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Continuum model description of thin-film growth morphology
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We examine the applicability of the continuum model to describe the surface morphology of a heterogrowth
system: compositionally-graded, relaxed GeSi films(@d1) Si substrates. Surface roughness versus lateral
dimension was analyzed for samples that were grown under different conditions. We find that all samples
belong to the same growth class, in which the surface roughness scales linearly with lateral size at small scales
and appears to saturate at large scales. For length scales ranging from 1 nmuim 18® scaling behavior
can be described by a linear continuum model consisting of a surface diffusion term and a Laplacian term.
However, in-depth analysis of nonuniversal amplitudes indicates the breaking of up-down symmetry, suggest-
ing the presence of nonlinear terms in the microscopic model. We argue that the leading nonlinear term has the
form of A;(Vh)2, but its effect on scaling exponents will not be evident for length scales less than 1 mm.
Therefore, the growth dynamics of this system is described by the Kuramoto-Sivashinsky equation, consisting
of the two linear terms plus,(Vh)?2, driven by Gaussian noise. We also discuss the negative coefficient in the
Laplacian term as an instability mechanism responsible for large-scale film morphology on the final surface.
[S1063-651%97)05008-3

PACS numbsgs): 05.40:+j, 82.20.Mj, 68.55.Jk, 07.79.Lh

I. INTRODUCTION ondly, certain large-scale features can survive in the final
surface morphology. These features are manifestations of un-

The dynamics of film growth has proven to be a rich andderlying microscopic instabilities. Thirdly, it is found, in nu-
interesting phenomenft]. In an ideal homogrowth, during Merous experiments and computer simulations, that analysis
which the deposition rate is sufficiently low and the tempera©f the surface roughness versus the sample’s linear dimen-
ture of the substrate is high enough, the adatoms havaions provides a useful classification of growth mechanism

enough time to find their optimal positions so that most adal1.4]- Specifically, many surfaces exhibit self-affinity in

toms are registered and the growing front has only smalwhich a scaling phenomenon is found:

fluctuations around the equilibrium shape. The resulting film _ 5
under this growth condition is smooth. Such quality of the a(t)=\/([H(r,t)—(H(r,t)>] )~ ALMILIED] (D)
film can be maintained indefinitely only if the atoms below
the growing front are always kept in true equilibrium. In
reality, however, growth usually happens in nonequilibrium
conditions. In fact, the real power of thin-film growth is the

capability to create new materials and to obtain desire her i | h o i is th lati
physical properties via nonequilibrium growth. In practical other important length scale is preseit) is the correlation

applications, an often encountered situation is to have thl?ngth Euilt up during the course of film growth and scales as
thin film and the substrate be different materials, i.e., heteroé(t)~(vt)*% The exponenty andz are useful in charac-
growth. In heterogrowth, the growth mode is usually notterizing the surface morphology. Different growth mecha-
|ayer by |aye[[2]' instead, it depends on equi”brium material nisms result in different exponents, while the details of
properties as well as kinetic parameters during growth. In th@rowth manifest themselves only through nonuniversal am-
extreme case, it was demonstrated recently that the cohergplitudesA, and v. Along with the discovery of the above
strain in the film can be utilized to fabricate novel nanostruc-scaling phenomenon, much theoretical work has been de-
tures[3]. voted to constructing appropriate continuum models for de-
During the last decade, much work has been devoted tscribing the film growth. The goal is to reproduce these scal-
understanding nonequilibrium film growth. There are severalng results.
important features observed in the final surface morphology. Experimentally, until nhow, most work has concentrated
First, surfaces are highly irregular. It is therefore impracticalon the measurement of the exponents, which leaves open
to predict or describe such surfaces in microscopic detail. Anany important issues. For example, in previous work, no
coarse-grained, statistical modeling is more appropriate. Sedhifferentiation in material nature between film and substrate
and no examination of the applicability of continuum models
to surfaces with large features were ever carefully made.
*Electronic address: mou@phys.nthu.edu.tw Many results are thus priori only applicable to homo-
"Electronic address: jhsu@virginia.edu growth systems and to growth without instability. Results

Here the sample dimension IsXL, o(t) is the surface
roughnessH(r,t) is the height of the surface at position
and timet, and(H(r,t)) is the average height. The length
df(t) denotes the characteristic length of the surface. If no
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from model systemg$4] show that the quantitative scaling coarse grained. The interface growth is modeled by noise-
characteristics of surface roughness depend on the particuldriven dynamics:
material system; for example, the data jorange from 0.2

to 1. It is therefore particularly important to examine the

applicability of theoretical ideas, such as continuum model-

ing, beyond the homogrowth system.

In this paper, we examine a heterogrowth system: compoHlere h=H—(H), (H) being the average height and
sitionally graded, relaxed GeSi films ¢001) Si substrates. #(r,t), representing fluctuations in the deposition flux, is
A distinct feature of surfaces in this system is the existencénodeled by Gaussian white noise with the two-point corre-
of large-scale patterns, known as cross hatdisésThese lation function given by
patterns are closely related to the underlying misfit disloca-
tion network. Much work has been devoted to understanding (n(ry,t) n(raty))=2m708(ri—ry) (ty—tz). (3

the mechanism responsible for the cross-hatch formatioq.he rest of the growth dynamics is lumped intphFF in

[6,7]. Here we approach this problem differently by examin-, vhich different driving forces for adatom movement are rep-

ing how surface roughness depends on lateral size, i.e., b : -
scaling analyses. In addition, we go beyond the usual a r_¥esented by different terms. A characteristic of these models

proach, which is based solely on the measurement of roughZ :22%22 nraessulljtllt?r? Siunrft?](;e;;xeuzgznx drtl)\(/;]r;\tlti)g\r/srds being
ness exponents, and perform more comprehensive analys%% ! 9 9 :

on nonuniversal amplitudes and the up-down symmetry of onjsheervcz;tir:/ttlem;rg r:ggfcl)snscsrr:/:t?vglalss If#%dncl:r:)tgsz\:\?aiil\?zsgsi
surfaces. Our results indicate that, up to a length scale of 10 . ' : Y

. X . . namics, the flow of atoms onto the surface is assumed to be
pmm, a continuum model in which the linear parts are com-

posed of a surface diffusion term and a Laplacian term ipormal to the surface. The Kardar-Parisi-ZhagPz)

appropriate for describing these surfaces. The breaking Orpodel,r:n VIVh'ChF[h]_VV k}.ﬂ\.l(Vh)f W'tu v>0, repre-
up-down symmetry shows that nonlinearities must also b enéshtze owest-ofrderhre? |zat;:)n % suc ‘i']y'f‘am'cs- II—|ere
present. Detailed analysis sets a lower boung=afmm for hl( . t) faccountds tr?r td € ac:'t at the gr?vgtf 'Sﬁr;%ma to
observing the scaling exponents that arise from the Iowestt- € intertace, and the desorption, accounted Towbyn, 1S

order nonlinear term. The resulting continuum model that is%ssgrrllefdr tgirrt\)en |rinﬁolrittar[ﬂ2,1fiﬂij';1e rexﬁ)(?]nsvnrfs )(()f 'ﬂus
consistent with the experimental data is a two-dimensional odel 1o ensiona ydq) o are known exactly.
=1/2 andz=3/2, while only numerical results are avail-

Kuramoto-Sivashinsky equation driven by Gaussian noisébI ford=2+1 [14
[8]. We also discuss the instability that might be responsiblé”‘ e fora= ; [14]. . .
In conservative dynamics, one only includes the flow of

for the cross-hatch formation in the framework of a con-
tinuum description atoms parallel to the surface. TherefoF¢h] must take the
i form

This paper is organized as follows. Section Il briefly re-
views relevant theoretical ideas and results. In Sec. Ill, we _
. F[h]=-V-J,
apply scaling analyses to study the surface morphology of

relaxed GeSi films grown on Si substrates. Both universalyhereJ is the surface adatom current and the total volume
scaling exponents and non-universal amplitudes are ang-rdxdyh(x,y) is conserved. It has been argued that conser-
lyzed. The restrictions placed on the proposed continuunyative dynamics is the main scenario that occurs in the mo-
model by the experimental results and the crossover fronecular beam epitaxyMBE) growth. In particular, surface
this model to other models are discussed in Sec. IV. Thejiffusion, rather than desorption, is the dominating factor
Appendices are devoted to more technical details. In Apperf10—12. The surface diffusion is assumed to be driven by
dix A, we calculate the surface roughness for a sinusoidajhe energetics of adatoms on surfaces so thabeys the
surface. In Appendix B, we apply the Dyson-Wyld renormal- Fick’s jJaw J= — aV 1, wherep is the chemical potential on
ized perturbation theory to analyze one of the possibley,faces. A couple of mechanisms contributingutohave

dh
S =FLh1+ (). @

growth models that can account for our results. been proposed. First, because adatoms have féwere
bonding opportunities when they reside on “mountains”
Il. CONTINUUM MODELS AND THEORETICAL RESULTS (“valleys™), u is proportional to the curvaturgls]. Sec-

o _ ] _ o ondly, adatoms on slopes either have higher kinetic energy
We begin with a brief review of the theoretical situations. or their chemical bonds are more stretched. One thus expects
There are two useful asymptotic behaviors fgy) in Eq.  that they have highes. This effect may be accounted for by
(1). WhenL<£(t), the whole sample evolves “coherently” the term )2 [11]. Combining these two mechanisms, Lai
in the sense thato(t) is independent of time; hence and Das SarmalLS) investigated the model in which
f(y)~1 asy—0. This implies that, in the limit of large F[h]= —KV*h+\,V3(Vh)2 [11]. Here —KV*h is the

[L<&(t)], o~A,LX. At the opposite limit, wherL>£(t),  |owest-order contribution from the curvature. They found the
the local surface roughness has not detected the existence &fponents to be=2/3 andz=10/3 ford=2+1.

the boundary of the sample, st) does not depend ob. The existence of a Laplacian term is an important ques-
One then deduces thafy)~y~* asy— [9]. Thatis, in  ton, for in order to see the exponents predicted by the LS
the limit of smallt , o~A_(vt)P=At?, with 8= y/z. model, there must beo Laplacian term A nonvanishing

In order to explain the above scaling phenomena and cal-aplacian term, no matter how small, will make irrel-
culate the relevant exponents, a number of continuum modevant, resulting in different scaling exponents from the LS
els have been proposétio—13. In these models(r,t) is  results[16]. There are several mechanisms that can generate
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TABLE I. Detailed growth parameterd}{ andR, are the growth and grading rajesnd nonuniversal
amplitudes obtained from our analysis of sampes: oy and 6, are saturated values of surface roughness
and|(h®)|Y3, respectively.

Sample A B C D E
Ge(%) 30 30 30 40 30
Growth method MBE MBE MBE CVD CVD
T (°C) 900 900 900 850 650
P (mT) 2 50
R; (A/sec) 3 3 3 7 12
R, (Ge%/um) 10 80 80 10 10
L, (um) 15 0.67 1.05 2.0 5.5
ao (A) 37+4 65+ 4 186+ 15 61+7 124+ 5
0o (A) 13+4 19+5 91+ 38 29+11 51+6
A (R) 12 22 65 20 38
A (1074 26 87 169 29 28
AL, /a) (A) 34 58 178 57 115

Laplacian terms. The typical way to generate the Laplaciathe chemical potential, resulting in a linear term,
term is via the desorption, which is small but is not identi-ck3h(k,t), in Fourier space. Here is a positive constant.
cally zero[1]. If surfaces are liquidlike, a Laplacian term can Tersoff et al. have proposed a long-range attractive interac-
arise from nonvanishing surface tension. More recently, Vil-tion between steps on vicinal strained layg28]. The inter-
lain [12] argued that the combination of surface diffusion onaction leads to step-bunching instability and, effectively, it
terraces and step-edg8chwoebel barriers results in a La- also introduces the terik®h(k,t) but with a different coef-
placian term. The coefficient of the Laplacian term, how- ficient c’. It is important to note that these theories were
ever, is negative when growing on singuléire., high-  derived for strained films without dislocations. Tké term
symmetry surfaces. is nonlocal and not analytic in real space, and thus is absent
Theoretically, a negativer leads to unstable surface in the gradient expansion & h].
growth, producing large-scale features on surfaces. This phe-

nomenon was observed in a recent Mo_nte Carlo _sﬁldi/. _ Il EXPERIMENTS AND RESULTS
For continuum models, when the negative Laplacian term is
combined with the surface diffusion termKV#h and the GeSi films studied here were grown either by MBE or by

KPZ nonlinear term, the resulting dynamiggithout noise, low pressure chemical vapor depositi@VD) [25]. In order
known as the Kuramoto-Sivashinski(S) equation, is par- to minimize threading dislocation density, the Ge concentra-
ticularly interesting[8]. The KS equation has been used totions in these films were increased linearly with the average
describe a wide class of phenomena associated with instabililm thickness until desired compositions were achieved. The
ties such as flame propagation and chemical turbulence. It igrowth temperature for these samples was sufficiently high
linearly unstable, but is nonlinearly chaotic, exhibiting spa-so as to achieve strain relaxation during groy@j. The
tiotemporal chaos. Many years ago, Yakhb8] conjectured average lattice constants of the films are the same as those of
that the nonlinear term in the KS equatigwith random  bulk crystals, i.e., completely relaxed. Detailed characteriza-
initial conditions will “renormalize” the negativer so that tion of these samples is given in Ref&] and [26]. We
the effective large-scale behavior of the KS equation can beoncentrate on samples with approximately the same final
described by the KPZ equation with a positive, effective Ge composition but grown under different conditions. We
In one dimension, this is confirmed by a recent work ofalso examine samples grown with different grading rates.
Chow and Hwd19]. In two dimensions, however, conflict- Relevant growth information and nonuniversal amplitudes
ing results have been reportg20,21. There appears to be obtained from our analysis for five samples are summarized
no consensus about the scaling behavior of the KS equatian Table 1.
at large scales, though they all agree that an effective, posi- The surface roughness was measured using a scanning
tive » must be present at large length scales. Experimentallyforce microscopg€SFM). Large-scalé48 wm)? SFM images
guantitative evidence of a nonvanishing Laplacian term wasf all five samples are shown in Figgal—1(e). All samples
not established until recent(22], although an earlier study except sampleC display a long-range ordered cross-hatch
used a negativer to explain the large-scale features in ho- pattern on the surfad®7]. We shall see that the ordering of
mogrowth of GaAs filmg17]. the cross-hatch pattern does not affect the scaling behavior of
A negativev is not the only possible mechanism for gen- the surface roughness. In Figs(aR and 2Zb), we show
erating large features on surfaces, i.e., rough surfaces. lgamplesB and C respectively, on a magnified scalg4.5
fact, it has been recognized that a flat surface under stregsm)?. The line cutsheight changes versus lateral distances
may become unstable or metastab38]. Several stress- indicated in Figs. @) and 2b) are shown in Figs. @) and
induced instability mechanisms have been proposed. In th&(d), respectively. To determine the surface roughness at
continuum elastic theor{24], an elastic energy is added to length scales varying from 1 nm to 1Q0m, images(256
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(b) () d

FIG. 1. SFM images of
samples listed in Table IA (a),
B (b), C (c), D (c), and E (d),
respectively. The image sizes are
(48 wm)x (48 um).

pixel X 256 pixe) similar to Figs. 1a)-1(e) were taken at there exists an appropriate one. It also implies that the order
different length scales and on at least two random spots for af the cross-hatch pattern is not relevant since the surface of
given sample. When performing scaling analysis, we dividedsampleC does not display the ordered the cross-hatch pat-
each image into smaller images (22828, 64 tern but can still be collapsed with the other data.
X64,...,2<2). The roughness for a given length scale A simple power counting suggests that scaling results
was obtained by first calculating the rms roughness insidshown in Fig. 3 can be accounted by the linear model:
eachL XL image, then averaging over the ensemble of im-
ages of the same sif28]. To obtain data fot. from 1 nm to F[h,t]=»V2h—KV*h. (4)
100 um, we combine results from several images of differ-
ent sizes.

Figure 3a) showso versusL in a log-log plot for all five
samples. These curves all show similar behaviors, ie.,

L* at small length scales ové decadesn both o and e it vz, dominates,y=0 [1]. The crossover length
L, and o flattens out with zero slopesyt-0) above some L, between the two scaling regimes is set b7y(12(/|v|)1’2.

sample-dependent crossover lendth= 0'_5V 10 pm. At The good agreement in scaling exponents between experi-
larger length scales, all surfaces are flat in the sense that the

surface roughness reaches a saturated vatgg that is al-

Since the— KV*h term represents surface diffusiph2,29,
which tends to stabilize growtl is taken to be positive. In
this model @=2+1), when —KV*h dominates, y=1;

most independent of the system size. For the five samples we 103E v vl el ol
studied,o ranges from 37 to 186 A, anld, from 0.7 to 5.5 ] (a) 2
um (see Table L These differences are more easily seen in 2 A A

Figs. 2a)—2(d), especially the difference far, [Figs. Ac) 10 3 - a; : E
and 2d)]. Note that they axis (height changkin Fig. 2(d) is — 3 o0
twice that in Fig. Zc). When we rescalé by L, and o by ot 10! 1

oy, all the data collapse onto one universal curve, as shown ™~ E E
in Fig. 3(b). The successful collapsing demonstrates that, de- © ]

spite the differences in synthesis parameters and apparen 100_‘ o gampieg
surface morphology, all samples belong to the same growth 2 SZQ&ZC 3
universality class governed by/o,=f(L/L,), where the ] A & SampleD [
collapsed data points in Fig(i® trace out the universal scal- 1011 . ° SalmpleE
ing function f. The collapsing of data indicates that all 10° 102 10! 10° 10! 102

samples can be described by the same continuum model, i
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FIG. 2. (14.5 um)X (14.5 um) SFM images of sampleB (a)
and C (b), respectively. The surface roughness line diitsight FIG. 3. (a) Surface roughnesss{ vs L for all 5 samples in
change vs lateral distancedicated by the white lines ita) and(b) Table I. The calculation ofr(L) is given in the text. The line
are shown in(c) and(d), respectively. representsr=L?. (b) /o vs L/L, for all samples.
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FIG. 4. A logarithmic fit to the data of sampE. The lattice
constant obtained from this fit is about 6 A,

A = [nol(2m[v]) is 22 A.

mental results and the model shows that surface diffusion

dominates at small length scales.
In a more detailed analysis, we introduce an infrared cut:

off ko(=2=/L) and an ultraviolet cutoff\ (=2w/a, where

a is the lattice constanf30] so that the roughness can be

calculated via the integral

A d%k
U(L)kaowf dw(h(k,w)h(—k,—w)) (5)
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FIG. 5. Ratio of nonuniversal amplitudes, /A vs the cross-

and over lengthL,. The line is a guide to the eye with slopel.

The discrepancy between the measured slope for

g /AETK) versuslL , and the predicted value from scaling sug-
gests that nonlinear terms do not identically vanish. There-
fore, as a test of linearity, we also examine the value of
6=|(h®)|¥3. In all samples, we found nonze#s (see Table

I). There is no apparent enhancementdofrom increasing

the grading rat¢samplesB andC). In Fig. 6, we show the

plot of  versusL for sampleB. Even though the data are
more noisy, it shows that has a similar dependence brto

that of the roughness. This indicates that these surfaces are

not multiaffine[1]. The nonvanishing of implies that the

When vV?h dominates, we find
o,~\ 1ol (27| v|)VIn(L/@). In Fig. 4, we show our fit for

up-down symmetry is broken and thus a nonlinear term must
be present. The lowest-order nonlinear term appears to have

sampleB. The lattice constant read off from this fitting is no effect on the scaling behavior of below 100um (in-
about 6 A, which is comparable to the lattice constant ofcluding the linear relation betweecmO/Af,K) and L), but

Gey 5Sip 7. Similar fittings have also been done for the otherthey are important in determining factors besides scalings
samples, and they are all consistent with this form. In thissuch as the slope betweeg /A andL,.

We can further estimate the magnitudes 19fK, and

regime, the nonuniversal amplitud&” is \z,/(27|v]).

The experimentally observed values #&f” range from 12
to 65 A (see Table)l The saturation roughness, is related
to A" via the relationoy=A{" \In(Ly/a), whereL, is the

1. Assuming that surface diffusion is induced by variations
of the chemical potentiak is given byD¢yQ2n/kgT [29],
where D is the surface diffusion constam, is the areal

scan size in the Laplacian term dominant region. Since for alflensity of adatom$12], y is the surface tension, arfd is
samplesyin(Ly/a) is about 3,00 andAl") are of the same atomic volume. At relevant growth temperaturé, is of

order. UsingL,,, determined from the crossover of the scal-
ing exponents, anAfTV) , determined from a logarithmic fit of
the saturation region, to calculatd” yin(L,/a), the results
agree very well with experimentally measureglfor all five
samples(see Table ) The reasom”\in(L,/a) is consis-
tently smaller tharoy comes from the fact thdt ,<L,. At
small length scalesl(<L,), if —KV*h dominates, we get
ok~ 710/ (167°K) L. HereA) is \/7,/(167°K), which is
the slopedo/dL for L<L, . Experimentally, we can inde-
pendently determine 3 parameterss; Af,K), andL, . For our
data to be consistent with E¢4), these parameters must
satisfy oo /Al)~4.79_, . In Fig. 5, we plotoy /A versus

L,. We see that the linearity between, /A andL, is
quite good, though the slope is 1 and not 4.75. This shows
that as far as scaling is concerned, the above linear model
describes the growth of this real, complex heterogrowth sys-
tem reasonably well.

107 e
] . °
° L)
1 e *”
105 e -
] coe
< oo
N 100_E o.o L
] ]
L
4 . *
1074 . i
-2- T T T T AL T Ty T T
103 10? 101! 10° 10! 10°
L (um)

FIG. 6. The third momen#=|(h*)|3 vs L for sampleB.
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order 10° cm?/sec[31], while y~10® erg/cnt [2]. The ) 7o | [27aexp(2|v|k?t) L

values of the remaining parameters are standg@?]. 7 (L,t)=m Lwn_ K dk"”g}
Altogether, we find that K~10"2°cm*sec?, which )

impliesthat |»| is of order 102 Mf'ﬂz sec! _ Mo | Ei<8|1/|772i2)—Ei(8|v|772i2)—2|nk},
via 2m(K/|v|)¥>~L,~1um. From the relation A" Axlv|| a L a
~\no/(27]v]) and the experimental values (" and 6)

|v|, we find 7,~10" 2 cm*/sec.

Another important feature in Fig. 3 is that samples withwhere Ei is the exponential integral function and we have
faster grading rat€80% Gefm), such as sampleB and assumed that initially the surface is flat, ie?(L,0)=0. For
C, are roughetwith largero- andA{) for L<L,. In addi- ~ 0ur samples, the growth time is about 4%‘3_90 and
tion, o for samplesA, D, andE, all of which were grown at A=1A"*~10%(27/L), so the order of prg|A®t is 10"
10% Gejum grading rate, are identical at small length which is very large. As a re;ult, the first term domlnate_s SO
scales. For a relaxed film, strain fields are not uniform in thethat‘f(l"t) is approximately independent bf Therefore, if

films, but concentrate near dislocatidi@§. The larger grad- “E is negative, its value, when combined with ). and the

ing rate means that the growth surface is closer to the disig2bserved oo, yields a value of 7o at the order of

- 10° -1 ok
cations and therefore the surface strain fields are largef0 et sec ™, which is unreasonably small. It therefore
Hence, the largeA()'s observed in the 80% Ggin grad- MPlies thatve cannot be negative.
: o ; What is the bare growth equation that can generate the
ing rate samples suggest that strain enhances surface rou%rb'serve d cross-hatch pattern and yet result in a posiivat
ness. From a different point of view, since the primary effectIarge length scales? At first, it seems that the term
of the —KV*h term is to decrease roughness, our result ) '

- L o k3h(k,t), induced by the stress, must be present. However,
indicate that strain fields suppress adatom diffusion on th%s mentioned earlier, this term was derived only for strained
surface.

films without dislocations, while our samples are completely

relaxed. Therefore, we do not include it and consider the case

when the barer (=v,) that appears in the growth equation
IV. DISCUSSION AND CONCLUSIONS is negative[12]. This coefficientv, enters the roughness

We now examine our results more closely. First, the reIa-U(L’t) at very early times. Whenis very small, because the

ton AMAM < h wral rical It height h of the surface is still small, the nonlinear terms,
lon A, /A, "~L, has a natural geometrical meaning. L re- iy gre of higher order ih, can be neglected. Therefore,

flects the. wavy nature of the _surface morphology IN OUET K7 in the growth equation can be simply approximated by
samples: if one treats(") approximately as the amplitude of 5 negative Laplacian termyV2h. Equation(6), with v re-

the Wave,Af,K) as the slope from the valley to the peak, andplaced byv,, then describes the roughness only wheis

L, as the width from peak to peak, the relationvery small. The value of,, may be obtained, for example,
AMIAK <L, follows from the definition of slope. In Ap- by measuring the first and second time derivatives of surface
pendix A, we calculate the surface roughness of a continuurfoughness via the relation

sinusoidal surface. The surface roughness of this model sur-

faco has a similar saturation fasL,,, but in the opposite — a?(L,t) =|V0|[A2+(27T/L)2]EO'2(L,'[) '
limit L<L, the roughness does not have an exact linear scal- dt t=0 dt t=0
ing relation withL. One should be further cautious that the (7)

real surface is not exactly a sinusoidal wave. In Figs) 2 . L
and 2d), we show the surface roughness line cuts forwhere we have expresseg in terms of the initial increase
i rate of o(L,t). After a short period of initial growth, the

samplesB and C, respectively. The local slopes vary from < <

<10 Ajum to >800 Ajum for sampleB and >1000 A/ heighth has grown so large that one cannot ignore the ef-
m for sampleC, indicating that these surfaces contain morefeCtS of nonlinearity any more. According o the standard

o pie-, 9 picture of pattern formatioh33], nonlinear terms then satu-

than one wavelength. . _ . rate the initial unstable growth, resulting in the final mor-
Secondly, the experimentally observed=vg) is an ef- hol T ve d Sch bel barri
fective one and must be positive. if is negative,h(k,t) phology. [ Is negative due to Schwoebe arriga], we
) v ?xpect the growth on vicinal surfaces will be much smoother

g:)vgsti;)épsor;ﬁntﬂ?!)éalgeo:]oeu%Egzstiew::)tldhnm slo)tut:ate %ecause the bare is positive even at early times. This is
g ' ' ghres Y indeed observed experimentally].

expressing the height in terms gf There are a couple of important issues that need to be
addressed(l) What are the large-scal@4] scaling behav-
iors of the final morphology?2) What are the nonlinear
t . o
h(k,t)zf dt’exp(| v|k2t") p(k,t'), terms that enter the growth equation? From our resullts, it is
0 clear that up to 10@m, the scaling behaviors at large length
scales are captured by the growth equation composed of a
Laplacian term with an effectivgositive v. This fact also
and calculates the correlation function(k,t)h(k’,t)). The  provides us with some insight about the leading-order non-
roughness is then determined by the integrallinear term. In AppendixB, we examine in detail the
Jd%kfd?k’(h(k,t)h(k’,t)). We obtain combined growth equation, F[h,t]=v,V?h—KV*h
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+X,V2(Vh)2, within the framework of Dyson-Wyld renor- 100 um, the effective theory of the KS equation is the linear
malized perturbation theofy20]. We show thatv, does not model, pushing the length scale for observing the KPZ scal-
get any correction that comes fromV2(Vh)? in the large  ing exponents to be above 1 mm.

length scale limit. This result reflects what we mentioned

earlier: A, is irrelevant in the presence of a Laplacian term. ACKNOWLEDGMENTS

Thus, we are left with ;(Vh)? as the only possible leading

nonlinear term. The resulting growth equation is the KS C--Y-M. gratefully acknowledges support from the Na-
equation, driven by Gaussian noise. As discussed in Sec. monal Science Council of the Republic of China under Grant
the situation of theoretical work on the large length scaldNO- NSC 86-2112-M-007-006. J.W.P.H. acknowledges the
scaling behaviors of the KS equati$d,18,19 is not clear fma_mua_l suppor.t qf _the_ Sloan. Foundation. Work done at the
now. In fact, the reported results for the two-dimensionalJniversity of Virginia is partially funded by NSF DMR-
case are conflicting. Nevertheless, they all agree that an efl357444.

fective and positiver must present at large length scales.

This appears to be precisely what we observe. Although we APPENDIX A

are not able to resolve the theoretical conflict using these . .
experimental results, detailed analyses of our results set a N this Appendix, we demonstrate some features of the
minimum size of the sample for resolving this conflict. Be- surface roughness for a continuum wavy surface. Specifi-

cause we did not observe the scaling exponents predicted _Ily, . Wex/ shagl consi(;ler a dsinusodidal dsurfa(r:]e
the KPZ equation, if 1(Vh)? survives in the effective equa- —y05|n(27r L,), but many eatures do not depend on the
tion, its effect must be small for length scale below particular form we choose. Since one only measures discrete

100m. The lower end of this nonlinear term dominant re- POINtS in experimentéhe number of pixels determining the

gime must match with the upper end of the regime domi-dIStance between_ adjac_gnt . pojntswe _assume that
=N,e, whereN,, is a positive integer and is the distance

nated by the Laplacian term. Since the characteristic tim%v X ‘ - i
etween adjacent points. The experimental data then consist

. . . o~ z . .
sca:e n ttf\1Ne non_lmeard r$g|me 8L, matcrlungﬂt]he ime  of oN+1 equidistant pointsx,, h,) centered at X, hg),
scales in two regimes defines a crossover leig where we have defineld, = yqsin(2mx;/L,) and X,—Xy=ne

L\ He2-2) with n ranging from—N to N. The surface roughness can be
{2

(8)  found by evaluating the following sums:

14
n=N

- ) . Yo _2m(ne+Xp)
wherez and v are the corresponding exponent and nonuni- (h)= SNF 1 E smN—, (A1)
versal amplitude in the KPZ regime. Another relation can be 1= 0®
obtained by matching the roughness. We find that
2 n=N 2
AIn(L,/a) = Y05 | gem(netXo) (A2)
AU-Z g LX ¢ , (9) 2N+1n:—N N08
C

For largeN,, these sums become integrals. Evaluating these
integrals, one obtains a surface roughnesd\,L,,Xg),
which depends on botk, andL,. If the modulation on the
surface contains only one wavelength, the global surface
L= \/V[Af,”)m(l-c/a)/At]Z/X- (10) ][;:]Légtr;]r;?ss is simply an averagexgfover the period_,. We

where A, and A; (in the following equatioih represent the
corresponding nonuniversal amplitudes in the KPZ regime

SinceA=A,(7v)?, we obtain

Because we do not observe any crossover below o

L. has to be larger than 1Q@m. In addition, by setting . on _ L [ L, 1)2 1-co 4arL | |2
the right-hand side of Eq(10) to the maximal scan size 7Y oLxs  |2LFe 27 L, '

Lo, we can get an estimate of the lower boundlfgr Using (A3)

the figuresz/y~4, APIn(Ly/a)~10% A for Ly~100u m,

A~1 Al(secf, and v~10"2 um? sec’’, we find that the ~WhereL (=Neg) is the size of the sample. In this case,
lower bound is about 1 mm, which is beyond our measureapproachey, asL approachese. For L<L,, o does not

ment range. scale; instead, it oscillates with.
In conclusion, we have observed a universal scaling be-
havior for the surface morphology of compositionally APPENDIX B

graded, relaxed GeSif®01) films. Quantitative analyses on ) ) ) _

scaling exponents and nonuniversal amplitudes show that the In this appendix, we shall investigate the large-scale be-
scaling behaviors for samples grown under different condihavior of the model

tions all belong to the same universality clzass, wrzich can be h

described by the linear modéi[h,t]=vV°h—KV*~h for ot 2 ol 2 2

1 nm=<L=<100 um. In combination with further theoretical gt~ oV =KV R VA(Vh) S, (B1)
analyses, it is argued that the underlying growth model is the

KS equation driven by Gaussian noise. Our results indicat&herevy is negative Specifically, we shall show that there is
that as far as the roughening exponents are concerned, upno correction tov, at large length scales.
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Two important functions we shall work with are the re- positive. If the divergences are UV type, we set all internal
sponse functiorG(k,w) and the two-point correlation func- momentum, such ag and |k—q|, to A, and all internal

tion U(k,w). They are defined by

G(k =<—5h(k’w)> B2
( !w)_ 57]('(,(1)) 774’01 ( )
U(k,w)=(h(k,0)h(—k,— w)). (B3)
The generic forms of these functions 29|
B 1
Gk = s TS kw)’ B4
U(k,)=|G(k,0)|’[27+ D (K,®)] (BS)

where y,= — vok?— Kk* and 3 (k,w) and ®(k,w) are the

self-energies. We shall be interested in scaling solutions i

which G(K, w) = g(w/vk?)/vk? and U (k, ) = u(w/ vk?)/K>.

These scaling solutions are asymptotically correct only fo
k—0 and w—0. Therefore,y, has to be subdominant to

vk? for k—0; hencez=2. The exponents andA are related
to x via the relation Z=A—-d—z. We shall show that
z=2 is not acceptable.

Let us first consider the one-loop diagrams in the renor

malized Wyld-Dyson perturbation theorf20]. The self-
energy is

2<2><k,w>=4<x2>2qug[k2<k—q>~q]

X[g%k-(k=q)]1G(q,2)U([k—al,0—Q).
(B6)

By appropriate changes of variabl@s=g/k, t=Q/vq? and
s=w/vk? we can rewrite Eq(B6) in the following form:

3 (k,w)=kI8 252 (s ATk, Mg /K). (B7)

Here o(?) is a function ofs, A/k, andmy/k. A andm, are
the ultraviolet(UV) and the infraredIR) cutoffs in theq

integrals. These forms imply that if thpintegrals are diver-
gent, the leading terms i&(?(k,w) must take the form
kd+8—A—5A5 or kd+8—A+5’

divergences are UV or IR. Here both and 6’ must be

frequencies to\ % Only external momentum are left intact.
Since in2)(k,w) the first vertex carries onk? and the
final vertex carries one external momektathe lowest term
would beO(k?k). However, becausg (k,w) depends only
on k, this term must vanish. Hence, the leading term is
k*A9t4~4 The subleading terms al®A4+274 KBAI—A,
and so on, with the power of decreasing until the power of
A becomes negative. For the above to be correct, one re-
quires A<d+4, and the difference betweeh and d+4
decides the number of subleading terms. It is clear that the
UV divergences do not contribute any correctiontp

On the other hand, if the divergences are IR type, one sets
g or |k—qg|, but not both, tom,. Simple power counting
leads to the conclusion that the leading ternE&P(k, ) is
k87%(mg)9*274%2 The subleading terms are terms with less
power ofk, so they could correcty. The correction must
take the formk?(my)9"6 2. Obviously, it implies that

'\>d+6, which results iny=(6—2z)/2=2. Since in the
Iphysical regimey<1 [35], this is also ruled out. Therefore,

the IR divergences do not contributg in the physical re-
gime (y<1) either.

Finally, if the integralo(?) is convergent, it depends only
ons in the limits A—«~ andmy—0. In order thatv, gets a
correction, we requir& ®)(k,w)~k?. Henced+8—A=2,

i.e., A=d+6. However, this value falls into the regime
where the integrat(® is not convergent, but IR divergent.

The above analysis can be easily generalized to higher-
order terms. We find that the dimension aftB order terms
in 2 isn(d+8—A—2)+z. These terms cannot be both con-
vergent and at the same time contrib@¢k?) because it
would imply A=d+8—2/n+(1/n—1)z, which is greater
thand+ 6 and thus falls into the IR regime. Thus these terms
must be divergent. We find that the leading contribution of
the UV divergences to 3 are of the form
késr_ a,A"dt6-2)=2 where a, is the contribution of
2nth order terms; hence the UV divergences do not correct
vg at all. Similarly, for IR divergences, possible corrections

to vy coming from the &th order terms must be of the form

k2mjld+8-4-2+22 " This implies that A=d+8+(1/n
—1)z—2/n, and hencey=4+(1/2n—1)z—1/=2, which
is not in the physical regime, so the IR divergences do not
contributevy at all in the physical regimex(<1). We thus

my 5 depending on whether the conclude that to all orders in the Wyld-Dyson renormalized

perturbation expansion, there is no correctiongo
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