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Perturbation theory for the Rosenzweig-Porter matrix model
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We study an ensemble of random matri¢the Rosenzweig-Porter modabhich, in contrast to the standard
Gaussian ensemble, is not invariant under changes of basis. We show that a rather complete understanding of
its level correlations can be obtained within the standard framework of diagrammatic perturbation theory. The
structure of the perturbation expansion allows for an interpretation of the level structure on simple physical
grounds, an aspect that is missing in the exact andlysiSuhr, Phys. Rev. Let?6, 2258(1996); T. Guhr and
A. Muller-Groeling, J. Math. Phys38, 1870(1997]. [S1063-651X97)03308-4

PACS numbdss): 05.45+b

[. INTRODUCTION GUE behavior can only occur i increases wittN suffi-
ciently fast. The local level statistics is controllpd-7] by
Random matrix ensembles were introduced into physicshe parameteg./N2. Only when this parameter approaches
by Wigner, Dyson, and othef4] as phenomenological mod- infinity does the Wigner-Dyson statistics become completely
els of complex quantum systems. Such ensembles are debliterated and the Poisson limit of uncorrelated levels is
fined so as to obey certain symmetries and constraints but areached. In the opposite case, i.e., whaiiN?)—0, an ar-
otherwise “as random as possible.” For instance, the Gausditrary large sequence of levels will obey the Wigner-Dyson
ian unitary ensembléGUE) consists of allN>XN Hermitian  statistics of the GUE. The “critical” case corresponds to
matricesH, the only constraint being that, on the average,x=cN?, with c=const. The situation resembles the one
trH? is a given constant. This leads to a probability densitywhich occurs in disordered electronic systems where, in the
in the matrix spaceP,~ exp(—trH?), which is invariant un-  thermodynamic limit, three distinct types of statistics corre-
der unitary transformations. sponding to insulator, metal, and a mobility-edge system
Recently there has been some interest in various generali8,9] exist.
zations of the GUE and its orthogonal and symplectic coun- In the present paper we shall take a closer look at the
terpartg 2]. One possible generalization amounts to breakingeigenvalue statistics, with an emphasis on the “critical” case
the U(N) symmetry of the GUE by introducing a parameter u=cN?. We will show that a rather complete picture

A into the probability density function emerges already from diagrammatic perturbation calcula-
tions, along the lines of Ref$10,11]. In this case the two-
N point correlation functiorR(s) (smoothed out over few level
P({Hij})dH=Nexp{ —2 Hﬁ—2(1+,u,) spacings differs substantially from both the GUE and the
=1 Poisson correlation functions. Hesalenotes the energy dif-

ference in units of the average level spacing. For small
x>, [(ReH;j)?+(ImH;))?]tdH. (1)  R(s) is approximately given by its Wigner-Dyson value,
i<l —1/(27?%s?), as long as<1/\/c [12]. For largers, however,

o ) _ ~ R(s) changes sign, reaches a maximum, and eventually de-
Here H;;, with i<j, designate the independent matrix creases as 1#cs?).

elements of an NXN Hermitian matrix, dH

=II{L;dH;IT; - ;d(ReH;;)d(ImH;;) is the volume element in

the matrix space, and/ is a normalization constant. For Il. DIAGRAMMATIC ANALYSIS

n=0 the expression in the curly brackets is equal 10 14 pegin with, let us introduce a definition of the

—trH2 i
(—trH%), so that the GUE is r_ecovered. The param.eter Rosenzweig-Porte(RP) model which is equivalent to Eq.
breaks theJ(N) symmetry and introduces a preferential ba- 1y bt more convenient for diagrammatic computation. We
sis. Whenu— oo, for fixed N, all matrices become diagonal jgfine

in that basis. The ensemble thus exhibits a crossover from
the Wigner-Dyson statistics of the standard random matrix
theory (w=0) to the Poisson statistics of uncorrelated levels H=Ho+V, (Ho)j=¢i6;, V;=0, 2
(u=). Such an ensembléor real symmetric matrices
was introduced by Rosenzweig and Pof@rin their studies  \yheres; are independent real random numbers with Gauss-
of complex atomic spectra, and more recently appeared ifyn distribution
the field of quantum chaos and localizatii&].
We shall be interested in the behavior of this ensemble in
the N—oo limit. In this limit, significant deviations from the p(e)=m Y% *". ®)
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The matrix element¥;; of the Hermitian matrix/ are inde-

pendent complex random numbers with Gaussian distributed
real and imaginary parts. The distribution is determined by

(Vij»=0, <|Vij|2>:2(1—+lu)- (4)

It is easy to see that the probability density function of the

thus defined Hamiltonian is just E(L).
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The diagrammatic analysis amounts to a locator expan-

sion of the full single-particle Green function
N0, 5

with respect to the off-diagonal. The unperturbedbare
Green functionGy=G]|y -, is called the locator. We con-
sider the density of states(E)=tr§(E—H), its average
value

G*=(E*-H)™!, E*=E=is,

V(E)={(p(E))v)e (6)
and its correlation function
R(E,E")={p(E)p(E"))\).— v(E)»(E"). (7)

Here(---)y ({(---).) stands for averaging with respect to
the off-diagonal elementg;; (the diagonal elements;).
We concentrate on energy separatioas-E’'—E for
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FIG. 1. Graphic representation of the Green funct®g the
perturbation matrix element¥;;, and its correlationga. The
Dyson equation for the full Green function is shown(im, for the

which both energies are close to the middle of the band, i.eayeraged Green function i), and the graphical representation of

close toE=0 wherev(E) is maximal. In this regiony(E) is
approximately constani(E)=»(E') up toO(1/N) relative
corrections. The  density-density  correlatorR(s)
=R(E,E’)/v? will then be a function of the dimensionless
level separatiors= w/A where the average level spacing is
A=1/v(E=0).

We next analyze the spectral correlation functiR(s) in

the regimes>1 where perturbative methods are applicable.

To begin with, we decompode(s) according to

1
R(s)= —2{{{p(E+ @))(p(E))v): = Lp(E+ @))v)e

X{p(E)v)et{{p(E+w)p(E))y

—(p(E+ @)){p(E)))e}

=R1(s)+Ry(s), (8
where R;(R,) corresponds to the firsisecond difference
line contributing to the right hand side of E@). Note that
the decompositio®R=R; + R, is exact. The physical signifi-
cance of the two function®,,, will be discussed below.
Here we merely note th&,; measures correlations remain-
ing in the GUE-averaged density of states wherRado-
cuses on the GUE correlations as such.

the self-energy is shown i). () contains a diagram with crossed
GUE lines.(f) for an explanation see text.

AZ
R1=ﬁRe(tr(G+(E+ w)>Vtr<G_(E)>V)8*C !

2

A
Ry=5 2RE(UG* (E+ )G (E)v)ss  (9)

where (---). denotes the connected average,
(XY)=(XY)—(X)Y). Before turning to the actual calcu-
lation of these functions let us make a few methodological
remarks and introduce some building blocks that will be of
importance throughout. The whole approach will be based on
a perturbative expansion of the Green functions in powers of
V. It is instructive to visualize the structure of the expansion
scheme graphically. To this end we introduce the notation of
Fig. 1(a@) wherei andj represent matrix indice@vhich will

not be indicated explicitly unless necesgars a first step

of our perturbative analysi&f. the definition of the correla-
tion functionR; above we have to calculate the average

of the Green functiorG. In a diagrammatic language, the
expansion of the Green function can be visualized as shown
in Fig. 1(b). The subsequent diagrammatic analysis of this

particle Green function
p(E)=—7"tmtrG"(E),

and making use of the fact that correlatiofwd any type

hold to leading order ilN~1.

(i) Contributions with “crossed GUE lines’[see Fig.
1(e)] are negligiblg 10].

(i) Diagram segments which are separated from each
other by verticesv;; are statistically independent with re-

between products of purely retarded or advanced Green'spect to the average over the on-site distribution functions

functions vanish foiN—o: (G*™=(G™)", we obtain

p(e).
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The second statement is based on the fact that the indices
i andj in a diagram like the one shown in Fig(fl are
eventually summed over independently of each otl.
contributions where one of the summations is constrained
will be of higher order inlN~1.) On the other hand, the vari-
ablese; at different sites are statistically independent. Put
togethler, these two facts imply th@t) holds to leading order
in N™-.

According to rule(i), the diagrammatic expression for the
V-averaged Green functiofi 5;; =(G;;)y reads as shown in
Fig. 1(c). Statement(ii) implies that to leading order in
N~1, the self-energy pai = [as shown in Fig. ()] can be
replaced by the;-averaged one. We thus obtain

1 —_— N

S YT EL O

) . ) FIG. 2. Graphical representation 8f(E,E’) appearing in Eq.
In order to solve this equation self-consistently, we have tq19),

compute the energy average @f Anticipating that(a) the
self-energy will be largely imaginarys===iT', and (b)  perience gained from the analysis of similar correlation func-

I'<1, we obtain tions[11] has shown that it is advantageous to represent the
1 1 Green functions according to
o _ —e?
(g >s‘Ff2J dee * E— 5T G*(E)=dgIn(E* ~ H)
1 f doe—*? ir o prior to the perturbative expansion. In this way we are led to
Sram) 9 B eriT)(E—e—il) '™+ consider
2
The second equality is based on the assumption that the en- R =A—a2
ergy argumenE<1 is close to the middle of the band. As a 27272 E'E E_Eso
consequence the real part of the integral isQ{fE) and '
negligible in comparison with the imaginary p&€¢1). This X Re((trin(E = H)trIn(E™ —H) )y ¢ -
justifies assumptioria) above. Collecting everything so far ) ) ) _
we obtain theV-averaged Green function Expanding the logarithms in powers ®fand applying the
noncrossing ruléi) we obtain
1 N’7Tl/2
Gme——=, I'=5———. (10 A2 1
E—g; =il 2(1+ — 52 . '
i (1+u) =520 E’:E+wRen§2 ~(SyE.E).. (12

[Note that assumptiofb) above holds for allu~N*x>1,

i.e., Eq.(10) indeed represents the self-consistent solution ofvith S,(E,E") graphically represented as shown in Fig. 2.
the Dyson equation in Fig.(d).] We next insert this expres- There the segments on the outemen ring correspond to
sion into the defining equation of the correlation functionthe Green functiolg*(E’) [G™(E)] and the two rings are

R; and obtain connected byn V lines. (Note that amn=1 contribution is
absent because the potentllis off-diagonal in the site
APN_ 1 .2 1 1 indices) Rule (ii) implies that each segment of the “wheel”
Rl:ﬁReﬂf dee Etw—=ct+ilT E—e—ill above can be averaged individually over the on-site energies
) ei. As a result, the diagramS, factorizes, S,=1v",
_ANor y=[NR2(1+ ) (G* (E)G (E)),, and S, ,n %Sy,
T2 w2+ AT =—In(1-y)—v. Computing the energy averagef. the

computation of the correlation functid®, above
Noting that the level spacing = 74N, we arrive at the

. 1/2;
final result T

<g+(E')gf(E)>g=m,

1 1 A

Ru(S)= o &5¢- 2T

and collecting constants we obtain

for the first of the above introduced correlation functions. 2 ic™?
We postpone the discussion of this equation until the Ra(s)= ZZ‘?SR In s—ic ¥/ s—ic I’
complementary correlation functidR, has been calculated.

In principle one might computR, via a straightforward per- We finally carry out the differentiation and add tRe con-
turbative expansion of the Green functi@n However, ex- tribution (11) to arrive at the final result

(13



1474 ALEXANDER ALTLAND, MARTIN JANSSEN, AND BORIS SHAPIRO 56

R(s)= — yLfoL, o8 KI2(E, ) = (tr G (E)) (G (E)) | 14 S| 52 e-ims
O e 2 22| @ T Fre e (E0)=(rGH(ENG (B))+{ 1+ 7| z52@
. 8sc™2 14 i +2ic+27-rc 15
o a4 sin(ms) + 37+ 7 (19

Equation(14) is applicable when the energ®1 and fine
structure scales~1 are inessential. Let us conclude this
section with a brief discussion of this result.

The contributionR; [cf. Eq.(11)] has the following inter-
pretation: TheV-averaged Green functiog is similar to
G, except for the fact that a finite width has been attached
to each of the uncorrelated leveds. This “smearing” im-
plies that the corresponding correlation functidy is
Lorentzian, i.e., it is a broadened version of thdunction
that would be obtained for sharply defined autocorrelate
levels. The complementary teri, describes correlations

The first term is the entirely disconnected part and the terms
of O(c) describe deviations from a pure GUE behavior.
These terms represent the analog of the contribuRpthat
appeared in the diagrammatic analysis. They result from the
correlation between the on-site energies [Note that in
principle correlations of this type exist in the pure GUE as
well. In that case, however, they represent negligible
O(1/N) effect] From Eg. (15 we obtain the correlation
éunction

between the/ degrees of freedom. After combining the two c sin(ms)\ ? c
contributions three qualitatively different regimes can be R(s)=| 1+ — _( s ) +tos+— (16
identified.

(1) For s>c~ ! the dominant contribution comes from . o ] .
R, and we obtairR(s)~ (mcs?) L. describing the spectral behavior in the regime&c™ -,

(2) ¢ Y2<s<c ! siill R, dominates but now c<<1. We next turn to the discussion of _this resu_lt. We first
observe that the term/ = equals the leading contribution of

R]_%C/'TT . _
(3) s<c~ Y2 The R, contribution becomes the dominant the smeared autocorrelatioR,(s) for s<c™!. For very

one and we obtain the GUE resit~ — (272s?)~* cor- small level separationsR(s) behaves as —1+(1
rected by a small terrR,~c/. +c/7)(ws)?/3, i.e., apart from a slightly modified prefactor

In summary, Eq(14) essentially represents a superposi-"& obtain generic GUE behavior. For larger values

. . ; SrPOS o1 - denti ; )
tion of a GUE correlation function and a smeared Poissoniafr<S<C - the leading terms are identical with those ob
autocorrelation function. tained in the diagrammatic treatment, as expec{&y

“leading” we mean the first order terms of an expansion in
the parameter $K1 after the oscillatory structure in Eq.
(16) has been averaged olin particular, the GUE behavior

The diagrammatic treatment is incapable of describings only valid up tos<1/y/c. Thus the nonperturbative results
structures on the energy scale@fA). Forc>1 an alterna- underline the conclusion drawn from the diagrammatic
tive perturbation technique, applicable over the whole energwnalysis:R(s) is essentially a superposition of a GUE corre-
axis, can be used. Within this approach spectral correlationstion with a smeared Poissonian autocorrelation. A conclu-
are described in terms of stochastic evolution equati@8  sion to be drawn from this observation is that the analogy
(see also Ref.14)). In this way one obtains a spectral cor- between the Wigner-Dyson-to-Poisson transition in the RP
relation functionR(s) that depends only on the combination model and disordered electron systems, respectively, is not
syc. For large energies> 1/\/5, the result coincides with complete. In the latter case the critical correlation function
ours, i.e., R(s)=(mcs?)"1, and for small energies, can hardly be interpreted as a simple superposition of two
s<1/\/c level repulsion sets in, i.eR(s) +1xcs?. terms. This qualitative difference manifests, e.g., in the be-

The complementary regime af<1 can be treated by havior of the level compressibility)(=Iim%xfﬁsdsﬂs)
Efetov’s nonperturbative supersymmetry technifiifg (for  (where it is essential that the limit— o is taken first. The
a recent review sefl6]), where averages of Green’s func- two extremes GUE(Poisson correspond to valueg=0
tions are obtained from a generating functional. The genercx=1). In the case of a disordered metal at criticality the
ating functional corresponding to the RP model is similar tocompressibility takes an intermediate value <1 [17]. In
the one described ifb,6]. In these works the problem of a the critical RP model, howeveg,=1, i.e., perturbing a Pois-
random banded matrix with additional diagonal disorder wason ensemble by a GUE ensemble does not change the level
addressed. Taking the bandwidth equal to the matrix Nize compressibility[13].
leads to the RP model. From the generating functional one Finally, we would like to comment on the analysis
can obtain the correlation function of retarded and advancefl8,19. In these references, the RP model was sobseattly
Green’s functionsK?=(trG*(E+ w)trG~(E)) where the for arbitrary values of the parametezsands. As a result of
average is taken with respect to Hd). The final integra- a sophisticated combination of supersymmetry and group-
tions can be carried out within a saddle-point expansion théheoretical concepts Guht8] obtained nontrivial double in-
validity of which is controlled byN?/u>1 or equivalently tegral representations for the correlation functions which
by c<1, and byw<N/u or equivalently bys<c™!. Inthe turned out to be difficult to evaluate. In order to derive
present work we skip the technical details and concentrate otlosed expressions fdr(s) the integral was analyzed in the
the discussion of the results. two limiting casesc>1 [18] and c<1 [19] by means of

In the limit N— the functionK'? is given by asymptotic expansion schemes. The price to pay for the

IIl. NONPERTURBATIVE RESULTS
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mathematical rigor of Guhr's approach is that the physicabhgonal matrix elements in the RP model. These large energy
origin of the various ingredients t&(s) is hard to identify.  correlations can be interpreted as the tails of a widely
For this reason we believe that a more conventional analysissmeared” energy autocorrelation of Poissonian type. We
like the one discussed above was called for. thus conclude that the RP model in the critical case
w(N)/N?=c essentially leads to a linear superposition of

Wigner-Dyson and Poissonian behavior. Let us finally com-

IV. CONCLUSIONS ment on the aspect of symmetries. In this paper we have

We have studied the density of states correlation functiorfonsidered the Rosenzweig-Porter model in its unitary ver-
R(s) (s measures the energy difference in units of the averSion. It is a straightforward matter to extend both the dia-
age level spacingf the Rosenzweig-Porter model. This ran- grammatic and the. nonperturbatn_/e analysis to the case of
dom matrix model contains a paramegemwhich allows us orthogonal, respect|ve[y, symplegtlc symmetry. On the other
to interpolate between GUEw=0) and Poisson statistics hand, none of our main cpnclgsmns on _the structure of the
(w==). In the thermodynamic limiN— = the model shows model’s eigenvalue statistics did depend |cna1ceptuaWay
three different types of universal functioR{s) depending ©n Symmetry aspects. We thus expect the level stafistics of
on how x scales withN. From a diagrammatic analysito- the models of higher symmetry to be _quz_alltanvely s_|m|Iar but
cator expansionassisted by nonperturbative methods wedid not embark on any kind of quantitative analysis.
draw the following conclusions: Parameter values scaling as
w(N)/N?=0 [(N)/N?>—x] lead to GUE(Poisson statis-
tics. In the borderline casg(N)/N?=c, however, a novel
universal type of spectral behavior is observed. The corre- We acknowledge the collaboration of M. Kreynin at the
sponding correlation functiol(s) has the following fea- initial stage of this work, as well as useful discussions with
tures: As in the GUE case levels repel each other, i.eQ. Prus, J.-L. Pichard, and D.L. Shepelyansky. We are grate-
R(s)— —1 for s—0. At somec-dependent valusg,, R(s)  ful to T. Guhr for providing us with a copy dfL9] prior to
changes sign, then reaches a maximum and decreases @slication. The research was supported by the Israel Sci-
(mcs?) 1 for large s. For c<1 we find that the spectrum ence Foundation administered by the Israel Academy of Sci-
shows GUE-type statistics up to valugs 1/\c. For larger ences and Humanities. M.J. acknowledges the support by the
values ofs, a different type of statistics is observed, this MINERVA Foundation and is grateful for the support by the
being a consequence of the non-GUE correlation of the ditnstitute of Theoretical Physics at the Technion.
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