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Percolation and cluster structure parameters: The enhanced Hoshen-Kopelman algorithm
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An enhanced Hoshen-Kopelm@BHK) algorithm for calculating cluster structure parameters is presented
for the site percolation problem. The EHK algorithm enables efficient calculation of cluster spatial moments,
perimeters, and bounding boxes for very large Monte Carlo simulated lattices. The algorithm is used to
compute the squared radius of gyration and internal perimeters of clusters ixx 3000 square simulated
lattices. The squared radius of gyration was used to calculate the value of the correlation length exponent.
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PACS numbd(s): 64.60—i

I. INTRODUCTION able preparation of deep-fat-fried tortilla chip&8].
The HK algorithm has been very successful in determin-

In 1976, Hoshen and Kopelman introduced in a Physicalng cluster sizes for very large lattices. Nevertheless, it does
Review B papef1], to which we refer as I, a breakthrough not provide information on cluster structure. In Sec. Il we
algorithm for cluster analysis in percolation phenomena. Toshall describe the enhanced Hoshen-KopelitiiK) algo-
day, this algorithm is known as the Hoshen-Kopelntidik) ~ rithm that will enable us to determine cluster shape param-
algorithm[2] or the Hoshen-Kopelman meth¢d]. Before  eters while preserving the time and space complexities of the
the publication of the HK algorithm, typically lattices con- original HK algorithm. In Sec. Il we shall illustrate how a
taining several tens of thousands of sites were analyzed. Ushape parameter such as the squared radius of gyration is
ing the HK algorithm, in 1984, Margolinet al.[4] analyzed calculated using the EHK algorithm. Correlation length re-
lattices containing approximately 7.0 sites. Rapaport Sults that are based on the radius of gyration computation as
[5] in 1986 raised that number to 2.880'° sites. The ex- Well as perimeter calculations will be presented in Sec. IV.
isting world record, established in 1992 by Rapagétt is  Finally, some limitations of the EHK algorithm will be dis-

reported for a lattice containing 4.0896.0" sites. cussed in Sec. V.
The success of the HK algorithm can be attributed to its
linear time and superior space computational complexities Il. THE ENHANCED HK ALGORITHM

[7] in terms of lattice size. Because the HK algorithm re-

quires only a single and sequential pass through the lattice, it The algorithm described here is a natural enhancement of

allows for a very efficient utilization of computer memory the original HK algorithm discussed in I. The original algo-

hierarchies[e.g., random access memofRAM), cachg rithm classifies by size clusters @&f type molecules in a

where only a small fraction of the lattice is actually stored inbinary lattice containing randomly distributed mixture Af

memory (or cachg at any point in time. Given recent and B molecules. We assume that the concentratiorAof

progress in parallel implementatiof-11] of the HK algo-  molecules ig, which is also the probability that a lattice site

rithm, it is conceivable that the algorithm could be applied tois occupied byA.

lattices having over T sites (which is still not quite The HK algorithm assigns a cluster labaf' to each lat-

Avogadro’s number tice site occupied by where« is a cluster identifier. This
While initially the HK algorithm primary use was in the algorithm allows multiple label assignment to a cluster

domain of pure and basic sciences, later it began percolatinghe labels are a set of natural numbers:

into applications in diverse fields of technology and applied

sciences. Some examples of such applications are in nuclear (mémg, ...m¢ . ..mE L (1)

fuel rod processin@l2], catalysiq 13], curing of epoxy resin

[14], classification of radar signatur¢45], and assessing L )

habitat fragmentatiofL6]. Furthermore, the HK algorithm is At least one cluster site is labeled with one of the labels

being used in health-related areas such as evaluating bo

structures in osteoporodis7]. In contrast, the algorithm has

also been used in analyzing the somewhealth question-

I%ven by Eqg.(1). In this set one number is considered the
proper cluster label. We choose the smallest numbe}, to

be theproperlabel. The choice of the smallest cluster num-
ber as theroperlabel is not mandatory. Choosing any other
label in Eq.(1) would be appropriate. The following set of

*Electronic address: jhoshen@att.net. integers defines the relationship between the cluster labels:
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SITE LABEL ASSIGNMENT AND GENERAL CLUSTER
PARAMETERS CALCULATION ROUTINE

1
— l No Go to
[1s site i occupied by a guest molecule}——wx——of
Yes site
Assign site i aje——————————{Search all neighbor sites of i
new 1) cluster No A -
label k + 1 Neighbors A neighbors are found
are found
Apply routine CLASSIFY to determine proper
S, —ml =k+1 cluster label of neighboring sites.
NG 1 One or several sites belonging to clusters
FOm) £ @.B.7:..., are found. Their proper cluster FIG. 1. Site label assignment routine of clus-
F‘z)(”l;))(_f(zy ¥ labels are: m;,m?,m,....... Of these ter labels in the EHK algorithm for molecules of
o ! Label myj is the smallest. These clusters type A.
coalesce to form a single larger cluster.
S, em!
N(m®) &~ Non®) + NaP )+ N(m* ) + ... +1
Nm®) —-m®
N(@*) e-m®
N

FOn?) < FO(m?) @ FO(ml) &P FO(m!)e® ... 09 £
FO(m) « FO(m?) @ FO(mf) 8 FO (m') 0. 8 f2

—
-
-

In Eq. (2), N(m2) is the only positive integer member of the typeB. Anotherf("(i) could denote th& coordinatey; , of
set. It denotes the number &f molecules belonging to the theith site. f("(i) could also be a nonscalar quantity. For
cluster. The rest of the numbers in Eg) are negative inte- example,f(™(i)=(xZ,y?,2?).

gers. They link the labelsn® with the proper label mg. The operator denoted by(” in the shaded are&, de-
These labels are related ef via the following set of equa- fines a general binary HK operator. The only requirement on
tions: this operator is that it would be associative and commutative.
Usually it would denote some kind of addition operation. But
my=— N(mt“),mg= =N(mf), ... mg=—N(m{"). (3
In
Equation(3) represents a tree graph, where the root of the 1
tree corresponds to thoperlabelmg . All the other labels reS,
are nodes on the tree pointing directly, or indirectly through ter
other nodes, to the root. te—-N(@)
The multiple labeling technique is used in conjunction
with the Monte Carlo method where a pseudorandom num- t<0 Yes 715 a proper cluster | 22L—»
ber generator is used to create the random lattice. Sites are No label of site n
created sequentially. Lattice sites are generated column by :
column (or row by row. Once a column is filled, the next ret
column starts filling. In three-dimensional lattices, layers of t=-N@

sites are created in sequential order. As sites are created, they < Yes
are assigned cluster labels as shown in Fig. 1 and described

in 1. At each site, previously labeled neighbor sites are in- No
spected. RoutineLAssIFY of Fig. 2 determines theroper ret
labels of these neighboring sites. The result is that only a =N
single scan is required to create the lattice and determine the |T_£—_(T}>N—°

cluster size distribution.

The enhancements to the HK algorithm are presented Yes
by the gray shaded areas in Fig. 1. The shaded abea, ris a proper cluster
denotes initialization of some general cluster properties  [l2belof siten
FO(mMY), FA(mY), ... by quantitiesfO(i), ), ..., NOw e
respectively. Thé(™(i) quantities represent some properties Out

of ith lattice site. For examplé(*)(i) could indicate that site
i is on the cluster boundary. It would be zero if all neighbor  FIG. 2. RoutinecLassiFy for determining proper labels of
sites are of typd\, and 1 if at least one of its neighbors is of neighboringA sites.
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other operations that meet these requirements could also be ) ) 2
used. For example, the functions makjj and min@,b) can EI > (Xiu—Xi0) =252i Xin—2 EI Xi

be used to define a HK operator such ags(¥x; .

=max,x;), and x;®Wx;=min(x x). These operators =2[sX2 - (x(M)2, 7)

could be used to determine bounding rectangles and boxes

for clusters in two dimensions and three dimensions, respeavhere X(1) and X(? are the first and second moments, re-

tively. TheF(" quantities in Fig. 1 are calculated from clus- spectively, for the given cluster angth coordinate. Using

ter fragmentse, 8,y that are merged into a single cluster. Egs.(5)—(7) we get

This is a generalization of the cluster size calculation in the

original HK algorithm where the size of the merged cluster , 1 d 2 (Dn2

a is the sum of the cluster fragmenisg, v, . . . . Rs:§z21 [sXZ— (X)), 8
Spatial moments are very important quantities in image ®

analysis[19]. They can be calculated using the EHK algo-

rithm, where the HK operator is defined as the scalar addi

tion operator. These moments are defined as

Notice thatR§ in Eq. (8) can be computed in terms of the
first and second cluster spatial moments, which can be deter-
mined by the EHK algorithm.

Following Stauffer and Aharony2], using RZ, the

. H 2
ngm(k):gk X?(I). (4) squared correlation lengfl20], £, can be computed by
Ns
2 2
X{M(k) denotes theth spatial moment of thkth cluster for , 22 S ;1 Rt
the jth coordinate, wher¢=1,2, ... ,d andd is the dimen- =, 9
sion of the lattice. The summation in E@) is carried over E s2ng
S

all sitesi of clusterk. The original HK algorithm can be
viewed as a special case of H¢) whenn=0.

A major feature of the original HK algorithm was that
columns (or layersg could be divided into sections where
cluster labels would be reused. This reduces the number &12€S: _ - ,
labels required for a very large lattice. When clusters extend 1€ EHK algzorlthr'_n facilitates the simultaneous calcula-
from one section to the next section, they are assigned a neffPn Of Ns and Ry, during lattice traversal. Whenever a col-
proper label that belongs to the set of labels of the nextumnin a two-'d|men3|0'nal lattice or a plane is completed in a
section. Just as labels are recycled, storage space for thfaree-dimensional lattice, all clusters that do not extend
F(™ quantities can also be recycled. The implication is thathrough the column or plane acempletedclusters. Hen<2:e,
these generalized quantities could be calculated for esse@S clusters are enumerated the partial sums®afnd s°Rg;
tially the same size of lattices analyzed by the original HKCan be accumulated. When lattice scanning is completed,
algorithm. using Eq.(9), the ratio of these sums yieldZ. The primary

advantage of this approach is that individﬁé[ values need
not be stored in computer memory.

whereng denotes the number of clusters of sizdR?, speci-
fies the squared radius of gyration of a cluster animef

Ill. THE SQUARED RADIUS OF GYRATION

AND CORRELATION LENGTH
IV. NUMERICAL EXAMPLES

The squared radius of gyratioR,_f, is an important clus-

ter shape quantitj2]. It is defined by Computations of cluster parameters using the EHK algo-

rithm are given in Table I. These data are given for Monte
Carlo runs for 3008 3000 size lattices and fgr values in
Rz:izE 2 Ir—r |2 (5) the range of 0.2—-0.61 for a square lattice. For each data point
S 2t g T in the table, a new pseudorandom number seed is used. The
table gives information on cluster sizes and internal cluster

wheres is the size of the cluster, ang andr; denote the perimeters for the largest cluster. In addition to that, the

positions of sites andj, respectively. The double summa- Squared radius of gyration for the largest cIusRﬁr(max_s),
tion involves alli andj sites of the cluster of interest. The and the squared radius of gyration for the cluster with the

squared distances in E(p) can be rewritten as maximum squared radius of gyration, rﬁsaxis also given.
From this table it is quite evident that the largest cluster does
d not necessarily have the largest squared radius of gyration.
|ri—rj|2= 21 (xi,M—xj,ﬂ)Z, (6)  This is not surprising because the squared radius of gyration
=

is related to the average distance between two cluster sites.
This average distance depends on the specific shapes of the
wherex; , andx; , denote theuth coordinates of siteisand  clusters in question.
j, respectively, ind dimensions. The correlation lengtl in Table | is calculated from the
Since each dimensiop can be treated independently in squared correlation length given by H§). The correlation
Eq. (6), the summation in Eq(5) can be reduced for each length exponent is determined by plotting Ip¢—p) versus
uto In(¢), as shown in Fig. 3. The value @ was taken to be
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TABLE I. Cluster statistics for square lattices of size 38@D00. In the tablep denotes the site
occupation probabilityn denotes the number of clusters in the lattice, graenotes the size of the largest
cluster by the number of sites occupiddmax) denotes the ratio of the perimeter of the largest cluster to the
largest cluster siz&R2(max) denotes the squared radius of gyration for the largest clustehgruiawotes the
cluster with the largest squared radius of gyratiéndenotes the correlation length, ahgd. denotes the
elapsed CPU time in seconds for each sample lattice run on a Sun Ultra 2 workstation.

P n max  T(mag  Ri(may)  max ¢ feec
0.200 1094061 27 0.926 2.842 3.307 1.415 5.265
0.300 1154703 77 0.987 6.849 6.849 2.402 6.519
0.400 955518 165 0.945 7.637 9.643 4.584 7.211
0.500 592669 901 0.900 21.117 27.327 12.275 7.316
0.510 552527 911 0.913 24.019 24.019 14.191 7.256
0.520 511781 1115 0.893 22.461 26.939 17.024 7.235
0.530 472869 2070 0.878 36.366 38.532 21.245 7.221
0.540 434099 2167 0.892 36.855 38.984 25.107 7.221
0.550 395152 3373 0.894 53.367 53.367 32.598 7.195
0.555 376813 5278 0.877 50.551 67.785 41.633 7.203
0.560 358236 6814 0.874 69.388 75.152 48.200 7.197
0.565 339097 7664 0.887 88.308 88.308 59.670 7.162
0.570 322208 18301 0.877 124.480 124.480 78.942 7.194
0.575 305227 22215 0.876 137.730 137.730 112.916 7.178
0.580 289980 50061 0.872 239.800 239.800 171.613 7.212
0.585 274178 79545 0.868 244.360 244.360 236.833 7.209
0.590 257374 426408 0.864 473.160 510.720 629.269 7.226
0.593 248745 1305977 0.861 908.010 908.010 1187.097 7.215
0.600 229206 4001264 0.857 1200.400 1200.400 1697.498 7.435
0.610 204472 4631412 0.850 1221.100 1221.100 1726.934 7.480

0.592 7442]. The values op used for this calculation range ponents neap, was previously reported by Hoshe al.
from p=0.5 top=0.58. Thisp range was chosen because it [21]. The value ofv for Fig. 3 is 1.33%0.012, which is in

above 0.58 would lead to a significant deterioration in thegt 5|, [22], Kapitulnik et al.[23], and Hosheret al. [21].
linear fit. Such behavior for Monte Carlo calculations of ex- The ratio of the number of internal perimeter sites to the

cluster size for the largest cluster in the sample is displayed

in Fig. 4. It initially rises but then falls ap, is approached.
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FIG. 3. Natural logarithm In of the correlation lengt¢hversus
In(Dp) whereDp=p.—p. p. is the critical percolation probability.
The data points denoted by are taken from Table I. The solid line FIG. 4. The ratio ofT, cluster perimeter, ts, cluster size, for
is a linear regression line for these data points. the largest cluster in the sample as a functiorp of

p
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° relation length exponent. Instead, we could have calculated
v by computing the bounding squares of the clusf@3.
The EHK algorithm can determine the clusters’ bounding
© squares using the min and max operators as described in Sec.
Il. Such calculation would require only a single pass over the
lattice.

With all its potential, the EHK algorithm has some limi-
< tations. In percolation calculations, the external cluster pe-
rimeter has usually been the parameter of intdr24} Yet,

0 we used the EHK algorithm to calculate the internal cluster
perimeter. The reason for this choice is that there is no
simple way to calculate the external cluster perimeter using
the EHK algorithm. The problem is that when two cluster

/ fragments are mergetbee Fig. 1, their perimeters would

CPU Time (sec)

also be merged. The intersection of the internal perimeter

0 sites is the null set. Therefore it is possible to add up their

' ' ' ' counts in the cluster fragment merger. In contrast, the inter-

2000000 4000000 6000000 8000000 section of the external perimeter sites may not produce the
Lattice Size null set. The implication is that a simple addition of the

counts of the external sites is not possible. So, to use the

FIG. 5. CPU time in seconds for sample lattices denoted)by EHK a|go|’ithm for the external perimeter Sites] the HK op-
for sizes 756750, 1500<1500, 20062000, 2502500, and  erator would have to correspond to theion operation. The
3000x 3000. union operator meets the EHK algorithm requirements for

_ associativity and commutativity. Unfortunately, using the
The fluctuations betwegm=0.5 andp=0.6 could be related ynjon operator would require keeping lists of perimeter sites
to fluctuations that are normally seen neps. Below  for each cluster fragment, and merging these lists when clus-
p=0.5 the ratio appears to be smoother, but this could bgers are merged. Using such lists will significantly increase
related to the fact that this area is represented by fewer daifie run time and memory space utilization for the EHK al-
points. gorithm.

The last figure, Flg 5, illustrates the linear behavior of the Despite some limitation, the EHK a|gorithm is C|ear|y a
computer central processing uf@PU) computation time as  major step forward in cluster analysis. Probably, its most
a function of the lattice size. Clearly, the Computational timeimportant use WOUId be in Ca'cu|ating C|uster Spatia| mo-
complexity of the original HK algorithm is preserved by the ments. The computation of these moments, under the EHK
EHK algorithm. algorithm, is very efficient and is likely to provide new in-
formation on the structural properties of clusters.

V. DISCUSSION
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