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under realistic boundary conditions

G. Gomila and J. M. Rubi
Department de f&ica Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

I. R. Cantalapiedra
Departament de Bica Aplicada, Universitat Polinica de Catalunya, Gregorio Maran 44, 08028 Barcelona, Spain

L. L. Bonilla
Escuela Politenica Superior, Universidad Carlos Ill de Madrid, Butarque 15, 28911 LégaBpain
(Received 13 March 1997

A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenom-
enological procedure sketched here. The resulting boundary conditions, which incorporate only physically
well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The
analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of
contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary
solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary
condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.
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[. INTRODUCTION for a semiconductor presenting the Gunn effect, these condi-
tions rank from clearly wrongno current oscillation appears
The Gunn effect is a ubiquitous phenomenon in manyif the b.c.’s are periodicto unsatisfactory because of their ad
semiconductor samples presenting negative differential residoc character. Thus, even when numerical simulations dis-
tance and subject to voltage bias conditiphs4]. In a nut-  play the Gunn effect, the question is usually raised of
shell, the negative differential resistance makes possible th@hether these results describe a real physical system where
existence of a variety of pulses and wave fronts, which mayjitferent contacts are present. In this paper, we shall present
be Stabilized by the biaS Condition. Then a periodiC Sheddin% Simp'e derivation of appropriate b.c.’s for an ideal metal-
of waves by the injecting contact results in periodic oscilla-gemiconductoMS) contact, and use them to analyze the
tion of the gurrent through an external circuit, which con.sti-Gunn effect in Kroemer's model for bulk-type GaAs. Our
tutes the signature of the Gunn effect. Although there is gjegcription makes it clear which part of the derivation fol-
vast literature on this topic, different basic questions COMows from general principles, and which part includes input

cerning the Gunn effect remain poorly understood. Paraﬁom the physics of contacts.

mount among these, there are the questions concerning the C . - -

L X oncerning asymptotic descriptions of the Gunn effect
correct boundary conditions and, given these, how to de\_/vhich delve deeper than just numerical simulations of drift-
scribe all the stages of the Gunn oscillation. The lack of P J

a,.. .
precise formulation of the boundary conditions imposed b)}:llffusmn models, some progress has been made recently

contacts on semiconductors and of a simple analytic treat+2—13: A detailed treatment of this topic can be found in

ment to analyze the Gunn oscillations, has not allowed clariRef. [16]. )
fication of the role played by contacts in the Gunn effect. Itis 1he rest of the paper is as follows. In Sec. Il we present
worth noting that clarifying this point would open, for in- OUr derivation of b.c.’s for ideal MS contacts, and briefly
stance, the possibility of extracting information about thediscuss some other possibilities. Kroemer's model and its
contacts from an analysis of the Gunn oscillations themstationary solutions for these b.c.’s are analyzed in Sec. Ill. It
selves, a subject of considerable interest for applied researcis found that bistability between stationary solutions is pos-
ers. sible for certain bias ranges depending on the values of cer-
Recently, progress has been made toward answering thetgn dimensionless contact parametgrand «o, which are a
two questions reasonably. On the one hand, ideas from irresombination of its effective density of states, barrier height,
versible thermodynamid&] have been used to derive satis- Richardson’s constant, doping, and temperature. Different
factory boundary conditions for metal-semiconductor andypes of Gunn effect, namely, charge monopales®ving
other contacts in a general w@§—8]. Previously the usual charge accumulation and depletion layeasd charge di-
boundary conditions used in drift-diffusion semiconductorpoles (high- and low-field solitary wavesare predicted to
models werd(i) periodic[9], (i) charge neutrality10], (iii) appear depending on these contact parameters, when no
fixed field[3,4], and(iv) control current-field characteristics stable stationary solution exists. In Sec. V we discuss our
of the contacf11], plus phenomenological assumptions suchresults, whereas the Appendix is devoted to technical matters
as the “contact length’[3]. As boundary conditiongb.c.’s) related to the main text.
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Il. BOUNDARY CONDITIONS is not difficult to show that if similar balance equations were
The aim of this section is to present a systematic procet—0 be satisfied on each side Qf the junct_ion gnd it surface
dure to derive b.c.’s at semiconductor contacts, established ifrl{Jxes pnly exist .allong the mtgrfacEwhmh n & one-
previous workg6-8]. As a general rule, the method applies dimensional description meadg ¢( t)=0], then the follow-

for nondegenerate semiconductors under moderate tempeff9 Palance equation should be satisfied at the congait
tures, that is, when thermionic emission is the dominant 24T

transport process at the contact. Hence several contacts of s ~ ~—

interest, like ideal and nonideal metal-semicondu¢idB) P +[Jg,n(0,1) = Jgm(0,t) =0y s( t). ()]
contacts or any type of heterojunction contact, can be mod-

eled. Depending on the material parameters, both limiting agow we can proceed to calculate the net rate of entropy
well as Ohmic contact may then be described. It is worthyroduction at the contact, which will allow us to identify the
noting that a precise modeling of this type of contact mayre|evant magnitudes describing the transport processes
help to clarify the role played by other types of contacts usednhrough the contact. To begin with, we consider the balance

in semiconductor systems, e.g., those in which thermionicaquation for the total energy of the system. As this is a con-
field or field-emission processes domindie7-19, for  gerved quantity, we simply have

which a precise description, in the sense of the present paper,
is not yet available. For the sake of clarity, the method will

o O . deg(t) — ~
be presented along with its application to the case of an ideal —— +[Jen(0,1)—Jo m(0,1)]=0. (4)
MS contact. Other contacts have been considered in previous at ' '
paperg 6-8|.

Let us consider an ideal MS contact. Due to the presencés for an ideal MS contact, no interface states are present,
of the contact, the magnitudes describing the physical propand hence no net charge or mass is accumulated at the con-
erties of the system, e.g., electron density, electric field, eledact, and the total energy at the contact coincides with the
tron energy, etc., may be discontinuous at that point. In adsurface internal energws=es [22]. Hence the balance of
dition, singular contributions localized at the contact itself,the internal energy is described directly through B, or
e.g., electron density at interface stat@shen they are alternatively through
presen), may also occur. As a consequence, a given physical

magnituded(x,t), can be decomposed as follows: dug(1) ~ ~ ~
gnituded(x. t) P 300D -3 OT =0T,

d(X, 1) =dy(X, 1) 0(X) +dr(X, 1) 8(—X) +dg(1) 8(X),
D with

whered,,, d,,, andd; refer to the values in the semiconduc- » _ _ s _
tor (n), metal (m), and surfaceq) parts , respectivelgwhen — oys(t)=[Jyn(0,t) = Jen(0,t)]=[Iym(0,t) = I m(0,1)].
no singular contribution is preserd, vanisheg Moreover,
6(X) is Heaviside's unit step function, ané(x) Dirac’s
delta function. They are introduced in order to represent th .
discontinuity across the contact and the singular contribugener.al dlfferenfc from the. flux of total energy. Furthermore
tions, respectively. In writing Eq1), a one-dimensional de- (he Gibbs equation for an ideal contacf22] Tds,=du (no

scription of the system has been assumed, with the contaéféifﬁﬁi tsé?T:eSerzrte rgreshgzzern??ns I?ht:iosnutggf{eo %rétfgﬁé’cal
. ~ ) . ure. umi i
being located ak =0 and the meta{semiconductgron its P y 9

left (right). By means of this type of decomposition, b.c.’s €quilibrium, —one then has — Tosy(t)/dt

can be systematically derived. =dug(t)/at, which, after using Eq(5), gives rise to the
Our procedure consists of two stepa) the identification ~ balance equation for the entropy

of the relevant magnitudes describing the transport processes _

through the contact; antb) the derivation of precise laws ds(t) —_ ~ _

describing such processes, which relate the relevant magni- TJF[Js,n(O,t)—Js,m(O,t )=oss( 1), (6)

tudes at the contact and which constitute the desired b.c.’s.

For the first step, use will be made of a phenomenologic

formulation of transport through semiconductor junctip@k

while for the second Shockley-Read-H&a$RH) statistics

[20,27] will be used. O-S]S("{)z

Let us consider a given magnitudg(x, t), satisfying a

In the previous expression, we introduced explicitly the flux
gf internal energy(equivalent to the heat flyxwhich is in

6\|Nith the entropy production given by

~ 1 _
‘]s,n(oat )_?‘]e,n(oat )}

standard balance equation of the fofrfj 1 _
_ _ - Js,m(O,t)—fJe,m(O,t) : (7)
ad(x,t) aJy4(x,t) _—
at 1% A more explicit expression fows ¢ is obtained once the bulk

s s expressions for the fluxes are introduced on the right-hand
whereJy(x,t) andoy(Xx, t) refer to the current and net rate side of Eq.(7). These expressions can be found elsewhere
production associated with the magnitudlerespectively. It [5,6]. One has
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rate of the process,,(0,t), and the jump of the quasi-Fermi

-~ 1 ~ 1 —_ _
J5a(0.1)= 7dea(0.1) = EF 2(0,1)Ja(0,1), - a=m.n, level at the MS contadtF,,(0,t) —F(0,t)]:

®)

where Er , refers to the electron Fermi levébr chemical
potentia), and J, to the electron number density current. Here \, is a positive constarfisee Eq.(A3) in the Appen-

J(0T)=Nge B (1— efFn0D—Fn(0DT)  (17)

Substituting into Eq(7), we simply have dix], and e¢0=E(0,t)—Fn(0,t) is the contact barrier
1 height.Ec(0,t) =E2—eV,(0,1) is the electron energy, with
oss(t)=— T[EF,n(O:’E’)\]n(O,T)—EF'm(O,’E’)Jm(O,’E’)] E2 the bottom of the semiconductor conduction band and

V,, the electric potential at the semiconductor surface. More-

1 _ _ _ over, 3= (kT) %, wherek is the Boltzmann constant. Equa-

=— T[Epyn(o,t )—Eg m(0,t)]13n(0,1), (90  tion (11) is the sought-after b.c. for the ideal MS contact. It
can be written more explicitly by using the expression

where in the second line use has been made of the continuity= Nceﬁ(F“_Ef)’ which holds for nondegenerate semicon-
of the electron number density current at an ideal MS contagductors, withn being the semiconductor electron number
[this continuity follows from the corresponding balance density and\c the effective density of states. We then have
equation for the electron number density by imposing that no
carriers are accumulateahy(t)=0] nor created o, o(t) 3.(07)= E[Ncefe,wg_'ﬁ(o;t“)]_ (12)
=0] at the contadt The final expression to be used in what Nc
follows is obtained by introducing the electron quasi-Fermi
levelsF ,(0.T) =E¢ ,(0.T) —eV,(0,T). HereV,(0T) is the In the; nond_egenerate case, depe_nds_only o (see t’he

; YR - AppendiX. This result ends the derivation of the b.c.’s for
electric potential(which is continuous through an abrupt

junction) ande>0 is minus the charge of the electron. We ideal MS.contacts which we will use for_the rest of this
then arrive at the desired expression paper. It is worth emphasizing at this point that, as men-

tioned at the beginning of this section, the procedure we have

1 sketched here for the ideal MS contact, can be applied to

0ss(1)=—=[Fn(0,t)—F(0,1)]3,(0,t). (10 several other types of contacts. These include nonideal MS
' T contacts with the presence of interface stafdsand unipolar

) ) ) or bipolar heterojunction contacts with or without interface
describing an ideal MS contact are the electron febectron  pandle nonabrupt contadis].

current density divided bg) J,(0,t), and the discontinuity  Note that for a MS contact located &t=L, that is, with

in the electron quasi-Fermi levelgF,(0,t)—F(0,t)], the metal[semiconductdron the right-(left-) hand side of

which plays the role of “thermodynamic force[5]. Both  the contact, the corresponding b.c. is

flux and force vanish at equilibrium, and we assuimeac-

cordance with the basic tenets of irreversible thermodynam- ~— L Ceppt =

ics [5]) that there is a relation between them. When the fun- dn(L, )=~ N—C[Nce b—n(L,t)]. (13

damental relation between flux and force is specified, this

relation is exactly the sought-after boundary condition at the We can compare our result, E¢L2) for the ideal MS

contact. contact with the corresponding one reported in [R25)] (see
The relation betweed, (0,t) and[F,(0,t)—F(0,t)] also p. 261 of Ref. [26]). Then we can identify

should involve more information about the physics of thex,=A;T?/e, i=0L, whereA, is the Richardson constant for

contact. First of all, let us note that the entropy production inthe semiconductor in contact with the metal located at

Eq. (10) is formally equivalent to the expression correspond-; —0,L. Theoretically,A; , and hencé.;, would depend only

ing to generation-recombination proces$28] (or, in gen- 4 the given semiconductor but not on the mé2s]. How-

eral, to any activated process, such as unimolecula'rvchemicg(,er, in practiced; is taken as a phenomenological param-

reactiong5] or surface adsorptiof24]), providedJ,(0,t) is  eter, and it cannot depend only on the metal but also on the

identified with the net rate of the process. From this comparipreparation procedurd®7]. On the other hand, basic ener-

son we then conclude that the transport through an ideal Mgetic arguments lead immediately to the following rule for

contact may be described as an elementary kinetic process @#fe contact barrier heiglip6,28: ¢>L: ¢>‘M —x. Here ¢>iM is

the formqn=0y,, whereq, andqy, represent the carriers in  the work function of the metal in the MS contact located at

the semiconductor and metal, respectively, with fieé rate X =i, andy is the semiconductor electron affinity. For cova-

of the proces®eing equal ta),(0,t). The kinetics of such a |ent semiconductors, the validity of this rule has been put
process can be described, for instance, by means of SRghder question for the last five decadds,18. However,
statistics. As it is well knOWn, this deSC‘I’iption relates therecenﬂy it was shown that even for this type of semiconduc-
kinetic rate of the process, in our cayg0,t), to the affin-  tor, if accurate growth materials are used, good agreement is
ity, in our case the difference in quasi-Fermi levels, in agreeobtained with this simple rul29,30. Note that, when such
ment with our former general treatment. As shown in thematerials are not used, as very often happens, the contact
Appendix we obtain the following relation between the netformed turns out to be nonideal. This is so because it is
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difficult to avoid the fact that very thin insulating layers where we defined
and/or interface states may be present at the coft&ct9.

Hence a nonideal description of the contact should be used, woEoNe

with, for instance, a bias-dependent relation for the barrier Q= (16)
. . . . . ]

height which would include the effects of the insulating layer

and of the interface states. Such contacts have been described

in detail in Refs[7,8]. In particular, it has been shown that i—_ oL l_NCefquSib 17)

) . ; . o . i i = .
for this nonideal contact there is no simple description di- No

rectly using equations such as E@%l) or (12), for contact

nonstationary effects induced by interface sdtest present As mentioned above, here the upgtawern sign refers to

for ideal MS contactsintroduce additional terms not present j=0 (i=L). It is worth noting thate; is always a positive

in Eq. (11). These terms could be of importance when de-guantity (because\; is), while i; does not have a definite

scribing naturally nonstationary phenomena such as theign: it depends basically on the value of the barrier height
Gunn effect with nonideal contacts, and will be considered INyi and on the doping valug,.

future works. . It should be noted that there are important restrictions on
Equation(12) and (13) can be rewritten in terms of the o hossible values of the contact current density which are

electric field by using the Poisson equation to eliminate they e to the fact that in Eq€12) and(13) the electron density
electron density from them: n is a positive quantity:

JE _ e[~ 330, - i N ~
E(l,t):E no—Nce eﬁ¢brT . (19 Osn(i,t)=NCe*eﬁ¢'bt)\—iCJn(i,t),
Nc

or, in dimensionless units,
Here the uppeflower) sign holds fori =0 [i=L], ande and

N, are the bulk semiconductor permitivity and its doping,
respectively. , _ 1. . .sats
We have thus shown how our procedure allows us to delEauations(16) and(17) imply thata; ~+i;=];"is always a
rive explicit and precise expressions for the b.c. imposed byOSitive quantity, equal to the maximum current density

a given contact. A first important consequence of thighhich the contact can provideThese restrictions on the
method can be drawn directly from Ed.4), which is simply current are remln_lscent of the rectlfylng prope'rtl'es _of MS
a relation between the normdeérivativeof the electric field —contacts. In practice, they only impose a real I|m|t.at|tqn for
and the current density at the contact. Examining our derivathe case of true rectifying contactwhen one of the s
tion shows that this result is simply a consequence of the usemal). Otherwise, i.e., for large values ¢f*, an Ohmic

of kinetic models to describe the exchange of carriersontact is obtained which does not impose a real limitation
through the contact. Hence, one should expect that b.c.’en the current.

derived in this way, will result in relationships between the In order to analyze the influence of the derived b.c.’s on
normal derivative of the electric field and the current densitythe Gunn instability, we will assume a sample formed by a
at the contact. It is easily seen tfitdiffusion effects can be certain semiconductdible to display the Gunn effgcand
neglectediour b.c.’s can be transformed into Kroemer's-type by two MS contacts implemented on it. The resulting b.c.’s
contact current-field control characteristitsl] (see Sec. are
[l1). However, unlike previous models following Kroemer’s
approach(3,4,12,31, our control characteristics are the re-
sult of a physically precise derivation, and therefore only
parameters which are physically well defined appear in them.
In particular, to use our control characteristics we do not IE
have to invokead hocassumptions involving new param- K(L’t): —a[i +j(L,b)]. (20
eters such as the contact lenth31].

To facilitate the analysis in the rest of the paper, it is
convenient to rewrite Eq14) in dimensionless units. This
greatly reduces the number of relevant parameters. Our d
mensionless electric fielfl electron densities, current den-
sitiesj(x,t), timet, and positionx are measured in units of

*j(i,H)<a; M+ij=jt (18)

29 . .
&(Oyt):ao[J(O!t)_IOJ! (19)

As discussed above, for a given semiconductor, the values of
the contact parameters may vary somewhat depending on the
fetal used in the contact and on the preparation procedures.
For instance,«; may vary two orders of magnitude, from

— VLT — — — } about 0.3 to 33.4, if we use the experimental values of
Eo, No, NoioEo, &/ (€xoNo), andeEog/(eng), respectively  Richardson’s constant for GaAs reported in Hefz]. Simi-

[32]. In these equationg;, and wq are an electric field and larly, the values of; may also span two orders of magnitude,
the zero-field electron mobility typical of the processes ocfrom about 0.03 to 4.01, due to the variationagf, if we fix
curring in the bulk of the semiconductésee below. Then  the barrier heightp,~0.2 V (corresponding to AI29]), and

Eq. (14) becomes the donor density is 26 cm 2. Thus there is a rather wide
range of parameter values for the contacts, corresponding to
a large variety of situations which will be described in this

o€ o
O =al=h=ji.0], (15 paper.
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Finally, the applied biasV, defined as eV(t) sumed to be constant. The results using other curves having
=F(L,t)—F,(01), can be expressed as followsi(t)  the sat;ne shape are simil?jr.ggf) does n|<|3t rr]each a mir|1i-
_ L 20 AL : : mum but saturates instea o, not all the monopole

fof,:(ix,t)dxf (%5 _ b)- Irlzth(i previous e>_<press.|on$/, and dipole waves which we have found occur. Thus we have
and ¢, are in units of eEg/eny, and Fp, in units of  cnoqen the velocity curve that yields the richest dynamical
SES/no- behavior. The behavior of Kroemer's model with saturating

Very frequently the analysis of the Gunn effect under dcvelocity will be commented upon in Sec. IV. The dc bias
voltage bias is carried out by using the opposite sign for thés the average electric field on the semiconductor sample.
electric field.E=—¢&. Then the b.c.’s become Equations(23) and(24) need to be solved with an appropri-

ate initial field profileE(x,0) and subject to the following

JE T mixed boundary conditions resulting from substituting
W(O't)_%[lo b1, @) j(x,t)=J(t)— dE/at [from Eq.(23)] into Egs.(21) and(22):

JE o JE . JE

—(Lh=a i +j(Ly]. (22) Zx (0= a0 Io—J(t)+E(O,t) , (26)

With  these  definitions, the dc voltage s

V=—[LE dx— (5 — ¢?). Instead of working with the volt-

ageV, it is more convenient to use the average electric field o N

on the semiconductor samplg= L—1f(L)E(X t)dx, which is In what follows,i; will be assumed to be positive because
~0 A L physically interesting phenomettmcluding the usual Gunn

equal togp=(1/L)[ —V+ (¢— #5)]. In what follows, nega- ) Sl

tive voltagesv<0 will be considered such a#>0. With effect mediated by high-field domairare observed for these

these conventions, the carriers go from the cati{ggecting values ofi;, as will be seen in the following sections.
’ - For typicaln-type GaAs datag<1 andL>1 [12]. In this
contacj at x=0 to the anoddreceiving contagtat x=L. yp yp a [12]

limit, we shall find approximate solutions to the initial
boundary value problem Eq&3)—(27) for E(x,t) andJ(t).

9E _ 9E
—(Lh=a| it IO ——(Lb) . (27)

Ill. KROEMER'S MODEL AND ITS STATIONARY Strictly speaking, the simple asymptotic description that fol-
STATES lows holds in the limitL—, even whend=0(1) [15].
A Kroemer's model Assuming 6<1 simplifies the description of the traveling

i o waves of the electric field in the semiconductor through the
The unipolar drift-diffusion model for the Gunn effect \;sq of characteristic equations and shock w4e@s35,386.
proposed by Kroeme2,33] is generally accepted to provide 14 take advantage of this limit, we will use the following
a rather complete description of the main features of thisescaled time and length:

effect. Yet it is simple enough to allow a very detailed

asymptotic analysis; other important models such asiku 1 t X
and Thomas’qg34] incorporate more detailed physics, but e S:E’ Y=1- (28)
their study is technically more demanding. In the dimension-
less units described above, Kroemer’'s model is Then Eqgs(23) and(24) become
JE JE ? IE IE P°E
E-ﬁ-v(E) &4‘1 —5W:J, (23 J-v(E)=¢€ £+U(E)W)_5€2(9_y2, (29
1L 1
Efo E(x,t) dx= ¢. (24) f E(y,s)dy= ¢. (30)
0
Equation(23) is Ampee’s law, which says that the sum of _ _ N
the displacement current and drift-diffusion current is equal B. Stationary states and their stability
to the total current density(t). It can be obtained by differ- Before describing the Gunn effect in the present model, it

entiating the Poisson equati@/dx=n—1 with respect to is convenient to discuss how to construct stationary solutions
time, substituting the charge continuity equatiem/Jt of the model in the limite<1 and 6<1. [In the case
+dj(x,t)/9x=0 [the electron current density is of the drift- §=0Q(1) the procedure is slightly more complicated, and we
diffusion type:j(x,t)=nv(E)— 6 dn/dx], and then integrat- shall omit the corresponding details; see R&L]. In this

ing the result with respect t®. The electron velocity is as- section we shall analyze the stationary states of Kroemer’s
sumed to beéN shaped, and for specific calculations we shallmodel inn-type GaAs[2,33] under dc voltage bias with the

use[33] new boundary conditions, Eq&21) and (22). Our work is
4 based upon previous asymptotic and numerical studies of
(E)=E1+BE (25 this and related mode[42-15.
v 1+E* In this asymptotic limit, any stationary solution can be

described as composed of outer and inner solutions: the outer
(it has a maximunw,,>0 atEy,>0 followed by a minimum  bulk solution is a piecewise constant field profile valid ev-
O<v,<vy at E,>Ey). The electron difusivitys is as- erywhere except for two narrow boundary layers located at
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2.0 T

(1+ agigv(E)

Jo(B)= 1+ ag(E)

(35)
15 | \ i Notice that the contact curjge(E) has the same extrema as
the velocity curvev (E) and saturates for high electric fields
to the valug 3", defined in Eq(18). Kroemer’s contact char-
acteristic for shallow-barrier metal-semiconductor contacts,
presented in Ref33], corresponds to a particular case of our
model in which the electrons in the metal are assumed to be
in equilibrium with those of the semiconductor near the con-
| tact. For this case, one would takg— 0 with | ayig| <, so
\ that j.(E) would be then proportional to(E). In contradis-
\ ____________ — tinction with Kroemer's contact characteristic, the general
curvej.(E) may intersect the bulk velocity curegE). The
main difference between these two cases is that a Gunn ef-
fect mediated by charge dipole waves is seen oniy(E)
intersects the bulk velocity curve(E). If Eq. (34) has a
FIG. 1. Stationary electric-field profiles, showing the piecewisetsr:) elugoolﬂl[i OEnqS-((?fZ )E:q?gll():ac};giv;h%g\(/)ehgg e%poﬂgggrye;;éffg e
character of the solutions. The dashed line corresponds to a Stepmf)eoundary layer at the receiving contact 1 is a much nar-
stationary solution. Narrow boundary layers are present at the con- . ) : .
tacts. rower diffusive boundary layer of widtld(ed). The field
there is[32]
the contacts and, for particular values of the current density,

E(y)
o

0.0 :

a narrow transition layer somewhere in the middle of the ﬁ:f Iv(E)dE, (36)

sample(see Fig. 1 and the explanation be)owirst of all, if dn Je

we ignore inner solutions, the stationary state solves the

equations 1-y Exn dF

q Py Eﬂ:f B (EVdE (37)
v(E)=J=0(e), e. Jev(E)

E=¢+0(e), 31 \Where

except for particular values af which will be specified be- a (i +J3)=— —fE'v(E)dE (39)

low. These equations result from retaining only order-1 o),

terms in EQgs.(29) and (30), and assumingg(y)=const. ] )

Then for those values ap such that the outer solution Eq. (i=1 and 3 whenever Eq(38) has a solutiorE, .

(31) is compatible with the boundary conditions, we have Theideanow is to fixJ and to discuss for which values of
J=0v(¢)+0(e). Let us denote byE;(J)<E,(J)<EzJ) J the above construction yields a stationary solution. Addi-
the three zeros ob (E)—J [E,(J) is unstablé Then the tionally, its stability will be considered. Clearly we may dis-
outer (bulk) field profile will be E(y)=E;, i=1 and 3, de- tinguish different cases according to the values of the contact
pending on the value of the bias parametersi{, «;), i=0,L. In what follows we shall assume

At y=0 and 1 there are boundary layers, which we will for the sake of simplicity that the boundary layer equations at
call injecting and receiving layersespectivelyE(y;J), the ~ the receiving contact, Eq$37) and(38), always have a so-
field at the injecting boundary layer of widttb(e) at lution, and hence only the parameters of the cathage (
y=0, obeys[we ignore theO(4) diffusive term ao) need to be considered. _

The general situation encountered when constructing the
stationary solutions is the following. For each value Jof
there are one or three values of the contact electric field at
x=0, which are solutions of Eq34). We shall denote these
field values byE;(J), with E.;(J)<E.»(J)<E3(J). Then
eﬁ—(O;J)=a0(i0—J). (33)  the field profile in the injecting boundary layer is a mono-

y tonic solution of Eq.(32), which joinsE(J) (i=1, 2, and
The analysis of Eq¢32) and(33) is more easily carried out 3 '@ one of the solutions aJ=v(E) (outer solution. Fur-
if we express the derivative b.c.’s E3) in terms of a b.c. thermore, the outer solution may bg a constant field profile
for the electric field at the contacE(0;J). We can obtain  9\v€n BYE(Y)=E;(J) (I=1 and 3 which extends to the end
E(0:J) from Eq. (33 by using Eq.(32) to eliminate of the sample, where a narrow receiving boundary layer ex-

®__ 1 >0 32
an_U(E) 1 X ) ( )

JE(0:J)/dy. The result is thaE=E(0:J) solves ists (see Fig. 1 For such an electric-field profile, the bias is
' ' ’ ¢~E;(J). The correspondingl-¢ characteristics satisfy
i(E)=J, (34) J~v(¢). By this construction, we identify the portions of

the J-¢ characteristics which follow the first or third branch

where of v(E) (see the details belowOther portions of thel-¢
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FIG. 3. Stationary current-voltage characteristics, lfer 500,
i0=0.135, anday=8, for which j ;n<vm<jm<]5<wvy, Show-
ing bistability for biasesE(jm) <P<Ei(jcm).- The dashed line
corresponds to the unstable solutions VEi({D;J) = E.,(J). The flat

FIG. 2. Stationary current-voltage characteristics, lfer 500,
i9=0.048, anda=9, for which j m<j.m<j¥<vm<vy, show-
ing bistability for biase€(j.m)<$<E;(j.M). The dashed line

corresponds to the unstable solutions wif0;J)=E.,(J). For ) .
portion of the curve correspondsde-v,,,. A Gunn effect mediated

comparison thev(¢) curve is also plotteddotted-dashed line . ' 4 :
Insets: At the bottom, enlargement of the bistable region. On topP¥ Moving depletion charge monopoles is expected on a bias range

contact characteristigs(E) (dashed lingand velocityo (E) (con-  Which is @ subinterval o€y <$<E. For comparison the(¢)
tinuous ling curves for this case. curve is also plotteddotted-dashed line Insets: At the bottom,

enlargement of the bistable region. On top, contact characteristics

e . . i<(E) (dashed lingand velocityv (E) (continuous ling curves for
characteristics are flat, with=J; for certain constant values ihis case.

of the current. The corresponding outer field profile is step-
like, with E=E,(J)=Ex(J;) if 0<y<AY and
E=E;(J;) withi=1 and 3 ifAY<y<1 (see Fig. L AY is  ¢~3€[Ec3(3)—E1(3)]*+E;(J). Then in the characteristics
chosen so as to satisfy the bias conditionthe third branch starting a#~E;(j.y) follows the first
d~E,(J;)AY+(1—AY)E;(J¢). The flat part of thelJ-¢  branch ofv(E) at the beginning, until it tends to saturate to
characteristics ~ corresponds to a bias  rangg g for larger voltagegsee Fig. 2 Joining these two classes
E1(J;) <¢p<E;(Js) (see the details belowFinally, when of solutions, there exists a third class fpf,<J<jcm.
J is near the valug®®, the field at the injecting contact is which joins E¢,(J) to E;(J), with ¢~E;(J). These solu-
very large, the contact region is almost depleted of electrongjons are unstable, and they give rise to the second branch in
and its extensioy= €[ E.3(J)—E;(J)] (i=1 and 3 may be the characteristics, Fig. 2, which also tend to follow the first
comparable to the length of the sample. Assuming the exterbranch of v(E). Note that for voltages E;(j.m)
sion of the depletion layer at the injecting contact is less<¢$<E;(j.M), the two classes of stable stationary solutions
than the sample length, the corresponding bias isoexist(see inset at the bottom of Fig).2Hysteresis be-
p~% e[ Ec3(J)—E;(J)]2+E;(J) (i=1 and 3. The charac- tween them is then possible.
teristics tends to saturate gf".
Following this general scheme, different possibilities may 2. jem<Um<jem<ig <vm
be dlst|_r;gtwsh_ed according to the relative values jgh In this case(see Fig. 3 the description is very similar to
<jem<lo with respect to vp<vy. Here jo=(1  the previous case, except on what concerns the third branch
+agio)vi/(1+ aguy) andvy, with k=m,M, refer to the  of the J-¢ characteristics. Now this branch is composed of
minimum (k=m) and maximum k=M) of the contact tyg types of solutionsfi) for j.,<J<v, there is a class of
jc(E) and velocityv (E) curves, respectively . We now dis- sojutions joiningEs(J) andE;(J). Most of the time one has
cuss the different cases which appear for our velocity curvey~ . (J), except ford nearv , that the solution is steplike
with ¢~E AY+(1—AY)E (v,,). We expect that these so-
L jem<icm<ig <vm<vp lutions become unstable on a bias range which is a subinter-
In this casesee Fig. 2, for 0<J<J.y we have a class of V&l of Ew<¢<E [37,38. Then a Gunn effect mediated by
solutions joining E.(J) and E;(J), with voltage ™MOVing charge monopolegsvhich are charge depletion lay-

H~E,(J). For 0< ¢<E;(j.y) the curvel-¢ then follows ers might appear(see the companion pap¢f6]). For

the first branch ob)(E). Furthermore, a second class of so—Um<J<J'Sa.tv there is a class of solution joinir@c'gs(a‘g) and
lutions joining E3(J) and E;(J), will exist for Es(J), with ¢~E5(J) for J not near j;° and

jem<J<jS¥. In this case ford not nearj$®, the voltage is ¢~ 3€[Ec3(J) —E3(J)1>+E3(J) for J nearj5®. Then the

: sat

given by ¢~E;(J), and for J near j3* it is by third branch of the)-¢ curve starts following the first branch
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FIG. 4. Stationary current-voltage characteristic for 500,
i = = i i i i t i . . .
i0=0.27, andag=4, for whichvn<jcm<jem<j5"<vwm , showing FIG. 5. Stationary current-voltage characteristic for 500,
the unstable stationary solutions(dashed ling with io=0.87, andao=0.5, for whichv ;<] em<vm<jou<j5, show-

E(0;J)=E.,(J). The flat portion ofthe curve corr.espondsllteio. ing bistability for biasesEs(jem)<@d<Es(jey). The dashed line
Note that no stable stationary solution exists for corresponds to the unstable stationary solutions — with
Ei(jem)<¢<Es(icm). Then a Gunn effect mediated by moving g(0:3)=E_,(J). The flat portion of the curve corresponds to
charge dipoles is expected. For comparisonutté) curve is also  j—;, ° A Gunn effect mediated by moving depletion charge mono-
plotted (dotted-dashed line Insets: At the bottom, enlargement of poles is expected on a bias range which is a subinterval of
the unstable region. On top, contact characterigitE) (dashed- g —4<E . For comparison the () is also plotted(dotted-
line) and velocityv (E) (continuous ling curves for this case. dashed ling Insets: At the bottom, enlargement of the bistable
region. On top, contact characteristic$E) (dashed lingand ve-
of thev(E) curve forE;(jem <¢<Ei(vy), then it presents locity v(E) (continuous ling curves for this case.
a flat region for Ei(vy)<¢<E, with J=v,, cor-
responding to the steplike solutions, and finally a region fo
En< ¢ which starts following the third branch of thgE)
curve and tends to saturate jtgflt for larger voltages. Note
the presence again of bistability for voltages;(jcm)
<@$p<E;(jem) (the inset at the bottom of Fig) &and hence

the possibility of hysteresis. A similar situation to the one  In this case(see Fig. 3, the third branch of the-¢ char-
depicted above would appear i, <jom<vm<j2<uvy . acteristics is described as in the previous case. The first

branch is composed of two types of solutions: one class, for

0<J<uvy, joining E;;(J) and E;(J), and the other, for

vm<J<jcm, joining E;1(J) andE3(J). For the first type of
The main difference for this case with respect to the presolutions, one has¢~E(J), except for J=~v) that

vious ones, relies on the second and third brandsee ¢=EyAY+(1—AY)E3(vy). These steplike solutions are

Fig. 4. Now the third branch of thel-¢ curve involves expected to become unstable in a subintervdl gk ¢ <E,,

one single class of solutions joining.3(J) and E5(J), [37,38. Then a Gunn effect mediated by moving charge

with voltages ¢~E5(J) for J not near j3, and monopolegwhich are charge accumulation layemsight ap-

b~ L[ Eca(J) — E5(J) 12+ E4(J) for J near] Sat. The second pear (see the companion papgt6]). Thus the first branch

(unstable branch is formed of two classes of solutions: oneStarts following the first branch of the(E) curve for

- - ; ; 0<¢p<Ey; then it presents a flat portion for
class forig<J<j.u Starting atE.,(J) and ending aE4(J), M o ! :
and another class fof,,<J<ig, starting atE(J) and EM=#<Es(vm), with J=vy, and ends following the third

; L - ; branch of thev(E) for E5(vy)<@<Ejs(j.m). The second
ending atEz(J). For J~i,, these solutions are steplike, 3\ M -~ 3\cM
with gthe ?/(ol'zage giVEI?l through qS%ECz(iO)AYJrF()l (unst_able branch of theJ-¢ curve is formed by a clags of
—AY)E;(J), withi=1 and 3 depending on the class of so- solutions  that Sta'.“s aE,(J) and ends .atE3(‘])' with
lutions considered. Théunstabl¢ branch in thed-¢ curve ¢~E3(J). Then this branch follows the third branch of the

then starts following the first branch of th&€E) curve for v(E) curve, for Eg(jem) < ¢<Es(jcm). Note that, for this

Ey(jov)<b<Ey(io): then it presents a flat portion for range of bias, two stationary stable solution coexisée the

Ey(io)<b<Es(i,) with J~i,, and it ends following the inset at the bottom of Fig.)5and hysteresis may appear.
third branch of thev(E) curve for Ex(jcm) <@<Ejz(ig). _

Note that for voltagesE;(jem)<@d<Es(jem there is no C. Phase diagram

stable stationary solutiofsee the inset at the bottom of Fig. By collecting the information obtained in the previous
4). Thus we expect that the usual Gunn effe@oediated by subsections, the phase diagram describing the different be-

Imoving charge dipolgswill be present for these values of

the bias(see the companion papgl6]). A similar situation

appears fov  <jcn<jem<vm<ij Sat'

; ; - sat
4. vm<jem<vm<jcem<io

; ; :sat
3. vm<jem<icm<io <Um



1498 GOMILA, RUBi, CANTALAPIEDRA, AND BONILLA 56

1.00 ' T T T T stable stationary solution is expected to occur. In those pa-
rameter ranges we expect to find the Gunn effect. Numerical
simulations show that different types of Gunn effects appear,
0.75 + Accumulation Monopoles _ mediated by a variety of wavesi) charge monopole accu-
mulation wave fronts(ii) monopole depletion wave fronts,
or (iii) charge dipole wavegigh and low electric field do-
M maing. Why these types of Gunn effects appear in the simu-
0.50 - ) i _ : ; . ) .
High-Field Dipoles lations will be explained by the asymptotic theory of the
companion papef16]. It suffices to say that without this
theory we would have missed significant possible instabili-
025 - e Low_Fiold Dipoles | ties. For exampleii) seems to have been missed by earlier
m workers, in spite of past extensive simulations of Kroemer’s
model[3]. With our boundary conditions, the previously de-
Stable scribed types of Gunn effect are found in the following
(No oscillation) ranges of dimensionless critical contact currents)
jem>vm, (i) jem<vy and j?)at>vmv and (i) vm<jcm
L ) L L <jem<vwm. Here jeu=jc(Em), jem=ic(Em), andj(sjat are
5 10 15 20 25 30 the critical currents, and,, andv) are the minimum and
o maximum values of the electron drift velocity E), E>O0.
_ ) o _ When we want to characterize experimental samples display-
~ FIG. 6. Phase diagram, showing the diversity of Gunn oscillang the Gunn effect, it is important to bear in mind the great
tions that may appear depending on the values of the injecting conyflyence of the contact parameters on the type of wave me-
tact parameters, andao. The different separatrices correspond 10 jiating the Gunn effect. A wide range of values for these
Jo =um (continuous ling jem=v (dotted ling, and jew=vm  contact parameters may be obtained depending on the type of
(thte.d'daShed l”)?Also deP'Cted the. separation be.tween low- andmetal used or on the contact preparation procedure followed.
high-field charge dipoles, discussed in the companion paashed . ;
line). N-shaped velo_(:lty curves occur naturally in recently ob-
served self-sustained oscillations in weakly couphetype
doped GaAs/AlAs superlatticesee Ref[39] for the most
haviors of the system can be sketched, in terms of the injectomplete data so farin these superlattices there is strong
ing contact parameteig and ay, Fig. 6. Stable, nonoscilla- indirect evidence of a Gunn effect mediated by charge accu-
tory stationary solutions are expected for valuesphind  mulation monopoles through photocurrent and photolumi-
ag such asi$®<uv,, wherej$®= a, +i,. Otherwise, some nescence measuremefi]. It is hard to say at this point
kind of oscillatory solution should be found. Charge accu-which other possibilities of those found in our analysis might
mulation monopoles appear fpny>v )y (or equivalently for  be realizable in these systems. An important issue to be de-
io>vwn), charge dipoles fov ,<j.m<j.m<vm (thatis, for  cided is the form of the boundary conditions. Our analysis
vm<<ig<vpn), and charge depletion monopoles i@?t>vm needs to be modified in order to be extended to these sys-
with jcm<vm (i0<vp). For completeness, the separation be-fems, as quantum tunneling plays an essential role in the
tween low- and high-field dipoles, discussed in the companinjection of carriers through contact regions.
ion paper16], has also been depicted. It is worth noting that The most used velocity curves(E) for the classical
this rich phenomenology of oscillatory states appears just bfpunn effect in bulkn-type GaAs lack the third branch after
changing the value of the contact parameters. This factm- The reason is that avalanche breakdown appears at elec-
should be taken into account in analyzing the Gunn effect irtric fields smaller thaik,,. The avalanche field is smaller for
real systems, where, as mentioned above, a wide range e longer samples needed to observe the Gunn effect, and
values for the contact parameters, depending on the metthis precludes reaching the high fields on the third branch of

-0.25
0

used and preparation procedures, may appear. v(E). Then low-field dipole domains and charge depletion
monopoles are not observed in the usual bulk samples or in
IV. DISCUSSION strongly coupled superlattices with wide minibands, which

are analogous to thef34].
We have presented a general formulation for the deriva-
tion of the boundary conditions imposed by metal- ACKNOWLEDGMENTS
micon r con n semicon r ms. Accord- . .
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these boundary conditions are of mixed type. In this paper;
we have investigated how the boundary conditions for ideal
metal-semiconductor contacts affect the stationary solutions
of the Kroemer model, and their stability. Depending on the
values of the contact parameters, bistability and hysteresis Let us consider the elementary kinetic proceSs=q"

may appear. Moreover, for some range of parameters, ndescribing the charge transport through the junction. By as-

APPENDIX: DERIVATION OF EQ. (11)
BY MEANS OF SRH STATISTICS
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suming the validity of the SRH statistics to describe this Yl EmEn) = Ynm(Em, Epy) €2 Em=En), (A2)
process, the following expression for its kinetic ratg, can
be obtained 23]: A term B8 (V,—V,,) has to be added to the argument of the

exponential in Eq(A2) if V,#V,,; see Ref[8] for a more

eneral case. We now substitute E42) into Eq. (A1) and
‘Jn:J dEnJ dEmD m(Em) Dr(En)[fm(Em) (1—f1(Ep)) gse the equations EA2) a- (A
X Ymn(Em+En) = Fo(En) (1= Fo(Em)) Yam(Em . En) 1, EC:EOC_eV ) e¢g:EC_Fm

(A1) (E2 is the bottom of the semiconductor conduction band and

whereD,(E,), a=n,m, is the density of states of systean eqsg is thg heig_ht of the coptact barr)_erAfte_r straightfor_-
f,(E,) its occupation function, given through the Fermi- Ward manipulations, we derive E@L1), in which the transi-
Dirac distributionf ,(E,) = (1+ef(Ea~E)) =1 with Ep , the ~ tion coefficientr, is

corresponding Fermi levely,,o(Em.En) [¥Ynm(Em,En)] is

the probability per unit time for the transition between states )\(’:f dEnf dE.D,(E,)Dn(En)(A—fL(Ep))

of energyE,, andE,, (E, andE,,). At equilibrium, we must

have J,=0 .and Fm=. Fn, vyith Fa=E,:Ja—_ eV‘?1 being the X(1_fm(Em))'}’nm(EmnEn)e'B(EgiEn)- (A3)
corresponding quasi-Fermi levels. This impliés ,— Er 1,

=e (V,— V) =0 (using the assumed continuity of the elec- When the semiconductor is nondegenerate, we may approxi-
tric potential at the contact These equations follow from mate 1-f,(E,)~1, whereas for a metal we may approxi-
Eq. (A1) if the latter is supplemented with the following matef,(E,,) by its equilibrium value. Then, for this case,
detailed balance relation: is a function ofT only.
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