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Percolation and cluster structure parameters: The enhanced Hoshen-Kopelman algorithm
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812 Shiloh Circle, Naperville, Illinois 60540-7112
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~Received 12 March 1997!

An enhanced Hoshen-Kopelman~EHK! algorithm for calculating cluster structure parameters is presented
for the site percolation problem. The EHK algorithm enables efficient calculation of cluster spatial moments,
perimeters, and bounding boxes for very large Monte Carlo simulated lattices. The algorithm is used to
compute the squared radius of gyration and internal perimeters of clusters in 300033000 square simulated
lattices. The squared radius of gyration was used to calculate the value of the correlation length exponent.
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I. INTRODUCTION

In 1976, Hoshen and Kopelman introduced in a Phys
Review B paper@1#, to which we refer as I, a breakthroug
algorithm for cluster analysis in percolation phenomena.
day, this algorithm is known as the Hoshen-Kopelman~HK!
algorithm @2# or the Hoshen-Kopelman method@3#. Before
the publication of the HK algorithm, typically lattices con
taining several tens of thousands of sites were analyzed.
ing the HK algorithm, in 1984, Margolinaet al. @4# analyzed
lattices containing approximately 1.731010 sites. Rapaport
@5# in 1986 raised that number to 2.5631010 sites. The ex-
isting world record, established in 1992 by Rapaport@6#, is
reported for a lattice containing 4.09631011 sites.

The success of the HK algorithm can be attributed to
linear time and superior space computational complexi
@7# in terms of lattice size. Because the HK algorithm r
quires only a single and sequential pass through the lattic
allows for a very efficient utilization of computer memo
hierarchies@e.g., random access memory~RAM!, cache#
where only a small fraction of the lattice is actually stored
memory ~or cache! at any point in time. Given recen
progress in parallel implementations@8–11# of the HK algo-
rithm, it is conceivable that the algorithm could be applied
lattices having over 1014 sites ~which is still not quite
Avogadro’s number!.

While initially the HK algorithm primary use was in th
domain of pure and basic sciences, later it began percola
into applications in diverse fields of technology and appl
sciences. Some examples of such applications are in nu
fuel rod processing@12#, catalysis@13#, curing of epoxy resin
@14#, classification of radar signatures@15#, and assessing
habitat fragmentation@16#. Furthermore, the HK algorithm is
being used in health-related areas such as evaluating
structures in osteoporosis@17#. In contrast, the algorithm ha
also been used in analyzing the somewhathealth question-
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able preparation of deep-fat-fried tortilla chips@18#.
The HK algorithm has been very successful in determ

ing cluster sizes for very large lattices. Nevertheless, it d
not provide information on cluster structure. In Sec. II w
shall describe the enhanced Hoshen-Kopelman~EHK! algo-
rithm that will enable us to determine cluster shape para
eters while preserving the time and space complexities of
original HK algorithm. In Sec. III we shall illustrate how
shape parameter such as the squared radius of gyratio
calculated using the EHK algorithm. Correlation length r
sults that are based on the radius of gyration computatio
well as perimeter calculations will be presented in Sec.
Finally, some limitations of the EHK algorithm will be dis
cussed in Sec. V.

II. THE ENHANCED HK ALGORITHM

The algorithm described here is a natural enhancemen
the original HK algorithm discussed in I. The original alg
rithm classifies by size clusters ofA type molecules in a
binary lattice containing randomly distributed mixture ofA
and B molecules. We assume that the concentration oA
molecules isp, which is also the probability that a lattice sit
is occupied byA.

The HK algorithm assigns a cluster labelmt
a to each lat-

tice site occupied byA wherea is a cluster identifier. This
algorithm allows multiple label assignment to a clustera.
The labels are a set of natural numbers:

$m1
a ,m2

a , . . . ,ms
a , . . . ,mt

a , . . . %. ~1!

At least one cluster site is labeled with one of the lab
given by Eq.~1!. In this set one number is considered t
propercluster label. We choose the smallest number,ms

a , to
be theproper label. The choice of the smallest cluster num
ber as theproper label is not mandatory. Choosing any oth
label in Eq.~1! would be appropriate. The following set o
integers defines the relationship between the cluster labe

$N~m1
a!,N~m2

a!, . . . ,N~ms
a!, . . . ,N~mt

a!, . . . %. ~2!
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FIG. 1. Site label assignment routine of clu
ter labels in the EHK algorithm for molecules o
type A.
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In Eq. ~2!, N(ms
a) is the only positive integer member of th

set. It denotes the number ofA molecules belonging to the
cluster. The rest of the numbers in Eq.~2! are negative inte-
gers. They link the labelsmt

a with the proper label ms
a .

These labels are related toms
a via the following set of equa-

tions:

mr
a52N~mt

a!,mq
a52N~mr

a!, . . . ,ms
a52N~mt

a!. ~3!

Equation~3! represents a tree graph, where the root of
tree corresponds to theproper labelms

a . All the other labels
are nodes on the tree pointing directly, or indirectly throu
other nodes, to the root.

The multiple labeling technique is used in conjuncti
with the Monte Carlo method where a pseudorandom nu
ber generator is used to create the random lattice. Sites
created sequentially. Lattice sites are generated column
column ~or row by row!. Once a column is filled, the nex
column starts filling. In three-dimensional lattices, layers
sites are created in sequential order. As sites are created,
are assigned cluster labels as shown in Fig. 1 and descr
in I. At each site, previously labeled neighbor sites are
spected. RoutineCLASSIFY of Fig. 2 determines theproper
labels of these neighboring sites. The result is that onl
single scan is required to create the lattice and determine
cluster size distribution.

The enhancements to the HK algorithm are presen
by the gray shaded areas in Fig. 1. The shaded areaC,
denotes initialization of some general cluster proper
F (1)(ms

a), F (2)(ms
a), . . . by quantities f (1)( i ), f (2)( i ), . . . ,

respectively. Thef (n)( i ) quantities represent some properti
of i th lattice site. For example,f (1)( i ) could indicate that site
i is on the cluster boundary. It would be zero if all neighb
sites are of typeA, and 1 if at least one of its neighbors is
e
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typeB. Anotherf (n)( i ) could denote theX coordinate,xi , of
the i th site. f (n)( i ) could also be a nonscalar quantity. F
example,f (n)( i )5(xi

2 ,yi
2 ,zi

2).
The operator denoted by% (t) in the shaded area,J, de-

fines a general binary HK operator. The only requirement
this operator is that it would be associative and commutat
Usually it would denote some kind of addition operation. B

FIG. 2. RoutineCLASSIFY for determining proper labels of
neighboringA sites.
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other operations that meet these requirements could als
used. For example, the functions max(a,b) and min(a,b) can
be used to define a HK operator such asxi %

(k)xj

[max(xi ,xj), and xi %
(x)xj[min(xi ,xj). These operators

could be used to determine bounding rectangles and b
for clusters in two dimensions and three dimensions, resp
tively. TheF (n) quantities in Fig. 1 are calculated from clu
ter fragmentsa,b,g that are merged into a single cluste
This is a generalization of the cluster size calculation in
original HK algorithm where the size of the merged clus
a is the sum of the cluster fragmentsa,b,g, . . . .

Spatial moments are very important quantities in ima
analysis@19#. They can be calculated using the EHK alg
rithm, where the HK operator is defined as the scalar ad
tion operator. These moments are defined as

Xj
~n!~k!5(

i Pk
xj

n~ i !. ~4!

Xj
(n)(k) denotes thenth spatial moment of thekth cluster for

the j th coordinate, wherej 51,2, . . . ,d andd is the dimen-
sion of the lattice. The summation in Eq.~4! is carried over
all sites i of cluster k. The original HK algorithm can be
viewed as a special case of Eq.~4! whenn50.

A major feature of the original HK algorithm was tha
columns ~or layers! could be divided into sections wher
cluster labels would be reused. This reduces the numbe
labels required for a very large lattice. When clusters ext
from one section to the next section, they are assigned a
proper label that belongs to the set of labels of the ne
section. Just as labels are recycled, storage space fo
F (n) quantities can also be recycled. The implication is t
these generalized quantities could be calculated for es
tially the same size of lattices analyzed by the original H
algorithm.

III. THE SQUARED RADIUS OF GYRATION
AND CORRELATION LENGTH

The squared radius of gyration,Rs
2 , is an important clus-

ter shape quantity@2#. It is defined by

Rs
25

1

2s2(
i

(
j

ur i2r j u2, ~5!

wheres is the size of the cluster, andr i and r j denote the
positions of sitesi and j , respectively. The double summa
tion involves all i and j sites of the cluster of interest. Th
squared distances in Eq.~5! can be rewritten as

ur i2r j u25 (
m51

d

~xi ,m2xj ,m!2, ~6!

wherexi ,m andxj ,m denote themth coordinates of sitesi and
j , respectively, ind dimensions.

Since each dimensionm can be treated independently
Eq. ~6!, the summation in Eq.~5! can be reduced for eac
m to
be
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(
j

~xi ,m2xj ,m!252s(
i

xi ,m
2 22S (

i
xi ,mD 2

52@sXm
~2!2~Xm

~1!!2#, ~7!

whereX(1) and X(2) are the first and second moments, r
spectively, for the given cluster andmth coordinate. Using
Eqs.~5!–~7! we get

Rs
25

1

s2 (
m51

d

@sXm
~2!2~Xm

~1!!2#. ~8!

Notice thatRs
2 in Eq. ~8! can be computed in terms of th

first and second cluster spatial moments, which can be de
mined by the EHK algorithm.

Following Stauffer and Aharony@2#, using Rs
2 , the

squared correlation length@20#, j2, can be computed by

j25

2(
s

s2(
t51

ns

Rst
2

(
s

s2ns

, ~9!

wherens denotes the number of clusters of sizes. Rst
2 speci-

fies the squared radius of gyration of a cluster animalt of
sizes.

The EHK algorithm facilitates the simultaneous calcu
tion of ns and Rst

2 during lattice traversal. Whenever a co
umn in a two-dimensional lattice or a plane is completed i
three-dimensional lattice, all clusters that do not exte
through the column or plane arecompletedclusters. Hence,
as clusters are enumerated the partial sums ofs2 and s2Rst

2

can be accumulated. When lattice scanning is comple
using Eq.~9!, the ratio of these sums yieldsj2. The primary
advantage of this approach is that individualRst

2 values need
not be stored in computer memory.

IV. NUMERICAL EXAMPLES

Computations of cluster parameters using the EHK al
rithm are given in Table I. These data are given for Mon
Carlo runs for 300033000 size lattices and forp values in
the range of 0.2–0.61 for a square lattice. For each data p
in the table, a new pseudorandom number seed is used.
table gives information on cluster sizes and internal clus
perimeters for the largest cluster. In addition to that,
squared radius of gyration for the largest cluster,Rs

2(maxs),
and the squared radius of gyration for the cluster with
maximum squared radius of gyration, maxR

s
2, is also given.

From this table it is quite evident that the largest cluster d
not necessarily have the largest squared radius of gyra
This is not surprising because the squared radius of gyra
is related to the average distance between two cluster s
This average distance depends on the specific shapes o
clusters in question.

The correlation lengthj in Table I is calculated from the
squared correlation length given by Eq.~9!. The correlation
length exponentn is determined by plotting ln(pc2p) versus
ln(j), as shown in Fig. 3. The value ofpc was taken to be
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TABLE I. Cluster statistics for square lattices of size 300033000. In the table,p denotes the site
occupation probability,n denotes the number of clusters in the lattice, maxs denotes the size of the large
cluster by the number of sites occupied,T(maxs) denotes the ratio of the perimeter of the largest cluster to
largest cluster size,Rs

2(maxs) denotes the squared radius of gyration for the largest cluster, maxR
s
2 denotes the

cluster with the largest squared radius of gyration,j denotes the correlation length, andtsec denotes the
elapsed CPU time in seconds for each sample lattice run on a Sun Ultra 2 workstation.

p n maxs T(maxs) Rs
2(maxs) maxR

s
2 j tsec

0.200 1094061 27 0.926 2.842 3.307 1.415 5.26
0.300 1154703 77 0.987 6.849 6.849 2.402 6.51
0.400 955518 165 0.945 7.637 9.643 4.584 7.21
0.500 592669 901 0.900 21.117 27.327 12.275 7.31
0.510 552527 911 0.913 24.019 24.019 14.191 7.25
0.520 511781 1115 0.893 22.461 26.939 17.024 7.23
0.530 472869 2070 0.878 36.366 38.532 21.245 7.22
0.540 434099 2167 0.892 36.855 38.984 25.107 7.22
0.550 395152 3373 0.894 53.367 53.367 32.598 7.19
0.555 376813 5278 0.877 50.551 67.785 41.633 7.20
0.560 358236 6814 0.874 69.388 75.152 48.200 7.19
0.565 339097 7664 0.887 88.308 88.308 59.670 7.16
0.570 322208 18301 0.877 124.480 124.480 78.942 7.19
0.575 305227 22215 0.876 137.730 137.730 112.916 7.17
0.580 289980 50061 0.872 239.800 239.800 171.613 7.21
0.585 274178 79545 0.868 244.360 244.360 236.833 7.20
0.590 257374 426408 0.864 473.160 510.720 629.269 7.22
0.593 248745 1305977 0.861 908.010 908.010 1187.097 7.2
0.600 229206 4001264 0.857 1200.400 1200.400 1697.498 7.4
0.610 204472 4631412 0.850 1221.100 1221.100 1726.934 7.4
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0.592 746@2#. The values ofp used for this calculation rang
from p50.5 top50.58. Thisp range was chosen because
had the least deviation from linearity in the ln-ln plot. Poin
above 0.58 would lead to a significant deterioration in
linear fit. Such behavior for Monte Carlo calculations of e

FIG. 3. Natural logarithm ln of the correlation lengthj versus
ln(Dp) whereDp5pc2p. pc is the critical percolation probability
The data points denoted by3 are taken from Table I. The solid line
is a linear regression line for these data points.
e
-

ponents nearpc was previously reported by Hoshenet al.
@21#. The value ofn for Fig. 3 is 1.33160.012, which is in
good agreement withn values determined by Levinshtei
et al. @22#, Kapitulnik et al. @23#, and Hoshenet al. @21#.

The ratio of the number of internal perimeter sites to t
cluster size for the largest cluster in the sample is displa
in Fig. 4. It initially rises but then falls aspc is approached.

FIG. 4. The ratio ofT, cluster perimeter, tos, cluster size, for
the largest cluster in the sample as a function ofp.
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The fluctuations betweenp50.5 andp50.6 could be related
to fluctuations that are normally seen nearpc . Below
p50.5 the ratio appears to be smoother, but this could
related to the fact that this area is represented by fewer
points.

The last figure, Fig. 5, illustrates the linear behavior of t
computer central processing unit~CPU! computation time as
a function of the lattice size. Clearly, the computational tim
complexity of the original HK algorithm is preserved by th
EHK algorithm.

V. DISCUSSION

The computations given in this paper demonstrate the
tential of applying the EHK algorithm for very large lattice
for calculation of cluster shape parameters. In our exam
we used the squared radius of gyration to calculate the

FIG. 5. CPU time in seconds for sample lattices denoted bys

for sizes 7503750, 150031500, 200032000, 250032500, and
300033000.
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relation length exponentn. Instead, we could have calculate
n by computing the bounding squares of the clusters@23#.
The EHK algorithm can determine the clusters’ boundi
squares using the min and max operators as described in
II. Such calculation would require only a single pass over
lattice.

With all its potential, the EHK algorithm has some lim
tations. In percolation calculations, the external cluster
rimeter has usually been the parameter of interest@24#. Yet,
we used the EHK algorithm to calculate the internal clus
perimeter. The reason for this choice is that there is
simple way to calculate the external cluster perimeter us
the EHK algorithm. The problem is that when two clust
fragments are merged~see Fig. 1!, their perimeters would
also be merged. The intersection of the internal perime
sites is the null set. Therefore it is possible to add up th
counts in the cluster fragment merger. In contrast, the in
section of the external perimeter sites may not produce
null set. The implication is that a simple addition of th
counts of the external sites is not possible. So, to use
EHK algorithm for the external perimeter sites, the HK o
erator would have to correspond to theunion operation. The
union operator meets the EHK algorithm requirements
associativity and commutativity. Unfortunately, using t
union operator would require keeping lists of perimeter si
for each cluster fragment, and merging these lists when c
ters are merged. Using such lists will significantly increa
the run time and memory space utilization for the EHK
gorithm.

Despite some limitation, the EHK algorithm is clearly
major step forward in cluster analysis. Probably, its m
important use would be in calculating cluster spatial m
ments. The computation of these moments, under the E
algorithm, is very efficient and is likely to provide new in
formation on the structural properties of clusters.
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