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Adsorption of a macromolecule in an external field: An exactly solvable model
with bicritical behavior
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We introduce a model of an adsorbing polymer chain in an external field, which admits exact analytical
solution for the partition function for a finite number of the units,N. In the thermodynamic limit, the system
has an isotropic and two ordered phases, exhibits continuous and discontinuous phase transitions, and has a
bicritical point. We obtain exact expressions for the Landau free energy as a function of an order parameter in
the vicinity of the first- and second-order phase transition lines, and compare them to the original theory. The
Landau free energy is also calculated as a function of two independent order parameters in the vicinity of the
bicritical point. The distribution of complex zeros of the partition function is found for both first- and second-
order transitions. In the thermodynamic limit it is described by exact analytical expressions, allowing a com-
parison to the existing phenomenological results within the framework of the Yang-Lee-Fisher approach. An
advantage of the model presented is that the partition function can be calculated analytically not only in the
thermodynamic limit, but for finiteN as well. The ideas of finite-size scaling analysis are checked against the
exact solution, in terms of both the functional form of the free energy and theN dependence of the distribution
of Fisher zeros.@S1063-651X~97!04908-8#

PACS number~s!: 64.60.Cn, 64.60.Kw, 02.30.Dk, 68.35.Rh
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I. INTRODUCTION

Historically, the question of whether statistical mechan
is applicable to phase transitions has been debated e
sively @1#. Onsager’s solution showed that the description
phase transitions is indeed contained in the exact parti
function. A lot more has been learned since then about
physics and mathematics of phase transitions. It is rem
able though how modest is the number of exact solutions@2#
that would allow one to follow the details of these fascin
ing phenomena without makinga priori assumptions. First
there are a few two-dimensional lattice models~Ising, eight-
vertex, three-spin, and segnetoelectric!. Then there are two
somewhat more artificial models: the one introduced by K
with infinitely weak, infinitely long-range interaction, an
the spherical model corresponding to the infinite number
spin components~see @2# for the references!. The models
mentioned admit exact solution in the thermodynamic lim
N→`, where N is the number of particles in the syste
~finite-size corrections are available for the Ising mode!
Only some of these models are solved in the presence o
external field.

A number of models from polymer physics can be add
Unlike in the conventional low-molecular-weight system
the particles in a polymeric material are irreversibly co
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nected to form linear chains, thus introducing a ‘‘line
memory’’ effect @3#. Generally speaking this brings abo
more complications and more possibilities for different kin
of phase transitions. On the other hand, the bonding inte
tions can be singled out to be treated in a separate way. O
this is done, even most simplified models exhibit nontriv
behavior that could be absent in their low-molecular-weig
counterparts. One should also bear in mind that it is phy
cally meaningful to speak of phase transitions even fo
single macromolecule, since the number of monomeric u
N in it could be very large indeed. Exact solutions describ
phase transitions are known for the Zwanzig-Lauritz
model of two-dimensionalb-structure formation@4# and for
some closely related models of directed polymer adsorp
@5#. Another inherently related set consists of the DNA me
ing model@6# and the model of adsorption of an ideal cha
on surfaces of different geometry~planar and cylindrical!
@7,8#.

Apart from the few exact solutions, more general a
proaches exist. Ideas of Landau@9# proved invaluable in
clarifying the essential background of phase transitions.
though it was recognized early enough that the assumptio
analyticity of the free energy as a function of order parame
in the original version is equivalent to the mean-field a
proximation and is generally incorrect, the Landau-Ginzbu
formulation, which incorporates local fluctuations of the o
der parameter, eventually leads to the fluctuation theory
critical phenomena. On the other hand, the functional fo
of the Landau free energy has always been postulated
very general grounds, while its exact analytical calculat
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1512 56KLUSHIN, SKVORTSOV, AND GORBUNOV
for a given model remains too rare a feat~in fact, we cannot
think of any example.!

Another approach goes back to the 1952 paper by Y
and Lee@10#, and is based on representing the partition fu
tion in terms of its zeros in the complex plane of chemi
potential ~or temperature, as suggested by Fisher@1#!. The
theory is mathematically rigorous, which brings about
hefty price to be paid: the problem of finding the actu
distribution of zeros for the partition function of even
simple model proves to be formidable. There exists a p
nomenological approach relating certain features of a ph
transition~amplitudes and critical indices! to the characteris-
tics of the distribution of zeros assumed to be known@11#, as
well as scaling predictions for this distribution@12#. In prac-
tice, for a given model the zeros are calculated numeric
for small samples, and then some extrapolations are
ployed @13#.

Relationship between various approaches to phase tra
tions is not clearly understood and, to the authors’ b
knowledge, has never been demonstrated on one and
same microscopic model. This is exactly the cause purs
in the present paper. We introduce a model of an adsorb
polymer chain in an external field that admits analytical
lution for the partition function. In the thermodynamic limi
the system has an isotropic and two ordered phases~de-
scribed by two order parameters!, exhibits continuous and
discontinuous phase transitions, and has a bicritical po
We obtain exact expressions for the Landau free energy
function of order parameters in the vicinity of phase tran
tion lines, and compare them to the original theory. Mo
over, the model allows one to write the Landau free ene
as a function of two independent order parameters in
vicinity of the bicritical point. Finally, we find the distribu
tion of complex zeros of the partition function for both th
first- and second-order transitions. By the same good fortu
in the thermodynamic limit it is also described by exact a
lytical expressions allowing a comparison to the exist
phenomenological results within the framework of the Yan
Lee-Fisher approach.

Another advantage of the model presented is that the
tition function can be calculated analytically not only in th
thermodynamic limitN→`, but for finiteN as well. There-
fore, the ideas of the finite-size scaling analysis can
checked against the exact solution, in terms of both the fu
tional form of the free energy and theN dependence of the
distribution of Fisher zeros.

We would like to stress that the main interest of the mo
presented here lies not in some excitingly unexpected
exact results—the model itself is perhaps too simplistic
that ~for example, the second-order transitions turn out to
of the mean-field type!. Rather, it is the possibility of carry
ing out analytical results to the very end within the fram
work of different approaches, and being able to see the in
story of those miraculous workings of nature called ph
transitions that make the model ideal for the purposes
instruction and sharpening one’s intuition.

II. POLYMER MODEL: PARTITION FUNCTION,
SYMMETRY PROPERTY

We consider an ideal Gaussian chain consisting ofN seg-
ments attached by one end to a planar surface. The tra
g
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tional entropy of the chain as a whole does not come i
play. A short-range adsorption interaction exists between
chain segments and the surface. A constant forcef normal to
the surface is applied to the free end of the chain. Our c
sideration is based on a random walk model whereby a c
figuration of a polymeric chain is represented by anN-step
walk @14#. Only the direction normal to the surface,Z axis, is
of interest here, since the walk in theX-Y plane is uncon-
strained and therefore described by a standard Gaus
function. In the continuum limit, the statistical weigh
P(N,z) of a chain with theNth segment at distancez from
the plane in the absence of the end force satisfies the e
tion @14,15#

]

]N
P~zuN!2

l 2

6

]2

]z2 P~zuN!50, ~1!

with the initial conditionP(zu0)5d(z) describing the fact
that one end of the chain is attached to the plane atz50. ~Of
course, there is also the trivial factor equal to the total nu
ber of unconstrainedN-step random walks.!

The problem can be mapped onto the Schro¨dinger equa-
tion for the Green’s function of a quantum particle of ma
3/l 2 located initially at the plane, by taking\51, t5 iN.
Henceforth, we take the segment length as the unit len
l 51, and express energy inkT units. The short-ranged inter
action with the plane is introduced through the bound
condition @16#

1

P~zuN!

]

]z
P~zuN!U

z50

52c, ~2!

the same as that which appears for the Schro¨dinger equation
in the presence of ad-functional pseudopotential. Math
ematically, adsorption corresponds to the existence o
bound state in the corresponding quantum-mechanical p
lem. Whenc.0, the macromolecule tends to stick to th
surface; forc,0 it is desorbed. The valuec50 corresponds
to what is called the critical adsorption condition. The phy
cal meaning of thec parameter was discussed in Refs.@16,
17#.

The solution of Eqs.~1! and~2! for the partition function
of the macromolecule with ends fixed was obtained
Lepine and Caille@8# and is naturally expressed in terms
scaled variablesz̃5z/2R, c̃5cR, whereR5(N/6)1/2 is the
root-mean-square radius of gyration of an ideal chain in
unconstrained state:

P~ z̃ u c̃!5~pR2!21/2exp~2 z̃ 2!$11p1/2c̃ Y~ z̃2 c̃ !%. ~3!

Here Y(t)5exp(t2)erfc(t), erfc(t) being the complementary
error function.

The presence of the external end forcef will change the
statistical weight of every random walk by the Boltzma
factor exp(fz). Since it is the same for all random walk
ending at the same heightz, the partition function of the
end-force problem is simplyP( z̃ u c̃)exp(fz). Positive f cor-
responds to stretching the chain while negativef presses the
free chain end down to the surface. Introducing the sca
variable f̃ 5 f R, one arrives at
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56 1513ADSORPTION OF A MACROMOLECULE IN AN . . .
P~ z̃ u c̃, f̃ !5~pR2!21/2exp@ f̃ 22~ z̃2 f̃ !2#

3$11p1/2c̃ Y~ z̃2 c̃ !%. ~4!

Integrating P over the position of the free end gives th
partition function@17#

Z~ c̃, f̃ !5
c̃ Y~2 c̃ !2 f̃ Y~2 f̃ !

~ c̃2 f̃ !
. ~5!

The average height of the free end is^z&5R] lnZ/] f̃.
Since the average number of adsorbed segments~the number
of contacts with the plane! is conjugated to the adsorptio
parameterc @16# one obtains similarly^m&5R] lnZ/]c̃.
Equation~5! for the partition function of an adsorbing cha
with the external field present is remarkably symmet
with respect to interchange of the adsorption parametec̃
and the reduced forcef̃ . One can say that in a certain stri
sense, the effect of adsorption is equivalent to the ef
of applying the end force@18#. The average number of ad
sorbed segmentŝm& as a function of the adsorption intera
tion parameterc and the forcef is the same as the height o
the chain end as a function of the interchanged variab
^m&~c, f )5^z&( f ,c). We recall that in terms of conventiona
units, the dimensionless combinations arem, z/ l , cl, and
f l /kT.

A stronger consequence of the partition function symm
try is that not only the mean values but all the moments
the probability densities form andz coincide under the in-
terchange of the conjugated parametersc↔ f . Therefore, the
probability densities themselves, being well-behaved quic
decreasing functions, should coincide under this intercha
The partition function for a given scaled number of adsorb
segments follows from Eq.~4! to be

P~m̃ u c̃, f̃ !5~pR2!21/2exp@ c̃ 22~m̃2 c̃ !2#

3$11p1/2f̃ Y~m̃2 f̃ !%, ~6!

wherem̃5m/2R.
A question arises if the symmetry of the partition functi

could be traced to that of the underlying Hamiltonian. T
Hamiltonian of a Gaussian chain interacting with a plan
surface via ad-functional pseudopotential in the presence
the constant end force can be written following Refs.@15,
19#. If the conformation of the chain is specified by the p
sition vector functionr (s), s being the distance along th
contour of the chain, then

H$r ~s!%5
3

2 E
0

N

dsUdr

dsU
2

1E
0

N

dsS cd„z~s!…2 f
dz

dsD .

~7!

Here,z(s) is the normal component of the vectorr (s). This
form of H does not display any obvious symmetry with r
spect to the interchange ofc and f . It would be quite reward-
ing to find a transformation revealing this symmetry but
now we leave the question open.
ct
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III. PHASE DIAGRAM

The average fraction of adsorbed segmentsu5^m&/N is
usually taken as an order parameter in the adsorption p
lem. For an adsorbed chain, a finite fraction of segme
~independent ofN! are in contact with the plane. In the pre
ence of an effectively repelling surface, the number of co
tacts is always on the order of one, which means that
chain is desorbed. We recall that one end of the chain
anchored at the surface, eliminating the possibility of float
away from the surface. Accordingly, for the problem
chain stretching it is the average degree of stretchingz
5^z&/N that will naturally serve as the order parameter.

In the thermodynamic limitN→` one can speak of a
definite phase state for the macromolecule. Possible state
the chain for various values of the adsorption interaction
rameterc and the forcef are expressed by the phase d
gram, Fig. 1~a!. Upward motion along the ordinate corre
sponds to increasing the stretching force; downw
corresponds to pressing the free end of the chain down. M
ing to the right means increasing the adsorption stren
moving to the left means increasing the repulsion betw
the plane and the macromolecule. Three different region
the diagram correspond to the ‘‘isotropic’’ phase (u5z
50), the ‘‘stretched’’ phase~u50 andz.0!, and the ‘‘ad-
sorbed’’ phase~u.0 andz50!. The dashed lines of second

FIG. 1. ~a! Phase diagram for an adsorbing Gaussian chain w
the end force applied in the thermodynamic limitN→`. ~b! States
of a finite-length chain with typical conformations indicated.
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1514 56KLUSHIN, SKVORTSOV, AND GORBUNOV
order phase transitions come together and pass into the
line of a first-order transition at the bicritical pointc5 f 50
~according to the standard terminology@20#!.

At the transition between absorbed and stretched state
the chain~crossing the solid linec5 f !, the free energy has
a discontinuity in the slope and the fraction of adsorbed s
mentsu as well as the energy of the macromolecule cha
abruptly. Analysis in terms of the Landau free energy giv
in the next section turns out to be quite illuminating. In t
case when one of the dashed lines of the Fig. 1~a! is crossed,
it is the second derivative of the free energy]2lnZ/]c2 ~or
]2lnZ/]f2! that changes discontinuously. These derivativ
are related to the specific heat and the susceptibility to
end force, correspondingly.

For chains of finite lengthN, sharp transitions are blurre
and different phase states are separated by crossover re
rather than by lines~see Sec. VI!. Transitional regions for
finite systems are shown in Fig. 1~b!. Typical conformations
of the chain in different regions of the diagram are also d
played. We denote the adsorption region of the diagram
A, and the region of stretched conformations in the up
part of the diagram byS. The states to the left from th
bicritical point along the line of the second order phase tr
sitions will be calledD ~desorbed!, while their counterparts
along the f 50 line in the lower region will be calledP
~pressed down!. The third quadrant~isotropic phase! is de-
noted byI and corresponds to a desorbed macroloop. T
vicinity of the pointc5 f 50 is the bicritical region.

It is clear from the diagram that the classical problem
adsorption with no force applied corresponds to mov
along the line of second-order transitions fromD to A via the
bicritical point. An equivalent dual situation is realized wh
the adsorption parameter is fixed atc50 and the force ap-
plied is changed from pressing down to stretching. Adso
tion of a chain with the end pressed down~constantf ,0! is
equivalent to stretching of a chain anchored to an inert
repulsing surface, and is also a second-order phase trans
as shown in the next section. Adsorption of a chain un
constant stretching forcef .0 applied is equivalent to tear
ing off an adsorbed chain under the condition ofc5const.

The problem of stretching an isolated ideal chain by
constant end force belongs to an introductory statistical
chanics textbook~traditionally, it is also shown to be equiva
lent to the problem of orienting a set of noninteracting sp
by a uniform magnetic field@21#!. The dependence of th
mean end-to-end distance on the external force is smo
there being no phase transition whatsoever. We have
seen, however, that the presence of an impenetrable repu
or attractive surface changes the situation quite dramatic
lid
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IV. COMPARISON WITH THE LANDAU THEORY
OF PHASE TRANSITIONS

The phenomenological theory of phase transitions
Landau@9# is based on consideration of the free energyF as
a function of the order parameterf. In the vicinity of the
second-order transition point,F is expanded in powers off,
only the terms with even powers being present due to s
metry considerations:

F~f!5F01A~T2Tc!f
21Bf41••• . ~8!

FactorsA and B are assumed to be positive and appro
mately constant in the vicinity of the transition point, so th
the coefficient with the quadratic term changes sign aT
5Tc . Minimization with respect tof gives the equilibrium
value f050 for T.Tc , and f05(AuT2Tcu/2B)1/2 for T
,Tc . In the original model, the specific heat changes d
continuously byTcA

2/2B at the transition point.
For a Gaussian chain adsorbing onto a planar surface,

has to consider the free energy~per segment! as a function of
the fraction of adsorbed segmentsu5m/N. Here, the order
parameter is not averaged but is allowed to fluctuate. T
partition function P(u) for the case of zero force (f 50)
follows from Eq.~6!:

P~u!5S pN

6 D 21/2

expS 2
3

2
Nu21Ncu D , ~9!

while for the free energyF52N21lnP one obtains

F~u!5F02cu1 3
2 u2. ~10!

Equation~10! has physical meaning only for 0<u<1 since
the fraction of adsorbed segments is of course non-nega
In the original Landau theory, the free energy is invaria
with respect to the changef→2f and is considered ana
lytic in the vicinity of f50. Introducing a new variablef so
that u5f2 provides a mapping for the free energy to
defined on the interval@21,1# and supplies it with the ap
propriate symmetry. Then

F~f!5F02cf21 3
2 f4. ~11!

In this form, the dependence ofF on f exactly coincides
with the truncated expansion~8! of the Landau theory. Note
that formula ~11! is valid not only in the thermodynamic
limit, but for finite chains as well.

The behavior of the mean-square fluctuation of the nu
ber of adsorbed segments,m, in our model is analogous to
that of the heat capacity in the Landau theory, since both
proportional to the second derivative of the free energy w
respect to the governing parameter. The quantity analog
to the specific heat is
of the
~^m2&2^m&2!

N
5

1

3
1

2c̃

3p1/2Y~2 c̃ !
2

2

3pY2~2 c̃!
>H1/~Nc2!,

1/3,
2 c̃ @1
c̃ @1 . ~12!

It is clear that in the thermodynamic limit the jump in this quantity is indeed equal to 1/3, conforming to the result
Landau theoryA2/2B with A51, B53/2.

In the case when the chain is adsorbing with its end pressed down (f ,0), the partition functionP(u) is given by

P~u!5S pN

6 D 21/2

exp~c2N/6!exp@~u2c/3!23N/2#H 11S pN

6 D 1/2

f Y„~3N/2!1/2~u2 f /3!…J . ~13!
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For not too weak forces,u f u@N21/2, the corresponding free
energy as a function off is simplified to

F~f!5F02cf21
3

2
f41

1

N
lnS 11

1

3
u f uf4D , ~14!

which is the same as Eq.~11! in the thermodynamic limit
N→`.

We see that second-order transitions in our model are
orously described by the Landau mean-field theory. It is w
known that for ordinary low-molecular-weight systems La
dau theory becomes incorrect in the vicinity of the seco
order transition point, due to the strong spatial correlation
the fluctuations of local order parameter. In the polyme
system under consideration, the role of the order paramet
related either to the fraction of adsorbed segments or to
degree of chain stretching. In both cases, the order param
is defined ‘‘globally,’’ for the macromolecule as a whol
and not as a local quantity. Therefore, no correlations
fluctuations are possible at all, and the system always ret
mean-field behavior.

The fact that only two terms withf2 andf4 are present
in the expression~11! is due to the Gaussian elasticity of th
chain in the continuum model. Taking into account the fin
extensibility will produce higher-order terms in theF(f)
dependence.

Let us consider in more detail the behavior of the Land
free energy when crossing the line of first-order transitio
c5 f on the phase diagram, Fig. 1~a!. It can be easily shown
that this indeed leads to a finite jump in both order para
eters~the fraction of adsorbed segments and in the degre
chain stretching!, and there exists a latent heat of the tran
tion, as is expected for a proper first-order transition. A
cording to the classical concepts of the Landau approach
first-order transition corresponds to the case when, with
certain range of external parameters, the free energyF(f)
has two minima as a function of the order parameter. T
deeper minimum gives the equilibrium state, while the ot
one corresponds to a metastable state. With the change i
governing parameter the relative depth of the two mini
changes, and the transition corresponds to switching f
one minimum to the other. As a result, the distribution de
sity for the order parameter is bimodal. Accordingly, the
should be no pre-transitional fluctuation growth.

We shall see that the first-order transition in our mo
does not conform to this picture, and the Landau theory f
in a very peculiar way. The Landau free energy can be
derived from the exact formula~6!. However, in contrast to
the case of second-order transitions, for positive values
f andc one arrives at a functionF(f) that consists of two
branches in theN→` limit:

F~f!2F05H ~ f 2c!f2 for f<Af /3
1
6 ~ f 22c2!1 3

2 ~f22c/3!2 for f>Af /3
.

~15!

These are a segment of a parabola and a fourth-order c
touching each other at the pointf5Af /3 so that the first
derivative remains continuous. The functionF(f) is explic-
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itly nonanalytic~the second derivative is discontinuous at t
junction point!. Of course, for any finiteN, no singularities
are present.

It is clear from Fig. 2 that the Landau free energy h
always only one minimum so that no bimodality in the ord
parameter distribution is ever present. At the transition po
itself, part of theF(f) curve is strictly flat, which brings
about a finite jump in the average order parameter. On
other hand, the flattening of theF(f) curve in the vicinity of
the transition leads also to anomalous pre-transitional fl
tuation growth. The origin of this discrepancy with the cla
sical picture is also related to the fact that the order para
eter is defined not locally but as pertaining to the system a
whole. At c5 f the chain is actually phase separated into
stretched and an adsorbed part, the states with different f
tions of segments belonging to each phase being equ
probable, hence the flat part of theF(f) curve. On the other
hand, there is no activation barrier to segregation since th
is no interface between the adsorbed and the stretched p
There is a direct analogy to a gas-liquid mixture in a cylind
kept at a constant pressure exactly equal to that of the s
rated vapor. Assuming that we consider the phase separ
states with the flat interface of constant area, all these st
that differ by the relative vapor-liquid volume fractions ha
exactly the same free energy. The average density can
therefore considered as fluctuating in the range between
of the saturated vapor and that of the liquid. Infinite co
pressibility of a phase separated vapor-liquid mixture~con-
sidering only strictly equilibrium states! is well known from
textbook discussions of the van der Waals equation.

V. JOINT DISTRIBUTION IN TWO ORDER PARAMETERS
AROUND THE BICRITICAL POINT

We described the phase behavior of our model in term
two order parametersu andz and it would be only natural to

FIG. 2. Landau free energy as a function of the order param
f upon crossing the first-order transition line: The values of
adsorption parameterc are shown in the figure; the force magnitud
is f 50.75. The two analytical branches ofF meet atf50.5.
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FIG. 3. Contour plots of the Landau free energy as a function of two order parameters:~a! for crossing the second order transition lin
c50; ~b! for crossing the first-order transition line normally to it;~c! for passing through the bicritical point along thec5 f line.
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try to introduce the Landau free energy as a function of t
independent variablesF(u,z). The probability densities for
the free end height and for the number of adsorbed segm
separately, are given by Eqs.~4! and ~6!. We construct the
partition function of a Gaussian chain with the fixed heig
of the free endz, and the fixed number of contacts with th
planem as follows:

P~z,muN,c, f !5E
m

N

dn P~0,mun,c!P~z,0uN2n, f !.

~16!

This is just the sum over different ways to decompose
chain into the adsorbed part consisting of the firstn seg-
ments, and the tail ofN2n segments that has no conta
with the surface at all. The next step is to replace the pa
tion functionP(0,mun,c) of a chain with the free end touch
ing the surface with the partition functionP(mun,c, f→
2`) of the chain whose free end is not fixed atz50, but
rather pressed down to the surface by an infinitely large
ternal force. The latter is given by Eq.~6!. Similarly, we take
P(z,0uN2n, f )5P(zuN2n,c→2`, f ) and employ Eq.~4!.
Finally, for the Landau free energy we obtain
o

ts,

t

e

i-

x-

simple analytical result that is asymptotically exact in t
vicinity of the bicritical pointz!1, u!1:

F~f,c!52cf22 f c213/2f413/2c413f2c2, ~17!

wherec25z andf25u
Figures 3~a!–3~c! display the contour plots of the Landa

free energy as it changes in various types of phase tra
tions. The transition between the isotropic and one of
ordered states goes through broadening of the minim
along one axis followed by a gradual shift in its position; s
Fig. 3~a!. The transition between two ordered states is m
peculiar: it involves forming a valley that has exactly th
same depth for all the states with the given value of the s
w21c2; see Fig. 3~b!. If one moves along the linec5 f the
Landau free energy becomes a function of only one indep
dent variablet25w21c25u1z, as illustrated by Fig. 3~c!:

F52ct21 3
2 t4. ~18!

The average valuêu1z& is determined by the position o
the minimum of the function~18!, which changes exactly a
in the case of a mean-field second-order transition:
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^u1z&5 H0,
c/3,

c,0
c.0. ~19!

On the first-order transition linec5 f (c, f .0), all the states
with the given average valuêu1z&5c/3 correspond to
equilibrium, which allows anomalously large fluctuations
each of the order parameters separately: all the states wu
in the range between 0 andc/3 are equally probable.

VI. FINITE-SIZE EFFECTS

The ideas of finite-size scaling@22# stem from a realiza-
tion that in the vicinity of a transition point the singular pa
of the free energy should depend on the size of the sam
L, only through the combinationL/j, wherej;uT2Tcu2n

is the correlation length, andn is the corresponding critica
index. The common way to write the free energy of t
sample isF5F(uT2TcuL1/n). Close enough to the critica
point where the correlation lengthj becomes much large
than the elementary lengthl , two different regimes can be
identified: ~i! in the scaling regime,L/j@1, the free energy
as a function of its argument should have power-law asym
totics; ~ii ! onceL/j becomes of the order of one or small
F tends to a constant, and the critical behavior is smoot
out. The free energyF(L/j) should therefore switch from
one asymptotic behavior to another atL/j;1, and this con-
dition defines the range where the finite-size effects
prevalent.

To facilitate direct comparison with the present model
note that here it is not the linear size but the number of un
N, that enters as one of the arguments of the free-ene
function. So, instead of the standard way of presenting
free energy we rewrite the argument substitutingL;N1/d

and using the thermodynamic identitydn522a, to arrive
at

F5F~ uT2TcuN1/~22a!!, ~20!

a being the heat-capacity index. Note that for the mo
considered here we cannot properly identify the meaning
the linear size of the system,L, or the dimensionalityd.
However, they do not enter in the final result. One expe
the finite-size effects to smear out the transition over
interval

DT;N21/~22a!. ~21!

In our model, of course,uT2Tcu should be substituted by th
deviation from the transition point in terms of the governi
parametersc and f .

The explicit dependence of the free energy on the num
of chain units,N, is easily extracted from the exact formu
~5!. For example, if we follow the second-order adsorptio
desorption transition at zero force moving along thef 50
line on the phase diagram@Fig. 1~a!#, the free energy is given
by

F5const1 ln@Y~2 c̃!#. ~22!
le,
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Upon crossing thec50 line of second-order transitions i
the lower part of the phase diagram~relatively strong nega-
tive force applied!, the free energy has a slightly differen
form:

F>F01 ln@ c̃ Y~2 c̃ !1p21/2#, ~23!

where the regular partF0 contains the dependence onf . In
both cases the free energy is indeed an explicit function
the scaling variablec̃ that contains the number of chain el
mentsc̃5c(N/6)1/2. Comparing this to the finite-size scalin
form of the free energyF(uT2TcuN1/(22a)) we have to keep
in mind that ucu is exactly the deviation from the critica
point (ccrit50) and, since the second order transition und
consideration is of the mean-field type, the heat-capacity
dex isa50. We see, therefore, that the exact solution co
forms perfectly to the finite-size scaling ansatz.

Consider now the vicinity of the first-orderA-S transition
when we increase the force at fixedc eventually tearing the
adsorbed chain off the plane. Sufficiently far away from t
bicritical region, i.e.,c@N21/2, f @N21/2, the free energy for
finite N can be presented as

F5 ln$2t exp~ t21x2!@x21sinh~2tx!1t21cosh~2tx!#%

5F01 lnS sinh~2tx!

tx D , ~24!

where t5 1
2( c̃1 f̃ )> c̃, x5 1

2( c̃2 f̃ ), andF0 remains smooth
in the vicinity of the transition in the thermodynamic limi
The free energy is a function of the combinationtx
;uc2 f u(Nc), where uc2 f u is now the deviation from the
transition pointf 5c. In the case of the first-order transitio
the heat-capacity index can be formally taken asa51 ~see
also the next section!, which leads again to an exact agre
ment with the ansatz~20!.

Returning back to Eq.~21! we conclude that for finiteN,
second-order transitions in our model are smoothed over
interval ucu;N21/2 ~A-D transition! or u f u;N21/2 ~P-S tran-
sition!. The bicritical region itself has the characteristic si
of N21/2 in both directions of the phase diagram. The fir
order tearing-off transition has the characteristic widthD f
;(Nc)21. The width of the transitionD f decreases as on
moves away from the bicritical pointf 5c50.

Similar to the way the magnetization of finite Ising la
tices can be presented in a universal scaling form in
coordinatesMLb/n versusL1/nuT2Tcu, in our model the av-
erage number of adsorbed segments is described by univ
scaling functions, which we are fortunate to be able to wr
analytically. Takingf 50 as an example, one obtains

^m&N21/25S 2

3D 1/2S 1

ApY~2 c̃ !
1 c̃D >H621/2c̃ 21,

~2/3!1/2c̃,
2 c̃ @1
c̃ @1,

~25!

wherec̃5c(N/6)1/2.
The curves are displayed in Fig. 4 in a log-log scale, a

it is clear that in the regionc̃ @1 they are indeed describe
by power laws similar to magnetic systems, although
values of the indices are, of course, different.
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VII. COMPLEX ZEROS OF THE PARTITION FUNCTION

At a phase transition point, thermodynamic functio
have a singularity, meaning that they or their derivativ
have a finite or infinite discontinuity. The approach pi
neered by Yang and Lee@10# related these singularities t
zeros of the partition function. Their original papers de
with the liquid-gas transition induced by the change in fug
ity, so these were the analytical properties of the grand p
tition function in the complex plane of fugacity that were t
object of investigation. Similarly, the temperature-induc
transitions should be described in terms of the zero distr
tion for the canonical partition function in the complex pla
of temperature~or b51/kT!. These are commonly calle
Fisher zeros in order to distinguish them from the Yang-L
zeros in the fugacity plane. Obviously, the general appro
is applicable to phase transitions induced by changing
other external parameter as well.

Yang and Lee showed that for finiteN the partition func-
tion can have only complex-conjugate zeros but no zeros
the real positive axis. The only possibility for a phase tra
sition to appear is that as the number of particles increa
the complex zeros come closer to the real positive axis,
eventually, in theN→` limit, they pinch upon the real axis
at the transition point. While the Yang-Lee theorem sta
that the zeros in the fugacity plane have to be located o
unit circle, there are no general results known for Fis
zeros. Empirical regularities show, however, that they ten
fall on smooth arcs that cross the real axis at a certain an

In the thermodynamic limit, the free energy and its d
rivatives can be represented as integrals over the contin
distribution of zeros that could be characterized by so
limiting density function. Assuming that the zeros conce
trate on two symmetric support lines that cross the real a
at the pointb5bc making an anglev with it, Grossmann
and Rosenhauer@11# were able present an extensive class

FIG. 4. Log-log plot of the number of adsorbed segments,m, vs
the adsorption parameterc in the universal finite-size scaling coo
dinates. The power-law asymptotics are shown by dashed line
s
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cation of phase transitions and to express the main cha
teristics of a transition~jump magnitudes, critical indices
and amplitudes! through the parameters of the linear dens
of zerosg(y), wherey is the coordinate along the imaginar
axis. The analysis is based on the following formula for t
internal energy~per unit volume! at a given deviation from
the critical temperatureD5b2bc :

E~D!52~11cot2v!1/2E
0

`

g~y!
y cotv1D

~y cotv1D!21y2 dy.

~26!

Once the linear density is assumed to be a power func
g(y);y12a, the following cases can be distinguished:~1! If
the densityg(y) tends to a constant at smally (a51), then
the zeros necessarily approach the real axis at a straight a
v5p/2, and the energy has a finite jump 2pg(y50) upon
crossing theb5bc point. This obviously corresponds to
first-order transition with ad-peak singularity in the specific
heat.~2! If the density grows linearly withy (a50), and the
support lines cross the real axis atv5p/4, the energy is
continuous but the specific heat has a finite jump disconti
ity, as in a classical mean-field second-order transition.~3! If
a50, but v.p/4, or 0,a,1 ~arbitrary v!, specific heat
diverges at the transition point. This is either a power-l
singularitycn;uDu2a in the latter case, or a logarithmic sin
gularity for a50. In both cases, the value of the anglev
affects only the specific-heat amplitudes on the two sides
the transition point. In particular, the vertical linev5p/2
corresponds to a symmetric transition.

In our model, the governing parameterc ~or f ! is analo-
gous to the inverse temperatureb, while the conjugated vari-
able, the number of adsorbed segments~or the free end
height! would be the analog of the energyE. Let us fix the
magnitude of the end forcef 5 f 0 ~it could be negative, zero
or positive, but is still taken as real!. Then we should analyze
the partition functionZ(c, f 0) in the complex plane of the
variablec.

We start by considering the distribution of zeros up
crossing the line of the first-order transitions (f 05const
.0). The zeros are found from the equation

cY~2cAN/6!2 f 0Y~2 f 0AN/6!50, cÞ f 0 . ~27!

For largeN, and f 0.0, uarg(c)u,p/4 this is reduced to

c exp~c2N/6!2 f 0exp~ f 0
2N/6!50, cÞ f 0 . ~28!

Taking c5r exp(ix), one obtains two coupled equations:

r2cos2x1
6

N
ln

r

f 0
2 f 0

250, ~29!

x1 1
6 r2N sin2x52pk, k561,62, . . . . ~30!

The limiting line of zeros is found by lettingN→`:

r2cos2x5 f 0
2 ~31!

or, passing to the Cartesian coordinatesx5Re(c), y5Im(c),

x22y25 f 0
2. ~32!
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This curve is easily recognized as hyperbola crossing the
axis at a straight angle at pointx5 f 0 , with two asymptotes
y56x making an anglev5p/4 with the real axis. The left
branch of the hyperbola is irrelevant to the original equat
~27!.

Combining Eqs.~30! and ~31! we obtain an equation fo
the positions of zeros on the hyperbola:

x1 1
6 f 0

2N tan2x52pk, k561,62, . . . . ~33!

For zeros close to the real axis~i.e., with smallx! this gives

xk5
6pk

31N f0
2 . ~34!

The limiting density of zerosg5 limN→`1/N dk/ds, where
ds5Adr21r2dx2 is the line element, can be calculated e
actly everywhere on the hyperbola from Eqs.~31! and ~33!,
to give

g~r!5
1

6p
r. ~35!

At the point of crossing the real axisr5 f 0 , andg tends to
the finite valueg05 f 0/6p. This falls into category~1! ac-
cording to the above classification, and indeed gives the fi
order transition with a finite jump in the order paramet
The magnitude of the jump was derived in Ref.@11# to be
2pg05 1

3f 0 . This is of course in accordance with the val
obtained by direct differentiation of the partition function.

On the asymptotic wings of the hyperbola the distan
from the transition point along the curve,s, is the same asr,
and Eq.~35! shows that the density of zeros increases
early with it. Takings>r and solving forr as a function of
k one obtains the position of thekth zero

rk>S 12pk

N D 1/2

. ~36!

What happens as one crosses the line of the first-o
transitions closer and closer to the bicritical point? The fo
distance of the hyperbola,f 0 , decreases and so do accor
ingly the densityg0 and the magnitude of the jump in th
order parameter. Eventually, atf 050, the curve degenerate
into two straight lines at an anglev5p/4 with the real axis
crossing it at the origin~see Fig. 5!. Here, the transition
becomes second order: changing the adsorption paramec
one passes exactly through the bicritical point. Stric
speaking, the asymptotic representation of theY function
used in Eq.~28! is not valid in this case any more. Howeve
the limiting picture of the distribution of zeros does apply

Indeed, forf 050, the partition function is simplified to

Z~c!5Y~2cAN/6!5exp~c2N/6!erfc~2cAN/6!. ~37!

The exponential function has no zeros in the entire comp
plane. So it is the distribution of zeros of the complement
error function, and particularly its asymptotical form in th
N→` limit, that we are interested in. Numerical resu
shown in Fig. 5 suggest that zeroes indeed condense
support line at an anglev5p/4 with the real axis. This fac
al
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e
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a

can be rationalized if one recalls that along this line the e
function becomes an integral over a strongly oscillati
function:

erfc~ teip/4!5E
t

`

~cosx21 i sinx2!dx.

Due to these oscillations, both the real and imaginary part
the integral have an infinite number of zeros, the dista
between them constantly decreasing as one moves to la

FIG. 5. Distribution of zeros of the partition function in th
adsorption parameter complex plane for various values of the e
force magnitude,f , indicated in the plot:~a! N5100; ~b! N
5500. The analytical limiting curves of zeros are shown by so
lines.
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t. Therefore, it should not be surprising that in the limit
large t, zeros of the erfc function condense on theutueip/4

line.
The limiting density of zeros can be now evaluated

realizing that the distanced between two neighboring zero
should correspond to a phase change of 2p in the integrand:

~ t1d!22t2'2p, and henced'
p

t
.

Recollecting thatt5cAN/6, we recover Eq.~35! for the lim-
iting density of zeros in thec plane:g(ucu)5ucu/6p.

This case falls into category~2! according to the above
classification, and, indeed, results in a second-order tra
tion of a mean-field type with a finite jump in the ord
parameter fluctuation squared~see Sec. IV!. The magnitude
of the jump was derived in Ref.@11# to be 2p(1/6p)5 1

3,
where 1/6p is the coefficient in the density of zeros, E
~35!. Of course, this coincides with the result obtained
rectly by differentiating the free energy, Eq.~12!.

It is easy to show that the limiting density and the slope
the line of zeros of the partition function upon crossing t
line of second-order transitions away from the bicritic
point (f 05const,0) are exactly the same:v5p/4, g(r)
5r/6p. Naturally, this is consistent with the fact that th
Landau free energies coincide for both cases in the ther
dynamic limit ~see Sec. IV!. Numerical data for a few firs
zeros of the exact partition function~27! with N5100 and
N5500 for several values off 0 are displayed in Fig. 5 and
support the analytical results for the distribution of zeros

We now turn our attention to the finite-size scaling beh
ior of the position of zeros of the partition function. Accor
ing to the analysis given by Itzyksonet al. @12#, in the vicin-
ity of the critical point the distance from thekth zero to the
real axis should scale as

yk;L21/nk1/dn ~38!

or, in terms of the total number of unitsN,

yk;S k

ND 1/dn

;S k

ND 1/~22a!

. ~39!

Here again we have employed the equalitydn522a to pass
from parametersd andn, which do not have a well-define
meaning in our case, to the heat-capacity indexa. Taking
a50 for the second-order transition, we arrive at the scal
prediction yk;(k/N)1/2, in accordance with the exact an
lytical result, Eq.~36!. On the other hand, for the first-orde
transition, Eqs.~30! and ~34! give yk' f 0xk'(6p/ f 0)k/N.
Since the first-order transition should be formally assign
a51, the scaling prediction~39! is indeed correct.

In particular, we found that the closest zero is charac
ized by the polar angle

x1'
6p

31N f0
2 . ~40!

This gives another way of evaluating the region where fin
size effects smooth out the difference between the first-
second-order transitions~i.e., the characteristic width of th
bicritical region!. For this to be true, even the closest ze
should lie not far from the asymptotic wings of the hype
bola:
si-

-

f
e
l

o-

-

g

d

r-

-
d

x1;1, which meansN f0
2;1, f 0;N21/2,

in accordance with the estimates of Sec. VI.
It is worth noting that in contrast to the lattice mode

where the partition function of a finite system is a polyn
mial and therefore has only a finite number of zeros,
model of the adsorbing chain that we discuss results i
partition function with an infinite number of zeros for an
value of N. The reason for this is that we deal with a co
tinuum model as opposed to lattice models with finite sets
discrete states.

VIII. CONCLUDING REMARKS

As we have seen, the model presented allows one to c
out exact analytical results within all the approaches we h
employed, be it the direct calculation of the partition fun
tion, or finding the Landau free energy that controls the d
tribution of order parameters, or calculating the distributi
of complex zeros of the partition function. These results
available for the first- and second-order transitions, and
vicinity of the bicritical point that the model possesses, n
only in the thermodynamic limit, but for finite systems a
well. A question naturally arises: Why is this possible? Wh
are the main differences between this model and the clas
exactly solvable lattice models?

First, the interaction between monomeric units is tak
into account only in terms of their connectivity, i.e., ea
unit interacts only with two neighbors along the chain. Th
interaction is separated from the very beginning and
counted for by the basic differential equation~1! for the par-
tition function that describes a Gaussian random walk. T
interaction energy is explicitly assigned only to the units
contact with the adsorbing plane. The volume interaction
tween non-neighboring units is neglected even if they co
close to each other in space.

Second, both order parameters are defined not as l
quantities, but for the system as a whole. Hence the notio
correlation length for the order parameter fluctuations in t
description has no meaning.

Third, the external field was taken as linear in thez coor-
dinate and acting only on the free tail, not on the loops a
trains of the adsorbed chain. Together with the planar ge
etry and the Gaussian property of the random walk, t
made the problem effectively one dimensional.

All this separates our model from the classical lattice s
tems and may prevent any direct extension of the res
obtained onto the other unsolved problems that puzzle
brighter theoretical minds of our time. However, for pu
poses of getting to understand better and teaching the fu
mentals of statistical mechanics of phase transitions
model seems to be a very appropriate and useful tool.
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