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We introduce a fluich-component vector model for the study of the phase ordering dynamics. We examine
several hydrodynamic growth laws of length scale for both conserved and nonconserved order parameters, with
and without the thermal fluctuation. Several growth laws for fluids with the scalar order parameter are gener-
alized, by taking the bulk energy and the defect core energy into consideration. Numerical simulation is also
presented for the case of a conserved order parameter=f2rand 3 in two and three dimensions, respectively.
Different growth laws are observed between in two and in three dimengi®h863-651X97)01008-§

PACS numbes): 64.70.Ja, 64.75-g, 05.70.Fh, 82.20.Mj

I. INTRODUCTION gJ 1
F:f (5 > VyilP+gad-lg»?|dr, (@2

Over more than two decades great attention has been paid =1
to the ordering dynamlcs_ in thermod_ynammally un_stable Sys\'/vhereg anda are positive constants and
tems. It began with studies of ordering dynamics in unstable
systems with scalar order parametergsee for reviews R n
[1-3]), and then withvector order parametergsee for the [412=> |l ©)
reviews[4,5]). Then-vector model is equivalent to the scalar =1

model forn=1 and is applied to binary mixtures. For=2 f'I'he equation of motion for the order parameter is then given

and 3 the model is applied to liquid crystals. The case o - - : :
n=o is called the spherical model. The ordering dynamics‘riploIylng the thermodynamics of ifreversible process as

with vector order parameters far>2 have been extensively 5y, . . OF . .
discussed rather recenflg—28|. Vector models are subjects —~ =~ L(i V)Zog—l//_ =L(iV)?[gV2¢i+a(1-]41?) %],

of applications of theoretical methofia1,29—32 and/or nu- : (4)
merical method$33]. The vector model also provides mod-

els of liquid crystald34-37, though the liquid crystal may wherei= /-1 in the brackets, and=0 corresponds to the
also be a model of a scalar order param¢8&;39. case where is not conserved, whereds= 1 corresponds to

In this paper we shall introduce a fluid vector model, - .
which we shall abbreviate as the “vector fluid” or the “vec- the case wherq IS conserved. When th_e system is quenched
tor liquid.” One motivation of this is that usually used vector from a state W'th. a high temperature into an unstable state,
models are those with the real order parameter. In such mo he phase ordering takes.place. A cqmplete set of grqvvth
els order parameters have no intrinsic velocity figdmplex aws of the Iength Scal® in the ordermg' process of th's. .
order parameter hag.ifThe other motivation comes from the system was examined by the .energy scaling method and it is
fact that for fluid systems with the scalar order parameteFIaSSIerOI into three cases, 77):

several kinds of examinations have been done, i.e., theoreti- tY2  for n<2—2¢ (5)

cal predictiong/40—-43, experimental studief44-50, nu- '

merical studies[51-70 and the studies of shear induced R~{ tHN+20 for 2—29<n<2 (6)
phase separatiori31-76. How is the ordering dynamics in t12+26)  for n>2. (7)

the vector fluid? We shall explore hydrodynamic growth

laws of the vector fluid. Logarithmic corrections are obtained at the thresholds in the

We consider the isothermal ordering process. The isothembove classificatiofi77], but we have disregarded those cor-
mal process is appropriate in a slowly varying phase orderingections here.
like in polymers or in a late stage of ordering in any system, In the next section we obtain a set of kinetic equations for
where the effect of the heat production can be neglected. Thiae vector order parameter and the velocity field. In Sec. IlI
relevant free energy in such isothermal processes is th@e explore several hydrodynamic growth laws. In Sec. IV
Helmholtz free energy. The order parameter of tlieector  some discussions will be presented. We also present some
model is written as numerical results.

II. KINETIC EQUATIONS FOR VECTOR FLUID

U=, 02, - ). (1) _ _ - o
We here derive a suitable set of kinetic equations for

and ¢. The hydrodynamic term can be added to the above
The nonhydrodynamic part of the Helmholtz free energy isfree energy(2) as follows. Let us assume that each part of
given by the system is drifting. By the Galilean transformation we can
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observe a local part in a comoving frame. In this frame the aqg 2

free energy density of the local part is given by E2). The rr —V-vp+L,V (m gl
kinetic energy of the fluid is therefore added to E2). Let

v be the local velocity field and+ év; be the velocity of the y

ith constituent which carries mass. Then the total kinetic Wi s o2 _

energy density ipv2/2 + p({5v?)/2, where the second term ot Vvl —LIV) T (1=12,..0). (13
corresponds to the thermal energy. The linear term dloes

not appear. Except for the thermal energy we obtain a relqere §=1 and #=0 correspond to conserved and noncon-

(12

evant Helmholtz free energy served order parameters, respectively. Coefficientahich
1 1 n are assumed to be constant, should be positive.
- 9 For the velocity fieldv we may write the equation of
_ - R P 2, 2
F f(zpv T ox (¢ do) ™t 22 motion as
1 2,2 oV
+ g a(1=[¢]%)*]dr. (8) pr =F*+ 7V, (14)

Here we have added the energy due to the comprestien

second term y is the compressibility of fluidg is a quan- Here the first term on the right hand side represents the time-

tity corresponding to the total number density, is the reversib_le part, and the second te_rm represents the dis_sipf';\tive
Y P 9 Y, apgl part which may be of more complicated form. The ambiguity

average ofe. ! . . .
We here explore hydrodynamic kinetic equations for thel the relation between the chemical potential and the pres-

vector fluid. This may be the generalization of the so-callecPU’® Of the hydrodynamic fprce In t_he case where abstr.act
H model[78]. Under constant temperature, constant Volumeorder parameters are associated as in the present case will be

and constant total particle number the Helmholtz free energ{/emovmJI with the help of an identy:
does not increase. Therefore

2
> v >
dE SE . SF E _SF J |V- F*+ ¢V m5+,u¢ +2i iV dr=0.
E‘f VE+¢’%+ = iz | (15
VL, + _+ +2 dr<0, (9) To prove this identity let us remember that the time deriva-
f ot B m He ik tive of the free energy9) is identically zero forl ;=L =7

] o =0, because all equations are now time reversible. By sub-
where the dot denotes the time derivative=p/¢ corre-  giityting Eqs.(11) and (14) for Ly=L=7=0 into Eq.(9),

sponds to masg 4 andw; are static chemical potentials for ang performing a partial integration once for each term, we
¢ andy; (i=1,2,...n), and, is a kind of chemical po-  arrive at Eq(15). Using 2 v- Vo2 = v-[(v- V)v] Eq. (15) is

tential for the velocity field: transformed into
. OF SFO )
V = = - il = = =
o= 5y =P Ro="5g X0 ($= o f V- | F*+p(v-V)V+ ¢V g+ > ¢V | [dr=0.
I
SF (16)
wi= 5= =9V lylPu, (10
I
In order for Eq.(16) to hold identically we choose
and F(® is the static part of the free energy, i.e.,
FO=F(v=0). R - >
In order to derive kinetic equations fap and 's we F*=—p(v-V)v— ¢V,u¢,—2 UiV 17
|

notice the following. If there is no dissipation of particles

and the order parameter by the diffusions and/or the chemi-

cal reactions, only the source for changes in these quantitieEhus a desired equation of motion feris given by
is the drift velocityv. Then the local currents of these quan-

tities are products of the local drift velocityand local den- ov R ) . R
sities of corresponding quantities. In this cags and ¢'s por =PV V)v+ pViv— ¢V,U«¢—§i: HiVpi. (18
should satisfy continuity equations. Thus we obtain

do - A Similar or equivalent equations far=1 were used previ-

Vv at' =-V-vy  (i=12,...n). ously,[51-53,59,68,6P It is easy to show that Eq18) for
(12) n=1 is equivalent to the Navier-Stokes equation of binary
mixture, which has a single component order parani&@
If there are dissipations, then changes by the dissipations aBy substituting Eqs(12), (13), and(18) into the right hand
added to the above equations. These changes occur througide of Eq.(9) we find that the right hand side of E(p) is

the second derivative of the free energy: really of a nonpositive form:
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dE o v? 2 To evaluate the energy we notice that the temporal change in
—=—f —77V~V2V+L¢V<m—+/.1,¢ the ord -
dt 2 e order parametepf is very slow, enough for the system to
be in a local equilibrium state. The local equlibrium assump-
= o tion was successfully applied to the scalar order parameter to
+ EI L|V i|*"|dr=<0. (19 evaluate the interfacial enerdgl]. The local equilibrium

assumption for the vector order parameters may also be

valid. However, it is certainly different from that for the
talar order parameter. Let the typical length scale at time
be R. For instanceR is the average curvature of defect

Therefore the present dynamical equations are consiste
with the second law of thermodynamics. The extension o

Fhe present equations to the case where extra variables X&re or average distance for which the direction of the order
is straightforward.

; . . parameter changes its angle by the amount Zhe spatial
I the chemical pptennal is a local quantity, th_en the P'®S“structure cannot relax to the equilibrium one independently
sure is a well-defined thermodynamic quantity, i.dPR

A +S veduw is a total derivative. H if the chemi of surrounding structures. The surrounding structures play a
Pduy ‘/." wi 1S atotal derivative. However, ITIne CNeMI- q1q of external constraints. Assuming that the local structure
cal potential is nonlocal, then the derivative of the local

) _ is in a local equilibrium state under the surrounding con-
quantity | daP_(r).=— <1_5(F)5M¢(f|)—2i¢i(r)5ﬂli(f) h '? straints, the determination of the local structure of the order
hot a total derivative, in general. Let us explain this for a ;5 meter is treated as the problem of solving the equation

simplified case where u,(r)=/g(|r—r'[)y(r')dr’. o o . )
" giving the minimum of the free energy under a given con
Then  SP(r)=—y(r)ou,(r). Thus [&/64(r")I[6/  giraint:

Syp(r')]P(r)=—48(r—r")g(|r"—r’]). This is not equivalent

to [ &/ 8y(r") ][ 8 Sy(r")]P(r), if the functiong(r) is not of SF _ _

a local form[ o 5(r)]. Therefore the local pressuf(r) is S0 —gV2¢i—a(1-[$|?)#~0 with constraints.

not a conserved quantity if the interaction is nonlocal. For ! (22)
this reason sometimes only the third term on the right hand

side of Eq.(18) is identified with the pressure. If we honestly apply Eq(22) to the dynamics, then the time

derivative of the order parameter seems to vanish. However,

this is not true since the constraints of this equation depend

on time. Equation(22) should be regarded as the balance
According to the dynamical scaling assumpti@(t) between two forces under a given constraint. Such a con-

—R(1)¥S(kR(t)) the ordering process is characterized by thestraint may be replaced by the condition of a fixed length

time dependence of the length scatét), whereS is the  ScaleR. As an example we consider the :mrpplest one dimen-

structure  function S(t)=3;"(|#;,/?). Here ¢,  sional case without loss of generality. Lé{x) be a one

= [e'*Ty:(r)dr is the Fourier coefficient of the order param- dimensional vector order parameter and let the constraints be

etery; . In the cases ofi=1 with and without the hydrody- #i(0)=a; and¢;(R) = —a;. Under such constraints the vec-

namic term and in the cases nf>1 without the hydrody- tor order parameter gradually changes as a function of coor-

namic term growth laws are well established. Here wedinatex, because such a gradual change does not cost much

examine the growth lawR~t? in the case oh>1 with the  energy. For instance, we have-acos(@x/R). Therefore

hydrodynamic term. Let us notice that the hydrodynamic R

growth is governed by the hydrodynamic equati@#), and Vii~R M, V2hi~R 2. (23

therefore there is no distinction between conserved and non- o

conserved order parameters. A dimensional analysis is a use¥ch estimations generally hold for vector order parameters

ful tool to obtain the growth laws. For this purpose we needVithout singularity. The use of the evaluati¢2g) gives the

the potential energy density of the system. In the binary sysfollowing energy scaling:

tem (h=1) this is the energy of the domain wall. The domain

IIl. HYDRODYNAMIC GROWTH LAWS

wall is regarded as a kind of defect, where the order param- IVg|2~R72, (24)
eter becomes singular. The defect for 1 is a line in two v 4
dimensions, and a wall in three dimensions. The defect for (1=¢5)"~R™ (25

n=2 is a point in two dimensions and a line in three dimen-
sions. Generally the spatial dimensionaldyof the defect is
given by

The second scaling is obtained with the use of §) and

the second relation in EQ.(23), since we have
(1— y?)y~V2y~R~2. The same result is also given for
energy density around spherically symmetric defect cores
[4]. In this case the static equation is solved. Then the result
is applied to the dynamics. These procedures correspond to
For D<O0 there is no defect. Generally for=1 and 2 the the local equilibrium assumption. The energy density of the
relevant energy is the defect core energy. However, fokector order parameter is thus captured only by the gradient
n>2 that is the bulk energy. This was shown using a genterm in the late stage of the ordering process for the vector
eralized Porod law for the tail of the structure functia®,  order parameter:

80

D=d-n. (20)

%g Sp _Zzﬂ 2
S(x)~x"9". 21) F 2J df;lwll 5 f k2s(k,t)ydk,  (26)
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whereV is the total volume of the system. Notice that thewherec is a quantity corresponding to the surface tension. A
energy density for the scalar order parameter is also given bgimilar energy is given for the conserved scalar order param-
an equation similar to Eq26), where, however, the contri- eter by the local terni28), but this bulk energy is not effec-
bution from the local energye(1— ¢?)%/4 is equal to tive since the defect core energy is dominant in this case. The

g|€¢|2/2 and hence a factor of 2 should be added to(E6). defect core energy is proportional to the defect core size:
for the scalar order parametd1].  sn-1pDpd_ . s—1p—n

Two comments are needed for E@6). First, the defect ep~ o RU/RI=0fT IR (30)
core energy can be captured also by &6), in general. This  These evaluations give the same results as the above evalu-
is because the defect core energy is given by the defect cotgions py the integration of the gradient energy term with a
size (length, area, or volumetimes some proportionality generalized Porod law. It is considered that the defect core
const_ant. The defect core size is captured by means of Sifknergye,, is not relevant fon>2 in the purely relaxational
gularity of Eq.(24) or Eq. (25), since Eqs.(24) and (25 c45e(with no hydrodynamic terin However, if the bulk en-
become equally singular at the defect core. Second, the Co'é'rgy €5 becomes ineffective to the hydrodynamic driving

served scalar order parameter has a nonvanishing bu%rce, thenep, should be important even for>2, if defects
chemical potential x~O(1/R) in nonequilibrium state oyt

(Gibbs-Thomso)) which is the deviation from Eq22). This Let us now examine hydrodynamic growth laws using
bulk chemical potential gives deviations of the order paramMihese energies. Orderings independent of the velocity field
eter from those in equilibrium single phase stat€gq  are not the hydrodynamic ones but the purely relaxational
= =1.The deviation is given aS¢ = §— e~ 1/R €XCEPt  nes Therefore we may examine only the case where the
near the defect core region. This gives the following scalinggefect is comoving with the order parameter by the velocity

of bulk energies for the scalar order parameter: v. This allows us to have the following picture of the order-
. ing. The potential energy is released according to the coars-
[V ~R™, (27 ening. The balance between the released defect energy and
the fluid kinetic energy or the dissipated energy determines
(1—y?)°~Ay>~R 2. (28)  the growth law of the length scaR. This allows us to use

the dimensional analysis for the energy balance or the force

The corresponding defect core energy density is of the ordepalance.
1/R. Therefore bulk energie€7) and (28) for the scalar The driving force is of the ordee/R, wheree is ep or
order parameter can be neglected compared with the corrés. The acceleration of the fluid of unit volume is of the
sponding defect core energy, justifying that the dominanorderR/t? and the friction by the dissipation is of the order
contribution to the energy comes from the defect core whictw/(R1). Then the velocity field equatiofi8) is transformed
can be captured by E426). into a dimensional equation:

Substituting Eq.(21) into the last side of Eq(26) the )
contribution from large wave numbers is given as pRIt"+ 7/ (R~ €/R. (3D
FNQVR_?Z(RI(C)Z?n’ wh_ere K; is the upper cutoff of the Let us introduce the Reynolds number Re:
integration. Therefore ifh<2 then the energy becomes
larger ask, becomes larger. In this case the dominant con- pRIt?  pR?
tribution comes from large wave numbers. Since the energy Re= ——"=—-. (32

o . . : nl(Rt)  #t

should be finite we must fix the microscopic upper cutoff of
the wave number, i.ek.~¢, where§ is the microscopic  For Re>1 the inertial term, the first term on the left hand
thermal correlation length. We then obtdin-gVR "é""%.  side of Eq.(31), is effective, while for Re1 the dissipative
On the other hand, far>2 the contribution from Iarge wave term, the second term, is effective. The condition=Re
number is not important and we det~1/R. We then obtain  gives Roctl/2
F~gV/R 2. The usefulness of these evaluations of the en-
ergy was examined by applying it to the growth laws for A. Growth by defect core energy
arbitrary values oh, d, and 6, Egs.(5)—(7) [4,77]. )

Since the hydrodynamic driving fordegiven by Eq.(18) Let us consider t_hg case where the defeg:t core energy
is the superposition of contributions from all components ofép IS the relevant driving force. Then we obtain

4, the contributions from the bulk energy is expected to be o g1\ Un+2)
small. Therefore we cannot simply apply the above method R~ )

to the hydrodynamic case. To investigate the hydrodynamic p
growth laws we separate the energy into two parts, i.e., thgye have
defect core energy~R™") and the bulk energy~+R?),

and we investigate the hydrodynamic growth laws using oge" !
these energies separately. The bulk energy density for the N(
vector order parameter is captured simply by the gradient K

term of the free energW |?/12 assuming there is no singu- Let R~t?. Then Re increases indefinitely fat>1/2. There-
larity: fore the leading growth law in the long time limit is E@®3)
for n<2, whereas it is Eq.34) for n>2. In the intermediate
eg~gR 2~ 0¢R 72, (290  time the leading growth law depends on the value of Re. For

t?(+2) for Re>1. (33

1/n
) t" for Re<1. (34)
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n=1 Eq.(33) gives at?® growth law[43] and Eq.(34) gives  done. In the present paper we also report some results of the
t-linear growth lawg42]. A comment on the above growth numerical simulation to investigate the effect of the bulk
laws may be needed. The global connectivity of defects ienergy on the hydrodynamic growth. This is presented in
important for the defect core energy to be effective to theSec. IV.

hydrodynamic growth laws. If the defect core is not connec-

tive, then the coarsening by the shrinking of defect cores C. Growth by thermal fluctuation (hydrodynamic case

does not continue. Let us consider only the case where the

averages of compositions are the same for all component . : ;
g P b force of the ordering process is that the state we are consid-

i.e., (|#]?)=1in fori=1,2,...,n. Then for defects, which ering is unstable and therefore anv motion of the order
are globally connective, the spatial dimensionality of the de- 9 . erefore any motion of the order pa-
fect should be larger than or equal to 1: rameter contributes to the reduction of the_free energy of the
' system. The effect of the thermal fluctuation on the hydro-
D=d—n=1. (35)  dynamic growth law is examined by adding the fluctuating

force Q; to Eq.(18),

The reason the thermal fluctuation can be the driving

For the bulk energyeg no such a restriction as E¢35) oy
exists. The other comment is given on H3). For this e V-V nV— Y — Vot _
growth law the dissipation term is neglected, but this does Pop = PV VIV Vo 2.: UiV atpQ
not mean that the hydrodynamic dissipation, represented by (40)
the second term on the right hand side of Ek), plays no

role, but plays a role of energy dissipation at shorter lengthf N€ fluctuating force&Qy is that of the fluid

scales. If the kinetic energy released at the coarsening redes- 2dksT7
troys the order, then the growth 1a@83) will be modified. (Qs(t,r)- Qs(t',r")y=— E; V25(t—t")8(r—r'"),
This was discussed far =1 [59]. p
(41
B. Growth by bulk energy in d dimensions. Then one can show that the thermal equi-
The effect of the bulk energy for the vector case=2) Iiprium fIl.Jctuation of the velocity field satisfies the equipar-

to the hydrodynamic growth laws is very ambiguous. Thefition law:
following is one of the possible estimations, but is not con-

’ : p(Ivil2) = dkaT. 42

clusive. A straightforward application of the bulk energy

(29) gives another growth law: This relation represents the thermal fluctuation of the veloc-

R~ Ctl2 (36) ity field with the length scalé*. Applying this relation to
' the velocity field with the length scal®, and setting

The coefficientC is given by a simple dimensional analysis <|vk|2.>~Rd.(R{t)2, we obtain a growth law in the case where
asC~(aélp)Y3. However, this value o€ or Eq.(36) may the viscosity is not important and hence the inertia is domi-
be questioned. If Eq:36) is observed, then this must occur Nant
for very large length scales. This is because the hydrody-
namic force due to the bulk energy from each component of R~(
the order parameter would be canceled out. We here present
a very crude estimation of the hydrodynamic growth law by . ) _ .
the bulk energy. The hydrodynamic force associated with théNe can also find a different kind of a growth law associated

order parameted is estimatedexcept near the defect core vyith the iner_tia. By retaining only t_he fluctuating force in the
regior‘bpas vi ! dexcep right hand side of Eq(40) we obtain

1/(d+2)

ke T
= t2(d+2)  for Re>1. (43)

p

ov
Fue~2 hiVV2i~R™ 2 gV i~R2V|y|>~R"5, R @49

(37 This gives

where we have used E@25) to obtain the last side. This |
corresponds to replacing /R by eg/R®. Therefore Eq(36)
may be replaced by

2 t kg T nk?
:;'{' >~J dt’(Qf,k(t)-Qf,k(t’)%B—pnr- (45)

R~C'tY® for Re>1 (38) Corresponding to this relation we obtain
1U(d+4)
and R~(kil;7] {3Hd+4) (46)
R~C"tY* for Re<l, (39)

where we have used the relationg~RY(R/t)?2 and
whereC’ and C” are constants. In the long time limit the kR~ 1. This growth law is obtained far=1 in [59] by the
leading growth law is Eq(39). Due to the approximation dimensional analysis and is explained as the growth law as-
used here estimated growth laws in this subsection are nsbciated both with the dissipation and the inertia. We con-
conclusive, yet. Therefore further investigation should besider that Eq.(46) is valid when the inertial term and the



1442 H. FURUKAWA 56

dissipative term are of the same order, i.e.,"Rk. Therefore

Eq. (46) is not valid over long temporal range, in general. fluid
When the inertial term can be neglected we retain only the i
second and the last terms of E40): §
Vk“‘k_zV_le’k. (47) i

Notice that the velocity, in this case does not obey the solid

equipartition law(42), since it is dissipative. Most convinc-

ing ways of extracting the dissipative behavior of the order-
ing process are to combine E@7) with the equation for

J/ and then to use a scaling analysis. The same result can be
obtained by wusing a convenient reIationQ,?]kt il L
~ ke T k2l p2: 19 10

R 7 4%

U FIG. 1. R(t) for n=2 in two dimensions. Open circles indicate
Prefactors of these growth laws are only qualitative.the case of purely dissipative, and closed circles indicate the hydro-
These growth laws are the same as originally given for thélynamic caseto=512 andR, is the value ofR at t=t, in the
scalar order parameter, i.e., 48) by [40] and Eq.(43) by nonhydrodynamic case. Two straight lines have a slope 0.25.
[43].

1/d
) tY  for Re<1. (48)

order to examine the effect of the bulk energy on the hydro-
dynamic motion we have performed the numerical simula-
tion for the conserved order parameter with-2 in two
The growth law by the thermal fluctuation in the purely dimensions and witm=3 in three dimensions. In this simu-
dissipative case is given by adding the random f@ad® the  lation we disregarded the compressibility term in the hydro-
kinetic equation(13): dynamic equation. Namely, we used Efj3) with 6=1 and
Eq. (18) without the third term associated wiih. For two
%Z—L(i€)zaﬂi+V9Qi (i=1,2,...,n). (49 dimensional simulaton we have choser=1, L=1/4,
dt m=1 (¢=p), g=1/4, andn=0.1. The numerical method is
) . the Euler method or the method of the cell dynamical system
The random forceq are given to produce the thermal equi- [33] |n this simulation we did only a single run for the
librium fluctuation ofy: system with 512 cells. A discrete timet=0.1 was used and
A (H e — YT e the final computation time is 20512. The length scalR is
(QUENQErN=2GTLA A=A =) aiited by

D. Growth by thermal fluctuation (purely relaxational case

Disregarding the first term on the right hand side of &) kaSk(t)dk) —lA oD 52

and applying the dimensional analysis we obtain R(t):( IS(t)ydk

d+20__
R KeTLL 63 Here the result is almost independent of the valueAof
The precoefficient is only qualitative, too. The above growthTime-dependent length scalB$t) with and without the hy-
law for 6=1 was originally given for the scalar order param- drodynamic term are shown for=2 (Fig. 1. In this figure
eter[2,40). to=>512, andRy is the length scale &t = ty in the nonhy-
Finally we note the relation between the above severafirodynamic case. Two straight lines indica®et®?> The
hydrodynamic growth laws and the continuity equatia). hydrodynamic length scale is about two times larger than the
In the case oh=1, which corresponds to the binary mix- nonhydrodynamic one at the same time. The growth law in
ture, the value of each component is 1 orl. Without the nonhydrodynamic case supports Ej.or Eq.(7) for the
changing this local value the coarsening proceeds with theonserved order parametg82]. The growth law in the hy-
hydrodynamic motion. However, far=2 the local value of ~drodynamic case seems to support B39). Since the defect

each component; of the vectonZ continuously changes. In core is a point in th_is case, no defect core energy is relevant
the hydrodynamic growth such changes are done not by th® U\]/e T}ydrodylnamlc :orce. d imulation for=3 in th
dissipational motion but by the drift motion obeying the con—d_ € have ?—I'Slo pertorme a.s'rggag 'Ohn Fsn reed
tinuity equationg11). Because the continuity equatiofisl) |Lne/n5|onrs1. e system size ;‘S this case v(\j/g USE
have no dimensional restriction, the above hydrodynami@= 1/6. Other parameters are the same as in two dimensions.

growth laws are not affected by the continuity equations. The final simulatior) time is 4064. The defect is a point in
this case, too. In this case we calculated the length scale by a

different method from Eq(52). Namely, we calculated it by

IV. DISCUSSIONS AND REMARKS the relation

As noted, the hydrodynamic growth laws in Sec. Il
evaluated using the bulk ener¢®9) are very ambiguous. In R(t)ocNp(t) =, (53)
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10 — T ———— was done only for the single run, the length scale exhibits the
i 1 t'® dependence. Although E(B4) gives the same exponent
1/3 for n=3, this growth law cannot be applied to the
present case because the defect morphology is a point in this
case. The present simulation may support B§). But it is

1 not clear why different growth exponents are observed in
two and in three dimensions.

We have proposed a fluid vector model and we have stud-
ied its ordering processes from theoretical and numerical
viewpoints. The hydrodynamic growth laws in the vector
fluid are rather complicated. Further theoretical and numeri-
. cal analyses are desired to clarify the nature of the hydrody-
namic growth for the vector model. If the bulk ener@g) is
not effective to the hydrodynamic growth, then the hydrody-
namic growth laws by the defect core enerf@g) and(34)
o together with Eq(35) become important even far>2 in

1 ? 10 e the case of the conserved order parameter. In this case the
t/t condition D=d—n>1 must be satisfied. For the present
0 simulation D=1 and therefore these growth laws are not
applied. Since Eq933) and (34) become smaller as in-
~ FIG. 2. R(1) in hydrodynamic case fon=2 in three dimen-  creases, the growth laws by the nonhydrodynamic growth
sions. The straight line has the slope 1(3-64 andR, is the value a5 and those by the thermal fluctuation becomes important,
of Ratt=to. and the classification of growth laws becomes complicated.

R/R

where Np is the number of defect cores. We defined the
defect core by |2<0.8, and actuallNp, is identified with
the number of cells satisfying this inequality. Figure 2 shows The author thanks Professor A. Onuki and Professor H.
the length scale in this case. Although the final time is 1/4Fujisaka for some discussions in the early stage of the
times shorter than that in two dimensions and the simulatiopresent research.
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