
Miikkulainen, Mach. Learn.22, 11 ~1996!# requires no previous knowledge about the system to be controlled,
including the dimensionality of the system and the location of unstable fixed points. This is the first dimension-
independent algorithm that produces neural network controllers using time-series data. A software implemen-
tation of this algorithm is available via the World Wide Web.@S1063-651X~97!05308-7#

PACS number~s!: 05.45.1b, 07.05.Mh
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I. INTRODUCTION

Chaotic behavior in a dynamical system can be s
pressed by periodically applying small, carefully chosen p
turbations, often with the goal of stabilizing an unstable p
riodic orbit of the system@1–3#. Control of this type has
been successfully applied to many experimental syst
@3–7#. In this paper we demonstrate a robust method of tra
ing neural networks to control chaos. The method makes
assumptions about the system; the training algorithm o
ates without knowledge of either the dimensionality of t
dynamics or the location of any unstable fixed points. T
structure of the controller is not fixed and the neural netw
is free to adopt nonlinear forms.

After reviewing previous work in Sec. II, we present th
details of our method in Sec. III. We use a modified vers
of Symbiotic Adaptive Neuro-Evolution~SANE!, developed
by Moriarty and Miikkulainen@8–10#. This method uses ge
netic algorithms to create neural networks with desira
characteristics, in this case the ability to stabilize unsta
fixed points of a Poincare´ map. SANE has proved to be fa
and efficient in a variety of cases unrelated to chaos con
@8–10#. In Sec. IV we present results for control of the on
dimensional logistic map and the two-dimensional He´non
map. In Sec. V we discuss extensions of our method
conclusions.

II. PREVIOUS WORK

A commonly applied method for control of chaotic d
namical systems was discovered by Ott, Grebogi, and Yo
~OGY! @1#. The OGY method requires an analytical descr
tion of the linear map describing the behavior near the fix
point @2#. This map is used to determine small perturbatio
that, when periodically applied, use the system’s own
namics to send the system towards an unstable fixed p
Continued application of these perturbations keeps the
tem near the fixed point, thereby stabilizing the unsta
fixed point even in a noisy system.

*Electronic address: weeks@chaos.ph.utexas.edu
†Electronic address: jburgess@chaos.ph.utexas.edu
561063-651X/97/56~2!/1531~10!/$10.00
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The OGY method generally is inadequate when the s
tem is far from the fixed point and the linear map is
longer valid. The original OGY method is also limited t
controlling only one- or two-dimensional maps. Howeve
the method has been extended to higher dimensions@11–13#
and to cases where multiple control parameters are avail
@14#.

Several other analytical methods exist for controlli
chaos. Hunt developed the method of occasional prop
tional feedback, a modification of the OGY algorithm@5#.
Pyragas developed a method that provides small control
turbations for continuous systems@15#. This elegant method
uses a linear feedback based on an external signal or t
delayed feedback and requires little analytical preparat
Hübler reported on the ‘‘dynamical key’’ method in whic
natural system dynamics may be time reversed and c
verted into perturbations to drive the system back to an
stable fixed point@16#. Petrov and Showalter presented
nonlinear method that relies on the construction of
extended-dimension, nonlinear control surface~effectively a
lookup table! by taking into account the final state of th
system after the application of a perturbation@17#.

An alternative to analytical control algorithms involve
the use of neural networks to discover~possibly novel! con-
trol techniques. Neural networks are well known for provi
ing solutions to some complex problems, even when an a
lytical solution cannot be found@18#. Neural networks have
been used to control chaos in various systems, including
logistic map@19–21#, the Hénon map@22,23#, other maps
@23#, and continuous systems@24–27#. Several of these
methods require the perturbation to be large@21,23–26# in
contrast to methods such as the OGY algorithm. In so
methods additional computation is required, such as pre
cessing to find the algorithm to train the network@22,26,27#,
postprocessing to translate the output of a network int
desired perturbation@20,21#, or an additional ‘‘switch’’ to
activate the network when the system is close to the fi
point @20,23#. In some cases, the location of the fixed po
must be precisely specified@19,20,22,27#. In other cases, tar
get dynamics such as a limit cycle must be specified@21,25#.
In one case all of the system variables must be available
controllable, although several different maps were contr
lable by this algorithm@23#.
1531 © 1997 The American Physical Society
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1532 56ERIC R. WEEKS AND JOHN M. BURGESS
In this paper we present a method that combines the
vantages of several of these methods. Our method uses s
perturbations to stabilize unstable fixed points in chao
maps with no additional computation required before or a
the network has been trained. The training algorithm d
not know the correct perturbations that need to be appl
does not use the location of the target state, and is dimen
independent. In addition, we use an algorithm@8# that pro-
vides for great flexibility in specifying the network topolog
The method is easily extended to systems with all sys
variables known, with the location of a fixed point known,
with multiple control parameters available. Previous meth
often require careful study to choose the structure of
network for a given system@22,27#. Our training algorithm is
used to avoid this concern. Our method is distinct fro
methods that use a neural network to model the system
then analytically determine a control formula for the neu
network model @20,28#. To our knowledge, no previou
method can train controller neural networks for multiple s
tems without requiring system-dependent modifications
the training algorithm and/or the neural network structure

III. OUR METHOD

We give a brief introduction to neural networks in Se
III A and to genetic algorithms in Sec. III B. Our implemen
tation of these ideas is based on SANE, discussed in
III C. Our use of SANE to solve the chaos control problem
discussed in detail in Secs. III D and III E.

A. Neural networks

A neural network is a biologically motivated comput
tional construct@18#. A network may be hardware or sof
ware based and consists of several nodes, orneurons, con-
nected by weighted communication lines. A neural netw
is a structure whosei th neuron has input valuexi , output
valueyi5g(xi), and connections to other neurons describ
by weightswi j . The envelope functiong(xi) is commonly a
sigmoidal functiong(x)5(11ex)21. The input valuexi of
neuroni is given by the formulaxi5S j Þ iwi j y j .

We use a feed-forward network, in which the neurons
organized into layers: an input layer, hidden layer~s!, and
output layer. The input layer input values are set by the
vironment, while the output layer output values are return
to the environment~see Fig. 1!. For example, the outpu
information may be interpreted as a control signal. The h
den layers have no external connections: they only have
nections with other layers in the network. In a feed-forwa
network, a weightwi j is nonzero only if neuroni is in one
layer and neuronj is in the previous layer. This ensures th
information flows forward through the network, from the i
put layer to the hidden layer~s! to the output layer. More
complicated forms for neural networks exist and can
found in standard textbooks such as Ref.@18#. Training a
neural network involves determining the weightswi j such
that an input layer presented with information results in
output layer having a correct response. This training is
fundamental concern when attempting to construct a us
network. The training method we use is presented in S
III C.
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Neural networks are reasonable candidates for providin
control algorithm to a chaotic system. System observati
are presented to the network via the input layer. The out
layer determines a perturbation to the system, whose m
fied behavior is then presented to the network as a new s
input information. This process is iterated to stabilize t
system. Methods such as the OGY method rely on a lin
description of the system near the fixed point, whereas
nonlinearity of a neural network@due to the nonlinear func
tion g(x)# allows for the possibility of a nonlinear descrip
tion of the system. By varying the structure of the input a
output layers of a neural network, it can be easily modified
cases for which different numbers of system variables can
observed and cases for which multiple control parameters
available~see Sec. III E!. We use the network topology with
three layers shown in Fig. 1; this topology is system ind
pendent.

B. Genetic algorithms

A genetic algorithm@29,30# is a method for rapidly and
efficiently searching through the space of all possible so
tions to a given problem. In many problems thefitnessof a
given solution can be determined; a solution with a hi
fitness value is better than a solution with a low fitness val
although the maximum possible fitness might not be know
Genetic algorithms perform well in cases for which gradie
information is not available; in such situations, algorithm
such as the conjugate-gradient method cannot be used to
maxima in the solution space.

The basic idea of a genetic algorithm is to consider
ensemble, orpopulation, of possible solutions to the prob
lem. For our particular method, the population consists
hidden layer neurons from which we construct controller n
works; see Sec. III C. For any genetic algorithm, a popu
tion of randomly generated solutions is formed and the

FIG. 1. Typical neural network. This feed-forward network co
sists of an input layer, one hidden layer, and an output layer.
lines represent the weighted connections between nodes in su
sive layers. ‘‘IN’’ represents information given to the neural ne
work and ‘‘OUT’’ is the information the network returns to th
environment; these are the only external connections.
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56 1533EVOLVING ARTIFICIAL NEURAL NETWORKS TO . . .
ness of each solution is determined. After the population
been evaluated, the best solutions are copied. These c
are changed slightly, with the hope that some of these
dom changes will produce a better solution; this proces
mutation. Additionally, randomly chosen elements fro
pairs of good solutions are combined to form new solutio
this process iscrossover. A new population is assemble
from the mutated copies, the new solutions formed fr
crossover, and the best solutions from the original popu
tion.

The fitness evaluation of the population and the crea
of new solutions is repeated until an adequate solution
found. Each evaluation of the population is ageneration. In
this manner, the process is ‘‘evolving’’ the population in
one containing solutions that are better suited for the tas
hand. Genetic algorithms have the advantage of searc
multiple areas in solution space in parallel, which often p
vents focusing on a solution that is a local, rather tha
global, maximum in fitness. A genetic algorithm then co
sists of a description of solutions, afitness functionto evalu-
ate the solutions, and methods~such as crossover and mut
tion! to produce new solutions from old solutions.

C. Symbiotic adaptive neuro-evolution

We use a genetic algorithm to evolve neurons that
used to form networks that can stabilize an unstable fi
point. Our genetic algorithm method is a replacement
other methods of determining network weights~see Ref.@18#
for a discussion of backpropagation, which requires grad
information, and other training methods!. The advantage o
the genetic algorithm approach for the chaos control prob
is that the network weights can be found by examining
performance of a network as a controller rather than by p
viding correct control signals for various input data.

The specific method we use is based on symbiotic ad
tive neuro-evolution@8–10#. The crux of SANE is to use a
genetic algorithm to evolve a population of individual hidd
layer neurons rather than networks as a whole. Each hid
layer neuron is specified by its weightswi j fully connecting
it to the input and output layers. Each hidden layer neu
specification is independent since neurons are not late
interconnected. A network is formed with several neuro
selected from the population; this selection can be either
dom or directed~see the Appendix for details!. This algo-
rithm may result in the production of specialized neuro
that work symbiotically with each other to produce use
networks@8#. The fitness of a network is used to determi
the fitness of the individual neurons. The advantage
SANE is that it is specifically designed to maintain a dive
population of neurons, which aids the parallel search
power of genetic algorithms@8#. In addition, resultant net
works are able to ignore useless inputs and the size of
hidden layer does not need to be precisely predetermined~as
the specialization of neurons can result in neurons that
redundant!.

Our specific algorithm differs slightly from the origina
SANE algorithm. The primary difference is that our alg
rithm has a short-term memory that forms some netwo
from neurons that worked well together in the previous g
eration or from their transformed copies. This allows focus
s
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testing of neurons that work well together. See the Appen
for the details of our algorithm. Note that we are not direc
evolving the networks; the evolving population consists
hidden layer neurons from which we construct the networ

D. Fitness function for controlling chaos

The fitness function is a statement of the goals of a
netic algorithm. The proper choice of the fitness functi
determines the speed with which the genetic algorithm
converge on the correct solution. In our algorithm the fitne
function evaluates the ability of an individual neural netwo
to control a dynamical system. To better generalize the c
trol method to many chaotic systems, we use a fitness fu
tion that assumes little about the dynamics of the system
is robust even in the presence of significant noise. The g
of our algorithm is to find a neural network that can cont
a specific system such that the dynamics eventually reach
fixed point. A period-1 fixed point is defined byXn'Xn21 at
each step, whereX is an observable variable andn is the
nth observation.~The actual location of the fixed point is no
a required part of the fitness function.! The fitness function
evaluates a network through observations of its attempt
control the system.

The fitness function we use has three parts: the fitnessF is
given byF[AF11BF21CF3, whereA, B, andC are ad-
justable parameters that are system independent. The m
be controlled is iterated many times~typically 1000! and the
value of each part of the fitness function is set by the beh
ior of the map and the network.

F1 is determined by whether the network has stabilize
fixed point by the end of the 1000 iterations. The differenc
in a system variableX are examined for the last few itera
tions of the map. To stabilize a period-1 fixed point, defi
Dn[uXn2Xn21u/S, whereS is the size of the uncontrolled
attractor of the system.F1[12^Dn&, where the average is
taken over the last few iterations of the map~typically 40!.
Thus small values ofDn ~successive iterations remainin
near each other! result in a larger fitnessF1.

F2 quantifies the growth rate ofDn near the fixed point. If
Dn is small~less than 0.01!, the values ofDn are stored until
Dn grows larger than 0.10.F2[12 ln(l), wherel is the
geometric mean of the quantitiesDn11 /Dn for all Dn that
have been stored.l is similar to the largest Lyapunov expo
nent, although for higher-dimensional systems it may be
fluenced by other Lyapunov exponents. When the fixed po
is successfully stabilized by the neural network,l'1. If
Dn is never smaller than 0.01,l is undefined andF250. A
large number of iterations~1000! is used to allow the system
ample opportunity to be near the fixed point (Dn,0.01) so
that F2 can be determined.

F3 rewards networks that are optimal controllers, whi
rely on small perturbations to establish control.F3 depends
on the behavior of the network itself and not the dynamics
the system. Many randomly chosen network weights lead
a network that applies the largest possible perturbationdP to
the system. However, chaos control usually requires
smaller perturbation; for example, in the absence of noise
the system is exactly on the fixed point, then the necess
perturbation isdP50. Near the fixed point only small per
turbations are needed@1#. Thus a reward is given to network



r-
c-

g

-
s
ax

s

on

be
s
in

se
g

s

e
in

tip
re
a

bit

f
n.

s
g
le
s

xi
i

fi
s
he

te

th
io
e

r to
en

-
uts
are

he
r-

are
ilar
is-
to
tions

its

l

ble

et-
he
uc-

be

ed

ave

to
nc-
tur-
er-

tion
n
n

n

1534 56ERIC R. WEEKS AND JOHN M. BURGESS
that favor smaller perturbations. DefineF3 to be the fraction
of iterations for which udPu is smaller than 0.95dPmax,
wheredPmax is the magnitude of the maximum allowed pe
turbation. (dPmax is chosen before evolution begins; in pra
tical applications, the size ofdPmax may be limited by the
system.!

We find that the size ofdP is less important than the
behavior near the fixed point, so if the system is able to
near the fixed point~and thusF2 is nonzero! F3 is set to
zero. Trials with bothF3 and F2 nonzero occasionally re
sulted in networks that haddP[0, independent of the input
to the network. Such networks were trapped at a local m
mum of fitness space because they were rewarded byF3;
variations due toF2 were insufficient to move the network
away from this local maximum. SettingF3 to zero when
F2 is nonzero solved this problem.

The algorithm’s ability to find good networks depends
the parametersA, B, andC. We useA5200,B51000, and
C520. This results in each piece of the fitness function
ing roughly the same order of magnitude, with an empha
on F2, which is the most sensitive to small improvements
the control ability of a network. Small variations in the
three parameters do not change the performance of the
netic algorithm. Note that the fitness functionF is used only
to determine the appropriate ranking of neurons, so thatF is
defined only to within a linear transformation;F85aF1b
will give the same ranking and work equally well as a fitne
function. In this sense, one of the parametersA, B, and C
can be rescaled: the fitness function has only two indep
dent parameters. These parameters appear to be system
pendent; see the discussion in Sec. IV D.

In noisy systems, the same network can be tested mul
times with different results. To make the fitness measu
ment more robust, each network is tested twice and is
signed an average fitness.

The fitness function can be easily adapted to find or
with higher periodicity. By redefiningDn5uXn2Xn2pu/S a
period p orbit can be found. An additional redefinition o
Dn is useful if the exact location of the fixed point is know
By defining Dn5uXn2Xfixedu/S, the evolution proceeds
much faster~typically reducing the number of generation
needed to create a successful network by an order of ma
tude!. This is also useful if there exist multiple unstab
period-1 fixed points within the normal dynamics of the sy
tem and stabilization of a specific fixed point is desired.

Given this fitness function, we can calculate the ma
mum achievable network fitness. A successful network w
have ^Dn&'0 (F1'1), l'1 (F2'1), andF350. There-
fore Fmax'A1B51200. In practice,̂Dn&.0 andl can be
slightly less than 1, so a successful network can have a
ness slightly different from 1200. We measured the fitnes
the OGY method by replacing the neural network with t
correct analytical OGY algorithm for the He´non map. We
found that the OGY method has a fitness of approxima
1200.

E. Parameters

The structure of the neural network and parameters for
evolution must be set before generating the initial populat
of neurons. We use four input neurons, seven hidden n
et
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rons, and one output neuron, although the results appea
be nearly independent of the number of input and hidd
neurons~see Sec. IV C for details!. Each hidden neuron re
ceives input from all neurons in the input layer and outp
to all neurons in the output layer. The input neurons
assigned the valuesXn , Xn21, Xn22, andXn23 ~whereX is
a variable from the system and the four values ofX are taken
from four successive measurements ofX). These lagged
variables provide the network with a useful description of t
system@31#. The valuey of the output neuron sets the pe
turbation applied to the systemdP5dPmax(2y21). The en-
velope functiony5g(x) ~see Sec. III A! is a sigmoidal func-
tion, so that 0,y,1 andudPu,dPmax.

The typical details of the genetic algorithm parameters
listed in Table I. These parameters were chosen to be sim
to the parameters for the original pole-balancing work d
cussed in Ref.@8#. We find our results were not sensitive
reasonable changes in these parameters. Some varia
from these parameters are discussed in Sec. IV D.

IV. RESULTS

A. Logistic map

The logistic map is a one-dimensional map that exhib
chaotic behavior. The map is given by

Xn115P0Xn~12Xn!. ~1!

We consider 3<P0<4 ~for which the map has a nontrivia
unstable period-1 fixed point! and 0<X<1 ~see Fig. 2!.
Noise is added to the system by adding a random varia
hn to Xn for each iteration of the map;hn is chosen uni-
formly to be in the range (2e/2,e/2). We restrict
0,Xn1hn,1. With e,0.001 anddPmax50.01, our algo-
rithm is successful; for higher noise levels, typically no n
works were found that could successfully control chaos. T
algorithm usually takes 300–700 generations to find a s
cessful network.

For dPmax50.01, the unstable period-1 fixed point can
stabilized for P0.3.66. For 3<P0<3.66, the natural dy-
namics of the logistic map is never sufficiently near the fix
point to allow the small perturbations to stabilize it~see Fig.
2!. However, for P0<3.66 anddPmax50.1, the algorithm
finds successful networks. In these cases, theF2 portion of
the fitness function remains zero until the neurons h
evolved significantly~see Sec. III D!. TheF1 portion acts to
squeezeuXn2Xn21u to smaller values untilX is near
Xfixed, at which pointF2 begins to reward good networks.

Typically the stabilized fixed points are not identical
the fixed points of the uncontrolled system. The fitness fu
tion penalizes networks that produce extremely large per
bations but does not reward networks for having small p

TABLE I. Typical parameters for the evolution.

Population size 100 neurons
Neurons preserved each generation 30% of popula
Neurons formed by mutation 60% of populatio
Neurons formed by crossover 10% of populatio
Networks formed 100 per generatio
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56 1535EVOLVING ARTIFICIAL NEURAL NETWORKS TO . . .
turbations, sodP does not tend exactly to zero for th
controlled system. WithdPÞ0, the fixed point location is
shifted slightly from the uncontrolled location. We have tri
modifying the fitness function to reward networks that p
duce small perturbations, but this often resulted in netwo
that haddP[0 independent of the inputs. In situations f
which the fixed-point location is known, the fitness functi
can use this knowledge as discussed in Sec III D. In s
cases the controllers found do not change the location of
fixed point.

B. Hénon map

The Hénon map is a two-dimensional map that exhib
chaotic behavior@32#. The map is given by

Xn115a01b0Yn2Xn
2 , ~2!

Yn115Xn . ~3!

For many values ofa0 andb0, the dynamics of this map ar
chaotic. Figure 3 shows for the He´non map a strange attrac
tor, an attracting set with fractal dimension@33#. Embedded
within this attractor is an unstable period-1 fixed point whe
Xn5Xn11 ~see Fig. 3!. By applying small perturbations to
the parametera0, we wish to stabilize the fixed point locate
at X'0.8. As for the logistic map, we add noise to theX
variable at each iteration, typically withe50.001.

We consider the range 1.130<a0<1.415 andb050.3; the
bifurcation diagram for this range is shown in Fig. 4.~For
a0.1.415 the He´non map with noise is often unstable; fo
a0,1.130 the natural dynamics of the map is never su
ciently near the fixed point to allow small perturbations
stabilize it.! Our algorithm successfully stabilizes the u
stable fixed point in the He´non map in this range withou
changing any training parameters. For the same network
pology and fitness function as used for the logistic map,
algorithm finds successful neural networks, typically taki

FIG. 2. Bifurcation diagram for the logistic map. The dash
line indicates the location of the unstable period-1 fixed point.
-
s

h
e

e
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o-
e

200–1100 generations. The evolution is slower whena0 is
near 1.24, where the unperturbed dynamics are perio
rather than chaotic, but the algorithm is still able to stabil
the period-1 behavior.

The number of generations needed for control may be
concern. In real world experiments, parameters may d
slightly during the course of the experiment. We examin
parameter drift by changinga over the course of the evolu
tion. Evolution succeeds even in cases witha varying sinu-
soidally with a period of 10–1000 generations, as well
cases witha chosen randomly from the interval~1.29,1.40!

FIG. 3. Strange attractor for the He´non map (a051.29,
b050.3). The circled points are the period-1 fixed points of t
system.

FIG. 4. Bifurcation diagram for the He´non map. The dashed line
indicates the location of the unstable period-1 fixed point.
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1536 56ERIC R. WEEKS AND JOHN M. BURGESS
each generation. For trials discussed in this paper, all par
eters are held fixed for the course of the evolution unl
otherwise noted. We also examined some controllers fo
with fixed parameters and tested them with parameter va
for which they were not trained. We found that the netwo
could still control a system for which the parameter w
within 10% of the training parameter.

Figure 5 shows the typical evolution of the population
neurons for the He´non map witha051.29,b050.3, and per-
turbations limited todamax50.01. In the example shown, th
population took approximately 400 generations to constr
neural networks that could stabilize the unstable fixed po
of the Hénon map. A series of 100 runs with identical co
ditions~but different random number seeds! were performed,
and 100–1700 generations were needed to accomplish
sults similar to Fig. 6~d!; the mean was 550 generations a
the median was 412 generations. Four of these runs faile
find a successful controller in 2000 generations.

The progress of the evolution is seen in Fig. 6. Initia
networks are formed randomly and the behavior of the s
tem looks similar to the unperturbed dynamics@Fig. 6~a!#.
After 250 generations, the best networks formed in each g
eration can slow the escape of the system from the unst
fixed point, but the dynamics remain uncontrolled@Fig.
6~b!#. Around generation 400, a rapid change is seen in
evolution~Fig. 5!. At this point, the best networks are lear
ing to keep the system near the unstable fixed point for m
iterations@Fig. 6~c!#. By generation 450, the best networ
are able to stabilize the system as soon as the syste
sufficiently close to the unstable fixed point. Small perturb
tions are maintained to continue the control despite the p
ence of noise.

Figure 7 shows the graph of the number of generati
needed to evolve successful controllers for varying no

FIG. 5. History of the evolution for the He´non map with
a051.29,b050.3,damax50.01, and a noise level ofe50.001. For
other parameters see the text. As the fitness value increases, th
networks in the population have better performance, but a succ
ful controller is only found after the rapid increase seen arou
generation 400. Note that the maximum possible fitness is obtai
Fmax'1200. The results shown are similar to the evolution for
logistic map.
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level e. The spread in the required number of generatio
needed~200–1100! reflects the underlying uncertainty of th
evolution process; the variation appears independently
noise level. Fore>0.01 no successful networks are forme
in the 2000 generations allowed. An additional 10 00
generation trial withe50.02 failed to form a successful ne
work ~although see Sec. IV C!. Above e'0.17, noise fre-

best
ss-
d
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FIG. 6. Performance of the best network constructed after~a! 2
generations,~b! 350 generations,~c! 395 generations, and~d! 450
generations. These data correspond to Fig. 5. The origins of
abscissas are arbitrary; the portion of the data shown is chose
illustrate the behavior near the fixed point. Iterations before
dynamics approach the fixed point are not pictured. As the ev
tion proceeds, the neural networks are learning to apply approp
perturbations when the system is near the fixed point. Note in~d!
that the control perturbations needed are small once control
been established.

FIG. 7. Number of generations needed to control the sys
versus the noise level imposed. Fore>0.01, no networks were
produced in 2000 generations that could successfully control
system. For these data,a051.29 andb050.3, andudau was limited
to 0.01. For largerudau allowed, systems with higher noise leve
could be controlled; see the text.



of

rk
ri

ar
Th

u-
n.
ns
d

rk
fo
wn

se

st
ut
n-

a

er

lie

re
a
e
a

th
on
a
he
re

d
o
th
t

ra
i

uc
pe
nt
to
d
e
te
he

e

the
rol.

al
od
ed.
ges
ns.
by

en-
the
di-

to
pi-
rks
the
d in
ize.

roxi-
en

for
not
he

56 1537EVOLVING ARTIFICIAL NEURAL NETWORKS TO . . .
quently kicks the He´non map dynamics out of the basin
attraction, which often results inXn→2`. Such behavior is
unphysical and not considered here.

We test the robustness of these results for the He´non and
logistic map by varying the structure of the neural netwo
and varying the genetic algorithm parameters. These va
tions are discussed in the following two subsections.

C. Variations in the neural network

Three variations of the neural network architecture
considered: varying the input, hidden, and output layers.
results discussed for the logistic map and the He´non map are
for networks that typically include three or four input ne
rons, seven hidden layer neurons, and one output neuro

Several trials were done with five or more input neuro
In the first set of trials, the input neurons were given ad
tional lagged variablesXn . The evolution was slowed in
most cases by approximately 20%, but still found netwo
that successfully controlled the system. This is promising
cases for which the dimension of the dynamics is unkno
as a larger number of lagged variables can be used~a larger
input layer!. If the system is high dimensional, then the
lagged variables may all be useful@31#. If the system is low
dimensional, the extra variables are ignored. We also te
the performance of the networks with underspecified inp
The Hénon map could be controlled even with only one i
put neuron, a somewhat surprising result given that the m
is two dimensional.

In a second set of trials, the additional input neurons w
assigned the values of the previous perturbationsdPn with-
out significantly changing the results; Refs.@2,17# show that
the optimal control method typically does depend on ear
perturbations.

In a third set of trials, additional input neurons we
added that were assigned random numbers as input. Ag
the evolution was slowed slightly, but the networks learn
to ignore these meaningless inputs. Thus the evolution
pears fairly robust to over specified input layers.

The results additionally appear robust to changes in
number of neurons in the hidden layer. Typically evoluti
was faster if the number of hidden layer neurons was
proximately twice the number of inputs. A strength of t
SANE algorithm is that even if a hidden layer has mo
neurons than needed, it will still find a solution~with some
neurons acting redundantly! @8#. The neurons are evaluate
for their ability to work in a network with each other, s
neurons will be selected that work well in a network wi
superfluous hidden neurons. This is a useful feature as
necessary number of hidden neurons is often unknown.

The output layer was the one critical part of the neu
networks. As the only information returning to the system
from the controller, changes to the representation of s
information could have significant consequences on the
formance of the network. Trials with different arrangeme
for the output layer~such as using two or three neurons
specify the perturbation in some way! were unsuccessful an
often could not control the system at all. However, the n
work was successful when allowed to control two parame
of the Hénon map. For example, control is possible if t
network has two output neurons, specifyingda anddb, with
a-
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damax anddbmax limited to 1% ofa0 andb0, respectively.
In addition to varying the layers of the neural network, w

can ease the restriction on the perturbation sizedPmax. With
larger perturbations, many control methods can stabilize
system for larger noise levels and achieve faster cont
With our algorithm, we found that for the He´non map, with
damax50.03 a noise level up toe50.03 could be controlled;
with damax50.05 a noise level up toe50.05 could be con-
trolled. We tested the OGY algorithm and found identic
results. As seen in Fig. 8, our algorithm often finds go
neural networks faster when larger perturbations are allow
Once found, the good neural networks have the advanta
any control method has when allowed larger perturbatio
Figure 9 shows the typical number of iterations needed
networks to control chaos; larger allowed perturbations g
erally result in faster control. These are typical results;
best networks found were often twice as fast, as Fig. 9 in
cates.

D. Variations in the genetic algorithm

The parameters listed in Table I were varied in order
test the robustness of the evolutionary algorithm. We ty
cally use a population of 100 neurons to form the netwo
in each generation. The results are fairly independent of
population size, as long as the number of networks teste
each generation is roughly the same as the population s
This ensures that each individual neuron gets tested app
mately a number of times equal to the number of hidd
layer neurons each generation~see the Appendix for details!.

Both mutation and crossover appear to be important
successful evolution. In most cases a good solution is
found if either of these operations is removed. Varying t

FIG. 8. Number of generations needed to stabilize the He´non
map with one control parameter~circle!, the Hénon map with two
control parameters~triangle!, and the logistic map~square!, versus
the maximum allowed perturbation size. For the He´non map results,
a051.29, b050.3, and the abscissa isdamax, and for the two-
parameter He´non map results,dbmax50.3damax. For the logistic
map results,P053.7. The noise level for these cases ise50.001.
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1538 56ERIC R. WEEKS AND JOHN M. BURGESS
number of neurons created with each operation~see Table I!
does not affect the results significantly, although it appe
that a low level of crossover is sufficient.

Some variations of the fitness function were checked.
dependent variations of620% to the parametersA, B, and
C in the fitness function do not change the results. In m
cases larger variations prevent the algorithm from evolvin
successful controller for one or both of the two maps. T
parameterC, related to the size of the applied perturbati
dP, is the least important of the parameters, although
seems necessary in cases for whichdPmax is allowed to be
large. Additionally, stabilization of higher-periodicity orbit
is possible by modifying the fitness function appropriate
~see Sec. III D!. Results are shown in Figs. 10 and 11.

V. CONCLUSION

We have developed a method for controlling chaos us
neural networks formed with a genetic algorithm. Th
method requires a fitness function that, for any given cha
system, can direct the creation of a successful neural netw
controller. Our fitness function works effectively with bo
the one-dimensional logistic map and the two-dimensio
Hénon map. The fitness function appears to depend nei
on the size of the controlling perturbations allowed nor
the dimensionality of the map. Future work will further in
vestigate the applicability to other systems. The meth
works both in chaotic cases~the natural dynamics of the
system approach a fixed point many times! as well as in
periodic cases when large perturbations are allowed~the
natural dynamics never approach a fixed point!; see Sec. IV.
The method is reasonably robust to noise. The location
unstable fixed points of the dynamical system are not p

FIG. 9. Average number of iterations needed by the best ne
networks to stabilize the He´non map with one control paramete
~circle!, the Hénon map with two control parameters~triangle!, and
the logistic map~square!, versus the maximum allowed perturbatio
size. For the He´non map results,a051.29, b050.3, and the ab-
scissa isdamax, and for the two-parameter He´non map results,
dbmax50.3damax. For the logistic map results,P053.7. The noise
level is e50.001.
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vided for the training of the networks.
The neural networks developed by our method have u

ful characteristics. They are able to use small perturbation
control a system and the network inputs depend only
previous observations of a system variable, similar to ot
control methods@1,3#. Other characteristics of our controller
are not reproduced by some control methods. For exam
the networks succeed even when the system starts far
the fixed point, without having to be activated only near t
fixed point. A possible use for our method is to examine
behavior of the neural networks to determine the con
method the network is applying to a given system; this co
lead to a better understanding of that system or to ideas
other control algorithms.

A concern about using our method to control a physi
system is the time needed to find a good controlling netwo
For the Hénon map, the algorithm takes approximately 5
generations to find a network that effectively stabilizes
unstable fixed point. Each generation 100 networks are e
evaluated twice and each evaluation requires the He´non map
to be iterated 1000 times~see the Appendix!. Thus 108 itera-
tions of the map are needed, which for experimental obs
vation frequencies ranging from 1 kHz to 1 Hz would requ
from 1 day to 3 yr of training. However, information abo
the physical system to be controlled may supplement
current assumptions, allowing the training process to proc
faster. First, loosening the constraint of small perturbatio
may speed the evolution; see Fig. 8. Second, if the loca
of the unstable fixed point is known and used in the fitn
function, evolution is faster by approximately a factor of 1
Third, many physical systems can be modeled and the ne
networks pretrained on the model. Future work will focus
combining neural networks with a Petrov-Showalter mod
ing technique@17# to obtain an algorithm that trains rapidl
while retaining the advantages of our current method~igno-
rance of dimensionality and of fixed point location!.

al FIG. 10. Fitness of the best network each generation for
logistic map with P053.7, dPmax50.03, and a noise level o
e50.001. For this trial, the goal is to stabilize a period-2 orbit. T
fitness of the networks shown in Fig. 11 is indicated.
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The computer program to implement our alg
rithm is available on the World Wide Web a
http://chaos.ph.utexas.edu/;weeks/dsane/. We have teste
our program on UNIX computers. We believe that our a
proach will allow enough flexibility to apply this method t
many different chaotic systems and may lead to a ‘‘bla
box’’ controller that can find a control method for a syste
without any fine tuning.
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FIG. 11. Performance of the best network after~a! 262 genera-
tions and~b! 300 generations. For the first 30 iterations, the out
of the neural network is ignored anddP50 is used to allow pos-
sible transients from the initial state to disappear. Note in~b! that
for every second map iteration a maximal perturbat
(dP520.03) is applied. The spread indP around zero reflects the
variations needed to control against the noise in the system. T
data correspond to Fig. 10.
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APPENDIX: DETAILS OF DIRECTED SYMBIOTIC
ADAPTIVE NEURO-EVOLUTION

We use a variation of the original SANE algorithm@8,9#,
which we term directed SANE. This appendix details t
software implementation of this method.

The networks are formed with the connections sho
schematically in Fig. 1. We can vary the number of neuro
in each layer; see Sec. IV C. The individual elements in
evolving population are the hidden layer neurons, wh
have weights fully connecting them to the input and outp
layers. The program starts by creating a population of n
rons with random weights. The neurons are evaluated
then evolved.

~i! NH ~typically 7! neurons from the population are use
to construct the hidden layer of a network.

~ii ! The evolutionary fitness of the network is determin
~see Sec. III D for details!.

~iii ! Steps~i! and ~ii ! are repeated many times~typically
100! to test all neurons in the current population. The fitne
of a neuron is the fitness of the best network in which it h
participated.

~iv! The population of neurons is ranked by fitness a
divided into two subpopulations, the ‘‘good’’ and th
‘‘bad.’’ All of the neurons in the good subpopulation ar
retained for the next generation. The neurons in the bad s
population are replaced.

(a) Mutation. A portion of the replacement neurons a
formed by making copies of good neurons and multiplyi
each weight by a random number close to 1.0~and occasion-
ally changing the sign of the weight!.

(b) Crossover.The rest of the replacement neurons a
formed by selecting two good neurons and assigning the
weights by choosing each weight from one of the two go
neurons at random.

~v! The two subpopulations are then taken as the n
population for the next generation. Note that all of the ne
rons in the good subpopulation remain unchanged in the
population. With this new population, the process@steps~i!–
~iv!# is restarted.

~vi! This process is repeated for as many generation
needed in order to produce a single network that has a fitn
that is satisfactory. When this occurs, that particular netw
is retained as the solution to the problem.

The selection ofNH neurons from the population to form
a network can be either random or directed. By consider
which networks performed well in the previous generatio
we may bias the selection of neurons to favor previou
successful networks. This is the reason we name our me
directed SANE.

We store fournetwork definitions, the NH indices of the
neurons that composed the four best networks in the prev
generation. Half of the new networks are created using th
network definitions with either the original or newly tran
formed neurons. Thus new networks resemble the prev
generation’s outstanding networks and may perform bet
In principle, the network definitions created in a given ge
eration are unrelated to those formed in the previous gen
tion; these definitions act only as a short-term memory.
practice, often the best network in a given generation
formed with a network definition from the previous gener
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1540 56ERIC R. WEEKS AND JOHN M. BURGESS
tion and thus there is some continuity in the definitions a
side effect. Our short-term memory is similar in concept
Moriarty and Miikkulainen’s ‘‘hierarchical SANE’’@9#, al-
though different in implementation. The short-term nature
the memory allows for great flexibility as the evolution pr
ceeds, allowing new improvements to be extensively tes
as better networks are found. We find that forming half
the networks randomly and the other half from the defi
tions works better than forming all of the networks fro
either method exclusively.

Directed SANE differs in three other ways from th
original SANE algorithm.~For the details of their method
see Refs.@8,9,34#.! First, SANE neurons are encoded
bit strings; directed SANE neurons are encoded as wei
and each weight is stored by the program as a floa
point variable. For example, in SANE, bit string
tt
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describing weights could be broken in the middle
crossover. In directed SANE, the crossover transforma
selects weights from both parent neurons and treats e
individual weight as an unbreakable piece. Thus crosso
does not result in loss of the information represented
the weight. Second, in SANE, at each generation
entire population of neurons is mutated. In directed SAN
unchanged copies of the best neurons remain in
population for the next generation. The best neurons i
population are frequently better than most mutated versi
of those neurons; it is best to replace neurons only w
neurons that have been tested and found to be better. T
the fitness of a neuron is the fitness of the best netw
it participated in rather than the average of all of t
networks. These three changes result in faster evolution
our problem.
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