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Control of noise-induced oscillations of a pendulum with a randomly vibrating suspension axis
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We consider the influence of an additional harmonic action on noise-induced oscillations of a pendulum with
a randomly vibrating suspension axis. It is shown that these oscillations are intensified, or even initiated, if the
frequency of the additional action is low, but that they are suppressed if it is high. Both intensification and
suppression of the oscillations occur via “on-off intermittency.” In a certain range of the action frequencies,
synchronization of a noise-induced pendulum’s oscillations takes place in the sense that the mean frequency of
the oscillations becomes close to the action frequency. Thus we demonstrate that both frequency and amplitude
of noise-induced oscillations can be effectively controlled. Similarities and distinctions between these effects
and classical phenomena of asynchronous excitation, asynchronous quenching, and synchronization are dis-
cussed[S1063-651X97)02208-3

PACS numbsgs): 05.40:+j, 05.45+b

I. INTRODUCTION tion additive noise and additional harmonic vibration of the
suspension axis are taken into account.

A noise-induced phase transition in a pendulum with a From the analysis of truncated equations obtained by the
randomly vibrating suspension axis was considered in detaikrylov-Bogolyubov method and the corresponding Fokker-
in Refs.[1,2]. This transition consists in the excitation of the planck equation, it was show,2] that, as«(2w,) is in
pendulum’s oscillations, and the birth of an induced attractogyxcess of a certain critical valug,, proportional to the
owing to the random vibration of the suspension axis. ltgamping factorB, the mean values of the amplitude and the

takes place if the intensity of the random vibration exceed%mpmude squared become different from zero. Taking into
some critical level. This transition is akin to that considered

) ; di ite diff ¢ iso-induced account that the truncated equation for the amplitude has the
in Refs. [3,4], and is quite different from noise-induced oo form as for a noisy van der Pol generator, one can
phase transitions studied by a number of other researchegieak of the birth of a noise-induced attractor
(§ee, €9, R¢1[5]). In thewl 'works the appearance of addi- In Ref.[6] it was shown that the excitation of the pendu-
tional peaks in the probability density under the influence of | S . " . .
L : N : : . lum’s oscillations occurs via the so-called “on-off intermit-
multiplicative noise, mainly in the systems with mult|stab|I-t 5 171, (Intermitt f h a kind first ted
ity, is called a noise-induced phase transition. For the pen—enCy 7). (intermittency of such a kind was first reporte

dulum under consideration, additional peaks in the probabil?y Fuiisaka and Yamada].) It is essential that this type of

ity density do not appear. intermittency can occur not only in dynamical systems, but
The equation for the description of noise-induced penduil Stochastic ones as w¢B]. In Ref.[9] the statistical prop-
lum’s oscillations is erties of on-off intermittency were found from the analysis of

a one-dimensional map. In particular, it was found that the
. ™ ) ) mean duration of laminar phase has to be proportional to
¢+2B(1+ ap?) e+ wg[ 1+ &1(t) +acomwyt]sing=kéx(1),  5-1 \herea is a bifurcation parameter. For the pendulum,
@) we calculated the mean duration of laminar phase from the
truncated equations for oscillation amplitude and phase and
where¢ is the pendulum’s angular deviation from the equi- the corresponding Fokker-Plank equat[6f Assuming that
librium position, 28(1+ a¢?) ¢ is the value proportional to the pendulum oscillates in laminar phase if the oscillation
the moment of the friction force which is assumed to beamplitudeA is less than a certain threshodg we obtained
nonlinear,w, is the natural frequency of small pendulum’s that the mean duration of laminar phase has to be propor-
oscillations,&;(t) is the acceleration of the suspension axistional to e and inversely proportional t&(2wg) — k. This
that is a comparatively wide-band random process with nonresult, withx(2wg) — x, taken as a bifurcation parameter, is
zero power spectrum density(w) at the frequency @, in agreement with Ref9].
ké&,(t) is the additive white noise, araland w, are, respec- In this article we investigate the influence of an additional
tively, the amplitude and frequency of the additional vibra-harmonic action upon the pendulum. It is shown that a low-
tion of the suspension axiflJnlike Refs.[1,2], in this equa- frequency action can initiate the noise-induced phase transi-
tion if the intensity of the suspension axis random vibration
is subthreshold, and intensify the noise-induced oscillations
*Present address: Humboldt—Univeisiteu Berlin, Invaliden- if this intensity exceeds its threshold; whereas a high-

strale 110, 10115 Berlin, Germany. frequency action always suppresses the noise-induced pen-
"Permanent address: Mech. Eng. Res. Inst., Russian Acad. Scilulum’s oscillations. It turns out that in a certain range of
101830 Moscow, Russia. action frequencies, synchronization of noise-induced pendu-
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FIG. 2. The dependencies of the root-mean-square value of the
pendulum’s oscillationse on a for (8) «(2wg)/k,=0.51 and
w,=0.3[the dependence=0.48(a—1.1) is shown as a solid lide
15 ‘ (C) and(b) k(2wg)/ ke(2)=1.89 andw,=0.3.

excited cannot practically be distinguished from those ex-
0.0 cited due to random vibration only.

The oscillation intensity is the greater, the largeais'he
dependence of the root-mean-square value of pendulum’s an-

0 10‘00 zo‘oo 3000 gular deviation(rzﬁll2 on the difference between the am-
o . . plitude a and its threshold valua, is found to be close to
FIG. 1. Oscillations of the pendulum excited by the noise andiinear[Fig. 2@)]. So we see that the low-frequency vibration
additional periodic action. The dependenciesy6f) are shown for  jpitiates the noise-induced phase transition and the birth of
k=0, k(2w)/k4=0.51,w,= 0.3, and different values of the action the induced attractor.
amplitude:(a) a=1.151,(b) a=1.3, and(c) a=1.5. It was found that the initiation of the pendulum’s oscilla-

, o ) tions by a low-frequency additional action occurs via on-off
lum’s oscillations takes place in the sense that the mean frgqiermittency. Asa increases, the mean duration of laminar
guency of the oscillations becomes close to the action frephasesT decreases. We have found that the dependence of
qu%ncy.t d inlv incited by the K . tigations” on a [Fig. 3(@] is in good accordance with the formula

ur study was mainly incited by Ihe known Invesugalions , _ 4 4412 - a2y, where ay=1.15. We note that in the
Bresence of additive noise on-off intermittency is not detect-

:onursg:ssgg'gfjegﬁrbgtjg?/hitsafoofrg;gg?z%_g}ngnsa?;fgg b éi-ble and_ the th_reshold of the phase tra_nsition becqmes_ fuz_zy.

tween turbulent processes in nonclosed flows and noise- If the intensity of the suspension axis random vibration is

) , o in excess of its threshold value, i.&(2wg) > k., an addi-

induced pendulum’s oscillatiorjd3—-15. tional low-frequency vibration significantly intensifies the
Another purpose is to find similarities and differences in

) L ; .noise-induced oscillations. The dependencesobn a for
the response of systems with noise-induced and with ordi- - = i e

; ; k(2wg)/ k=1.89 andw,=0.3, is shown in Fig. @). We
nary attractors to an external action. In particular, we are . ‘ L
: . o : See that small actions leave the pendulum’s oscillations
interested in synchronization properties.

nearly unaffected. But, beginning with a certain action am-
plitude, the variance of the pendulum’s oscillations rises

-1.5

Il. CONTROL OF THE INTENSITY steeply.
OF THE PENDULUM'S OSCILLATIONS The initiation of noise-induced pendulum’s oscillations
BY AN ADDITIONAL HARMONIC ACTION and a noise-induced phase transition can be considered as
In this section we discuss the problems of controlling the
intensity of the pendulum’s oscillations by an additional har- (a) (b)
monic action, either multiplicative or additive. Because both  1¢ 4 ;

types of the action result in the same qualitative effects, we
dwell mainly on a multiplicative action. Such an action cor-

responds to additional harmonic vibration of the pendulum’s £ 5 |
suspension axis.

0 e
A. Initiation and intensification of the pendulum’s oscillations 11 16 21 26 3.1 40 50 60 70 80
by a low-frequency harmonic action a a

First we consider the case=0, i.e., without additive FIG. 3. The dependencies of the mean duration of “laminar”
noise. The results of numerical simulation of HA) for  hases: on the action amplituda for the initiation (8) and sup-

K(Zwo)_< K¢ and differe_nt yalues o: fire_represented in Fig. dpression (b) of oscillations. The parameters af@) e=0.002,
1. In this case the excitation of oscillations is of a thresholdy(24)/k,=0.51, andw,=0.3; and (b) €=0.002, x(2wo)/ ke

character with the amplitude threshold value depending 0r-5.6, and w,=20. The solid line shows the dependence
K(2wp)/ ker. FOrwa=0.3 andk(2wg)/ k= 0.51, the thresh-  =0.44/@?—a2) and a,=1.15 (a), and 7=1900/@Z%—a? and
old value ofa is equal to 1.15. Foa>a,, the oscillations a,=83.5(b).
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some analog of the well-known phenomenon of asynchro- 1.0
nous excitation of self-oscillationgl6—19, although there

exist essential distinctions. Let us demonstrate this effect by 0.0
the example of a generator with hard excitation and a har-
monic external force described by the equation

-1.0
X+ (= ax+ Bx*)x+ wpx= wiBcosut. @) o2

If the frequency of the external force is far from its reso- g K ‘ !
nance value then it is convenient to substitute into @. ‘

x=Fcoswt+y, (3 03 ‘

0.3 ‘ (©)
whereF = w3B/(w3— w?). In doing so we obtain the follow-

ing equation for the variablg: 0.0 WMH—%W————<

Y+ wly=—[n—a(y+Fcoswt)?+ B(y+ Fcoswt)*] ~0.3

X (y—Fosinot). (4 03 ' | (d)

Settingy = Ccos(wgt+ ), for C and ¢ we obtain the follow- 0.0 MMWMWMW

ing truncated equations:

-0.3

. 1 a ., 2 0 1000 2000 3000
C:_E ﬂ—z(c +2F9)+

g(c4+6c2|:2+3|:4))c,

FIG. 4. The dependencies af(t) for x(2wg)/k,=5.6 and
. w,=20; (@) k=0 anda=10, (b) k=0 anda=30, (c) k=0 and
¥=0. ®  a=70, and(d k?¢ 2=0.05¢ 2 and a=70. It is seen that in the

Hence the external force influences not only linear but nonpresence of additive noise the pendulum’s oscillations cannot be

linear friction as well. The condition for asynchronous exci-SuIDIDresseOI entirely.
tation of self-oscillations is obtained from E):
sults of numerical simulation of E@l) for w,>2w,, we see
aF?  3BF* that, for small amplitudes of the high-frequency action, this
—7>0. ©®) action has little or no effect on the existing noise-induced
oscillations(Fig. 4). As the action amplitude increases, the
If the amplitude of the external force is fixed, then inequalityintensity of the noise-induced oscillations decreases rapidly,
(6) determines the region of relative mistunings and in the absence of additive noise for a certain value of the
A= (wj— w?)/w§ for which asynchronous excitation occurs: action amplitude the oscillations are suppressed entirely. For
2 o .2 example, fork(2wg)/k,=>5.6 andw,= 20, this amplitude
AT<A®<A3, (7)  value is equal to 83.5. It is evident that in the presence of
additive noise, the noise-induced pendulum’s oscillations
cannot be entirely suppressed, but the suppression can be

where

38 687|121 impressive[Fig. 4(d)]. . . .
Afzz_BZ 1i(1__2) } . We can see from Fig. 4 that the suppression of noise-
“ 2a a induced oscillations, like their excitation in the absence of an

o : external action and initiation by a low-frequency action, oc-
Consequently, asynchronous excitation is possible only for

<a?6B. i.e., only for sufficiently small values of the co- curs via on-off intermittency. As the action amplitude in-
gffic(ixentn’ €., only y creases, the duration of “laminar” phases also increases.

For mistuningdA| <A, only forced oscillations with fre- The dependence of the mean duration of “laminar” phases

quencyw can exist, whereas fgi\|> A ,, depending on the ::%noog]i(;ain;)/r:( irgpzhéugesaho{/(\;#?r? Finug)erl_lt_:ﬁgysoll‘i(()jr
initial conditions, either forced oscillations or beats exist. WeIine ' sh(;ws Ct)he Crde.endencerz 1900/9(5'12 —.az) and

see from inequality7) that the condition of asynchronous pe e )
excitation of self-oscillation is independent of the sign of 3 83.5. We see that this dependence fits the experimental

mistuning, whereas for the pendulum this effect can takéjat_?hratger W%”' . f the intensitv of th dulurm’
place only for low frequencies of the external action. _|ne dependencies of the intensity ot the pendulum's os-
cillations on the amplitude and frequency of the action are

shown in Fig. 5. It is seen from Fig(& that in the case of
moderately high frequencies of the action the intensity of
noise-induced pendulum’s oscillations with increasing action
If the frequency of additional harmonic action is suffi- amplitude first decreases to a certain minimal value and then
ciently high, then a suppression of noise-induced pendulum’'écreases; for sufficiently large amplitudes of the action it
oscillations occurs instead of their intensification. From re-can become even more than in the absence of the action. It

B. Suppression of the pendulum’s oscillations
by a high-frequency harmonic action
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(a) (b) then the self-oscillations become suppressed entirely, and

only forced oscillations at the frequenayremain. The am-
plitude of these oscillations is smaller the greater the abso-
lute value of the mistuning?— w3 is.

We note that the suppression of self-oscillations in a sys-
tem under an asynchronous external action occurs only when
cubic nonlinearity, resulting in the appearance of nonlinear
positive friction, plays a dominant role. It is important that
this effect is independent of the sign of the frequency mis-
a tuning; whereas for the pendulum the suppression of noise-
induced oscillations is possible only for sufficiently high fre-
quencies of the external action.

To conclude this section, we emphasize that the intensifi-
cation and suppression of a noise-induced pendulum’s oscil-
lations can be obtained by means of both multiplicative and

should be noted that this minimal value is smaller the greate?dS't'V(.a harmort1_|c”acrt1|.o?]. In che last casle t?e.efﬂmegcy of the
the action frequency is, and it is attained for larger ampli-ac lon 1S essentially nigher. ~or example, 10 Increaseom

tudes of the action, the higher the action frequency is. If thé)'18 to 0.58, the amplitude of the low-frequency action

above, a complete suppression occurs is multiplicative. Similarly, the decrease of from 0.18 to

In the case of a change of the frequency of the action fop'.13 d.“? to a h_|gh-fr¢quency act!om)e(= 20) can be Ob.'.
a fixed value of its amplitudgFig. 5(b)], the intensity of the tamed if its ampll_tude isequalto 1in thg case of the additive
noise-induced pendulum’s oscillations with increasing actiorction: and to 8 in the case of the multiplicative one.
frequency first decreases to a certain minimal value, which is
smaller the greater the action amplitude is, and then in- IIl. SYNCHRONIZATION OF THE PENDULUM'’S
creases. This minimal value is attained for higher frequencie®SCILLATIONS BY AN EXTERNAL HARMONIC FORCE
of the action, the larger its amplitude is. Thus we can con- . . . N
clude that there exist some optimal value of the controlling In a certain range of action frequencies, a synchronization

parametereithera or w,) for which the suppression is most of pendulum’s oscillatio_ns 'gakes place in the sense _tha_t the
effective a mean frequency of noise-induced pendulum’s oscillations

Similar to the initiation of the pendulum’s oscillations by becomes close to the action frequency. Such an approach to

means of an additional harmonic action, the suppression otpe problem of synchronization was used in R¢20-22,

these oscillations is much different from the known phenom-Where the effects of phase and frequency locking in chaotic

enon of asynchronous suppressi@r quenching of self- systems have been studied numerically. Here we demon-
oscillations[ 18,19, Let us consider a van der Pol generatorstrate that synchronization of such a kind can be observed in

with a harmonic external force described by the equation systems with n0|.se—|nduced oscillations as we!l. . .
We can explain the occurrence of synchronization and its

character analytically. In the case of an additive harmonic
action without additive noise, the equation of pendulum’s
By substituting Eq.(3) into Eq. (8), for y we obtain the Oscillations can be written as

equation

10 20 30
®

FIG. 5. (8 The dependencies af on a for wg=1, =0.1,
a=100, k(2wp)/ k=5.6, w,=3.5(circles, w,= 11 (squarel and
w,=20 (triangles. (b) The dependencies af on w, for a=3
(circles, a=40 (squarey anda=80 (triangles.

X— mw(1— ax?)x+ w3x= wiBcoswt. (8)

) _ e +2B(1+ ag?) o+ w1+ £,(t)]sing = wiBcoswt.
y+ wdy=u[1— a(Fcoswt+y)?](y— Fwsinot). (9) (12)

Settingy=Ccos(gt+#), for C and ¢ we obtain the trun- Settinge~Acost+ ¢) and solving Eq(11) approximately
cated equations by the Krylov-Bogolyubov method, we obtain the following
truncated equations for the amplitueand phaseb:

e )% C? 2F? 9
T2 _A_S_A_g ' (10 _szlw/ _3BaA2 A wB +wA .
. - 4 \7701 Klw 2 S|n¢ 2 gl( )!
=0, (12

whereA0=2/\/Z is the amplitude of free self-oscillations. . . 5 0B
Equation (10) shows that under the action of an external p=Ag+ oM ,— 50A ~ SpCO T wl(1), (13
force a decrease in the effective increment of the self-

oscillation component occurs. If the external force amplitude . 2 _ .
exceeds a certain critical value where 7, =1-4p/w"Ky,, Ki,=r(20)/2, L4(1) is a ran-
dom process with zero mean value and intendtty,,

2| Aoz(wg—wz)/Zw is the frequency  mistuning,
—= M, =(£co(wt+ ¢)), and,(t), much like tof,(t), is a ran-
\/Ewo dom process with zero mean value and the intensity

|0—w

Ba=Ao
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Ky,=[x(0)+K,,]/4. The value oM , can be calculated in 1.0 ; ; - (a)
a similar way to that in Refd1,14]. B=0.01
If the action amplitude is sufficiently small, then the syn-
chronization region is narrow. In this case the phase varies
slowly, and we can assume that the oscillation amplitude 05 [ g_g5

attains a steady-state value considerably faster than theg
phase, and its steady-state value is close to that without har-C': st\
monic action 18]. Then Eq(13) can be rewritten in the form 0.0

=A(AY) — Ay(Ag)cosp+ wly(t), (14)

whereA (A3)=A,+ oM, — HwAZ is the effective frequency 05 ‘ ‘ ,

mistuning depending on the steady-state value of amplitude 0.0 0.5 1.0 1.5

Ao in the absence of an additional action, and o

A¢(Ag) = wB/2A, is the effective half-width of the synchro- 04

nization region which also depends 8g. ) ' (b)
Equation(14) has the same form as the equation describ- oo

ing the phase evolution of a van der Pol generator driven by i 77

an external harmonic force in the presence of additive noise 5 | ““\?%

[23,24,18. The only distinction is thah andA here depend ’ *

on Agy. Therefore the results obtained in Ref23,24,18 o .

must be averaged over the amplitudg with using the P

steady-state probability distribution found in Ref§,2]. As 02 | \\

a result, the region of the frequency mistunindg(e),

within which the mean frequency of the pendulum’s oscilla-

tions differs from the action frequency by a value smaller

thane, can be found. We call this region of the frequency 0.1 : w

mistuning synchronization region. 0.0 0.5 1.0 1.5
Numerically the mean frequency is calculated as ®

Q_=w+<¢)z<¢), where the |n_stanta_meous phases deter- FIG. 6. (a) The difference between the mean frequency of the
mined by means of the analytical signal approach based o

. o . ﬂendulum's oscillation€) and the external force frequenay vs
the Hilbert transform(the description of the technique and w for different values of the force amplitud® (the values oB are

references can be found in Ref20,22). indicated next to the corresponding curvé) The plot of o vs
In Fig. 6(a), the differences between the mean frequency,,

of pendulum’s oscillation€) and the frequency of external
force w are plotted versua for different values of the force
amplitude B. This shows that, ifB is large enough, then
Q= w in a certain range ob, i.e., we can speak about fre-
guency entrainment. These dependencies are similar to tho
known for synchronization of the van der Pol generator in
the presence of noig@3,24,18. As already noted, we as-
sume a system to be synchronized(f— w|<e, wheree is 0.8 ; . ;
a certain small value. In this way we obtain the synchroni-
zation regions in the planex(B) for different values of the
intensity of the suspension axis random vibration. These syn- 06 |
chronization regions are illustrated in Fig. 7. We see that, as
the random vibration intensity increases, the synchronization
regions are shifted to the lower-frequency region, and thegq 0.4 |
threshold value of the force amplitude increases.

It should particularly be emphasized that within the syn-
chronization region the oscillations of the pendulum remain 0.2
irregular, i.e., only the frequency of these oscillations is par-
tially entrained by the external action, whereas their ampli-
tude remains random. This is demonstrated in Fig. 8, where 0.0 .

lations occurs only for rather strong external actitgre am-

plitude of the external force is of the same order or larger

gqéan the mean amplitude of the pendulum’s oscillations in
e absence of the actiprit is very interesting that, as dif-

an example of the time dependence @fin synchronous 0.0 0.2 0:4 0.6 0.8

regime (a) and the dependencg(t) in the absence of the ®

external actior(b) are given. Comparing Figs(® and &b)

we see that the external force intensifies the pendulum’s 0s- FIG. 7. The synchronization regions for different values of ex-

cillations and makes them more ordered. cess of the noise intensity over its critical vallthe values of
We note that in contrast to synchronization of chaotick(2wg)/k. are indicated next to the corresponding culves

systemd 20,22, frequency locking of the pendulum’s oscil- e=5x10"3,
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1.5 \ external action, both multiplicative and additive. We have
found two effects: a low-frequency action results in intensi-
fication, or even initiation, of the noise-induced pendulum’s
oscillations, whereas a high-frequency action suppresses
them. These phenomena can be considered as analogies of
classical effects of asynchronous excitation and quenching;

07 : however, there are essential differences. An interesting find-

ing is that the initiation and suppression of the pendulum’s

S oo (b) oscillations,_much like th_eir excitation in_ the absence of an
external action, occurs via on-off intermittency.

In a certain range of the action frequencies, a synchroni-
-0.7 ‘ zation of the noise-induced pendulum’s oscillation takes

place. The mean frequency of these oscillations is entrained
by the external force, while the amplitude remains random.

In this sense the behavior of the system with noise-induced
attractor resembles that of chaotic oscillators. This phenom-
enon is justified by the analysis of the truncated equation for
the phase of oscillations. We conclude that intensity and fre-
ferentiated from the ordinary synchronization of self- dUency of noise-induced oscillations can be effectively con-

oscillatory systems, the intensity of oscillations at the centefrolled by an additional harmonic action.

of synchronization region has no peak, but decreases mono-

tonically as the external force frequency increases Fig.
6(b)]. ACKNOWLEDGMENTS

FIG. 8. (a) The time dependence af in a center of the syn-
chronization region =0.4) for kx(2wg)/ k=2.44 andB=0.35
along with the external forcgb) The time dependence af for
k(2wg)/ k= 2.44 in the absence of an additional action.
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