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Control of noise-induced oscillations of a pendulum with a randomly vibrating suspension axis

P. S. Landa,1,2 A. A. Zaikin,1,2,* M. G. Rosenblum,2,† and J. Kurths2
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We consider the influence of an additional harmonic action on noise-induced oscillations of a pendulum with
a randomly vibrating suspension axis. It is shown that these oscillations are intensified, or even initiated, if the
frequency of the additional action is low, but that they are suppressed if it is high. Both intensification and
suppression of the oscillations occur via ‘‘on-off intermittency.’’ In a certain range of the action frequencies,
synchronization of a noise-induced pendulum’s oscillations takes place in the sense that the mean frequency of
the oscillations becomes close to the action frequency. Thus we demonstrate that both frequency and amplitude
of noise-induced oscillations can be effectively controlled. Similarities and distinctions between these effects
and classical phenomena of asynchronous excitation, asynchronous quenching, and synchronization are dis-
cussed.@S1063-651X~97!02208-3#

PACS number~s!: 05.40.1j, 05.45.1b
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I. INTRODUCTION

A noise-induced phase transition in a pendulum with
randomly vibrating suspension axis was considered in de
in Refs.@1,2#. This transition consists in the excitation of th
pendulum’s oscillations, and the birth of an induced attrac
owing to the random vibration of the suspension axis.
takes place if the intensity of the random vibration exce
some critical level. This transition is akin to that consider
in Refs. @3,4#, and is quite different from noise-induce
phase transitions studied by a number of other researc
~see, e.g., Ref.@5#!. In their works the appearance of add
tional peaks in the probability density under the influence
multiplicative noise, mainly in the systems with multistab
ity, is called a noise-induced phase transition. For the p
dulum under consideration, additional peaks in the proba
ity density do not appear.

The equation for the description of noise-induced pen
lum’s oscillations is

ẅ12b~11aẇ2!ẇ1v0
2@11j1~ t !1acosvat#sinw5kj2~ t !,

~1!

wherew is the pendulum’s angular deviation from the eq
librium position, 2b(11aẇ2)ẇ is the value proportional to
the moment of the friction force which is assumed to
nonlinear,v0 is the natural frequency of small pendulum
oscillations,j1(t) is the acceleration of the suspension a
that is a comparatively wide-band random process with n
zero power spectrum densityk(v) at the frequency 2v0,
kj2(t) is the additive white noise, anda andva are, respec-
tively, the amplitude and frequency of the additional vibr
tion of the suspension axis.~Unlike Refs.@1,2#, in this equa-
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tion additive noise and additional harmonic vibration of t
suspension axis are taken into account.!

From the analysis of truncated equations obtained by
Krylov-Bogolyubov method and the corresponding Fokk
Planck equation, it was shown@1,2# that, ask(2v0) is in
excess of a certain critical valuekcr proportional to the
damping factorb, the mean values of the amplitude and t
amplitude squared become different from zero. Taking i
account that the truncated equation for the amplitude has
same form as for a noisy van der Pol generator, one
speak of the birth of a noise-induced attractor.

In Ref. @6# it was shown that the excitation of the pend
lum’s oscillations occurs via the so-called ‘‘on-off intermi
tency’’ @7#. ~Intermittency of such a kind was first reporte
by Fujisaka and Yamada@8#.! It is essential that this type o
intermittency can occur not only in dynamical systems, b
in stochastic ones as well@9#. In Ref. @9# the statistical prop-
erties of on-off intermittency were found from the analysis
a one-dimensional map. In particular, it was found that
mean duration of laminar phase has to be proportiona
a21, wherea is a bifurcation parameter. For the pendulu
we calculated the mean duration of laminar phase from
truncated equations for oscillation amplitude and phase
the corresponding Fokker-Plank equation@6#. Assuming that
the pendulum oscillates in laminar phase if the oscillat
amplitudeA is less than a certain thresholde, we obtained
that the mean duration of laminar phase has to be pro
tional to e and inversely proportional tok(2v0)2kcr . This
result, withk(2v0)2kcr taken as a bifurcation parameter,
in agreement with Ref.@9#.

In this article we investigate the influence of an addition
harmonic action upon the pendulum. It is shown that a lo
frequency action can initiate the noise-induced phase tra
tion if the intensity of the suspension axis random vibrati
is subthreshold, and intensify the noise-induced oscillati
if this intensity exceeds its threshold; whereas a hig
frequency action always suppresses the noise-induced
dulum’s oscillations. It turns out that in a certain range
action frequencies, synchronization of noise-induced pen

ci.,
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1466 56LANDA, ZAIKIN, ROSENBLUM, AND KURTHS
lum’s oscillations takes place in the sense that the mean
quency of the oscillations becomes close to the action
quency.

Our study was mainly incited by the known investigatio
on the intensification and suppression of turbulent pulsati
in subsonic jets by slight acoustic field@10–12#. One of the
purposes of our study is to emphasize some parallels
tween turbulent processes in nonclosed flows and no
induced pendulum’s oscillations@13–15#.

Another purpose is to find similarities and differences
the response of systems with noise-induced and with o
nary attractors to an external action. In particular, we
interested in synchronization properties.

II. CONTROL OF THE INTENSITY
OF THE PENDULUM’S OSCILLATIONS

BY AN ADDITIONAL HARMONIC ACTION

In this section we discuss the problems of controlling
intensity of the pendulum’s oscillations by an additional h
monic action, either multiplicative or additive. Because bo
types of the action result in the same qualitative effects,
dwell mainly on a multiplicative action. Such an action co
responds to additional harmonic vibration of the pendulum
suspension axis.

A. Initiation and intensification of the pendulum’s oscillations
by a low-frequency harmonic action

First we consider the casek50, i.e., without additive
noise. The results of numerical simulation of Eq.~1! for
k(2v0),kcr and different values ofa are represented in Fig
1. In this case the excitation of oscillations is of a thresh
character with the amplitude threshold value depending
k(2v0)/kcr . Forva50.3 andk(2v0)/kcr50.51, the thresh-
old value ofa is equal to 1.15. Fora.acr the oscillations

FIG. 1. Oscillations of the pendulum excited by the noise a
additional periodic action. The dependencies ofw(t) are shown for
k50, k(2v)/kcr50.51,va50.3, and different values of the actio
amplitude:~a! a51.151,~b! a51.3, and~c! a51.5.
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excited cannot practically be distinguished from those
cited due to random vibration only.

The oscillation intensity is the greater, the larger isa. The
dependence of the root-mean-square value of pendulum’s
gular deviations5 w̄21/2

on the difference between the am
plitude a and its threshold valueacr is found to be close to
linear @Fig. 2~a!#. So we see that the low-frequency vibratio
initiates the noise-induced phase transition and the birth
the induced attractor.

It was found that the initiation of the pendulum’s oscill
tions by a low-frequency additional action occurs via on-
intermittency. Asa increases, the mean duration of lamin
phasest decreases. We have found that the dependenc
t on a @Fig. 3~a!# is in good accordance with the formul
t50.44/(a22acr

2 ), where acr51.15. We note that in the
presence of additive noise on-off intermittency is not dete
able and the threshold of the phase transition becomes fu

If the intensity of the suspension axis random vibration
in excess of its threshold value, i.e.,k(2v0).kcr , an addi-
tional low-frequency vibration significantly intensifies th
noise-induced oscillations. The dependence ofs on a for
k(2v0)/kcr51.89 andva50.3, is shown in Fig. 2~b!. We
see that small actions leave the pendulum’s oscillati
nearly unaffected. But, beginning with a certain action a
plitude, the variance of the pendulum’s oscillations ris
steeply.

The initiation of noise-induced pendulum’s oscillation
and a noise-induced phase transition can be considere

d

FIG. 2. The dependencies of the root-mean-square value o
pendulum’s oscillationss on a for ~a! k(2v0)/kcr50.51 and
va50.3 @the dependences50.48(a21.1) is shown as a solid line#,
and ~b! k(2v0)/kcr(2)51.89 andva50.3.

FIG. 3. The dependencies of the mean duration of ‘‘lamina
phasest on the action amplitudea for the initiation ~a! and sup-
pression ~b! of oscillations. The parameters are~a! e50.002,
k(2v0)/kcr50.51, andva50.3; and ~b! e50.002, k(2v0)/kcr

55.6, and va520. The solid line shows the dependencet
50.44/(a22acr

2 ) and acr51.15 ~a!, and t51900/(acr
2 2a2) and

acr583.5 ~b!.
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56 1467CONTROL OF NOISE-INDUCED OSCILLATIONS OF A . . .
some analog of the well-known phenomenon of asynch
nous excitation of self-oscillations@16–19#, although there
exist essential distinctions. Let us demonstrate this effec
the example of a generator with hard excitation and a h
monic external force described by the equation

ẍ1~h2ax21bx4!ẋ1v0
2x5v0

2Bcosvt. ~2!

If the frequency of the external force is far from its res
nance value then it is convenient to substitute into Eq.~2!.

x5Fcosvt1y, ~3!

whereF5v0
2B/(v0

22v2). In doing so we obtain the follow-
ing equation for the variabley:

ÿ1v0
2y52@h2a~y1Fcosvt !21b~y1Fcosvt !4#

3~ ẏ2Fvsinvt !. ~4!

Settingy5Ccos(v0t1c), for C andc we obtain the follow-
ing truncated equations:

Ċ52
1

2S h2
a

4
~C212F2!1

b

8
~C416C2F213F4! DC,

ċ50. ~5!

Hence the external force influences not only linear but n
linear friction as well. The condition for asynchronous ex
tation of self-oscillations is obtained from Eq.~5!:

aF2

2
2

3bF4

8
2h.0. ~6!

If the amplitude of the external force is fixed, then inequal
~6! determines the region of relative mistunin
D5(v0

22v2)/v0
2 for which asynchronous excitation occur

D1
2,D2,D2

2 , ~7!

where

D1,2
2 5

3b

2a
B2F16S 12

6bh

a2 D 1/2G21

.

Consequently, asynchronous excitation is possible only
h,a2/6b, i.e., only for sufficiently small values of the co
efficient h.

For mistuningsuDu,D1, only forced oscillations with fre-
quencyv can exist, whereas foruDu.D2, depending on the
initial conditions, either forced oscillations or beats exist. W
see from inequality~7! that the condition of asynchronou
excitation of self-oscillation is independent of the sign
mistuning, whereas for the pendulum this effect can ta
place only for low frequencies of the external action.

B. Suppression of the pendulum’s oscillations
by a high-frequency harmonic action

If the frequency of additional harmonic action is suf
ciently high, then a suppression of noise-induced pendulu
oscillations occurs instead of their intensification. From
-
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-
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sults of numerical simulation of Eq.~1! for va.2v0, we see
that, for small amplitudes of the high-frequency action, t
action has little or no effect on the existing noise-induc
oscillations~Fig. 4!. As the action amplitude increases, th
intensity of the noise-induced oscillations decreases rapi
and in the absence of additive noise for a certain value of
action amplitude the oscillations are suppressed entirely.
example, fork(2v0)/kcr55.6 andva520, this amplitude
value is equal to 83.5. It is evident that in the presence
additive noise, the noise-induced pendulum’s oscillatio
cannot be entirely suppressed, but the suppression ca
impressive@Fig. 4~d!#.

We can see from Fig. 4 that the suppression of noi
induced oscillations, like their excitation in the absence of
external action and initiation by a low-frequency action, o
curs via on-off intermittency. As the action amplitude i
creases, the duration of ‘‘laminar’’ phases also increas
The dependence of the mean duration of ‘‘laminar’’ phas
t on the action amplitudea found numerically for
e50.002,k(2v0)/kcr56.25 is shown in Fig. 3~b!. The solid
line shows the dependencet51900/(acr

2 2a2) and
acr583.5. We see that this dependence fits the experime
data rather well.

The dependencies of the intensity of the pendulum’s
cillations on the amplitude and frequency of the action
shown in Fig. 5. It is seen from Fig. 5~a! that in the case of
moderately high frequencies of the action the intensity
noise-induced pendulum’s oscillations with increasing act
amplitude first decreases to a certain minimal value and t
increases; for sufficiently large amplitudes of the action
can become even more than in the absence of the actio

FIG. 4. The dependencies ofw(t) for k(2v0)/kcr55.6 and
va520; ~a! k50 and a510, ~b! k50 and a530, ~c! k50 and

a570, and~d! k2 j̄ 2
250.05j̄ 1

2 and a570. It is seen that in the
presence of additive noise the pendulum’s oscillations canno
suppressed entirely.
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1468 56LANDA, ZAIKIN, ROSENBLUM, AND KURTHS
should be noted that this minimal value is smaller the gre
the action frequency is, and it is attained for larger amp
tudes of the action, the higher the action frequency is. If
action frequency is sufficiently high, then, as indicat
above, a complete suppression occurs.

In the case of a change of the frequency of the action
a fixed value of its amplitude@Fig. 5~b!#, the intensity of the
noise-induced pendulum’s oscillations with increasing act
frequency first decreases to a certain minimal value, whic
smaller the greater the action amplitude is, and then
creases. This minimal value is attained for higher frequen
of the action, the larger its amplitude is. Thus we can c
clude that there exist some optimal value of the controll
parameter~eithera or va) for which the suppression is mos
effective.

Similar to the initiation of the pendulum’s oscillations b
means of an additional harmonic action, the suppressio
these oscillations is much different from the known pheno
enon of asynchronous suppression~or quenching! of self-
oscillations@18,19#. Let us consider a van der Pol genera
with a harmonic external force described by the equation

ẍ2m~12ax2!ẋ1v0
2x5v0

2Bcosvt. ~8!

By substituting Eq.~3! into Eq. ~8!, for y we obtain the
equation

ÿ1v0
2y5m@12a~Fcosvt1y!2#~ ẏ2Fvsinvt !. ~9!

Setting y5Ccos(v0t1c), for C and c we obtain the trun-
cated equations

Ċ5
m

2 S 12
C2

A0
2 2

2F2

A0
2 DC, ~10!

ċ50,

where A052/Aa is the amplitude of free self-oscillations
Equation ~10! shows that under the action of an extern
force a decrease in the effective increment of the s
oscillation component occurs. If the external force amplitu
exceeds a certain critical value

Bcr5A0

uv0
22v2u

A2v0
2

,

FIG. 5. ~a! The dependencies ofs on a for v051, b50.1,
a5100,k(2v0)/kcr55.6,va53.5 ~circles!, va511 ~squares!, and
va520 ~triangles!. ~b! The dependencies ofs on va for a53
~circles!, a540 ~squares!, anda580 ~triangles!.
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then the self-oscillations become suppressed entirely,
only forced oscillations at the frequencyv remain. The am-
plitude of these oscillations is smaller the greater the ab
lute value of the mistuningv22v0

2 is.
We note that the suppression of self-oscillations in a s

tem under an asynchronous external action occurs only w
cubic nonlinearity, resulting in the appearance of nonlin
positive friction, plays a dominant role. It is important th
this effect is independent of the sign of the frequency m
tuning; whereas for the pendulum the suppression of no
induced oscillations is possible only for sufficiently high fr
quencies of the external action.

To conclude this section, we emphasize that the inten
cation and suppression of a noise-induced pendulum’s o
lations can be obtained by means of both multiplicative a
additive harmonic action. In the last case the efficiency of
action is essentially higher. For example, to increases from
0.18 to 0.58, the amplitude of the low-frequency acti
(va50.3) should be equal to 1, if it is additive, but 7.8, if
is multiplicative. Similarly, the decrease ofs from 0.18 to
0.13 due to a high-frequency action (va520) can be ob-
tained if its amplitude is equal to 1 in the case of the addit
action, and to 8 in the case of the multiplicative one.

III. SYNCHRONIZATION OF THE PENDULUM’S
OSCILLATIONS BY AN EXTERNAL HARMONIC FORCE

In a certain range of action frequencies, a synchroniza
of pendulum’s oscillations takes place in the sense that
mean frequency of noise-induced pendulum’s oscillatio
becomes close to the action frequency. Such an approac
the problem of synchronization was used in Refs.@20–22#,
where the effects of phase and frequency locking in cha
systems have been studied numerically. Here we dem
strate that synchronization of such a kind can be observe
systems with noise-induced oscillations as well.

We can explain the occurrence of synchronization and
character analytically. In the case of an additive harmo
action without additive noise, the equation of pendulum
oscillations can be written as

ẅ12b~11aẇ2!ẇ1v0
2@11j1~ t !#sinw5v0

2Bcosvt.
~11!

Settingw'Acos(vt1f) and solving Eq.~11! approximately
by the Krylov-Bogolyubov method, we obtain the followin
truncated equations for the amplitudeA and phasef:

Ȧ5
v2K1v

4 S hv2
3ba

K1v
A2DA2

vB

2
sinf1

v

2
Az1~ t !,

~12!

ḟ5D01vMv2 1
16vA22

vB

2A
cosf1vz2~ t !, ~13!

wherehv5124b/v2K1v , K1v5k(2v)/2, z1(t) is a ran-
dom process with zero mean value and intensityK1v ,
D05(v0

22v2)/2v is the frequency mistuning
Mv5^jcos2(vt1f)&, andz2(t), much like toz1(t), is a ran-
dom process with zero mean value and the inten
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56 1469CONTROL OF NOISE-INDUCED OSCILLATIONS OF A . . .
K2v5@k(0)1K1v#/4. The value ofMv can be calculated in
a similar way to that in Refs.@1,14#.

If the action amplitude is sufficiently small, then the sy
chronization region is narrow. In this case the phase va
slowly, and we can assume that the oscillation amplitu
attains a steady-state value considerably faster than
phase, and its steady-state value is close to that without
monic action@18#. Then Eq.~13! can be rewritten in the form

ḟ5D~A0
2!2Ds~A0!cosf1vz2~ t !, ~14!

whereD(A0
2)5D01vMv2 1

16vA0
2 is the effective frequency

mistuning depending on the steady-state value of amplit
A0 in the absence of an additional action, a
Ds(A0)5vB/2A0 is the effective half-width of the synchro
nization region which also depends onA0.

Equation~14! has the same form as the equation desc
ing the phase evolution of a van der Pol generator driven
an external harmonic force in the presence of additive no
@23,24,18#. The only distinction is thatD andDs here depend
on A0. Therefore the results obtained in Refs.@23,24,18#
must be averaged over the amplitudeA0 with using the
steady-state probability distribution found in Refs.@1,2#. As
a result, the region of the frequency mistuningsD0(«),
within which the mean frequency of the pendulum’s oscil
tions differs from the action frequency by a value smal
than «, can be found. We call this region of the frequen
mistuning synchronization region.

Numerically the mean frequency is calculated
V5v1^ḟ&[^ċ&, where the instantaneous phasec is deter-
mined by means of the analytical signal approach based
the Hilbert transform~the description of the technique an
references can be found in Refs.@20,22#!.

In Fig. 6~a!, the differences between the mean frequen
of pendulum’s oscillationsV and the frequency of externa
forcev are plotted versusv for different values of the force
amplitude B. This shows that, ifB is large enough, then
V'v in a certain range ofv, i.e., we can speak about fre
quency entrainment. These dependencies are similar to t
known for synchronization of the van der Pol generator
the presence of noise@23,24,18#. As already noted, we as
sume a system to be synchronized ifuV2vu,«, where« is
a certain small value. In this way we obtain the synchro
zation regions in the plane (v,B) for different values of the
intensity of the suspension axis random vibration. These s
chronization regions are illustrated in Fig. 7. We see that
the random vibration intensity increases, the synchroniza
regions are shifted to the lower-frequency region, and
threshold value of the force amplitude increases.

It should particularly be emphasized that within the sy
chronization region the oscillations of the pendulum rem
irregular, i.e., only the frequency of these oscillations is p
tially entrained by the external action, whereas their am
tude remains random. This is demonstrated in Fig. 8, wh
an example of the time dependence ofw in synchronous
regime ~a! and the dependencew(t) in the absence of the
external action~b! are given. Comparing Figs. 8~a! and 8~b!
we see that the external force intensifies the pendulum’s
cillations and makes them more ordered.

We note that in contrast to synchronization of chao
systems@20,22#, frequency locking of the pendulum’s osci
s
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lations occurs only for rather strong external action~the am-
plitude of the external force is of the same order or larg
than the mean amplitude of the pendulum’s oscillations
the absence of the action!. It is very interesting that, as dif

FIG. 6. ~a! The difference between the mean frequency of
pendulum’s oscillationsV and the external force frequencyv vs
v for different values of the force amplitudeB ~the values ofB are
indicated next to the corresponding curve!. ~b! The plot of s vs
v.

FIG. 7. The synchronization regions for different values of e
cess of the noise intensity over its critical value@the values of
k(2v0)/kcr are indicated next to the corresponding curve#.
«5531023.
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1470 56LANDA, ZAIKIN, ROSENBLUM, AND KURTHS
ferentiated from the ordinary synchronization of se
oscillatory systems, the intensity of oscillations at the cen
of synchronization region has no peak, but decreases m
tonically as the external force frequency increases@see Fig.
6~b!#.

IV. CONCLUSIONS

To summarize, we have studied the response of a pe
lum with a randomly vibrating suspension axis to a harmo

FIG. 8. ~a! The time dependence ofw in a center of the syn-
chronization region (v50.4) for k(2v0)/kcr52.44 andB50.35
along with the external force.~b! The time dependence ofw for
k(2v0)/kcr52.44 in the absence of an additional action.
e
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external action, both multiplicative and additive. We ha
found two effects: a low-frequency action results in inten
fication, or even initiation, of the noise-induced pendulum
oscillations, whereas a high-frequency action suppres
them. These phenomena can be considered as analogi
classical effects of asynchronous excitation and quench
however, there are essential differences. An interesting fi
ing is that the initiation and suppression of the pendulum
oscillations, much like their excitation in the absence of
external action, occurs via on-off intermittency.

In a certain range of the action frequencies, a synchro
zation of the noise-induced pendulum’s oscillation tak
place. The mean frequency of these oscillations is entrai
by the external force, while the amplitude remains rando
In this sense the behavior of the system with noise-indu
attractor resembles that of chaotic oscillators. This pheno
enon is justified by the analysis of the truncated equation
the phase of oscillations. We conclude that intensity and
quency of noise-induced oscillations can be effectively c
trolled by an additional harmonic action.
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