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Perturbation theory for the Rosenzweig-Porter matrix model
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We study an ensemble of random matrices~the Rosenzweig-Porter model! which, in contrast to the standard
Gaussian ensemble, is not invariant under changes of basis. We show that a rather complete understanding of
its level correlations can be obtained within the standard framework of diagrammatic perturbation theory. The
structure of the perturbation expansion allows for an interpretation of the level structure on simple physical
grounds, an aspect that is missing in the exact analysis@T. Guhr, Phys. Rev. Lett.76, 2258~1996!; T. Guhr and
A. Müller-Groeling, J. Math. Phys.38, 1870~1997!#. @S1063-651X~97!03308-4#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Random matrix ensembles were introduced into phys
by Wigner, Dyson, and others@1# as phenomenological mod
els of complex quantum systems. Such ensembles are
fined so as to obey certain symmetries and constraints bu
otherwise ‘‘as random as possible.’’ For instance, the Gau
ian unitary ensemble~GUE! consists of allN3N Hermitian
matricesH, the only constraint being that, on the averag
tr H2 is a given constant. This leads to a probability dens
in the matrix space,P0;exp(2tr H2), which is invariant un-
der unitary transformations.

Recently there has been some interest in various gene
zations of the GUE and its orthogonal and symplectic co
terparts@2#. One possible generalization amounts to break
the U(N) symmetry of the GUE by introducing a paramet
m into the probability density function

P~$Hi j %!dH5NexpH 2(
i 51

N

Hii
2 22~11m!

3(
i , j

@~ReHi j !
21~ ImHi j !

2#J dH. ~1!

Here Hi j , with i< j , designate the independent matr
elements of an N3N Hermitian matrix, dH
5) i 51

N dHii ) i , jd(ReHi j )d(ImHi j ) is the volume element in
the matrix space, andN is a normalization constant. Fo
m50 the expression in the curly brackets is equal
(2tr H2), so that the GUE is recovered. The parameterm
breaks theU(N) symmetry and introduces a preferential b
sis. Whenm→`, for fixed N, all matrices become diagona
in that basis. The ensemble thus exhibits a crossover f
the Wigner-Dyson statistics of the standard random ma
theory (m50) to the Poisson statistics of uncorrelated lev
(m5`). Such an ensemble~for real symmetric matrices!
was introduced by Rosenzweig and Porter@3# in their studies
of complex atomic spectra, and more recently appeare
the field of quantum chaos and localization@2#.

We shall be interested in the behavior of this ensemble
the N→` limit. In this limit, significant deviations from the
561063-651X/97/56~2!/1471~5!/$10.00
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GUE behavior can only occur ifm increases withN suffi-
ciently fast. The local level statistics is controlled@4–7# by
the parameterm/N2. Only when this parameter approach
infinity does the Wigner-Dyson statistics become complet
obliterated and the Poisson limit of uncorrelated levels
reached. In the opposite case, i.e., when (m/N2)→0, an ar-
bitrary large sequence of levels will obey the Wigner-Dys
statistics of the GUE. The ‘‘critical’’ case corresponds
m5cN2, with c5const. The situation resembles the o
which occurs in disordered electronic systems where, in
thermodynamic limit, three distinct types of statistics cor
sponding to insulator, metal, and a mobility-edge syst
@8,9# exist.

In the present paper we shall take a closer look at
eigenvalue statistics, with an emphasis on the ‘‘critical’’ ca
m5cN2. We will show that a rather complete pictur
emerges already from diagrammatic perturbation calcu
tions, along the lines of Refs.@10,11#. In this case the two-
point correlation functionR(s) ~smoothed out over few leve
spacings! differs substantially from both the GUE and th
Poisson correlation functions. Heres denotes the energy dif
ference in units of the average level spacing. For smalc,
R(s) is approximately given by its Wigner-Dyson valu
21/(2p2s2), as long ass!1/Ac @12#. For largers, however,
R(s) changes sign, reaches a maximum, and eventually
creases as 1/(pcs2).

II. DIAGRAMMATIC ANALYSIS

To begin with, let us introduce a definition of th
Rosenzweig-Porter~RP! model which is equivalent to Eq
~1! but more convenient for diagrammatic computation. W
define

H5H01V, ~H0! i j 5« id i j , Vii 50, ~2!

where« i are independent real random numbers with Gau
ian distribution

p~«!5p21/2e2«2
. ~3!
1471 © 1997 The American Physical Society
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The matrix elementsVi j of the Hermitian matrixV are inde-
pendent complex random numbers with Gaussian distribu
real and imaginary parts. The distribution is determined

^Vi j &50, ^uVi j u2&5
1

2~11m!
. ~4!

It is easy to see that the probability density function of t
thus defined Hamiltonian is just Eq.~1!.

The diagrammatic analysis amounts to a locator exp
sion of the full single-particle Green function

G65~E62H !21, E65E6 id, d↘0, ~5!

with respect to the off-diagonalV. The unperturbed~bare!
Green functionG05GuV50 is called the locator. We con
sider the density of statesr(E)5tr d(E2H), its average
value

n~E!5Š^r~E!&V‹« , ~6!

and its correlation function

R~E,E8!5Š^r~E!r~E8!&V‹«2n~E!n~E8!. ~7!

Here ^•••&V (^•••&«) stands for averaging with respect
the off-diagonal elementsVi j ~the diagonal elements« i).

We concentrate on energy separationsv5E82E for
which both energies are close to the middle of the band,
close toE50 wheren(E) is maximal. In this region,n(E) is
approximately constant,n(E)5n(E8) up toO(1/N) relative
corrections. The density-density correlatorR(s)
[R(E,E8)/n2 will then be a function of the dimensionles
level separations5v/D where the average level spacing
D51/n(E50).

We next analyze the spectral correlation functionR(s) in
the regimes.1 where perturbative methods are applicab
To begin with, we decomposeR(s) according to

R~s!5
1

n2 $Š^r~E1v!&V^r~E!&V‹«2Š^r~E1v!&V‹«

3Š^r~E!&V‹«1Š^r~E1v!r~E!&V

2^r~E1v!&V^r~E!&V‹«%

5R1~s!1R2~s!, ~8!

where R1(R2) corresponds to the first~second! difference
line contributing to the right hand side of Eq.~8!. Note that
the decompositionR5R11R2 is exact. The physical signifi
cance of the two functionsR1/2 will be discussed below
Here we merely note thatR1 measures correlations remai
ing in the GUE-averaged density of states whereasR2 fo-
cuses on the GUE correlations as such.

Representing the density of states in terms of the sin
particle Green function

r~E!52p21Im tr G1~E!,

and making use of the fact that correlations~of any type!
between products of purely retarded or advanced Gre
functions vanish forN→`: ^G1n&5^G1&n, we obtain
d

n-

.,

.

e-

’s

R15
D2

2p2ReŠtr^G1~E1v!&Vtr^G2~E!&V‹«,c ,

R25
D2

2p2Rê ŠtrG1~E1v!trG2~E!‹V,c&« , ~9!

where ^•••&c denotes the connected averag
^XY&c5^XY&2^X&^Y&. Before turning to the actual calcu
lation of these functions let us make a few methodologi
remarks and introduce some building blocks that will be
importance throughout. The whole approach will be based
a perturbative expansion of the Green functions in power
V. It is instructive to visualize the structure of the expansi
scheme graphically. To this end we introduce the notation
Fig. 1~a! wherei and j represent matrix indices~which will
not be indicated explicitly unless necessary!. As a first step
of our perturbative analysis~cf. the definition of the correla-
tion functionR1 above! we have to calculate theV average
of the Green functionG. In a diagrammatic language, th
expansion of the Green function can be visualized as sh
in Fig. 1~b!. The subsequent diagrammatic analysis of t
equation is simplified drastically by two observations th
hold to leading order inN21.

~i! Contributions with ‘‘crossed GUE lines’’@see Fig.
1~e!# are negligible@10#.

~ii ! Diagram segments which are separated from e
other by verticesVi j are statistically independent with re
spect to the average over the on-site distribution functi
r(«).

FIG. 1. Graphic representation of the Green functionG0, the
perturbation matrix elementsVi j , and its correlations~a!. The
Dyson equation for the full Green function is shown in~b!, for the
averaged Green function in~c!, and the graphical representation
the self-energy is shown in~d!. ~e! contains a diagram with crosse
GUE lines.~f! for an explanation see text.
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The second statement is based on the fact that the ind
i and j in a diagram like the one shown in Fig. 1~f! are
eventually summed over independently of each other.~All
contributions where one of the summations is constrai
will be of higher order inN21.! On the other hand, the vari
ables« i at different sites are statistically independent. P
together, these two facts imply that~ii ! holds to leading order
in N21.

According to rule~i!, the diagrammatic expression for th
V-averaged Green functionGid i j [^Gi j &V reads as shown in
Fig. 1~c!. Statement~ii ! implies that to leading order in
N21, the self-energy partS6 @as shown in Fig. 1~d!# can be
replaced by thee i-averaged one. We thus obtain

Gi
6.

1

G0,i
6212S6

, S6[^S6&«5
N

2~11m!
^G6&« .

In order to solve this equation self-consistently, we have
compute the energy average ofG. Anticipating that~a! the
self-energy will be largely imaginary,S6.7 iG, and ~b!
G!1, we obtain

^G6&«5
1

p1/2E d«e2«2 1

E2«6 iG

.7
1

p1/2E d«e2«2 iG

~E2«1 iG!~E2«2 iG!
57 ip1/2.

The second equality is based on the assumption that the
ergy argumentE!1 is close to the middle of the band. As
consequence the real part of the integral is ofO(E) and
negligible in comparison with the imaginary partO(1). This
justifies assumption~a! above. Collecting everything so fa
we obtain theV-averaged Green function

Gi
6.

1

E2« i6 iG
, G5

Np1/2

2~11m!
. ~10!

@Note that assumption~b! above holds for allm;Nx,x.1,
i.e., Eq.~10! indeed represents the self-consistent solution
the Dyson equation in Fig. 1~c!.# We next insert this expres
sion into the defining equation of the correlation functi
R1 and obtain

R15
D2N

2p2Re
1

p1/2E d«e2«2 1

E1v2«1 iG

1

E2«2 iG

.
D2N

p3/2

2G

v214G2 .

Noting that the level spacingD5p1/2/N, we arrive at the
final result

R1~s!5
1

pc

1

s21c22 , c5
D

2G
~11!

for the first of the above introduced correlation function
We postpone the discussion of this equation until
complementary correlation functionR2 has been calculated
In principle one might computeR2 via a straightforward per-
turbative expansion of the Green functionG. However, ex-
es

d

t

o

n-

f

.
e

perience gained from the analysis of similar correlation fu
tions @11# has shown that it is advantageous to represent
Green functions according to

G6~E!5]Eln~E62H !

prior to the perturbative expansion. In this way we are led
consider

R25
D2

2p2 ]E8,E
2 U

E85E1v

3ReŠ^trln~E812H !tr ln~E22H !&V,c‹« .

Expanding the logarithms in powers ofV and applying the
noncrossing rule~i! we obtain

R25
D2

2p2 ]E8,E
2 U

E85E1v

Re(
n52

1

n
^Sn~E,E8!&« , ~12!

with Sn(E,E8) graphically represented as shown in Fig.
There the segments on the outer~inner! ring correspond to
the Green functionG1(E8) @G2(E)# and the two rings are
connected byn V lines. ~Note that ann51 contribution is
absent because the potentialV is off-diagonal in the site
indices.! Rule ~ii ! implies that each segment of the ‘‘wheel
above can be averaged individually over the on-site ener
« i . As a result, the diagramSn factorizes, Sn5gn,
g5@N/2(11m)#^G1(E8)G2(E)&« , and (n52n21^Sn&«

52 ln(12g)2g. Computing the energy average~cf. the
computation of the correlation functionR1 above!

^G1~E8!G2~E!&«5
2p1/2i

E82E12iG
,

and collecting constants we obtain

R2~s!5
1

2p2 ]s
2ReF lnS s

s2 ic21D2
ic21

s2 ic21G . ~13!

We finally carry out the differentiation and add theR1 con-
tribution ~11! to arrive at the final result

FIG. 2. Graphical representation ofSn(E,E8) appearing in Eq
~12!.
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R~s!5
1

cp

1

s21c22 1
1

2p2H 21

s2 1
s223c22

~s21c22!2

1
8s2c22

~s21c22!3J . ~14!

Equation~14! is applicable when the energys@1 and fine
structure scaless'1 are inessential. Let us conclude th
section with a brief discussion of this result.

The contributionR1 @cf. Eq. ~11!# has the following inter-
pretation: TheV-averaged Green functionG is similar to
G0 except for the fact that a finite widthG has been attache
to each of the uncorrelated levels« i . This ‘‘smearing’’ im-
plies that the corresponding correlation functionR1 is
Lorentzian, i.e., it is a broadened version of thed function
that would be obtained for sharply defined autocorrela
levels. The complementary termR2 describes correlation
between theV degrees of freedom. After combining the tw
contributions three qualitatively different regimes can
identified.

~1! For s@c21 the dominant contribution comes from
R1 and we obtainR(s)'(pcs2)21.

~2! c21/2!s!c21: Still R1 dominates but now
R1'c/p.

~3! s!c21/2: The R2 contribution becomes the domina
one and we obtain the GUE resultR2'2(2p2s2)21 cor-
rected by a small termR1'c/p.

In summary, Eq.~14! essentially represents a superpo
tion of a GUE correlation function and a smeared Poisson
autocorrelation function.

III. NONPERTURBATIVE RESULTS

The diagrammatic treatment is incapable of describ
structures on the energy scale ofO(D). For c@1 an alterna-
tive perturbation technique, applicable over the whole ene
axis, can be used. Within this approach spectral correlat
are described in terms of stochastic evolution equations@13#
~see also Ref.@14#!. In this way one obtains a spectral co
relation functionR(s) that depends only on the combinatio
sAc. For large energies,s@1/Ac, the result coincides with
ours, i.e., R(s)'(pcs2)21, and for small energies
s!1/Ac level repulsion sets in, i.e.,R(s)11}cs2.

The complementary regime ofc!1 can be treated by
Efetov’s nonperturbative supersymmetry technique@15# ~for
a recent review see@16#!, where averages of Green’s fun
tions are obtained from a generating functional. The gen
ating functional corresponding to the RP model is similar
the one described in@5,6#. In these works the problem of
random banded matrix with additional diagonal disorder w
addressed. Taking the bandwidth equal to the matrix sizN
leads to the RP model. From the generating functional
can obtain the correlation function of retarded and advan
Green’s functionsK125^tr G1(E1v)tr G2(E)& where the
average is taken with respect to Eq.~1!. The final integra-
tions can be carried out within a saddle-point expansion
validity of which is controlled byN2/m@1 or equivalently
by c!1, and byv!N/m or equivalently bys!c21. In the
present work we skip the technical details and concentrat
the discussion of the results.

In the limit N→` the functionK12 is given by
d

-
n

g

y
ns

r-

s

e
d

e

on

K12~E,v!5^tr G1~E!&^trG2~E!&1S 11
c

p D 22i

s2D2 e2 ips

3sin~ps!1
2ic

D2s
1

2pc

D2 . ~15!

The first term is the entirely disconnected part and the te
of O(c) describe deviations from a pure GUE behavio
These terms represent the analog of the contributionR1 that
appeared in the diagrammatic analysis. They result from
correlation between the on-site energies« i . @Note that in
principle correlations of this type exist in the pure GUE
well. In that case, however, they represent negligi
O(1/N) effect.# From Eq. ~15! we obtain the correlation
function

R~s!5S 11
c

p D H 2S sin~ps!

ps D 2J 1d~s!1
c

p
~16!

describing the spectral behavior in the regimes!c21,
c!1. We next turn to the discussion of this result. We fi
observe that the termc/p equals the leading contribution o
the smeared autocorrelationR1(s) for s!c21. For very
small level separations R(s) behaves as 211(1
1c/p)(ps)2/3, i.e., apart from a slightly modified prefacto
we obtain generic GUE behavior. For larger valu
1!s!c21 the leading terms are identical with those o
tained in the diagrammatic treatment, as expected.@By
‘‘leading’’ we mean the first order terms of an expansion
the parameter 1/s!1 after the oscillatory structure in Eq
~16! has been averaged out.# In particular, the GUE behavio
is only valid up tos!1/Ac. Thus the nonperturbative resul
underline the conclusion drawn from the diagramma
analysis:R(s) is essentially a superposition of a GUE corr
lation with a smeared Poissonian autocorrelation. A conc
sion to be drawn from this observation is that the analo
between the Wigner-Dyson-to-Poisson transition in the
model and disordered electron systems, respectively, is
complete. In the latter case the critical correlation functi
can hardly be interpreted as a simple superposition of
terms. This qualitative difference manifests, e.g., in the
havior of the level compressibility,x5 limS→`*2S

S dsR(s)
~where it is essential that the limitN→` is taken first!. The
two extremes GUE~Poisson! correspond to valuesx50
(x51). In the case of a disordered metal at criticality t
compressibility takes an intermediate value 0,x,1 @17#. In
the critical RP model, however,x51, i.e., perturbing a Pois
son ensemble by a GUE ensemble does not change the
compressibility@13#.

Finally, we would like to comment on the analys
@18,19#. In these references, the RP model was solvedexactly
for arbitrary values of the parametersm ands. As a result of
a sophisticated combination of supersymmetry and gro
theoretical concepts Guhr@18# obtained nontrivial double in-
tegral representations for the correlation functions wh
turned out to be difficult to evaluate. In order to deriv
closed expressions forR(s) the integral was analyzed in th
two limiting casesc@1 @18# and c!1 @19# by means of
asymptotic expansion schemes. The price to pay for
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mathematical rigor of Guhr’s approach is that the physi
origin of the various ingredients toR(s) is hard to identify.
For this reason we believe that a more conventional anal
like the one discussed above was called for.

IV. CONCLUSIONS

We have studied the density of states correlation func
R(s) (s measures the energy difference in units of the av
age level spacing! of the Rosenzweig-Porter model. This ra
dom matrix model contains a parameterm which allows us
to interpolate between GUE (m50) and Poisson statistic
(m5`). In the thermodynamic limitN→` the model shows
three different types of universal functionsR(s) depending
on howm scales withN. From a diagrammatic analysis~lo-
cator expansion! assisted by nonperturbative methods
draw the following conclusions: Parameter values scaling
m(N)/N2→0 @m(N)/N2→`# lead to GUE~Poisson! statis-
tics. In the borderline casem(N)/N2[c, however, a novel
universal type of spectral behavior is observed. The co
sponding correlation functionR(s) has the following fea-
tures: As in the GUE case levels repel each other,
R(s)→21 for s→0. At somec-dependent values0, R(s)
changes sign, then reaches a maximum and decreas
(pcs2)21 for large s. For c!1 we find that the spectrum
shows GUE-type statistics up to valuess;1/Ac. For larger
values ofs, a different type of statistics is observed, th
being a consequence of the non-GUE correlation of the
,

o

.

l

is

n
r-

s

e-

.,

as

i-

agonal matrix elements in the RP model. These large ene
correlations can be interpreted as the tails of a wid
‘‘smeared’’ energy autocorrelation of Poissonian type. W
thus conclude that the RP model in the critical ca
m(N)/N2[c essentially leads to a linear superposition
Wigner-Dyson and Poissonian behavior. Let us finally co
ment on the aspect of symmetries. In this paper we h
considered the Rosenzweig-Porter model in its unitary v
sion. It is a straightforward matter to extend both the d
grammatic and the nonperturbative analysis to the cas
orthogonal, respectively, symplectic symmetry. On the ot
hand, none of our main conclusions on the structure of
model’s eigenvalue statistics did depend in aconceptualway
on symmetry aspects. We thus expect the level statistic
the models of higher symmetry to be qualitatively similar b
did not embark on any kind of quantitative analysis.

ACKNOWLEDGMENTS

We acknowledge the collaboration of M. Kreynin at th
initial stage of this work, as well as useful discussions w
O. Prus, J.-L. Pichard, and D.L. Shepelyansky. We are gr
ful to T. Guhr for providing us with a copy of@19# prior to
publication. The research was supported by the Israel
ence Foundation administered by the Israel Academy of S
ences and Humanities. M.J. acknowledges the support by
MINERVA Foundation and is grateful for the support by th
Institute of Theoretical Physics at the Technion.
n.

try
k-
stin

h.
@1# M. L. Mehta, Random Matrices~Academic Press, New York
1991!.

@2# For a recent review and references see B. Shapiro, Int. J. M
Phys. B10, 3539~1996!.

@3# N. Rosenzweig and C. E. Porter, Phys. Rev.120, 1698~1960!.
@4# Ph. Jacquod and D. L. Shepelyansky, Phys. Rev. Lett.75, 3501

~1995!.
@5# Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. B52, 11 580

~1995!.
@6# K. Frahm and A. Mu¨ller-Groeling, Europhys. Lett.32, 395

~1995!.
@7# D. Weinmann and J.-L. Pichard, Phys. Rev. Lett.77, 1556

~1996!.
@8# B. I. Shklovskii et al., Phys. Rev. B47, 11 487~1993!.
@9# A. G. Aronov, V. E. Kravtsov, and I. V. Lerner, Pis’ma Zh
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