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Stationary states and phase diagram for a model of the Gunn effect
under realistic boundary conditions
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A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenom-
enological procedure sketched here. The resulting boundary conditions, which incorporate only physically
well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The
analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of
contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary
solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary
condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.
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I. INTRODUCTION

The Gunn effect is a ubiquitous phenomenon in ma
semiconductor samples presenting negative differential re
tance and subject to voltage bias conditions@1–4#. In a nut-
shell, the negative differential resistance makes possible
existence of a variety of pulses and wave fronts, which m
be stabilized by the bias condition. Then a periodic shedd
of waves by the injecting contact results in periodic oscil
tion of the current through an external circuit, which cons
tutes the signature of the Gunn effect. Although there i
vast literature on this topic, different basic questions c
cerning the Gunn effect remain poorly understood. Pa
mount among these, there are the questions concerning
correct boundary conditions and, given these, how to
scribe all the stages of the Gunn oscillation. The lack o
precise formulation of the boundary conditions imposed
contacts on semiconductors and of a simple analytic tr
ment to analyze the Gunn oscillations, has not allowed cl
fication of the role played by contacts in the Gunn effect. I
worth noting that clarifying this point would open, for in
stance, the possibility of extracting information about t
contacts from an analysis of the Gunn oscillations the
selves, a subject of considerable interest for applied resea
ers.

Recently, progress has been made toward answering t
two questions reasonably. On the one hand, ideas from
versible thermodynamics@5# have been used to derive sati
factory boundary conditions for metal-semiconductor a
other contacts in a general way@6–8#. Previously the usua
boundary conditions used in drift-diffusion semiconduc
models were~i! periodic @9#, ~ii ! charge neutrality@10#, ~iii !
fixed field @3,4#, and~iv! control current-field characteristic
of the contact@11#, plus phenomenological assumptions su
as the ‘‘contact length’’@3#. As boundary conditions~b.c.’s!
561063-651X/97/56~2!/1490~10!/$10.00
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for a semiconductor presenting the Gunn effect, these co
tions rank from clearly wrong~no current oscillation appear
if the b.c.’s are periodic! to unsatisfactory because of their a
hoc character. Thus, even when numerical simulations
play the Gunn effect, the question is usually raised
whether these results describe a real physical system w
different contacts are present. In this paper, we shall pre
a simple derivation of appropriate b.c.’s for an ideal met
semiconductor~MS! contact, and use them to analyze t
Gunn effect in Kroemer’s model for bulkn-type GaAs. Our
description makes it clear which part of the derivation fo
lows from general principles, and which part includes inp
from the physics of contacts.

Concerning asymptotic descriptions of the Gunn eff
which delve deeper than just numerical simulations of dr
diffusion models, some progress has been made rece
@12–15#. A detailed treatment of this topic can be found
Ref. @16#.

The rest of the paper is as follows. In Sec. II we pres
our derivation of b.c.’s for ideal MS contacts, and briefl
discuss some other possibilities. Kroemer’s model and
stationary solutions for these b.c.’s are analyzed in Sec. II
is found that bistability between stationary solutions is p
sible for certain bias ranges depending on the values of
tain dimensionless contact parametersi 0 anda0, which are a
combination of its effective density of states, barrier heig
Richardson’s constant, doping, and temperature. Differ
types of Gunn effect, namely, charge monopoles~moving
charge accumulation and depletion layers! and charge di-
poles ~high- and low-field solitary waves!, are predicted to
appear depending on these contact parameters, whe
stable stationary solution exists. In Sec. V we discuss
results, whereas the Appendix is devoted to technical mat
related to the main text.
1490 © 1997 The American Physical Society
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56 1491STATIONARY STATES AND PHASE DIAGRAM FOR A . . .
II. BOUNDARY CONDITIONS

The aim of this section is to present a systematic pro
dure to derive b.c.’s at semiconductor contacts, establishe
previous works@6–8#. As a general rule, the method appli
for nondegenerate semiconductors under moderate tem
tures, that is, when thermionic emission is the domin
transport process at the contact. Hence several contac
interest, like ideal and nonideal metal-semiconductor~MS!
contacts or any type of heterojunction contact, can be m
eled. Depending on the material parameters, both limiting
well as Ohmic contact may then be described. It is wo
noting that a precise modeling of this type of contact m
help to clarify the role played by other types of contacts u
in semiconductor systems, e.g., those in which thermio
field or field-emission processes dominate@17–19#, for
which a precise description, in the sense of the present pa
is not yet available. For the sake of clarity, the method w
be presented along with its application to the case of an id
MS contact. Other contacts have been considered in prev
papers@6–8#.

Let us consider an ideal MS contact. Due to the prese
of the contact, the magnitudes describing the physical pr
erties of the system, e.g., electron density, electric field, e
tron energy, etc., may be discontinuous at that point. In
dition, singular contributions localized at the contact itse
e.g., electron density at interface states~when they are
present!, may also occur. As a consequence, a given phys
magnitude,d( x̃ , t̃ ), can be decomposed as follows:

d~ x̃ , t̃ !5dn~ x̃ , t̃ !u~ x̃ !1dm~ x̃ , t̃ !u~2 x̃ !1ds~ t̃ !d~ x̃ !,
~1!

wheredn , dm , andds refer to the values in the semicondu
tor (n), metal (m), and surface (s) parts , respectively~when
no singular contribution is present,ds vanishes!. Moreover,
u( x̃ ) is Heaviside’s unit step function, andd( x̃ ) Dirac’s
delta function. They are introduced in order to represent
discontinuity across the contact and the singular contri
tions, respectively. In writing Eq.~1!, a one-dimensional de
scription of the system has been assumed, with the con
being located atx̃50 and the metal~semiconductor! on its
left ~right!. By means of this type of decomposition, b.c
can be systematically derived.

Our procedure consists of two steps:~a! the identification
of the relevant magnitudes describing the transport proce
through the contact; and~b! the derivation of precise law
describing such processes, which relate the relevant ma
tudes at the contact and which constitute the desired b.
For the first step, use will be made of a phenomenolog
formulation of transport through semiconductor junctions@6#
while for the second Shockley-Read-Hall~SRH! statistics
@20,21# will be used.

Let us consider a given magnitude,d( x̃ , t̃ ), satisfying a
standard balance equation of the form@5#

]d~ x̃ , t̃ !

] t̃
1

]Jd~ x̃ , t̃ !

] x̃
5sd~ x̃ , t̃ !, ~2!

whereJd( x̃ , t̃ ) andsd( x̃ , t̃ ) refer to the current and net rat
production associated with the magnituded, respectively. It
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is not difficult to show that if similar balance equations we
to be satisfied on each side of the junction and if surfa
fluxes only exist along the interface@which in a one-
dimensional description meansJd,s( t̃ )50#, then the follow-
ing balance equation should be satisfied at the contact@22#:

]ds~ t̃ !

] t̃
1@Jd,n~0, t̃ !2Jd,m~0, t̃ !#5sd,s~ t̃ !. ~3!

Now we can proceed to calculate the net rate of entro
production at the contact, which will allow us to identify th
relevant magnitudes describing the transport proces
through the contact. To begin with, we consider the bala
equation for the total energy of the system. As this is a c
served quantity, we simply have

]es~ t̃ !

] t̃
1@Je,n~0, t̃ !2Je,m~0, t̃ !#50. ~4!

As for an ideal MS contact, no interface states are pres
and hence no net charge or mass is accumulated at the
tact, and the total energy at the contact coincides with
surface internal energy,us5es @22#. Hence the balance o
the internal energy is described directly through Eq.~4!, or
alternatively through

]us~ t̃ !

] t̃
1@Ju,n~0, t̃ !2Ju,m~0, t̃ !#5su,s~ t̃ !, ~5!

with

su,s~ t̃ !5@Ju,n~0, t̃ !2Je,n~0, t̃ !#2@Ju,m~0, t̃ !2Je,m~0, t̃ !#.

In the previous expression, we introduced explicitly the fl
of internal energy~equivalent to the heat flux!, which is in
general different from the flux of total energy. Furthermo
the Gibbs equation for an ideal contact is@22# Tdss5dus ~no
interface states are present!, wheress is the surface entropy
andT the temperature. By assuming the contact to be in lo
equilibrium, one then has T]ss( t̃ )/] t̃

5]us( t̃ )/] t̃ , which, after using Eq.~5!, gives rise to the
balance equation for the entropy

]ss~ t̃ !

] t̃
1@Js,n~0, t̃ !2Js,m~0, t̃ !#5ss,s~ t̃ !, ~6!

with the entropy production given by

ss,s~ t̃ !5FJs,n~0, t̃ !2
1

T
Je,n~0, t̃ !G

2FJs,m~0, t̃ !2
1

T
Je,m~0, t̃ !G . ~7!

A more explicit expression forss,s is obtained once the bulk
expressions for the fluxes are introduced on the right-h
side of Eq.~7!. These expressions can be found elsewh
@5,6#. One has
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1492 56GOMILA, RUBÍ, CANTALAPIEDRA, AND BONILLA
Js,a~0, t̃ !5
1

T
Je,a~0, t̃ !2

1

T
EF,a~0, t̃ !Ja~0, t̃ !, a5m,n,

~8!

whereEF,a refers to the electron Fermi level~or chemical
potential!, and Ja to the electron number density curren
Substituting into Eq.~7!, we simply have

ss,s~ t̃ !52
1

T
@EF,n~0, t̃ !Jn~0, t̃ !2EF,m~0, t̃ !Jm~0, t̃ !#

52
1

T
@EF,n~0, t̃ !2EF,m~0, t̃ !#Jn~0, t̃ !, ~9!

where in the second line use has been made of the contin
of the electron number density current at an ideal MS con
@this continuity follows from the corresponding balan
equation for the electron number density by imposing that
carriers are accumulated@ns( t̃ )50# nor created@sn,s( t̃ )
50# at the contact#. The final expression to be used in wh
follows is obtained by introducing the electron quasi-Fer
levelsFa(0, t̃ )5EF,a(0, t̃ )2eVa(0, t̃ ). HereVa(0, t̃ ) is the
electric potential~which is continuous through an abru
junction! ande.0 is minus the charge of the electron. W
then arrive at the desired expression

ss,s~ t̃ !52
1

T
@Fn~0, t̃ !2Fm~0, t̃ !#Jn~0, t̃ !. ~10!

Equation ~10! shows directly that the relevant magnitud
describing an ideal MS contact are the electron flux~electron
current density divided bye) Jn(0, t̃ ), and the discontinuity
in the electron quasi-Fermi levels@Fn(0, t̃ )2Fm(0, t̃ )#,
which plays the role of ‘‘thermodynamic force’’@5#. Both
flux and force vanish at equilibrium, and we assume~in ac-
cordance with the basic tenets of irreversible thermodyn
ics @5#! that there is a relation between them. When the f
damental relation between flux and force is specified,
relation is exactly the sought-after boundary condition at
contact.

The relation betweenJn(0, t̃ ) and @Fn(0, t̃ )2Fm(0, t̃ )#
should involve more information about the physics of t
contact. First of all, let us note that the entropy production
Eq. ~10! is formally equivalent to the expression correspon
ing to generation-recombination processes@23# ~or, in gen-
eral, to any activated process, such as unimolecular chem
reactions@5# or surface adsorption@24#!, providedJn(0, t̃ ) is
identified with the net rate of the process. From this comp
son we then conclude that the transport through an ideal
contact may be described as an elementary kinetic proce
the formqm
qn , whereqn andqm represent the carriers i
the semiconductor and metal, respectively, with thenet rate

of the processbeing equal toJn(0, t̃ ). The kinetics of such a
process can be described, for instance, by means of S
statistics. As it is well known, this description relates t
kinetic rate of the process, in our caseJn(0, t̃ ), to the affin-
ity, in our case the difference in quasi-Fermi levels, in agr
ment with our former general treatment. As shown in t
Appendix we obtain the following relation between the n
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rate of the process,Jn(0, t̃ ), and the jump of the quasi-Ferm
level at the MS contact@Fn(0, t̃ )2Fm(0, t̃ )#:

Jn~0, t̃ !5l0e2ebfb
0
~12eb@Fn~0, t̃ !2Fm~0, t̃ !#!. ~11!

Here l0 is a positive constant@see Eq.~A3! in the Appen-
dix#, and efb

05EC(0, t̃ )2Fm(0, t̃ ) is the contact barrier

height.EC(0, t̃ )5EC
0 2eVn(0, t̃ ) is the electron energy, with

EC
0 the bottom of the semiconductor conduction band a

Vn the electric potential at the semiconductor surface. Mo
over,b5(kT)21, wherek is the Boltzmann constant. Equa
tion ~11! is the sought-after b.c. for the ideal MS contact.
can be written more explicitly by using the expressi
ñ5NCeb(Fn2EC), which holds for nondegenerate semico
ductors, with ñ being the semiconductor electron numb
density andNC the effective density of states. We then ha

Jn~0, t̃ !5
l0

NC
@NCe2ebfb

0
2 ñ~0, t̃ !#. ~12!

In the nondegenerate case,l0 depends only onT ~see the
Appendix!. This result ends the derivation of the b.c.’s f
ideal MS contacts which we will use for the rest of th
paper. It is worth emphasizing at this point that, as m
tioned at the beginning of this section, the procedure we h
sketched here for the ideal MS contact, can be applied
several other types of contacts. These include nonideal
contacts with the presence of interface states@7# and unipolar
or bipolar heterojunction contacts with or without interfa
states@7#. Moreover, by adding a few assumptions, one c
handle nonabrupt contacts@8#.

Note that for a MS contact located atx̃5 L̃ , that is, with
the metal@semiconductor# on the right-~left-! hand side of
the contact, the corresponding b.c. is

Jn~ L̃ , t̃ !52
lL

NC
@NCe2ebfb

L
2 ñ~ L̃ , t̃ !#. ~13!

We can compare our result, Eq.~12! for the ideal MS
contact with the corresponding one reported in Ref.@25# ~see
also p. 261 of Ref. @26#!. Then we can identify
l i5AiT

2/e, i 50,L̃ , whereAi is the Richardson constant fo
the semiconductor in contact with the metal located
i 50,L̃ . Theoretically,Ai , and hencel i , would depend only
on the given semiconductor but not on the metal@26#. How-
ever, in practiceAi is taken as a phenomenological para
eter, and it cannot depend only on the metal but also on
preparation procedures@27#. On the other hand, basic ene
getic arguments lead immediately to the following rule f
the contact barrier height@26,28#: fb

i 5fM
i 2x. HerefM

i is
the work function of the metal in the MS contact located
x̃5 i , andx is the semiconductor electron affinity. For cov
lent semiconductors, the validity of this rule has been
under question for the last five decades@17,18#. However,
recently it was shown that even for this type of semicond
tor, if accurate growth materials are used, good agreeme
obtained with this simple rule@29,30#. Note that, when such
materials are not used, as very often happens, the con
formed turns out to be nonideal. This is so because i
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56 1493STATIONARY STATES AND PHASE DIAGRAM FOR A . . .
difficult to avoid the fact that very thin insulating laye
and/or interface states may be present at the contact@18,19#.
Hence a nonideal description of the contact should be u
with, for instance, a bias-dependent relation for the bar
height which would include the effects of the insulating lay
and of the interface states. Such contacts have been desc
in detail in Refs.@7,8#. In particular, it has been shown th
for this nonideal contact there is no simple description
rectly using equations such as Eqs.~11! or ~12!, for contact
nonstationary effects induced by interface sates~not present
for ideal MS contacts! introduce additional terms not prese
in Eq. ~11!. These terms could be of importance when d
scribing naturally nonstationary phenomena such as
Gunn effect with nonideal contacts, and will be considered
future works.

Equation~12! and ~13! can be rewritten in terms of th
electric field by using the Poisson equation to eliminate
electron density from them:

]Ẽ

] x̃
~ i , t̃ !5

e

«S ñ02NCe2ebfb
i
6

Jn~ i , t̃ !

l i

NC

D . ~14!

Here the upper~lower! sign holds fori 50 @i 5 L̃ #, and« and
ñ0 are the bulk semiconductor permitivity and its dopin
respectively.

We have thus shown how our procedure allows us to
rive explicit and precise expressions for the b.c. imposed
a given contact. A first important consequence of t
method can be drawn directly from Eq.~14!, which is simply
a relation between the normalderivativeof the electric field
and the current density at the contact. Examining our der
tion shows that this result is simply a consequence of the
of kinetic models to describe the exchange of carri
through the contact. Hence, one should expect that b
derived in this way, will result in relationships between t
normal derivative of the electric field and the current dens
at the contact. It is easily seen that~if diffusion effects can be
neglected! our b.c.’s can be transformed into Kroemer’s-ty
contact current-field control characteristics@11# ~see Sec.
III !. However, unlike previous models following Kroemer
approach@3,4,12,31#, our control characteristics are the r
sult of a physically precise derivation, and therefore o
parameters which are physically well defined appear in th
In particular, to use our control characteristics we do
have to invokead hoc assumptions involving new param
eters such as the contact length@4,31#.

To facilitate the analysis in the rest of the paper, it
convenient to rewrite Eq.~14! in dimensionless units. This
greatly reduces the number of relevant parameters. Ou
mensionless electric fieldE, electron densitiesn, current den-
sities j (x,t), time t, and positionx are measured in units o
Ẽ0, ñ0, e ñ0m0Ẽ0, «/(em0ñ0), and«Ẽ0 /(e ñ0), respectively
@32#. In these equations,Ẽ0 andm0 are an electric field and
the zero-field electron mobility typical of the processes
curring in the bulk of the semiconductor~see below!. Then
Eq. ~14! becomes

]E
]x

~ i ,t !5a i@2 i i6 j ~ i ,t !#, ~15!
d,
r

r
bed

-

-
e
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e
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y
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where we defined

a i5
m0Ẽ0NC

l i
, ~16!

i i52a i
21S 12

NC

ñ0

e2ebfb
i D . ~17!

As mentioned above, here the upper~lower! sign refers to
i 50 (i 5L). It is worth noting thata i is always a positive
quantity ~becausel i is!, while i i does not have a definite
sign: it depends basically on the value of the barrier hei
fb

i and on the doping valueñ0.
It should be noted that there are important restrictions

the possible values of the contact current density which
due to the fact that in Eqs.~12! and~13! the electron density
n is a positive quantity:

0< ñ~ i , t̃ !5NCe2ebfb
i
6

NC

l i
Jn~ i , t̃ !,

or, in dimensionless units,

6 j ~ i ,t !,a i
211 i i[ j i

sat. ~18!

@Equations~16! and~17! imply thata i
211 i i5 j i

sat is always a
positive quantity, equal to the maximum current dens
which the contact can provide.# These restrictions on the
current are reminiscent of the rectifying properties of M
contacts. In practice, they only impose a real limitation
the case of true rectifying contacts~when one of thej i

sat is
small!. Otherwise, i.e., for large values ofj i

sat, an Ohmic
contact is obtained which does not impose a real limitat
on the current.

In order to analyze the influence of the derived b.c.’s
the Gunn instability, we will assume a sample formed by
certain semiconductor~able to display the Gunn effect! and
by two MS contacts implemented on it. The resulting b.c
are

]E
]x

~0,t !5a0@ j ~0,t !2 i 0#, ~19!

]E
]x

~L,t !52aL@ i L1 j ~L,t !#. ~20!

As discussed above, for a given semiconductor, the value
the contact parameters may vary somewhat depending on
metal used in the contact and on the preparation procedu
For instance,a i may vary two orders of magnitude, from
about 0.3 to 33.4, if we use the experimental values
Richardson’s constant for GaAs reported in Ref.@27#. Simi-
larly, the values ofi i may also span two orders of magnitud
from about 0.03 to 4.01, due to the variation ofa i , if we fix
the barrier heightfb'0.2 V ~corresponding to Al@29#!, and
the donor density is 1014 cm23. Thus there is a rather wide
range of parameter values for the contacts, correspondin
a large variety of situations which will be described in th
paper.
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Finally, the applied bias V, defined as eV(t)
5F̂m(L,t)2F̂m(0,t), can be expressed as follows:V(t)
5*0

LE(x,t)dx1(f̂b
02f̂b

L). In the previous expressions,V

and f̂b
i are in units of «Ẽ0

2/e ñ0, and F̂m in units of

«Ẽ0
2/ ñ0.
Very frequently the analysis of the Gunn effect under

voltage bias is carried out by using the opposite sign for
electric field:E52E. Then the b.c.’s become

]E

]x
~0,t !5a0@ i 02 j ~0,t !#, ~21!

]E

]x
~L,t !5aL@ i L1 j ~L,t !# . ~22!

With these definitions, the dc voltage
V52*0

LE dx2(f̂b
L2f̂b

0). Instead of working with the volt-
ageV, it is more convenient to use the average electric fi
on the semiconductor sample,f5L21*0

LE(x,t)dx, which is

equal tof5(1/L)@2V1(f̂b
02f̂b

L)#. In what follows, nega-
tive voltagesV,0 will be considered such asf.0. With
these conventions, the carriers go from the cathode~injecting
contact! at x50 to the anode~receiving contact! at x5L.

III. KROEMER’S MODEL AND ITS STATIONARY
STATES

A. Kroemer’s model

The unipolar drift-diffusion model for the Gunn effec
proposed by Kroemer@2,33# is generally accepted to provid
a rather complete description of the main features of
effect. Yet it is simple enough to allow a very detaile
asymptotic analysis; other important models such as Bu¨ttiker
and Thomas’s@34# incorporate more detailed physics, b
their study is technically more demanding. In the dimensi
less units described above, Kroemer’s model is

]E

]t
1v~E!S ]E

]x
11D2d

]2E

]x2 5J, ~23!

1

LE0

L

E~x,t ! dx5f. ~24!

Equation~23! is Ampère’s law, which says that the sum o
the displacement current and drift-diffusion current is eq
to the total current densityJ(t). It can be obtained by differ-
entiating the Poisson equation]E/]x5n21 with respect to
time, substituting the charge continuity equation]n/]t
1] j (x,t)/]x50 @the electron current density is of the drif
diffusion type: j (x,t)5nv(E)2d ]n/]x#, and then integrat-
ing the result with respect tox. The electron velocity is as
sumed to beN shaped, and for specific calculations we sh
use@33#

v~E!5E
11BE4

11E4 ~25!

~it has a maximumvM.0 atEM.0 followed by a minimum
0,vm,vM at Em.EM). The electron difusivityd is as-
c
e

d

is

-

l

ll

sumed to be constant. The results using other curves ha
the same shape are similar. Ifv(E) does not reach a mini
mum but saturates instead asE→`, not all the monopole
and dipole waves which we have found occur. Thus we h
chosen the velocity curve that yields the richest dynam
behavior. The behavior of Kroemer’s model with saturati
velocity will be commented upon in Sec. IV. The dc biasf
is the average electric field on the semiconductor sam
Equations~23! and~24! need to be solved with an appropr
ate initial field profileE(x,0) and subject to the following
mixed boundary conditions resulting from substitutin
j (x,t)5J(t)2]E/]t @from Eq.~23!# into Eqs.~21! and~22!:

]E

]x
~0,t !5a0S i 02J~ t !1

]E

]t
~0,t ! D , ~26!

]E

]x
~L,t !5aLS i L1J~ t !2

]E

]t
~L,t ! D . ~27!

In what follows,i i will be assumed to be positive becau
physically interesting phenomena~including the usual Gunn
effect mediated by high-field domains! are observed for thes
values ofi i , as will be seen in the following sections.

For typicaln-type GaAs data,d!1 andL@1 @12#. In this
limit, we shall find approximate solutions to the initia
boundary value problem Eqs.~23!–~27! for E(x,t) andJ(t).
Strictly speaking, the simple asymptotic description that f
lows holds in the limitL→`, even whend5O(1) @15#.
Assumingd!1 simplifies the description of the travelin
waves of the electric field in the semiconductor through
use of characteristic equations and shock waves@12,35,36#.

To take advantage of this limit, we will use the followin
rescaled time and length:

e5
1

L
, s5

t

L
, y5

x

L
. ~28!

Then Eqs.~23! and ~24! become

J2v~E!5eS ]E

]s
1v~E!

]E

]y D2de2
]2E

]y2 , ~29!

E
0

1

E~y,s!dy5f. ~30!

B. Stationary states and their stability

Before describing the Gunn effect in the present mode
is convenient to discuss how to construct stationary soluti
of the model in the limite!1 and d!1. @In the case
d5O(1) the procedure is slightly more complicated, and
shall omit the corresponding details; see Ref.@32#. In this
section we shall analyze the stationary states of Kroem
model inn-type GaAs@2,33# under dc voltage bias with the
new boundary conditions, Eqs.~21! and ~22!. Our work is
based upon previous asymptotic and numerical studies
this and related models@12–15#.

In this asymptotic limit, any stationary solution can b
described as composed of outer and inner solutions: the o
bulk solution is a piecewise constant field profile valid e
erywhere except for two narrow boundary layers located
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the contacts and, for particular values of the current dens
a narrow transition layer somewhere in the middle of
sample~see Fig. 1 and the explanation below!. First of all, if
we ignore inner solutions, the stationary state solves
equations

v~E!2J5O~e!,

E5f1O~e!, ~31!

except for particular values ofJ which will be specified be-
low. These equations result from retaining only orde
terms in Eqs.~29! and ~30!, and assumingE(y)5const.
Then for those values off such that the outer solution Eq
~31! is compatible with the boundary conditions, we ha
J5v(f)1O(e). Let us denote byE1(J),E2(J),E3(J)
the three zeros ofv(E)2J @E2(J) is unstable#. Then the
outer ~bulk! field profile will be E(y)5Ei , i 51 and 3, de-
pending on the value of the biasf.

At y50 and 1 there are boundary layers, which we w
call injecting and receiving layers, respectively.E(y;J), the
field at the injecting boundary layer of widthO(e) at
y50, obeys@we ignore theO(d) diffusive term#

e
]E

]y
5

J

v~E!
21, x.0, ~32!

e
]E

]y
~0;J!5a0~ i 02J!. ~33!

The analysis of Eqs.~32! and~33! is more easily carried ou
if we express the derivative b.c.’s Eq.~33! in terms of a b.c.
for the electric field at the contact,E(0;J). We can obtain
E(0;J) from Eq. ~33! by using Eq. ~32! to eliminate
]E(0;J)/]y. The result is thatE5E(0;J) solves

j c~E!5J, ~34!

where

FIG. 1. Stationary electric-field profiles, showing the piecew
character of the solutions. The dashed line corresponds to a ste
stationary solution. Narrow boundary layers are present at the
tacts.
y,
e

e

l

j c~E!5
~11a0i 0!v~E!

11a0v~E!
. ~35!

Notice that the contact curvej c(E) has the same extrema a
the velocity curvev(E) and saturates for high electric field
to the valuej 0

sat, defined in Eq.~18!. Kroemer’s contact char-
acteristic for shallow-barrier metal-semiconductor contac
presented in Ref.@33#, corresponds to a particular case of o
model in which the electrons in the metal are assumed to
in equilibrium with those of the semiconductor near the co
tact. For this case, one would takea0→0 with ua0i 0u,`, so
that j c(E) would be then proportional tov(E). In contradis-
tinction with Kroemer’s contact characteristic, the gene
curve j c(E) may intersect the bulk velocity curvev(E). The
main difference between these two cases is that a Gunn
fect mediated by charge dipole waves is seen only ifj c(E)
intersects the bulk velocity curvev(E). If Eq. ~34! has a
solution, Eq.~32! indicates thatE(y;J) approaches one o
the solutions of Eq.~31! as we leave the boundary layer. Th
boundary layer at the receiving contacty51 is a much nar-
rower diffusive boundary layer of widthO(ed). The field
there is@32#

]E

]h
5E

E

Ei
v~E!dE, ~36!

12y

ed
[h5E

EL

E~h! dF

*F
Eiv~E!dE

, ~37!

where

aL~ i L1J!52
1

dEEL

Ei
v~E!dE ~38!

( i 51 and 3! whenever Eq.~38! has a solutionEL .
The idea now is to fixJ and to discuss for which values o

J the above construction yields a stationary solution. Ad
tionally, its stability will be considered. Clearly we may di
tinguish different cases according to the values of the con
parameters (i i , a i), i 50,L. In what follows we shall assume
for the sake of simplicity that the boundary layer equations
the receiving contact, Eqs.~37! and ~38!, always have a so-
lution, and hence only the parameters of the cathodei 0,
a0) need to be considered.

The general situation encountered when constructing
stationary solutions is the following. For each value ofJ,
there are one or three values of the contact electric field
x50, which are solutions of Eq.~34!. We shall denote these
field values byEci(J), with Ec1(J),Ec2(J),Ec3(J). Then
the field profile in the injecting boundary layer is a mon
tonic solution of Eq.~32!, which joinsEci(J) ( i 51, 2, and
3! to one of the solutions ofJ5v(E) ~outer solution!. Fur-
thermore, the outer solution may be a constant field pro
given byE(y)5El(J) ( l 51 and 3! which extends to the end
of the sample, where a narrow receiving boundary layer
ists ~see Fig. 1!. For such an electric-field profile, the bias
f'Ei(J). The correspondingJ-f characteristics satisfy
J'v(f). By this construction, we identify the portions o
the J-f characteristics which follow the first or third branc
of v(E) ~see the details below!. Other portions of theJ-f

ike
n-
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1496 56GOMILA, RUBÍ, CANTALAPIEDRA, AND BONILLA
characteristics are flat, withJ5Jf for certain constant value
of the current. The corresponding outer field profile is st
like, with E5E2(Jf)5Ec2(Jf) if 0 ,y,DY and
E5Ei(Jf) with i 51 and 3 ifDY,y,1 ~see Fig. 1!. DY is
chosen so as to satisfy the bias conditi
f'E2(Jf)DY1(12DY)Ei(Jf). The flat part of theJ-f
characteristics corresponds to a bias ran
E1(Jf),f,E3(Jf) ~see the details below!. Finally, when
J is near the valuej 0

sat, the field at the injecting contact i
very large, the contact region is almost depleted of electro
and its extensiony5e@Ec3(J)2Ei(J)# ( i 51 and 3! may be
comparable to the length of the sample. Assuming the ex
sion of the depletion layer at the injecting contact is le
than the sample length, the corresponding bias

f' 1
2 e@Ec3(J)2Ei(J)#21Ei(J) ( i 51 and 3!. The charac-

teristics tends to saturate atj 0
sat.

Following this general scheme, different possibilities m
be distinguished according to the relative values ofj cm

, j cM, j 0
sat with respect to vm,vM . Here j ck5(1

1a0i 0)vk /(11a0vk) and vk , with k5m,M , refer to the
minimum (k5m) and maximum (k5M ) of the contact
j c(E) and velocityv(E) curves, respectively . We now dis
cuss the different cases which appear for our velocity cu

1. jcm< j cM< j 0
sat<vm<vM

In this case~see Fig. 2!, for 0,J,JcM we have a class o
solutions joining Ec1(J) and E1(J), with voltage
f'E1(J). For 0,f,E1( j cM) the curveJ-f then follows
the first branch ofv(E). Furthermore, a second class of s
lutions joining Ec3(J) and E1(J), will exist for
j cm,J, j 0

sat. In this case forJ not nearj 0
sat, the voltage is

given by f'E1(J), and for J near j 0
sat it is by

FIG. 2. Stationary current-voltage characteristics, forL5500,
i 050.048, anda059, for which j cm, j cM, j 0

sat,vm,vM , show-
ing bistability for biasesE1( j cm),f,E1( j cM ). The dashed line
corresponds to the unstable solutions withE(0;J)5Ec2(J). For
comparison thev(f) curve is also plotted~dotted-dashed line!.
Insets: At the bottom, enlargement of the bistable region. On
contact characteristicsj c(E) ~dashed line! and velocityv(E) ~con-
tinuous line! curves for this case.
-

e

s,

n-
s
is

y

e.

f' 1
2e@Ec3(J)2E1(J)#21E1(J). Then in the characteristic

the third branch starting atf'E1( j cm) follows the first
branch ofv(E) at the beginning, until it tends to saturate
j 0
sat for larger voltages~see Fig. 2!. Joining these two classe

of solutions, there exists a third class forj cm,J, j cM ,
which joins Ec2(J) to E1(J), with f'E1(J). These solu-
tions are unstable, and they give rise to the second branc
the characteristics, Fig. 2, which also tend to follow the fi
branch of v(E). Note that for voltages E1( j cm)
,f,E1( j cM ), the two classes of stable stationary solutio
coexist ~see inset at the bottom of Fig. 2!. Hysteresis be-
tween them is then possible.

2. jcm<vm< j cM< j 0
sat<vM

In this case~see Fig. 3!, the description is very similar to
the previous case, except on what concerns the third bra
of the J-f characteristics. Now this branch is composed
two types of solutions:~i! for j cm,J,vm, there is a class of
solutions joiningEc3(J) andE1(J). Most of the time one has
f'E1(J), except forJ nearvm that the solution is steplike
with f'EmDY1(12DY)E1(vm). We expect that these so
lutions become unstable on a bias range which is a subin
val of EM,f,Em @37,38#. Then a Gunn effect mediated b
moving charge monopoles~which are charge depletion lay
ers! might appear~see the companion paper@16#!. For
vm,J, j 0

sat, there is a class of solution joiningEc3(J) and
E3(J), with f'E3(J) for J not near j 0

sat and

f' 1
2e@Ec3(J)2E3(J)#21E3(J) for J near j 0

sat. Then the
third branch of theJ-f curve starts following the first branc

p,

FIG. 3. Stationary current-voltage characteristics, forL5500,
i 050.135, anda058, for which j cm,vm, j cM, j 0

sat,vM , show-
ing bistability for biasesE1( j cm),f,E1( j cM). The dashed line
corresponds to the unstable solutions withE(0;J)5Ec2(J). The flat
portion of the curve corresponds toJ5vm . A Gunn effect mediated
by moving depletion charge monopoles is expected on a bias ra
which is a subinterval ofEM,f,Em . For comparison thev(f)
curve is also plotted~dotted-dashed line!. Insets: At the bottom,
enlargement of the bistable region. On top, contact characteri
j c(E) ~dashed line! and velocityv(E) ~continuous line! curves for
this case.
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of thev(E) curve forE1( j cm),f,E1(vm), then it presents
a flat region for E1(vm),f,Em with J5vm , cor-
responding to the steplike solutions, and finally a region
Em,f which starts following the third branch of thev(E)
curve and tends to saturate toj 0

sat for larger voltages. Note
the presence again of bistability for voltagesE1( j cm)
,f,E1( j cM) ~the inset at the bottom of Fig. 3! and hence
the possibility of hysteresis. A similar situation to the o
depicted above would appear forj cm, j cM,vm, j 0

sat,vM .

3. vm< j cm< j cM< j 0
sat<vM

The main difference for this case with respect to the p
vious ones, relies on the second and third branches~see
Fig. 4!. Now the third branch of theJ-f curve involves
one single class of solutions joiningEc3(J) and E3(J),
with voltages f'E3(J) for J not near j 0

sat, and

f' 1
2e@Ec3(J)2E3(J)#21E3(J) for J near j 0

sat. The second
~unstable! branch is formed of two classes of solutions: o
class fori 0,J, j cM starting atEc2(J) and ending atE1(J),
and another class forj cm,J, i 0, starting atEc2(J) and
ending at E3(J). For J' i 0, these solutions are steplike
with the voltage given through f'Ec2( i 0)DY1(1
2DY)Ei(J), with i 51 and 3 depending on the class of s
lutions considered. The~unstable! branch in theJ-f curve
then starts following the first branch of thev(E) curve for
E1( j cM),f,E1( i 0); then it presents a flat portion fo
E1( i 0),f,E3( i 0) with J' i 0, and it ends following the
third branch of thev(E) curve for E3( j cm),f,E3( i 0).
Note that for voltagesE1( j cM),f,E3( j cm) there is no
stable stationary solution~see the inset at the bottom of Fig
4!. Thus we expect that the usual Gunn effect~mediated by

FIG. 4. Stationary current-voltage characteristic forL5500,
i 050.27, anda054, for whichvm, j cm, j cM, j 0

sat,vM , showing
the unstable stationary solutions~dashed line! with
E(0;J)5Ec2(J). The flat portion of the curve corresponds toJ5 i 0.
Note that no stable stationary solution exists f
E1( j cM),f,E3( j cm). Then a Gunn effect mediated by movin
charge dipoles is expected. For comparison thev(f) curve is also
plotted ~dotted-dashed line!. Insets: At the bottom, enlargement o
the unstable region. On top, contact characteristicsj c(E) ~dashed-
line! and velocityv(E) ~continuous line! curves for this case.
r

-

moving charge dipoles! will be present for these values o
the bias~see the companion paper@16#!. A similar situation
appears forvm, j cm, j cM,vM, j 0

sat.

4. vm< j cm<vM< j cM< j 0
sat

In this case~see Fig. 5!, the third branch of theJ-f char-
acteristics is described as in the previous case. The
branch is composed of two types of solutions: one class,
0,J,vM , joining Ec1(J) and E1(J), and the other, for
vM,J, j cM , joining Ec1(J) andE3(J). For the first type of
solutions, one hasf'E1(J), except for J'vM that
f5EMDY1(12DY)E3(vM). These steplike solutions ar
expected to become unstable in a subinterval ofEM,f,Em
@37,38#. Then a Gunn effect mediated by moving char
monopoles~which are charge accumulation layers! might ap-
pear ~see the companion paper@16#!. Thus the first branch
starts following the first branch of thev(E) curve for
0,f,EM ; then it presents a flat portion fo
EM,f,E3(vM), with J5vM , and ends following the third
branch of thev(E) for E3(vM),f,E3( j cM). The second
~unstable! branch of theJ-f curve is formed by a class o
solutions that starts atEc2(J) and ends atE3(J), with
f'E3(J). Then this branch follows the third branch of th
v(E) curve, for E3( j cm),f,E3( j cM). Note that, for this
range of bias, two stationary stable solution coexists~see the
inset at the bottom of Fig. 5! and hysteresis may appear.

C. Phase diagram

By collecting the information obtained in the previou
subsections, the phase diagram describing the different

FIG. 5. Stationary current-voltage characteristic forL5500,
i 050.87, anda050.5, for whichvm, j cm,vM, j cM, j 0

sat, show-
ing bistability for biasesE3( j cm),f,E3( j cM). The dashed line
corresponds to the unstable stationary solutions w
E(0;J)5Ec2(J). The flat portion of the curve corresponds
J5vm . A Gunn effect mediated by moving depletion charge mon
poles is expected on a bias range which is a subinterval
EM,f,Em . For comparison thev(f) is also plotted~dotted-
dashed line!. Insets: At the bottom, enlargement of the bistab
region. On top, contact characteristicsj c(E) ~dashed line! and ve-
locity v(E) ~continuous line! curves for this case.
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1498 56GOMILA, RUBÍ, CANTALAPIEDRA, AND BONILLA
haviors of the system can be sketched, in terms of the inj
ing contact parametersi 0 anda0, Fig. 6. Stable, nonoscilla
tory stationary solutions are expected for values ofi 0 and
a0 such asj 0

sat,vm , where j 0
sat5a0

211 i 0. Otherwise, some
kind of oscillatory solution should be found. Charge acc
mulation monopoles appear forj cM.vM ~or equivalently for
i 0.vM), charge dipoles forvm, j cm, j cM,vM ~that is, for
vm, i 0,vM), and charge depletion monopoles forj 0

sat.vm

with j cm,vm ( i 0,vm). For completeness, the separation b
tween low- and high-field dipoles, discussed in the comp
ion paper@16#, has also been depicted. It is worth noting th
this rich phenomenology of oscillatory states appears jus
changing the value of the contact parameters. This
should be taken into account in analyzing the Gunn effec
real systems, where, as mentioned above, a wide rang
values for the contact parameters, depending on the m
used and preparation procedures, may appear.

IV. DISCUSSION

We have presented a general formulation for the der
tion of the boundary conditions imposed by met
semiconductor contacts on semiconductor systems. Acc
ing to this general formulation, the appropriate bound
conditions for ideal metal-semiconductor contacts are lin
relations between the normal derivative of the electric field
the contacts and the electron current there. For the clas
unipolar drift-diffusion Kroemer’s model of the Gunn effec
these boundary conditions are of mixed type. In this pap
we have investigated how the boundary conditions for id
metal-semiconductor contacts affect the stationary solut
of the Kroemer model, and their stability. Depending on
values of the contact parameters, bistability and hyster
may appear. Moreover, for some range of parameters

FIG. 6. Phase diagram, showing the diversity of Gunn osci
tions that may appear depending on the values of the injecting
tact parametersi 0 anda0. The different separatrices correspond
j 0
sat5vm ~continuous line!, j cm5vm ~dotted line!, and j cM5vM

~dotted-dashed line!. Also depicted the separation between low- a
high-field charge dipoles, discussed in the companion paper~dashed
line!.
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stable stationary solution is expected to occur. In those
rameter ranges we expect to find the Gunn effect. Numer
simulations show that different types of Gunn effects appe
mediated by a variety of waves:~i! charge monopole accu
mulation wave fronts,~ii ! monopole depletion wave fronts
or ~iii ! charge dipole waves~high and low electric field do-
mains!. Why these types of Gunn effects appear in the sim
lations will be explained by the asymptotic theory of th
companion paper@16#. It suffices to say that without this
theory we would have missed significant possible instab
ties. For example,~ii ! seems to have been missed by earl
workers, in spite of past extensive simulations of Kroeme
model@3#. With our boundary conditions, the previously d
scribed types of Gunn effect are found in the followin
ranges of dimensionless critical contact currents:~i!
j cM.vM , ~ii ! j cm,vm and j 0

sat.vm , and ~iii ! vm, j cm

, j cM,vM . Here j cM5 j c(EM), j cm5 j c(Em), and j 0
sat are

the critical currents, andvm and vM are the minimum and
maximum values of the electron drift velocityv(E), E.0.
When we want to characterize experimental samples disp
ing the Gunn effect, it is important to bear in mind the gre
influence of the contact parameters on the type of wave
diating the Gunn effect. A wide range of values for the
contact parameters may be obtained depending on the typ
metal used or on the contact preparation procedure follow

N-shaped velocity curves occur naturally in recently o
served self-sustained oscillations in weakly coupledn-type
doped GaAs/AlAs superlattices~see Ref.@39# for the most
complete data so far!. In these superlattices there is stron
indirect evidence of a Gunn effect mediated by charge ac
mulation monopoles through photocurrent and photolu
nescence measurements@40#. It is hard to say at this poin
which other possibilities of those found in our analysis mig
be realizable in these systems. An important issue to be
cided is the form of the boundary conditions. Our analy
needs to be modified in order to be extended to these
tems, as quantum tunneling plays an essential role in
injection of carriers through contact regions.

The most used velocity curvesv(E) for the classical
Gunn effect in bulkn-type GaAs lack the third branch afte
vm . The reason is that avalanche breakdown appears at
tric fields smaller thanEm . The avalanche field is smaller fo
the longer samples needed to observe the Gunn effect,
this precludes reaching the high fields on the third branch
v(E). Then low-field dipole domains and charge depleti
monopoles are not observed in the usual bulk samples o
strongly coupled superlattices with wide minibands, whi
are analogous to them@34#.
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APPENDIX: DERIVATION OF EQ. „11…
BY MEANS OF SRH STATISTICS

Let us consider the elementary kinetic processqm
qn

describing the charge transport through the junction. By

-
n-
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suming the validity of the SRH statistics to describe t
process, the following expression for its kinetic rate,Jn , can
be obtained@23#:

Jn5E dEnE dEmDm~Em!Dn~En!@ f m~Em!„12 f n~En!…

3gmn~Em ,En!2 f n~En!„12 f m~Em!…gnm~Em ,En!#,

~A1!

whereDa(Ea), a5n,m, is the density of states of systema,
f a(Ea) its occupation function, given through the Ferm
Dirac distributionf a(Ea)5(11eb(Ea2EFa

))21, with EF,a the
corresponding Fermi level.gmn(Em ,En) @gnm(Em ,En)# is
the probability per unit time for the transition between sta
of energyEm andEn (En andEm). At equilibrium, we must
have Jn50 and Fm5Fn , with Fa5EF,a2eVa being the
corresponding quasi-Fermi levels. This impliesEF,n2EF,m
5e (Vn2Vm)50 ~using the assumed continuity of the ele
tric potential at the contact!. These equations follow from
Eq. ~A1! if the latter is supplemented with the followin
detailed balance relation:
s

s

s,

d

ı

s

gmn~Em ,En!5gnm~Em ,En!eb~Em2En!. ~A2!

A term b (Vn2Vm) has to be added to the argument of t
exponential in Eq.~A2! if VnÞVm ; see Ref.@8# for a more
general case. We now substitute Eq.~A2! into Eq. ~A1! and
use the equations

EC5EC
0 2eVn , efb

05EC2Fm

(EC
0 is the bottom of the semiconductor conduction band a

efb
0 is the height of the contact barrier!. After straightfor-

ward manipulations, we derive Eq.~11!, in which the transi-
tion coefficientl0 is

l05E dEnE dEmDn~En!Dm~Em!„12 f n~En!…

3„12 f m~Em!…gnm~Em ,En!eb~EC
0

2En!. ~A3!

When the semiconductor is nondegenerate, we may appr
mate 12 f n(En)'1, whereas for a metal we may approx
matef m(Em) by its equilibrium value. Then, for this case,l0
is a function ofT only.
,
r,

,
r,

.
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