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We introduce a model of an adsorbing polymer chain in an external field, which admits exact analytical
solution for the partition function for a finite number of the unik, In the thermodynamic limit, the system
has an isotropic and two ordered phases, exhibits continuous and discontinuous phase transitions, and has a
bicritical point. We obtain exact expressions for the Landau free energy as a function of an order parameter in
the vicinity of the first- and second-order phase transition lines, and compare them to the original theory. The
Landau free energy is also calculated as a function of two independent order parameters in the vicinity of the
bicritical point. The distribution of complex zeros of the partition function is found for both first- and second-
order transitions. In the thermodynamic limit it is described by exact analytical expressions, allowing a com-
parison to the existing phenomenological results within the framework of the Yang-Lee-Fisher approach. An
advantage of the model presented is that the partition function can be calculated analytically not only in the
thermodynamic limit, but for finité&\ as well. The ideas of finite-size scaling analysis are checked against the
exact solution, in terms of both the functional form of the free energy andl thependence of the distribution
of Fisher zeros[S1063-651X97)04908-9

PACS numbg(s): 64.60.Cn, 64.60.Kw, 02.30.Dk, 68.35.Rh

[. INTRODUCTION nected to form linear chains, thus introducing a “linear
memory” effect[3]. Generally speaking this brings about
Historically, the question of whether statistical mechanicsmore complications and more possibilities for different kinds
is applicable to phase transitions has been debated exteaf phase transitions. On the other hand, the bonding interac-
sively [1]. Onsager’s solution showed that the description oftions can be singled out to be treated in a separate way. Once
phase transitions is indeed contained in the exact partitiothis is done, even most simplified models exhibit nontrivial
function. A lot more has been learned since then about thbehavior that could be absent in their low-molecular-weight
physics and mathematics of phase transitions. It is remarkeounterparts. One should also bear in mind that it is physi-
able though how modest is the number of exact soluti@hs cally meaningful to speak of phase transitions even for a
that would allow one to follow the details of these fascinat-single macromolecule, since the number of monomeric units
ing phenomena without making priori assumptions. First, N in it could be very large indeed. Exact solutions describing
there are a few two-dimensional lattice modg@#sng, eight- phase transitions are known for the Zwanzig-Lauritzen
vertex, three-spin, and segnetoelegtrithen there are two model of two-dimensionaB-structure formatiori4] and for
somewhat more artificial models: the one introduced by Kasome closely related models of directed polymer adsorption
with infinitely weak, infinitely long-range interaction, and [5]. Another inherently related set consists of the DNA melt-
the spherical model corresponding to the infinite number ofng model[6] and the model of adsorption of an ideal chain
spin componentgsee[2] for the references The models on surfaces of different geometiiplanar and cylindrical
mentioned admit exact solution in the thermodynamic limit[7,8].
N—o, whereN is the number of particles in the system  Apart from the few exact solutions, more general ap-
(finite-size corrections are available for the Ising model. proaches exist. Ideas of Land§8] proved invaluable in
Only some of these models are solved in the presence of thearifying the essential background of phase transitions. Al-
external field. though it was recognized early enough that the assumption of
A number of models from polymer physics can be addedanalyticity of the free energy as a function of order parameter
Unlike in the conventional low-molecular-weight systems,in the original version is equivalent to the mean-field ap-
the particles in a polymeric material are irreversibly con-proximation and is generally incorrect, the Landau-Ginzburg
formulation, which incorporates local fluctuations of the or-
der parameter, eventually leads to the fluctuation theory of
*On leave from the American University of Beirut, Department of critical phenomena. On the other hand, the functional form
Physics, Beirut, Lebanon. Author to whom correspondence shoulof the Landau free energy has always been postulated on
be addressed. very general grounds, while its exact analytical calculation
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for a given model remains too rare a fégt fact, we cannot tional entropy of the chain as a whole does not come into
think of any example. play. A short-range adsorption interaction exists between the
Another approach goes back to the 1952 paper by Yanghain segments and the surface. A constant fonrcermal to
and Le€10], and is based on representing the partition functhe surface is applied to the free end of the chain. Our con-
tion in terms of its zeros in the complex plane of chemicalsideration is based on a random walk model whereby a con-
potential (or temperature, as suggested by Fisfldy. The  figuration of a polymeric chain is represented byNustep
theory is mathematically rigorous, which brings about awalk [14]. Only the direction normal to the surfacgaxis, is
hefty price to be paid: the problem of finding the actualof interest here, since the walk in théY plane is uncon-
distribution of zeros for the partition function of even a strained and therefore described by a standard Gaussian
simple model proves to be formidable. There exists a phefunction. In the continuum limit, the statistical weight
nomenological approach relating certain features of a phase(N,z) of a chain with theNth segment at distancefrom
transition(amplitudes and critical indicgéso the characteris- the plane in the absence of the end force satisfies the equa-
tics of the distribution of zeros assumed to be knddvhl, as  tion [14,15
well as scaling predictions for this distributi¢fh2]. In prac-

tice, for a given model the zeros are calculated numerically J 12 92
for small samples, and then some extrapolations are em- N P(Z|N)—gﬁ P(zIN)=0, (1)
ployed[13].

Relationship between various approaches to phase trangji the initial conditionP(z]0)=8(z) describing the fact

tions is not clearly understood and, to the authors’ bes{hat one end of the chain is attached to the plare=0. (Of

knowledge, has'never been.d(.emonstrated on one and ”& urse, there is also the trivial factor equal to the total num-
same microscopic model. This is exactly the cause pursu er of unconstrainedli-step random walks

in the present paper. We introduce a model of an adsorbing The problem can be mapped onto the Sdimger equa-

lp(illym?r ctnaln 'nt.f.m e;derrt]_al f|?ldt;ha:hadm|t3 analytlclgl .To'tion for the Green's function of a quantum particle of mass
ution for the partifion unction. in the Mermodynamic imit, 3,2 1ocated initially at the plane, by taking=1, t=iN.

the'bsydstgmthas a(r; Isotropic t;nd tr\]/ygtorder?d phﬁdesd Henceforth, we take the segment length as the unit length,
SCMLed Ly two order parametsrExnioits continuous an | =1, and express energy kT units. The short-ranged inter-

discontinuous phase transitions, and has a bicritical pomtaction with the plane is introduced through the boundary
We obtain exact expressions for the Landau free energy as

function of order parameters in the vicinity of phase transi-caond't'on[16]
tion lines, and compare them to the original theory. More- 9
over, the model allows one to write the Landau free energy —— —P(ZIN)| =-c, 2
as a function of two independent order parameters in the P(z|N) gz 7=0
vicinity of the bicritical point. Finally, we find the distribu-
tion of complex zeros of the partition function for both the the same as that which appears for the Sdimger equation
first- and second-order transitions. By the same good fortunén the presence of a-functional pseudopotential. Math-
in the thermodynamic limit it is also described by exact anaematically, adsorption corresponds to the existence of a
lytical expressions allowing a comparison to the existingbound state in the corresponding quantum-mechanical prob-
phenomenological results within the framework of the Yang-lem. Whenc>0, the macromolecule tends to stick to the
Lee-Fisher approach. surface; forc<0 it is desorbed. The value=0 corresponds
Another advantage of the model presented is that the pate what is called the critical adsorption condition. The physi-
tition function can be calculated analytically not only in the cal meaning of the parameter was discussed in Refs5,
thermodynamic limitN— o2, but for finiteN as well. There-  17].
fore, the ideas of the finite-size scaling analysis can be The solution of Eqs(1) and(2) for the partition function
checked against the exact solution, in terms of both the funcef the macromolecule with ends fixed was obtained by
tional form of the free energy and ti¢ dependence of the Lepine and Caill§8] and is naturally expressed in terms of
distribution of Fisher zeros. scaled variableg=z/2R, T=cR, whereR=(N/6)*? is the
We would like to stress that the main interest of the modekoot-mean-square radius of gyration of an ideal chain in an
presented here lies not in some excitingly unexpected newnconstrained state:
exact results—the model itself is perhaps too simplistic for
that (for example, the second-order transitions turn out to be  pP(Z| )= (7R?)~Y2exp —Z?){1+ #2CY(Z-C)}. (3)
of the mean-field type Rather, it is the possibility of carry-
ing out analytical results to the very end within the frame-pgre Y(t)=expterfct), erfct) being the complementary
work of different approaches, and being able to see the insidgrror function.
story of those miraculous workings of nature called phase The presence of the external end fofceiill change the
transitions that make the model ideal for the purposes Oétatistical weight of every random walk by the Boltzmann
instruction and sharpening one’s intuition. factor expfz). Since it is the same for all random walks
ending at the same heiglat the partition function of the
end-force problem is simpl(Z|C)exp(fz). Positivef cor-
responds to stretching the chain while negafiyaresses the
We consider an ideal Gaussian chain consistiny seg- ~ free chain end down to the surface. Introducing the scaling
ments attached by one end to a planar surface. The translaariablef=fR, one arrives at

II. POLYMER MODEL: PARTITION FUNCTION,
SYMMETRY PROPERTY
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P(Z|T,F)=(mR?)~Yeex T 2—(Z-1)?] K
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Integrating P over the position of the free end gives the Second Order Transitions
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The average height of the free end (B)=Rd InZ/sf.
Since the average number of adsorbed segm#msnumber
of contacts with the planeis conjugated to the adsorption (a)
parameterc [16] one obtains similarly(m)=Rd InZ/Jc.
Equation(5) for the partition function of an adsorbing chain s
with the external field present is remarkably symmetric A
with respect to interchange of the adsorption parameter
and the reduced forck One can say that in a certain strict
sense, the effect of adsorption is equivalent to the effect-————————-— < .
of applying the end forc¢18]. The average number of ad- ﬁ i D N ;
sorbed segmentsn) as a function of the adsorption interac- _——————_ . _ _ .ol
tion parametec and the force is the same as the height of | :
the chain end as a function of the interchanged variables: : ! I A
(m)(c,f)=(z)(f,c). We recall that in terms of conventional 1 3 's&,}% %
units, the dimensionless combinations ame z/I, cl, and & : |
fl/KT.

A stronger consequence of the partition function symme-
try is that not only the mean values but all the moments of
the probability densities fom and z coincide under the in- (b)
terchange of the conjugated parametersf. Therefore, the ) ) ) o
probability densities themselves, being well-behaved quickly F'G- 1. (8 Phase diagram for an adsorbing Gaussian chain with
decreasing functions, should coincide under this interchangd€ €nd force applied in the thermodynamic lifié-c. (b) States
The partition function for a given scaled number of adsorbec?f a finite-length chain with typical conformations indicated.
segments follows from Ed4) to be

Ill. PHASE DIAGRAM

P(m|¢C,f)=(7wR? Y2exd€c?—(m-7)?] The average fraction of adsorbed segmettsm)/N is
- o~ usually taken as an order parameter in the adsorption prob-
X {1+ x4y (m-1)}, (6)  lem. For an adsorbed chain, a finite fraction of segments
(independent oN) are in contact with the plane. In the pres-
wherem=m/2R. ence of an effectively repelling surface, the number of con-

A question arises if the symmetry of the partition function tacts is always on the order of one, which means that the
could be traced to that of the underlying Hamiltonian. Thechain is desorbed. We recall that one end of the chain is
Hamiltonian of a Gaussian chain interacting with a planar@anchored at the surface, eliminating the possibility of floating
surface via as-functional pseudopotential in the presence ofaway from the surface. Accordingly, for the problem of
the constant end force can be written following Réfs5,  chain stretching it is the average degree of stretching
19]. If the conformation of the chain is specified by the po-=(z)/N that will naturally serve as the order parameter.

sition vector functionr(s), s being the distance along the  In the thermodynamic limitN—c one can speak of a
contour of the chain, then definite phase state for the macromolecule. Possible states of

the chain for various values of the adsorption interaction pa-
2 N dz rameterc and the forcef are expressed by the phase dia-
+f ds(cg(z(s))_f _>_ gram, Fig. 1a). Upward motion along the ordinate corre-
0 ds sponds to increasing the stretching force; downward
(7 corresponds to pressing the free end of the chain down. Mov-
ing to the right means increasing the adsorption strength;
Here, z(s) is the normal component of the vectqs). This ~ moving to the left means increasing the repulsion between
form of H does not display any obvious symmetry with re- the plane and the macromolecule. Three different regions in
spect to the interchange ofandf. It would be quite reward- the diagram correspond to the *“isotropic” phasé={
ing to find a transformation revealing this symmetry but for=0), the “stretched” phaséd=0 and{>0), and the “ad-
now we leave the question open. sorbed” phas€6>0 and{=0). The dashed lines of second-

3 (N |dr
H{r(s)}zzfo ds ds
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order phase transitions come together and pass into the solid 1V. COMPARISON WITH THE LANDAU THEORY
line of a first-order transition at the bicritical poiot=f=0 OF PHASE TRANSITIONS

(according to the standard terminolog0]). The phenomenological theory of phase transitions by

At the transition between absorbed and stretched states Etandau[Q] is based on consideration of the free enefggs
the chain(crossing the solid line=f ), the free energy has , function of the order parametet. In the vicinity of the

a discontinuity in the slope and the fraction of adsorbed segsecond-order transition poirf, is expanded in powers af,

ments6 as well as the energy of the macromolecule changgyy the terms with even powers being present due to sym-
abruptly. Analysis in terms of the Landau free energy givenmetry considerations:

in the next section turns out to be quite illuminating. In the 5 4
case when one of the dashed lines of the Fig) is crossed, F(¢)=Fo+A(T-T)¢p"+Bp"+--- . (8)

't2'5 thezsecond denvatlvg of th_e free energiinZ/oc” .(Or. FactorsA and B are assumed to be positive and approxi-
°InZ/dt%) that changes discontinuously. These derivativesyaiely constant in the vicinity of the transition point, so that
are related to the speplflc heat and the susceptibility to thg e coefficient with the quadratic term changes sigrT at
end force, correspondingly. N =T.. Minimization with respect tap gives the equilibrium

For chains of finite lengtiN, sharp transitions are blurred yajye ¢,=0 for T>T,, and ¢o=(A|T—T|/2B)2 for T
and different phase states are separated by crossover regiofs_ . In the original model, the specific heat changes dis-
rather than by Iineisee Sec. VI Transitional regions for continuously byTCAZ/ZB at the transition point_
finite systems are shown in Fig(ld. Typical conformations For a Gaussian chain adsorbing onto a planar surface, one
of the chain in different regions of the diagram are also dis-as to consider the free energper segmentas a function of
played. We denote the adsorption region of the diagram byhe fraction of adsorbed segmertss m/N. Here, the order
A, and the region of stretched conformations in the uppeparameter is not averaged but is allowed to fluctuate. The
part of the diagram byS. The states to the left from the partition functionP(6) for the case of zero forcef €0)
bicritical point along the line of the second order phase tranfollows from Eqg.(6):
sitions will be calledD (desorbeyl while their counterparts 12
along thef=0 line in the lower region will be called® p(g):(_> eXF{ — — N&*+ Ncg), 9)
(pressed down The third quadrantisotropic phasgis de- 6 2
noted byl and corresponds to a desorbed macroloop. Thg hile for the free energf = — N~ 1InP one obtains
vicinity of the pointc=f=0 is the bicritical region.

It is clear from the diagram that the classical problem of F(6)=Fy—co+36° (10
adsorption with no force applied corresponds to moving

along the line of second-order transitions frénto A via the Equation(10) has physical meaning only for0f<1 since

bicritical point. An ivalent dual situation is realized wh nthe fraction of adsorbed segments is of course non-negative.
critical point. equivaient dual situation IS realize €N in the original Landau theory, the free energy is invariant

th_e a(_jsorption parameter is_fixedcato and the _force ap- \ith respect to the changé— — ¢ and is considered ana-
plied is changed from pressing down to stretching. AdSOrPyysic in the vicinity of ¢=0. Introducing a new variablé so
tion of a chain with the end pressed dovaonstantf <0) is  that = #? provides a mapping for the free energy to be

equivalent to stretching of a chain anchored to an inert Ogefined on the intervdl—1,1] and supplies it with the ap-
repulsing surface, and is also a second-order phase transitigfyopriate symmetry. Then

as shown in the next section. Adsorption of a chain under s 34
constant stretching forcE>0 applied is equivalent to tear- F(¢p)=Fo—cod+3¢". (13)

ing off an adsorbed chain under the conditioncef const. In this form, the dependence & on ¢ exactly coincides

The problem of stretching an isolated ideal chain by &, the truncated expansid8) of the Landau theory. Note
constant end force belongs to an introductory statistical meg, 5t formula(11) is valid not only in the thermodynamic
chanics textbooktraditionally, it is also shown to be equiva- |imjt, but for finite chains as well.
lent to the problem of orienting a set of noninteracting spins  The behavior of the mean-square fluctuation of the num-
by a uniform magnetic field21]). The dependence of the per of adsorbed segments, in our model is analogous to
mean end-to-end distance on the external force is smootihat of the heat capacity in the Landau theory, since both are
there being no phase transition whatsoever. We have jugiroportional to the second derivative of the free energy with
seen, however, that the presence of an impenetrable repulsivespect to the governing parameter. The quantity analogous
or attractive surface changes the situation quite dramaticallyto the specific heat is

2\ _ 2 = 2 _Ts
(m?y—(m)*) 1 2c 2 [1/(Nc ) c>1 12

N 3 3727%(-%) 3avA-0 |13, T>1-

It is clear that in the thermodynamic limit the jump in this quantity is indeed equal to 1/3, conforming to the result of the
Landau theoryA?/2B with A=1, B=3/2.
In the case when the chain is adsorbing with its end pressed dbwf)( the partition functiorP(6) is given by

—1/2

1/2
exp(cN/6)exy (09— c/3)23N/2]{ 1+ ) fY((3BN/2)Y(6—113)) ;. (13

P<9>:<? &
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For not too weak forcegf|>N"12 the corresponding free 1 F
energy as a function o is simplified to

1
- 4
1+3|f|¢

F(¢)=F —c¢2+§¢4+iln (14)
0 2 N :

which is the same as Eq@ll) in the thermodynamic limit 05

N— o0,

We see that second-order transitions in our model are rig-
orously described by the Landau mean-field theory. It is well 0.75
known that for ordinary low-molecular-weight systems Lan-
dau theory becomes incorrect in the vicinity of the second- 0 1.25
order transition point, due to the strong spatial correlations of
the fluctuations of local order parameter. In the polymeric
system under consideration, the role of the order parameter is
related either to the fraction of adsorbed segments or to the
degree of chain stretching. In both cases, the order parameter
is defined “globally,” for the macromolecule as a whole,
and not as a local quantity. Therefore, no correlations of 0 0.2 0.4 06 08 1
fluctuations are possible at all, and the system always retains

mean-field behavior. I 4 FIG. 2. Landau free energy as a function of the order parameter
The fact that only two terms witkh” and ¢™ are present , 5on crossing the first-order transition line: The values of the

in the expressiolil1) is due to the Gaussian elasticity of the 5qsorption parameterare shown in the figure; the force magnitude
chain in the continuum model. Taking into account the finitejs f=0.75. The two analytical branches Bfmeet até=0.5.

extensibility will produce higher-order terms in tHe(¢) ) ) S .
dependence. itly nonanalytic(the second derivative is discontinuous at the
Let us consider in more detail the behavior of the Landadunction poiny. Of course, for any finiteN, no singularities

free energy when crossing the line of first-order transition<'€ Present. _

c="f on the phase diagram, Fig(dl. It can be easily shown It is clear from Fig. 2 that the Landau free energy has
that this indeed leads to a finite jump in both order param&/Ways only one minimum so that no bimodality in the order
eters(the fraction of adsorbed segments and in the degree djarameter distribution is ever present. At the transition point

, : . tself, part of theF(¢) curve is strictly flat, which brings
ghim str;atch)l(ng a{ng tfht:re e);:ftzraf!?;,ﬁgtr dhsrairg;;?ﬁogafé_about a finite jump in the average order parameter. On the
on, as IS expected lor a prop j other hand, the flattening of thg ¢) curve in the vicinity of

c_ordmg to the cl_a_lssmal concepts of the Landau approa_ch_, th[ﬂe transition leads also to anomalous pre-transitional fluc-
flrst-qrder transition corresponds to the case when, within fuation growth. The origin of this discrepancy with the clas-
certain range of external parameters, the free enBi@))  sjcal picture is also related to the fact that the order param-
has two minima as a function of the order parameter. Theter js defined not locally but as pertaining to the system as a
deeper minimum gives the equilibrium state, while the othekyhole, Atc=f the chain is actually phase separated into a
one corresponds to a metastable state. With the change in tegetched and an adsorbed part, the states with different frac-
governing parameter the relative depth of the two minimajons of segments belonging to each phase being equally
changes, and the transition corresponds to switching fromrobable, hence the flat part of tF¢ ) curve. On the other
one minimum to the other. As a result, the distribution den-hand, there is no activation barrier to segregation since there
sity for the order parameter is bimodal. Accordingly, thereis no interface between the adsorbed and the stretched parts.
should be no pre-transitional fluctuation growth. There is a direct analogy to a gas-liquid mixture in a cylinder
We shall see that the first-order transition in our modelkept at a constant pressure exactly equal to that of the satu-
does not conform to this picture, and the Landau theory failsated vapor. Assuming that we consider the phase separated
in a very peculiar way. The Landau free energy can be stilstates with the flat interface of constant area, all these states
derived from the exact formulés). However, in contrast to that differ by the relative vapor-liquid volume fractions have
the case of second-order transitions, for positive values oéxactly the same free energy. The average density can be
f andc one arrives at a functioR (¢) that consists of two therefore considered as fluctuating in the range between that

1 ] 1 | ¢

-0.5

branches in thé&l—co limit: of the saturated vapor and that of the liquid. Infinite com-
pressibility of a phase separated vapor-liquid mixt(sen-
f—c)p? for ¢p<\f/3 sidering only strictly equilibrium statgss well known from
(f-c)¢ ¢ : :
F(¢)—Fo= L2 c2) 4 32— cl3)? for p=\TI3 textbook discussions of the van der Waals equation.
6 2 =
(15

V. JOINT DISTRIBUTION IN TWO ORDER PARAMETERS

AROUND THE BICRITICAL POINT
These are a segment of a parabola and a fourth-order curve

touching each other at the poigt=f/3 so that the first We described the phase behavior of our model in terms of
derivative remains continuous. The functiBf¢) is explic-  two order parameterg@ and and it would be only natural to
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(a)

v v
0. 0.
o 0.
¢ [ [
c=022
(b)
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0 \ [}
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¢ | ) ; [ o ¢

(©

FIG. 3. Contour plots of the Landau free energy as a function of two order paranejeis: crossing the second order transition line
c=0; (b) for crossing the first-order transition line normally to (i) for passing through the bicritical point along thef line.

try to introduce the Landau free energy as a function of twasimple analytical result that is asymptotically exact in the
independent variables(6,{). The probability densities for vicinity of the bicritical point{<1, 6<1:
the free end height and for the number of adsorbed segments,

separately, are given by Eq&l) and (6). We construct the

F(¢, )= —cp?—fyp?+312¢*+ 3124+ 3¢%y?, (17)

partition function of a Gaussian chain with the fixed height

of the free endz, and the fixed number of contacts with the

planem as follows:

N
P(z,m|N,c,f)=f dn P(0,m|n,c)P(z,0N—n,f).
m

This is just the sum over different ways to decompose thé;
chain into the adsorbed part consisting of the firsteg-
ments, and the tail oN—n segments that has no contact
with the surface at all. The next step is to replace the parti
tion functionP(0,m|n,c) of a chain with the free end touch-
ing the surface with the partition functioR(m|n,c,f—
—o) of the chain whose free end is not fixedzt 0, but

where y?={ and ¢?= 6
Figures 3a)—3(c) display the contour plots of the Landau
free energy as it changes in various types of phase transi-
tions. The transition between the isotropic and one of the
ordered states goes through broadening of the minimum
(16) along one axis followed by a gradual shift in its position; see
Fig. 3(@. The transition between two ordered states is more
eculiar: it involves forming a valley that has exactly the
ame depth for all the states with the given value of the sum
o2+ ¢?; see Fig. ®). If one moves along the line=f the
.Landau free energy becomes a function of only one indepen-
dent variablet®= ¢+ y?= 9+ £, as illustrated by Fig. @):

F=—ct?+3t% (18

rather pressed down to the surface by an infinitely large ex-
ternal force. The latter is given by E). Similarly, we take The average valué¢d+¢) is determined by the position of

P(z,00N—n,f)=P(zIN—n,c— —,f) and employ Eq(4).

the minimum of the functiori18), which changes exactly as

Finally, for the Landau free energy we obtain ain the case of a mean-field second-order transition:
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0, c<O0 Upon crossing the&=0 line of second-order transitions in
(0+0)= /3, c>0. (19 the lower part of the phase diagramelatively strong nega-
tive force applieg, the free energy has a slightly different
orm:
On the first-order transition line=f (c,f>0), all the states
with the given average valuéd+ ¢)=c/3 correspond to F=Fy+In[CY(-C)+m Y7, 23

equilibrium, which allows anomalously large fluctuations in
each of the order parameters separately: all the statesowith

. ins th I
in the range between 0 a3 are equally probable. where the regular paf, contains the dependence énin

both cases the free energy is indeed an explicit function of
the scaling variabl€ that contains the number of chain ele-
VI. FINITE-SIZE EFFECTS mentsc = c(N/6)Y2. Comparing this to the finite-size scaling
_ - . . form of the free energf (|T— T|NY(2~9) we have to keep
The ideas of finite-size scalin@2] stem from a realiza- jn mind that|c| is exactly the deviation from the critical
tion that in the vicinity of a transition point the singular part point (c.;x=0) and, since the second order transition under
of the free energy should depend on the size of the samplgonsideration is of the mean-field type, the heat-capacity in-
L, only through the combinatioh/§, whereé~|T—Tc|™"  gex isa=0. We see, therefore, that the exact solution con-
is the correlation length, and is the corresponding critical fgrms perfectly to the finite-size scaling ansatz.
index. The common way to write the free energy of the  consider now the vicinity of the first-ordéy-S transition
sample isF=F(|T—T[L™"). Close enough to the critical \yhen we increase the force at fixeceventually tearing the

point where the correlation length becomes much larger agsorbed chain off the plane. Sufficiently far away from the
than the elementary length two different regimes can be pjcritical region, i.e.c>N"12 f>N"12 the free energy for

identified: (i) in the scaling regimel./£>1, the free energy finite N can be presented as

as a function of its argument should have power-law asymp-

totics; (ii) onceL/& becomes of the order of one or smaller F=In{2t exp(t2+x2)[x~ sinh(2tx) +t " Lcosh2tx)]}
F tends to a constant, and the critical behavior is smoothed

out. The free energy¥(L/&) should therefore switch from _ sinh(2tx)

one asymptotic behavior to anotherld¢~ 1, and this con- =Forin tx ' (24)
dition defines the range where the finite-size effects are

prevalent. wheret=3(E+1)=T, x=%€-1), andF, remains smooth

To facilitate .d'.rECt comparison .W'th the present model Ve the vicinity of the transition in the thermodynamic limit.
note that here it is not the linear size but the number of unit he free energy is a function of the combinatidm
N, that enters as one of the arguments of the freejenergx|c_f|(NC), where|c—f| is now the deviation from the
function. So, instead of the standard way of presenting th(?ransition pointf =c. In the case of the first-order transition

free energy we rewrite the .ar9“m?‘”t Substituting N.l y the heat-capacity index can be formally takenaas1 (see
and using the thermodynamic identitiy=2-a, to arrive also the next sectignwhich leads again to an exact agree-
at ment with the ansat{20).
Returning back to Eq.21) we conclude that for finitd,
F=F(|T—T¢NYZ ), (200  second-order transitions in our model are smoothed over the
interval|c|~N~2 (A-D transition or |f|~N~2 (P-Stran-

« being the heat-capacity index. Note that for the rnodelsition). The bicritical region itself has the characteristic size
considered here we cannot properly identify the meaning o?f N n both dlrectl_o_ns of the phase d'agrf"‘m' The first-
the linear size of the systen, or the dimensionalityd. order tg?rlng-off 'transmon has thg characteristic width
However, they do not enter in the final result. One expectsT(NC) . The width of the transitiolAf decreases as one

the finite-size effects to smear out the transition over thd"OvVes away from the bicritical poirft=c=0.
interval Similar to the way the magnetization of finite Ising lat-

tices can be presented in a universal scaling form in the

coordinatesM L?'” versusL Y| T—T,|, in our model the av-
AT~N- M-, (21 erage number of adsorbed segments is described by universal

scaling functions, which we are fortunate to be able to write

In our model, of courséT— T.| should be substituted by the analytically. Takingf=0 as an example, one obtains

deviation from the transition point in terms of the governing

parameters andf. _1p (2
The explicit dependence of the free energy on the numbefMN ™= 3

of chain units|N, is easily extracted from the exact formula

(5). For example, if we follow the second-order adsorption-

desorption transition at zero force moving along the0 ~_ 12

line on the phase diagraffig. 1(a)], the free energy is given wherec=Cc(N/) ™.

1/2 1

V7Y (=T) e

_[e7Vxl —T>1
—| 2R, T>1,
(25)

b The curves are displayed in Fig. 4 in a log-log scale, and
y it is clear that in the regioie >1 they are indeed described
by power laws similar to magnetic systems, although the
F=const-In[Y(=0)]. (220  values of the indices are, of course, different.
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7 l<m>N" cation of phase transitions and to express the main charac-
teristics of a transitionjump magnitudes, critical indices,
and amplitudesthrough the parameters of the linear density
of zerosg(y), wherey is the coordinate along the imaginary
axis. The analysis is based on the following formula for the
internal energy(per unit volume at a given deviation from

the critical temperaturd=8—8.:

y cotw+ A
y cotw+A)°+y?

dy.
(26)

5| E(A)=2(1+c012w)1’2fwg(y) (
, 0

N

0.1

Once the linear density is assumed to be a power function
g(y)~yl™ ¢, the following cases can be distinguishét): If
the densityg(y) tends to a constant at small(a«=1), then
the zeros necessarily approach the real axis at a straight angle
w=m/2, and the energy has a finite jumprg(y=0) upon
crossing theB= B point. This obviously corresponds to a
first-order transition with a-peak singularity in the specific
heat.(2) If the density grows linearly witly (a=0), and the
support lines cross the real axis at /4, the energy is
continuous but the specific heat has a finite jump discontinu-
ity, as in a classical mean-field second-order transitignif
a=0, butw>m/4, or 0<a<1 (arbitrary w), specific heat
diverges at the transition point. This is either a power-law
VII. COMPLEX ZEROS OF THE PARTITION FUNCTION singularityc,~|A|~* in the latter case, or a logarithmic sin-
gularity for =0. In both cases, the value of the angle

At a phase _transmon _pomt, thermodynamlc fu.ncupnsaffects only the specific-heat amplitudes on the two sides of
have a singularity, meaning that they or their derivatives

have a finite or infinite discontinuity. The aporoach pio- the transition point. In particular, the vertical line= /2
d by Y d L] related >tlh . ppl ii pt corresponds to a symmetric transition.

neered by Yang an | refated these singulanties to In our model, the governing parameteror f) is analo-

zeros of the partition function. Their original papers dealt

gous to the inverse temperatyBewhile the conjugated vari-

with the liquid-gas transition induced by the change in fugac,pje  the number of adsorbed segmefds the free end

ity, so these were the analytical properties of the grand pafeighy would be the analog of the ener@y Let us fix the
tition function in the complex plane of fugacity that were the magnitude of the end force= f, (it could be negative, zero,

object of investigation. Similarly, the temperature-inducedor positive, but is still taken as réalThen we should analyze
transitions should be described in terms of the zero distributhe partition functionz(c,f,) in the complex plane of the

tion for the canonical partition function in the complex planeygriablec.

of temperature(or S=1/KkT). These are commonly called  We start by considering the distribution of zeros upon

Fisher zeros in order to distinguish them from the Yang-Leecrossing the line of the first-order transition,€ const

zeros in the fugacity plane. Obviously, the general approach-0). The zeros are found from the equation

is applicable to phase transitions induced by changing any

other external parameter as well. CY(—cN/B)—foY(—foYN/B)=0, c#fo. (27)
Yang and Lee showed that for finit¢ the partition func-

tion can have only complex-conjugate zeros but no zeros o

thg real positive _axis. The only possibility for a phgse tran- c exp(cZN/G)—foexp(fSN/6)=0, c#fg. (28)

sition to appear is that as the number of particles increases,

the complex zeros come closer to the real positive axis, angtakingc=p exp(y), one obtains two coupled equations:

eventually, in theN—oo limit, they pinch upon the real axis

at the transition point. While the Yang-Lee theorem states

FIG. 4. Log-log plot of the number of adsorbed segmemtsys
the adsorption parameterin the universal finite-size scaling coor-
dinates. The power-law asymptotics are shown by dashed lines.

for largeN, andf,>0, |arg)|<w/4 this is reduced to

2 P o
that the zeros in the fugacity plane have to be located on a preosX+ g In o fo=0, (29
unit circle, there are no general results known for Fisher
zeros. Empirical regularities show, however, that they tend to Y+ Lip2Nsin2y=2mk, k==1+2,... . (30)

fall on smooth arcs that cross the real axis at a certain angle.

In the thermodynamic limit, the free energy and its de-The limiting line of zeros is found by lettintyl— o:
rivatives can be represented as integrals over the continuous
distribution of zeros that could be characterized by some pzcosa(zfg (32
limiting density function. Assuming that the zeros concen-
trate on two symmetric support lines that cross the real axior, passing to the Cartesian coordinatesRe(), y=Im(c),
at the pointg= 8. making an anglev with it, Grossmann s o 2
and Rosenhaug¢fl1] were able present an extensive classifi- x“—y =15 (32
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This curve is easily recognized as hyperbola crossing the rea (¢
axis at a straight angle at poirt=f,, with two asymptotes © N=100
y=*x making an angles= m/4 with the real axis. The left L L S I B B B
branch of the hyperbola is irrelevant to the original equation ' ! :
(27).

Combining Egs(30) and (31) we obtain an equation for
the positions of zeros on the hyperbola: 0.5

T N

f=0.5
£=0.2
=0

x+ifaN tany=27k, k=+1,+2,.... (33 0.2

o » n o
1

For zeros close to the real axise., with smally) this gives 0

67k

Xk:3+—Nf3- (34

The limiting density of zerog=limy_,..1/N dk/ds, where I
ds=\Jdp?+ pZdx? is the line element, can be calculated ex- [ ; ; :
actly everywhere on the hyperbola from E¢31) and(33), N SR B B A

to give Re(c)

-1 0.5 0 0.5 1

1 (@)
Im(c) N=500

9(p) =5 p- (35

At the point of crossing the real axjs=f,, andg tends to L T N A A R T
the finite valuegy=fy/67. This falls into categoryl) ac- : : ‘
cording to the above classification, and indeed gives the first-
order transition with a finite jump in the order parameter.
The magnitude of the jump was derived in REE1] to be 05 [ « §20.2
2mwgo=3fo. This is of course in accordance with the value L R f=0'
obtained by direct differentiation of the partition function. - o f=-0.2

On the asymptotic wings of the hyperbola the distance T v t
from the transition point along the cung, is the same ag, 0 L . ;
and Eq.(35) shows that the density of zeros increases lin- L ‘ :
early with it. Takings=p and solving forp as a function of r
k one obtains the position of tHeh zero i

T T T 1

s f=0.5

1

N

17 AR NN N S S|

127-rk) 2

LI B

PK= (36)

|1x|i||\‘i|\(|i||‘

What happens as one crosses the line of the first-orde!
transitions closer and closer to the bicritical point? The focus -1 0.5 0 0.5 1
distance of the hyperbold,, decreases and so do accord- (®
ingly the densityg, and the magnitude of the jump in the
order parameter. Eventually, 8=0, the curve degenerates FIG. 5. Distribution of zeros of the partition function in the
into two straight lines at an angte= /4 with the real axis adsorption parameter complex plane for various values of the end-
crossing it at the originsee Fig. 5 Here, the transition force magnitude,f, indicated in the plot:(a) N=100; (b) N
becomes second order: changing the adsorption parameter™ 500. The analytical limiting curves of zeros are shown by solid
one passes exactly through the bicritical point. Strictly/nes:
speaking, the asymptotic representation of thdunction
used in Eq(28) is not valid in this case any more. However, can be rationalized if one recalls that along this line the erfc
the limiting picture of the distribution of zeros does apply. function becomes an integral over a strongly oscillating
Indeed, forfy=0, the partition function is simplified to  function:

Z(c)=Y(—c\N/6)=exp(c®N/6)erfa — c\/N/6). (37) )
imldy 20 ciny?

The exponential function has no zeros in the entire complex erfqte )_ﬁ (CoSC+1 sinc)dx.
plane. So it is the distribution of zeros of the complementary
error function, and particularly its asymptotical form in the
N—o limit, that we are interested in. Numerical results Due to these oscillations, both the real and imaginary parts of
shown in Fig. 5 suggest that zeroes indeed condense onthe integral have an infinite humber of zeros, the distance
support line at an angle = 7/4 with the real axis. This fact between them constantly decreasing as one moves to larger
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t. Therefore, it should not be surprising that in the limit of x1~1, which meanstS~ 1, fo~N"2
larget, zeros of the erfc function condense on {he' ™
line.
The limiting density of zeros can be now evaluated byin accordance with the estimates of Sec. VI.
realizing that the distancé between two neighboring zeros It is worth noting that in contrast to the lattice models
should correspond to a phase change»fi2the integrand: where the partition function of a finite system is a polyno-
- mial and therefore has only a finite number of zeros, the
(t+8)2—t?>~2m, and henced~ —. model of the adsorbing chain that we discuss results in a
t partition function with an infinite number of zeros for any
Recollecting that=c+/N/6, we recover Eq(35) for the lim-  value of N. The reason for this is that we deal with a con-
iting density of zeros in the plane:g(|c|) =|c|/6m7. tinuum model as opposed to lattice models with finite sets of
This case falls into categor§?) according to the above discrete states.
classification, and, indeed, results in a second-order transi-
tion of a mean-field type with a finite jump in the order
parameter fluctuation squarésee Sec. IY. The magnitude VIIl. CONCLUDING REMARKS
of the jump was derived in Refl11] to be 27 (1/6m) =3,

where 1/6r is the coefficient in the density of zeros, Eq. As we have seen, the model presented allows one to carry

. L X ; © out exact analytical results within all the approaches we have
gS{iy%fyC&#;ﬁg;};@iﬂ;ﬂ'gg'?@i Vglr:(r;rg;/e éaszL;lt obtained dI'Qmploye.d, _be it the direct calculation of the partition fun(_:-
It is easy to show that the limiting deﬁsity aﬁd the slope oftl(.)n’ or finding the Landau free energy that controlls t_he (_dls-
. " - . tribution of order parameters, or calculating the distribution
the line of zeros of the partition function upon crossing the
line of second-order transitions away from the bicritical
point (fo=consk0) are exactly the sameo= w/4, g(p)

=pl67r. Naturally, this is consistent with the fact that the

of complex zeros of the partition function. These results are
available for the first- and second-order transitions, and the
vicinity of the bicritical point that the model possesses, not
only in the thermodynamic limit, but for finite systems as
Well. A question naturally arises: Why is this possible? What
are the main differences between this model and the classical
exactly solvable lattice models?

First, the interaction between monomeric units is taken
into account only in terms of their connectivity, i.e., each
“unit interacts only with two neighbors along the chain. This
interaction is separated from the very beginning and ac-
counted for by the basic differential equati¢i) for the par-
tition function that describes a Gaussian random walk. The
interaction energy is explicitly assigned only to the units in
yi~ L~ Yrktar (38)  contact with the adsorbing plane. The volume interaction be-
tween non-neighboring units is neglected even if they come
close to each other in space.

12— a) Second, both order parameters are defined not as local

(39 guantities, but for the system as a whole. Hence the notion of
correlation length for the order parameter fluctuations in this
description has no meaning.

Third, the external field was taken as linear in theoor-
dinate and acting only on the free tail, not on the loops and
rains of the adsorbed chain. Together with the planar geom-

try and the Gaussian property of the random walk, this
made the problem effectively one dimensional.

All this separates our model from the classical lattice sys-
Since the first-order transition should be formally assigne&emsf and may prevent any direct extension of the results

- : - o obtained onto the other unsolved problems that puzzle the
a=1, the scaling predictiof39) is indeed correct. bri . . ;
. : righter theoretical minds of our time. However, for pur-

In particular, we found that the closest zero is character- f getting to understand better and teaching the funda-
ized by the polar angle poses ot getling fo , 9t .

mentals of statistical mechanics of phase transitions this

dynamic limit (see Sec. IY. Numerical data for a few first
zeros of the exact partition functiof27) with N=100 and
N=500 for several values df, are displayed in Fig. 5 and
support the analytical results for the distribution of zeros.
We now turn our attention to the finite-size scaling behav
ior of the position of zeros of the partition function. Accord-
ing to the analysis given by ltzyksaat al.[12], in the vicin-
ity of the critical point the distance from theh zero to the
real axis should scale as

or, in terms of the total number of units,

k 1/dv k
WIN) TN
Here again we have employed the equality=2— « to pass
from parametersl and v, which do not have a well-defined
meaning in our case, to the heat-capacity indexTaking
a=0 for the second-order transition, we arrive at the scalin
predictiony,~ (k/N)*2, in accordance with the exact ana-
lytical result, Eq.(36). On the other hand, for the first-order
transition, Eqs(30) and (34) give y,~ fox~(67/fy)k/N.

6w model seems to be a very appropriate and useful tool.
X1~ 2 (40)
3+Nfg
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