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Continuum model description of thin-film growth morphology

Chung-Yu Mou*
Department of Physics, National Tsing-Hua University, Hsinchu, Taiwan 300, Republic of China

J. W. P. Hsu†

Department of Physics, University of Virginia, McCormick Road, Charlottesville, Virginia 22901
~Received 3 March 1997!

We examine the applicability of the continuum model to describe the surface morphology of a heterogrowth
system: compositionally-graded, relaxed GeSi films on~001! Si substrates. Surface roughness versus lateral
dimension was analyzed for samples that were grown under different conditions. We find that all samples
belong to the same growth class, in which the surface roughness scales linearly with lateral size at small scales
and appears to saturate at large scales. For length scales ranging from 1 nm to 100mm, the scaling behavior
can be described by a linear continuum model consisting of a surface diffusion term and a Laplacian term.
However, in-depth analysis of nonuniversal amplitudes indicates the breaking of up-down symmetry, suggest-
ing the presence of nonlinear terms in the microscopic model. We argue that the leading nonlinear term has the
form of l1(¹h)2, but its effect on scaling exponents will not be evident for length scales less than 1 mm.
Therefore, the growth dynamics of this system is described by the Kuramoto-Sivashinsky equation, consisting
of the two linear terms plusl1(¹h)2, driven by Gaussian noise. We also discuss the negative coefficient in the
Laplacian term as an instability mechanism responsible for large-scale film morphology on the final surface.
@S1063-651X~97!05008-3#

PACS number~s!: 05.40.1j, 82.20.Mj, 68.55.Jk, 07.79.Lh
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I. INTRODUCTION

The dynamics of film growth has proven to be a rich a
interesting phenomenon@1#. In an ideal homogrowth, during
which the deposition rate is sufficiently low and the tempe
ture of the substrate is high enough, the adatoms h
enough time to find their optimal positions so that most a
toms are registered and the growing front has only sm
fluctuations around the equilibrium shape. The resulting fi
under this growth condition is smooth. Such quality of t
film can be maintained indefinitely only if the atoms belo
the growing front are always kept in true equilibrium.
reality, however, growth usually happens in nonequilibriu
conditions. In fact, the real power of thin-film growth is th
capability to create new materials and to obtain desi
physical properties via nonequilibrium growth. In practic
applications, an often encountered situation is to have
thin film and the substrate be different materials, i.e., hete
growth. In heterogrowth, the growth mode is usually n
layer by layer@2#; instead, it depends on equilibrium materi
properties as well as kinetic parameters during growth. In
extreme case, it was demonstrated recently that the cohe
strain in the film can be utilized to fabricate novel nanostr
tures@3#.

During the last decade, much work has been devote
understanding nonequilibrium film growth. There are seve
important features observed in the final surface morpholo
First, surfaces are highly irregular. It is therefore impracti
to predict or describe such surfaces in microscopic detai
coarse-grained, statistical modeling is more appropriate. S
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ondly, certain large-scale features can survive in the fi
surface morphology. These features are manifestations o
derlying microscopic instabilities. Thirdly, it is found, in nu
merous experiments and computer simulations, that ana
of the surface roughness versus the sample’s linear dim
sions provides a useful classification of growth mechan
@1,4#. Specifically, many surfaces exhibit self-affinity i
which a scaling phenomenon is found:

s~ t ![AŠ@H~r ,t !2^H~r ,t !&#2
‹;AsLx f @L/j~ t !#. ~1!

Here the sample dimension isL3L, s(t) is the surface
roughness,H(r ,t) is the height of the surface at positionr
and timet, and ^H(r ,t)& is the average height. The lengt
j(t) denotes the characteristic length of the surface. If
other important length scale is present,j(t) is the correlation
length built up during the course of film growth and scales
j(t);( ñ t)1/z. The exponentsx and z are useful in charac-
terizing the surface morphology. Different growth mech
nisms result in different exponents, while the details
growth manifest themselves only through nonuniversal a
plitudesAs and ñ . Along with the discovery of the above
scaling phenomenon, much theoretical work has been
voted to constructing appropriate continuum models for
scribing the film growth. The goal is to reproduce these sc
ing results.

Experimentally, until now, most work has concentrat
on the measurement of the exponents, which leaves o
many important issues. For example, in previous work,
differentiation in material nature between film and substr
and no examination of the applicability of continuum mode
to surfaces with large features were ever carefully ma
Many results are thusa priori only applicable to homo-
growth systems and to growth without instability. Resu
1522 © 1997 The American Physical Society
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56 1523CONTINUUM MODEL DESCRIPTION OF THIN-FILM . . .
from model systems@4# show that the quantitative scalin
characteristics of surface roughness depend on the parti
material system; for example, the data forx range from 0.2
to 1. It is therefore particularly important to examine t
applicability of theoretical ideas, such as continuum mod
ing, beyond the homogrowth system.

In this paper, we examine a heterogrowth system: com
sitionally graded, relaxed GeSi films on~001! Si substrates.
A distinct feature of surfaces in this system is the existe
of large-scale patterns, known as cross hatches@5#. These
patterns are closely related to the underlying misfit dislo
tion network. Much work has been devoted to understand
the mechanism responsible for the cross-hatch forma
@6,7#. Here we approach this problem differently by exam
ing how surface roughness depends on lateral size, i.e
scaling analyses. In addition, we go beyond the usual
proach, which is based solely on the measurement of rou
ness exponents, and perform more comprehensive ana
on nonuniversal amplitudes and the up-down symmetry
surfaces. Our results indicate that, up to a length scale of
mm, a continuum model in which the linear parts are co
posed of a surface diffusion term and a Laplacian term
appropriate for describing these surfaces. The breaking
up-down symmetry shows that nonlinearities must also
present. Detailed analysis sets a lower bound of'1 mm for
observing the scaling exponents that arise from the low
order nonlinear term. The resulting continuum model tha
consistent with the experimental data is a two-dimensio
Kuramoto-Sivashinsky equation driven by Gaussian no
@8#. We also discuss the instability that might be respons
for the cross-hatch formation in the framework of a co
tinuum description.

This paper is organized as follows. Section II briefly r
views relevant theoretical ideas and results. In Sec. III,
apply scaling analyses to study the surface morphology
relaxed GeSi films grown on Si substrates. Both univer
scaling exponents and non-universal amplitudes are
lyzed. The restrictions placed on the proposed continu
model by the experimental results and the crossover f
this model to other models are discussed in Sec. IV. T
Appendices are devoted to more technical details. In App
dix A, we calculate the surface roughness for a sinuso
surface. In Appendix B, we apply the Dyson-Wyld renorm
ized perturbation theory to analyze one of the poss
growth models that can account for our results.

II. CONTINUUM MODELS AND THEORETICAL RESULTS

We begin with a brief review of the theoretical situation
There are two useful asymptotic behaviors forf (y) in Eq.
~1!. WhenL!j(t), the whole sample evolves ‘‘coherently
in the sense thats(t) is independent of time; henc
f (y);1 asy→0. This implies that, in the limit of larget
@L!j(t)#, s;AsLx. At the opposite limit, whenL@j(t),
the local surface roughness has not detected the existen
the boundary of the sample, sos(t) does not depend onL.
One then deduces thatf (y);y2x as y→` @9#. That is, in
the limit of small t , s;As( ñ t)b[Att

b, with b5x/z.
In order to explain the above scaling phenomena and

culate the relevant exponents, a number of continuum m
els have been proposed@10–13#. In these models,H(r ,t) is
lar
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coarse grained. The interface growth is modeled by no
driven dynamics:

]h

]t
5F@h#1h~r ,t !. ~2!

Here h5H2^H&, ^H& being the average height an
h(r ,t), representing fluctuations in the deposition flux,
modeled by Gaussian white noise with the two-point cor
lation function given by

^h~r 1,t1!h~r 2,t2!&52h0d~r 12r 2!d~ t12t2!. ~3!

The rest of the growth dynamics is lumped into F@h# in
which different driving forces for adatom movement are re
resented by different terms. A characteristic of these mod
is that the resulting surfaces are usually driven towards be
self-affine, resulting in the above scaling behaviors.

The continuum models can be classified into two class
conservative and nonconservative. In nonconservative
namics, the flow of atoms onto the surface is assumed to
normal to the surface. The Kardar-Parisi-Zhang~KPZ!
model, in whichF@h#5n¹2h1l1(¹h)2 with n.0, repre-
sents the lowest-order realization of such dynamics. H
l1(¹h)2 accounts for the fact that the growth is normal
the interface, and the desorption, accounted for byn¹2h, is
assumed to be important@12,13#. The exponents of this
model for dimensionality (d) of 111 are known exactly:
x51/2 andz53/2, while only numerical results are avai
able ford5211 @14#.

In conservative dynamics, one only includes the flow
atoms parallel to the surface. Therefore,F@h# must take the
form

F@h#52“•J,

whereJ is the surface adatom current and the total volu
**dxdyh(x,y) is conserved. It has been argued that cons
vative dynamics is the main scenario that occurs in the m
lecular beam epitaxy~MBE! growth. In particular, surface
diffusion, rather than desorption, is the dominating fac
@10–12#. The surface diffusion is assumed to be driven
the energetics of adatoms on surfaces so thatJ obeys the
Fick’s law J52a¹m, wherem is the chemical potential on
surfaces. A couple of mechanisms contributing tom have
been proposed. First, because adatoms have fewer~more!
bonding opportunities when they reside on ‘‘mountain
~‘‘valleys’’ !, m is proportional to the curvature@15#. Sec-
ondly, adatoms on slopes either have higher kinetic ene
or their chemical bonds are more stretched. One thus exp
that they have higherm. This effect may be accounted for b
the term (¹h)2 @11#. Combining these two mechanisms, L
and Das Sarma~LS! investigated the model in which
F@h#52K¹4h1l2¹2(¹h)2 @11#. Here 2K¹4h is the
lowest-order contribution from the curvature. They found t
exponents to bex52/3 andz510/3 for d5211.

The existence of a Laplacian term is an important qu
tion, for in order to see the exponents predicted by the
model, there must beno Laplacian term. A nonvanishing
Laplacian term, no matter how small, will makel2 irrel-
evant, resulting in different scaling exponents from the
results@16#. There are several mechanisms that can gene
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TABLE I. Detailed growth parameters (R1 and R2 are the growth and grading rates! and nonuniversal
amplitudes obtained from our analysis of samplesA–E: s0 andu0 are saturated values of surface roughne
and u^h3&u1/3 , respectively.

Sample A B C D E

Ge~%! 30 30 30 40 30
Growth method MBE MBE MBE CVD CVD
T (°C! 900 900 900 850 650
P ~mT! 2 50
R1 (Å / sec) 3 3 3 7 12
R2 ~Ge%/mm) 10 80 80 10 10
Ln (mm) 1.5 0.67 1.05 2.0 5.5
s0 ~Å! 3764 6564 186615 6167 12465
u0 ~Å! 1364 1965 91638 29611 5166
As

(n) ~Å! 12 22 65 20 38

As
(K) ~1024) 26 87 169 29 28

As
(n)Aln(Ln /a) ~Å! 34 58 178 57 115
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Laplacian terms. The typical way to generate the Laplac
term is via the desorption, which is small but is not iden
cally zero@1#. If surfaces are liquidlike, a Laplacian term ca
arise from nonvanishing surface tension. More recently, V
lain @12# argued that the combination of surface diffusion
terraces and step-edge~Schwoebel! barriers results in a La
placian term. The coefficientn of the Laplacian term, how-
ever, is negative when growing on singular~i.e., high-
symmetry! surfaces.

Theoretically, a negativen leads to unstable surfac
growth, producing large-scale features on surfaces. This
nomenon was observed in a recent Monte Carlo study@17#.
For continuum models, when the negative Laplacian term
combined with the surface diffusion term2K¹4h and the
KPZ nonlinear term, the resulting dynamics~without noise!,
known as the Kuramoto-Sivashinsky~KS! equation, is par-
ticularly interesting@8#. The KS equation has been used
describe a wide class of phenomena associated with insta
ties such as flame propagation and chemical turbulence.
linearly unstable, but is nonlinearly chaotic, exhibiting sp
tiotemporal chaos. Many years ago, Yakhot@18# conjectured
that the nonlinear term in the KS equation~with random
initial conditions! will ‘‘renormalize’’ the negativen so that
the effective large-scale behavior of the KS equation can
described by the KPZ equation with a positive, effectiven.
In one dimension, this is confirmed by a recent work
Chow and Hwa@19#. In two dimensions, however, conflict
ing results have been reported@20,21#. There appears to b
no consensus about the scaling behavior of the KS equa
at large scales, though they all agree that an effective, p
tive n must be present at large length scales. Experiment
quantitative evidence of a nonvanishing Laplacian term w
not established until recently@22#, although an earlier study
used a negativen to explain the large-scale features in h
mogrowth of GaAs films@17#.

A negativen is not the only possible mechanism for ge
erating large features on surfaces, i.e., rough surfaces
fact, it has been recognized that a flat surface under st
may become unstable or metastable@23#. Several stress
induced instability mechanisms have been proposed. In
continuum elastic theory@24#, an elastic energy is added t
n
-
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the chemical potential, resulting in a linear term
ck3h(k,t), in Fourier space. Herec is a positive constant
Tersoff et al. have proposed a long-range attractive inter
tion between steps on vicinal strained layers@23#. The inter-
action leads to step-bunching instability and, effectively,
also introduces the termk3h(k,t) but with a different coef-
ficient c8. It is important to note that these theories we
derived for strained films without dislocations. Thek3 term
is nonlocal and not analytic in real space, and thus is ab
in the gradient expansion ofF@h#.

III. EXPERIMENTS AND RESULTS

GeSi films studied here were grown either by MBE or
low pressure chemical vapor deposition~CVD! @25#. In order
to minimize threading dislocation density, the Ge concen
tions in these films were increased linearly with the avera
film thickness until desired compositions were achieved. T
growth temperature for these samples was sufficiently h
so as to achieve strain relaxation during growth@6#. The
average lattice constants of the films are the same as tho
bulk crystals, i.e., completely relaxed. Detailed characteri
tion of these samples is given in Refs.@6# and @26#. We
concentrate on samples with approximately the same fi
Ge composition but grown under different conditions. W
also examine samples grown with different grading rat
Relevant growth information and nonuniversal amplitud
obtained from our analysis for five samples are summari
in Table I.

The surface roughness was measured using a scan
force microscope~SFM!. Large-scale~48 mm)2 SFM images
of all five samples are shown in Figs. 1~a!–1~e!. All samples
except sampleC display a long-range ordered cross-hat
pattern on the surface@27#. We shall see that the ordering o
the cross-hatch pattern does not affect the scaling behavio
the surface roughness. In Figs. 2~a! and 2~b!, we show
samplesB and C respectively, on a magnified scale,~14.5
mm)2. The line cuts~height changes versus lateral distanc!
indicated in Figs. 2~a! and 2~b! are shown in Figs. 2~c! and
2~d!, respectively. To determine the surface roughness
length scales varying from 1 nm to 100mm, images~256
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FIG. 1. SFM images of
samples listed in Table I:A ~a!,
B ~b!, C ~c!, D ~c!, and E ~d!,
respectively. The image sizes ar
~48 mm!3(48 mm!.
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pixel 3 256 pixel! similar to Figs. 1~a!–1~e! were taken at
different length scales and on at least two random spots f
given sample. When performing scaling analysis, we divid
each image into smaller images (1283128, 64
364, . . . ,232). The roughness for a given length scaleL
was obtained by first calculating the rms roughness ins
eachL3L image, then averaging over the ensemble of i
ages of the same size@28#. To obtain data forL from 1 nm to
100 mm, we combine results from several images of diffe
ent sizes.

Figure 3~a! showss versusL in a log-log plot for all five
samples. These curves all show similar behaviors, i.e.s
}L1 at small length scales over3 decadesin both s and
L, and s flattens out with zero slopes (x;0) above some
sample-dependent crossover lengthLn50.5;10 mm. At
larger length scales, all surfaces are flat in the sense tha
surface roughness reaches a saturated value (s0) that is al-
most independent of the system size. For the five sample
studied,s0 ranges from 37 to 186 Å, andLn from 0.7 to 5.5
mm ~see Table 1!. These differences are more easily seen
Figs. 2~a!–2~d!, especially the difference fors0 @Figs. 2~c!
and 2~d!#. Note that they axis ~height change! in Fig. 2~d! is
twice that in Fig. 2~c!. When we rescaleL by Ln ands by
s0, all the data collapse onto one universal curve, as sh
in Fig. 3~b!. The successful collapsing demonstrates that,
spite the differences in synthesis parameters and appa
surface morphology, all samples belong to the same gro
universality class governed bys/s05 f (L/Ln), where the
collapsed data points in Fig. 3~b! trace out the universal sca
ing function f . The collapsing of data indicates that a
samples can be described by the same continuum mod

FIG. 2. ~14.5 mm!3(14.5 mm! SFM images of samplesB ~a!
and C ~b!, respectively. The surface roughness line cuts~height
change vs lateral distance! indicated by the white lines in~a! and~b!
are shown in~c! and ~d!, respectively.
a
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there exists an appropriate one. It also implies that the o
of the cross-hatch pattern is not relevant since the surfac
sampleC does not display the ordered the cross-hatch p
tern but can still be collapsed with the other data.

A simple power counting suggests that scaling resu
shown in Fig. 3 can be accounted by the linear model:

F@h,t#5n¹2h2K¹4h. ~4!

Since the2K¹4h term represents surface diffusion@12,29#,
which tends to stabilize growth,K is taken to be positive. In
this model (d5211), when 2K¹4h dominates,x51;
while if n¹2h dominates,x50 @1#. The crossover length
Ln between the two scaling regimes is set by 2p(K/unu)1/2.
The good agreement in scaling exponents between exp

FIG. 3. ~a! Surface roughness (s) vs L for all 5 samples in
Table I. The calculation ofs(L) is given in the text. The line
representss}L1. ~b! s/s0 vs L/Ln for all samples.
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mental results and the model shows that surface diffus
dominates at small length scales.

In a more detailed analysis, we introduce an infrared c
off k0([2p/L) and an ultraviolet cutoffL ([2p/a, where
a is the lattice constant! @30# so that the roughness can b
calculated via the integral

s~L !5E
k0

L d2k

~2p!2E dv^h~k,v !h~2k,2v !&. ~5!

When n¹2h dominates, we find
sn;Ah0 /(2punu)Aln(L/a). In Fig. 4, we show our fit for
sampleB. The lattice constant read off from this fitting
about 6 Å, which is comparable to the lattice constant
Ge0.3Si0.7. Similar fittings have also been done for the oth
samples, and they are all consistent with this form. In t
regime, the nonuniversal amplitudeAs

(n) is Ah0 /(2punu).
The experimentally observed values forAs

(n) range from 12
to 65 Å ~see Table I!. The saturation roughnesss0 is related
to As

(n) via the relations05As
(n)Aln(L0 /a), whereL0 is the

scan size in the Laplacian term dominant region. Since fo
samplesAln(L0 /a) is about 3,s0 and As

(n) are of the same
order. UsingLn , determined from the crossover of the sc
ing exponents, andAs

(n) , determined from a logarithmic fit o
the saturation region, to calculateAs

(n)Aln(Ln /a), the results
agree very well with experimentally measureds0 for all five
samples~see Table I!. The reasonAs

(n)Aln(Ln /a) is consis-
tently smaller thans0 comes from the fact thatLn,L0. At
small length scales (L,Ln), if 2K¹4h dominates, we ge
sK;Ah0 /(16p3K)L. HereAs

(K) is Ah0 /(16p3K), which is
the slopeds/dL for L,Ln . Experimentally, we can inde
pendently determine 3 parameters:s0, As

(K), andLn . For our
data to be consistent with Eq.~4!, these parameters mu
satisfys0 /As

(K)'4.75Ln . In Fig. 5, we plots0 /As
(K) versus

Ln . We see that the linearity betweens0 /As
(K) and Ln is

quite good, though the slope is 1 and not 4.75. This sho
that as far as scaling is concerned, the above linear m
describes the growth of this real, complex heterogrowth s
tem reasonably well.

FIG. 4. A logarithmic fit to the data of sampleB. The lattice
constant obtained from this fit is about 6 Å, an
As

(n)5Ah0 /(2punu) is 22 Å.
n

t-

f
r
s

ll

-

s
el
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The discrepancy between the measured slope
s0 /As

(K) versusLn and the predicted value from scaling su
gests that nonlinear terms do not identically vanish. The
fore, as a test of linearity, we also examine the value
u[u^h3&u1/3. In all samples, we found nonzerou ’s ~see Table
I!. There is no apparent enhancement ofu from increasing
the grading rate~samplesB andC). In Fig. 6, we show the
plot of u versusL for sampleB. Even though the data ar
more noisy, it shows thatu has a similar dependence onL to
that of the roughness. This indicates that these surfaces
not multiaffine @1#. The nonvanishing ofu implies that the
up-down symmetry is broken and thus a nonlinear term m
be present. The lowest-order nonlinear term appears to h
no effect on the scaling behavior ofs below 100mm ~in-
cluding the linear relation betweens0 /As

(K) and Ln), but
they are important in determining factors besides scali
such as the slope betweens0 /As

(K) andLn .
We can further estimate the magnitudes ofn, K, and

h0. Assuming that surface diffusion is induced by variatio
of the chemical potential,K is given byDsgV2n/kBT @29#,
where Ds is the surface diffusion constant,n is the areal
density of adatoms@12#, g is the surface tension, andV is
atomic volume. At relevant growth temperatures,Ds is of

FIG. 5. Ratio of nonuniversal amplitudess0 /As
(K) vs the cross-

over lengthLn . The line is a guide to the eye with slope51.

FIG. 6. The third momentu[u^h3&u1/3 vs L for sampleB.
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56 1527CONTINUUM MODEL DESCRIPTION OF THIN-FILM . . .
order 1025 cm2/sec @31#, while g;103 erg/cm2 @2#. The
values of the remaining parameters are standard@32#.
Altogether, we find that K;10220 cm4 sec21, which
implies that unu is of order 1022 mm2 sec-1

via 2p(K/unu)1/2;Ln;1mm. From the relation As
(n)

;Ah0 /(2punu) and the experimental values ofAs
(n) and

unu, we findh0;10223 cm4/sec.
Another important feature in Fig. 3 is that samples w

faster grading rate~80% Ge/mm), such as samplesB and
C, are rougher~with largers andAs

(K)) for L,Ln . In addi-
tion, s for samplesA, D, andE, all of which were grown at
10% Ge/mm grading rate, are identical at small leng
scales. For a relaxed film, strain fields are not uniform in
films, but concentrate near dislocations@6#. The larger grad-
ing rate means that the growth surface is closer to the di
cations and therefore the surface strain fields are lar
Hence, the largerAs

(K)’s observed in the 80% Ge/mm grad-
ing rate samples suggest that strain enhances surface ro
ness. From a different point of view, since the primary eff
of the 2K¹4h term is to decrease roughness, our resu
indicate that strain fields suppress adatom diffusion on
surface.

IV. DISCUSSION AND CONCLUSIONS

We now examine our results more closely. First, the re
tion As

(n)/As
(K)'Ln has a natural geometrical meaning. It r

flects the wavy nature of the surface morphology in o
samples: if one treatsAs

(n) approximately as the amplitude o
the wave,As

(K) as the slope from the valley to the peak, a
Ln as the width from peak to peak, the relatio
As

(n)/As
(K)'Ln follows from the definition of slope. In Ap-

pendix A, we calculate the surface roughness of a continu
sinusoidal surface. The surface roughness of this model
face has a similar saturation forL@Ln , but in the opposite
limit L!Ln the roughness does not have an exact linear s
ing relation withL. One should be further cautious that th
real surface is not exactly a sinusoidal wave. In Figs. 2~c!
and 2~d!, we show the surface roughness line cuts
samplesB and C, respectively. The local slopes vary fro
,10 Å/mm to .800 Å/mm for sampleB and .1000 Å/
mm for sampleC, indicating that these surfaces contain mo
than one wavelength.

Secondly, the experimentally observedn ([nE) is an ef-
fective one and must be positive. Ifn is negative,h(k,t)
grows exponentially. The roughness would not saturate
large times. In this case, one finds the roughnesss(t,L) by
expressing the height in terms ofh:

h~k,t !5E
0

t

dt8exp~ unuk2t8!h~k,t8!,

and calculates the correlation function^h(k,t)h(k8,t)&. The
roughness is then determined by the integ
*d2k*d2k8^h(k,t)h(k8,t)&. We obtain
e
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s2~L,t !5
h0

2punuF E2p/L

2p/aexp~2unuk2t !

k
dk2 ln

L

aG
5

h0

4punuFEiS 8unup2
t

a2D2EiS 8unup2
t

L2D22ln
L

aG ,
~6!

where Ei is the exponential integral function and we ha
assumed that initially the surface is flat, i.e.,s2(L,0)50. For
our samples, the growth time is about 104 sec and
L.1 Å21'104(2p/L), so the order of 2unEuL2t is 1010,
which is very large. As a result, the first term dominates
thats(L,t) is approximately independent ofL. Therefore, if
nE is negative, its value, when combined with Eq.~6! and the
observed s0, yields a value of h0 at the order of
102109

cm4 sec21, which is unreasonably small. It therefor
implies thatnE cannot be negative.

What is the bare growth equation that can generate
observed cross-hatch pattern and yet result in a positivenE at
large length scales? At first, it seems that the te
ck3h(k,t), induced by the stress, must be present. Howe
as mentioned earlier, this term was derived only for strain
films without dislocations, while our samples are complet
relaxed. Therefore, we do not include it and consider the c
when the baren ([n0) that appears in the growth equatio
is negative@12#. This coefficientn0 enters the roughnes
s(L,t) at very early times. Whent is very small, because th
height h of the surface is still small, the nonlinear term
which are of higher order inh, can be neglected. Therefore
F@h# in the growth equation can be simply approximated
a negative Laplacian termn0¹2h. Equation~6!, with n re-
placed byn0, then describes the roughness only whent is
very small. The value ofn0 may be obtained, for example
by measuring the first and second time derivatives of surf
roughness via the relation

d2

dt2
s2~L,t !U

t50

5un0u@L21~2p/L !2#
d

dt
s2~L,t !U

t50

,

~7!

where we have expressedh0 in terms of the initial increase
rate of s2(L,t). After a short period of initial growth, the
height h has grown so large that one cannot ignore the
fects of nonlinearity any more. According to the standa
picture of pattern formation@33#, nonlinear terms then satu
rate the initial unstable growth, resulting in the final mo
phology. Ifn0 is negative due to Schwoebel barriers@12#, we
expect the growth on vicinal surfaces will be much smoot
because the baren is positive even at early times. This i
indeed observed experimentally@5#.

There are a couple of important issues that need to
addressed:~1! What are the large-scale@34# scaling behav-
iors of the final morphology?~2! What are the nonlinea
terms that enter the growth equation? From our results,
clear that up to 100mm, the scaling behaviors at large leng
scales are captured by the growth equation composed
Laplacian term with an effective,positiven. This fact also
provides us with some insight about the leading-order n
linear term. In AppendixB, we examine in detail the
combined growth equation, F@h,t#5n0¹2h2K¹4h
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1l2¹2(¹h)2, within the framework of Dyson-Wyld renor
malized perturbation theory@20#. We show thatn0 does not
get any correction that comes froml2¹2(¹h)2 in the large
length scale limit. This result reflects what we mention
earlier:l2 is irrelevant in the presence of a Laplacian ter
Thus, we are left withl1(¹h)2 as the only possible leadin
nonlinear term. The resulting growth equation is the K
equation, driven by Gaussian noise. As discussed in Sec
the situation of theoretical work on the large length sc
scaling behaviors of the KS equation@8,18,19# is not clear
now. In fact, the reported results for the two-dimensio
case are conflicting. Nevertheless, they all agree that an
fective and positiven must present at large length scale
This appears to be precisely what we observe. Although
are not able to resolve the theoretical conflict using th
experimental results, detailed analyses of our results s
minimum size of the sample for resolving this conflict. B
cause we did not observe the scaling exponents predicte
the KPZ equation, ifl1(¹h)2 survives in the effective equa
tion, its effect must be small for length scale belo
100mm. The lower end of this nonlinear term dominant r
gime must match with the upper end of the regime do
nated by the Laplacian term. Since the characteristic t
scale in the nonlinear regime isñ Lz, matching the time
scales in two regimes defines a crossover lengthLc :

Lc'S n

ñ
D 1/~22z!

, ~8!

wherez and ñ are the corresponding exponent and nonu
versal amplitude in the KPZ regime. Another relation can
obtained by matching the roughness. We find that

As*
As

~n!ln~Lc /a!

Lc
x , ~9!

whereAs and At ~in the following equation! represent the
corresponding nonuniversal amplitudes in the KPZ regim
SinceAt5As( ñ )b, we obtain

Lc*An@As
~n!ln~Lc /a!/At#

z/x. ~10!

Because we do not observe any crossover below 100mm,
Lc has to be larger than 100mm. In addition, by settingLc on
the right-hand side of Eq.~10! to the maximal scan size
L0, we can get an estimate of the lower bound forLc . Using
the figuresz/x'4, As

(n)ln(L0 /a)'102 Å for L0'100m m,
At;1 Å/(sec)b, and n'1022 mm2 sec21, we find that the
lower bound is about 1 mm, which is beyond our measu
ment range.

In conclusion, we have observed a universal scaling
havior for the surface morphology of compositiona
graded, relaxed GeSi/Si~001! films. Quantitative analyses o
scaling exponents and nonuniversal amplitudes show tha
scaling behaviors for samples grown under different con
tions all belong to the same universality class, which can
described by the linear modelF@h,t#5n¹2h2K¹4h for
1 nm&L&100 mm. In combination with further theoretica
analyses, it is argued that the underlying growth model is
KS equation driven by Gaussian noise. Our results indic
that as far as the roughening exponents are concerned,
d
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100mm, the effective theory of the KS equation is the line
model, pushing the length scale for observing the KPZ sc
ing exponents to be above 1 mm.
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APPENDIX A

In this Appendix, we demonstrate some features of
surface roughness for a continuum wavy surface. Spe
cally, we shall consider a sinusoidal surfa
y5y0sin(2px/Ln), but many features do not depend on t
particular form we choose. Since one only measures disc
points in experiments~the number of pixels determining th
distance between adjacent points!, we assume tha
Ln5Nn«, whereNn is a positive integer and« is the distance
between adjacent points. The experimental data then co
of 2N11 equidistant points (xn, hn) centered at (x0, h0),
where we have definedhi5y0sin(2pxi /Ln) and xn2x05n«
with n ranging from2N to N. The surface roughness can b
found by evaluating the following sums:

^h&5
y0

2N11 (
n52N

n5N

sin
2p~n«1x0!

N0«
, ~A1!

^h2&5
y0

2

2N11 (
n52N

n5N Fsin
2p~n«1x0!

N0« G2

. ~A2!

For largeNn, these sums become integrals. Evaluating th
integrals, one obtains a surface roughnesss(N,Ln ,x0),
which depends on bothx0 andLn. If the modulation on the
surface contains only one wavelength, the global surf
roughness is simply an average ofx0 over the periodLn. We
find that

s5y0F L

2L1«
2S Ln

2L1«

1

2p D 2S 12cos
4pL

Ln
D G1/2

,

~A3!

whereL ~5N«) is the size of the sample. In this case,s
approachesy0 as L approaches̀ . For L,Ln, s does not
scale; instead, it oscillates withL.

APPENDIX B

In this appendix, we shall investigate the large-scale
havior of the model

]h

]t
5n0¹2h2K¹4h1l2¹2~¹h!21h, ~B1!

wheren0 is negative. Specifically, we shall show that there
no correction ton0 at large length scales.
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Two important functions we shall work with are the r
sponse functionG(k,v) and the two-point correlation func
tion U(k,v). They are defined by

G~k,v![ K dh~k,v!

dh~k,v!L
h→0

, ~B2!

U~k,v![^h~k,v!h~2k,2v!&. ~B3!

The generic forms of these functions are@20#

G~k,v!5
1

2 iv1gk1S~k,v!
, ~B4!

U~k,v!5uG~k,v!u2@2h01F~k,v!# ~B5!

where gk52n0k22Kk4 and S(k,v) and F(k,v) are the
self-energies. We shall be interested in scaling solution
which G(k,v)5g(v/nkz)/vkz andU(k,v)5u(v/nkz)/kD.
These scaling solutions are asymptotically correct only
k→0 and v→0. Therefore,gk has to be subdominant t
nkz for k→0; hencez<2. The exponentsz andD are related
to x via the relation 2x5D2d2z. We shall show that
z52 is not acceptable.

Let us first consider the one-loop diagrams in the ren
malized Wyld-Dyson perturbation theory@20#. The self-
energy is

S~2!~k,v!54~l2!2E
q
E

V
@k2~k2q!•q#

3@q2k•~k2q!#G~q,V!U~ uk2qu,v2V!.

~B6!

By appropriate changes of variablesQ5q/k, t5V/nqz, and
s5v/nkz, we can rewrite Eq.~B6! in the following form:

S~2!~k,v!5kd182Ds~2!~s,L/k,m0 /k!. ~B7!

Heres (2) is a function ofs, L/k, andm0 /k. L andm0 are
the ultraviolet~UV! and the infrared~IR! cutoffs in theq
integrals. These forms imply that if theq integrals are diver-
gent, the leading terms inS (2)(k,v) must take the form

kd182D2dLd or kd182D1d8m0
2d8, depending on whether th

divergences are UV or IR. Here bothd and d8 must be
,

in

r

r-

positive. If the divergences are UV type, we set all intern
momentum, such asq and uk2qu, to L, and all internal
frequencies toLz. Only external momentum are left intac
Since in S (2)(k,v) the first vertex carries onek2 and the
final vertex carries one external momentak, the lowest term
would beO(k2k). However, becauseS(k,v) depends only
on k, this term must vanish. Hence, the leading term
k4Ld142D. The subleading terms arek6Ld122D, k8Ld2D,
and so on, with the power ofL decreasing until the power o
L becomes negative. For the above to be correct, one
quires D<d14, and the difference betweenD and d14
decides the number of subleading terms. It is clear that
UV divergences do not contribute any correction ton0.

On the other hand, if the divergences are IR type, one
q or uk2qu, but not both, tom0. Simple power counting
leads to the conclusion that the leading term ofS (2)(k,v) is
k62z(m0)d122D1z. The subleading terms are terms with le
power of k, so they could correctn0. The correction must
take the form k2(m0)d162D. Obviously, it implies that
D>d16, which results inx>(62z)/2>2. Since in the
physical regime,x<1 @35#, this is also ruled out. Therefore
the IR divergences do not contributen0 in the physical re-
gime (x<1) either.

Finally, if the integrals (2) is convergent, it depends onl
on s in the limits L→` andm0→0. In order thatn0 gets a
correction, we requireS (2)(k,v);k2. Henced182D52,
i.e., D5d16. However, this value falls into the regim
where the integrals (2) is not convergent, but IR divergent

The above analysis can be easily generalized to hig
order terms. We find that the dimension of 2nth order terms
in ( is n(d182D2z)1z. These terms cannot be both co
vergent and at the same time contributeO(k2) because it
would imply D5d1822/n1(1/n21)z, which is greater
thand16 and thus falls into the IR regime. Thus these ter
must be divergent. We find that the leading contribution
the UV divergences to S are of the form
k4(n51

` anLn(d162D)22, where an is the contribution of
2nth order terms; hence the UV divergences do not corr
n0 at all. Similarly, for IR divergences, possible correctio
to n0 coming from the 2nth order terms must be of the form
k2m0

n(d182D2z)1z22. This implies that D>d181(1/n
21)z22/n, and hencex>41(1/2n21)z21/n>2, which
is not in the physical regime, so the IR divergences do
contributen0 at all in the physical regime (x<1). We thus
conclude that to all orders in the Wyld-Dyson renormaliz
perturbation expansion, there is no correction ton0.
ci.
J.
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