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Fluid n-vector model and its hydrodynamic ordering processes

H. Furukawa
Faculty of Education, Yamaguchi University, Yamaguchi 753, Japan

~Received 8 January 1997; revised manuscript received 18 March 1997!

We introduce a fluidn-component vector model for the study of the phase ordering dynamics. We examine
several hydrodynamic growth laws of length scale for both conserved and nonconserved order parameters, with
and without the thermal fluctuation. Several growth laws for fluids with the scalar order parameter are gener-
alized, by taking the bulk energy and the defect core energy into consideration. Numerical simulation is also
presented for the case of a conserved order parameter forn52 and 3 in two and three dimensions, respectively.
Different growth laws are observed between in two and in three dimensions.@S1063-651X~97!01008-8#

PACS number~s!: 64.70.Ja, 64.75.1g, 05.70.Fh, 82.20.Mj
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I. INTRODUCTION

Over more than two decades great attention has been
to the ordering dynamics in thermodynamically unstable s
tems. It began with studies of ordering dynamics in unsta
systems with scalar order parameters~see for reviews
@1–3#!, and then withvector order parameters~see for the
reviews@4,5#!. Then-vector model is equivalent to the scal
model forn51 and is applied to binary mixtures. Forn52
and 3 the model is applied to liquid crystals. The case
n5` is called the spherical model. The ordering dynam
with vector order parameters forn.2 have been extensivel
discussed rather recently@6–28#. Vector models are subject
of applications of theoretical methods@21,29–32# and/or nu-
merical methods@33#. The vector model also provides mod
els of liquid crystals@34–37#, though the liquid crystal may
also be a model of a scalar order parameter@38,39#.

In this paper we shall introduce a fluid vector mod
which we shall abbreviate as the ‘‘vector fluid’’ or the ‘‘vec
tor liquid.’’ One motivation of this is that usually used vect
models are those with the real order parameter. In such m
els order parameters have no intrinsic velocity field~complex
order parameter has it!. The other motivation comes from th
fact that for fluid systems with the scalar order parame
several kinds of examinations have been done, i.e., theo
cal predictions@40–43#, experimental studies@44–50#, nu-
merical studies,@51–70# and the studies of shear induce
phase separations@71–76#. How is the ordering dynamics in
the vector fluid? We shall explore hydrodynamic grow
laws of the vector fluid.

We consider the isothermal ordering process. The isot
mal process is appropriate in a slowly varying phase orde
like in polymers or in a late stage of ordering in any syste
where the effect of the heat production can be neglected.
relevant free energy in such isothermal processes is
Helmholtz free energy. The order parameter of then-vector
model is written as

cW [~c1 ,c2 , . . . ,cn!. ~1!

The nonhydrodynamic part of the Helmholtz free energy
given by
561063-651X/97/56~2!/1437~8!/$10.00
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4
a~12ucW u2!2D dr , ~2!

whereg anda are positive constants and

ucW u2[(
i 51

n

uc i u2. ~3!

The equation of motion for the order parameter is then giv
applying the thermodynamics of irreversible process as

]c i

]t
52L~ i¹W !2u

dF

dc i
5L~ i¹W !2u@g¹2c i1a~12ucW u2!c i #,

~4!

wherei 5A21 in the brackets, andu50 corresponds to the
case wherecW is not conserved, whereasu51 corresponds to
the case wherecW is conserved. When the system is quench
from a state with a high temperature into an unstable st
the phase ordering takes place. A complete set of gro
laws of the length scaleR in the ordering process of thi
system was examined by the energy scaling method and
classified into three cases@4,77#:

R;H t1/2, for n,222u ~5!

t1/~n12u! for 222u,n,2 ~6!

t1/~212u! for n.2. ~7!

Logarithmic corrections are obtained at the thresholds in
above classification@77#, but we have disregarded those co
rections here.

In the next section we obtain a set of kinetic equations
the vector order parameter and the velocity field. In Sec.
we explore several hydrodynamic growth laws. In Sec.
some discussions will be presented. We also present s
numerical results.

II. KINETIC EQUATIONS FOR VECTOR FLUID

We here derive a suitable set of kinetic equations forcW
and f. The hydrodynamic term can be added to the abo
free energy~2! as follows. Let us assume that each part
the system is drifting. By the Galilean transformation we c
1437 © 1997 The American Physical Society
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1438 56H. FURUKAWA
observe a local part in a comoving frame. In this frame
free energy density of the local part is given by Eq.~2!. The
kinetic energy of the fluid is therefore added to Eq.~2!. Let
v be the local velocity field andv1dvi be the velocity of the
i th constituent which carries mass. Then the total kine
energy density isrv2/2 1 r^dv2&/2, where the second term
corresponds to the thermal energy. The linear term inv does
not appear. Except for the thermal energy we obtain a
evant Helmholtz free energy

F5E S 1

2
rv21

1

2
x21~f2f0!21

g

2 (
i 51

n

u¹W c i u2

1
1

4
a~12ucu2!2D dr . ~8!

Here we have added the energy due to the compression~the
second term!. x is the compressibility of fluid,f is a quan-
tity corresponding to the total number density, andf0 is the
average off.

We here explore hydrodynamic kinetic equations for
vector fluid. This may be the generalization of the so-cal
H model@78#. Under constant temperature, constant volum
and constant total particle number the Helmholtz free ene
does not increase. Therefore

dF

dt
5E S v̇

dF

dv
1ḟ

dF

df
1(

i
ċ i

dF

dc i
D dr

5E F v̇mW v1ḟS m
v2

2
1mfD1(

i
ċ im i Gdr<0, ~9!

where the dot denotes the time derivative,m5r/f corre-
sponds to mass,mf andm i are static chemical potentials fo
f andc i ( i 51,2, . . . ,n), andmW v is a kind of chemical po-
tential for the velocity field:

mW v[
dF

dv
5rv, mf[

dF ~0!

df
5x0

21~f2f0!,

m i[
dF

dc i
52g¹2c i2a~12ucu2!c i , ~10!

and F (0) is the static part of the free energy, i.e
F (0)[F(v50).

In order to derive kinetic equations forf and c ’s we
notice the following. If there is no dissipation of particle
and the order parameter by the diffusions and/or the che
cal reactions, only the source for changes in these quant
is the drift velocityv. Then the local currents of these qua
tities are products of the local drift velocityv and local den-
sities of corresponding quantities. In this casef ’s and c ’s
should satisfy continuity equations. Thus we obtain

]f

]t
52¹W •vf,

]c i

]t
52¹W •vc i ~ i 51,2, . . . ,n!.

~11!

If there are dissipations, then changes by the dissipations
added to the above equations. These changes occur thr
the second derivative of the free energy:
e

c
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]f

]t
52¹W •vf1Lf¹2S m

v2

2
1mfD , ~12!

]c i

]t
52¹W •vc i2L~ i¹!2um i ~ i 51,2, . . . ,n!. ~13!

Here u51 andu50 correspond to conserved and nonco
served order parameters, respectively. CoefficientsL, which
are assumed to be constant, should be positive.

For the velocity fieldv we may write the equation o
motion as

r
]v

]t
5F* 1h¹2v. ~14!

Here the first term on the right hand side represents the ti
reversible part, and the second term represents the dissip
part which may be of more complicated form. The ambigu
in the relation between the chemical potential and the p
sure or the hydrodynamic force in the case where abst
order parameters are associated as in the present case w
removed with the help of an identy:

E H v•FF* 1f¹W S m
v2

2
1mfD1(

i
c i¹W m i G J dr50.

~15!

To prove this identity let us remember that the time deriv
tive of the free energy~9! is identically zero forLf5L5h
50, because all equations are now time reversible. By s
stituting Eqs.~11! and ~14! for Lf5L5h50 into Eq. ~9!,
and performing a partial integration once for each term,
arrive at Eq.~15!. Using 1

2 v•¹W v2 5 v•@(v•¹W )v# Eq. ~15! is
transformed into

E Fv•S F* 1r~v•¹W !v1f¹W mf1(
i

c i¹W m i D Gdr50.

~16!

In order for Eq.~16! to hold identically we choose

F* 52r~v•¹W !v2f¹W mf2(
i

c i¹W m i . ~17!

Thus a desired equation of motion forv is given by

r
]v

]t
52r~v•¹W !v1h¹2v2f¹W mf2(

i
c i¹W m i . ~18!

Similar or equivalent equations forn51 were used previ-
ously, @51–53,59,68,69#. It is easy to show that Eq.~18! for
n51 is equivalent to the Navier-Stokes equation of bina
mixture, which has a single component order parameter@59#.
By substituting Eqs.~12!, ~13!, and~18! into the right hand
side of Eq.~9! we find that the right hand side of Eq.~9! is
really of a nonpositive form:
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dF

dt
52E F2hv•¹2v1LfU¹W S m

v2

2
1mfD U2

1(
i

Lu¹W m i u2uGdr<0. ~19!

Therefore the present dynamical equations are consis
with the second law of thermodynamics. The extension
the present equations to the case where extra variables
is straightforward.

If the chemical potential is a local quantity, then the pre
sure is a well-defined thermodynamic quantity, i.e.,dP
fdmf1(c idm i is a total derivative. However, if the chem
cal potential is nonlocal, then the derivative of the loc
quantity dP(r )52f(r )dmf(r )2( ic i(r )dm i(r ) is
not a total derivative, in general. Let us explain this for
simplified case where mc(r )5*g(ur2r 8u)c(r 8)dr 8.
Then dP(r )52c(r )dmc(r ). Thus @d/dc(r 9)#@d/
dc(r 8)#P(r )52d(r2r 9)g(ur 92r 8u). This is not equivalent
to @d/dc(r 8)#@d/dc(r 9)#P(r ), if the functiong(r ) is not of
a local form @}d(r )#. Therefore the local pressureP(r ) is
not a conserved quantity if the interaction is nonlocal. F
this reason sometimes only the third term on the right h
side of Eq.~18! is identified with the pressure.

III. HYDRODYNAMIC GROWTH LAWS

According to the dynamical scaling assumptionSk(t)
5R(t)dS̃„kR(t)… the ordering process is characterized by
time dependence of the length scaleR(t), where S is the
structure function Sk(t)[( i

n^uc i ,ku2&. Here c i ,k
5*eik•rc i(r )dr is the Fourier coefficient of the order param
eterc i . In the cases ofn51 with and without the hydrody-
namic term and in the cases ofn.1 without the hydrody-
namic term growth laws are well established. Here
examine the growth lawsR;ta in the case ofn.1 with the
hydrodynamic term. Let us notice that the hydrodynam
growth is governed by the hydrodynamic equation~18!, and
therefore there is no distinction between conserved and n
conserved order parameters. A dimensional analysis is a
ful tool to obtain the growth laws. For this purpose we ne
the potential energy density of the system. In the binary s
tem (n51! this is the energy of the domain wall. The doma
wall is regarded as a kind of defect, where the order par
eter becomes singular. The defect forn51 is a line in two
dimensions, and a wall in three dimensions. The defect
n52 is a point in two dimensions and a line in three dime
sions. Generally the spatial dimensionalityD of the defect is
given by

D5d2n. ~20!

For D,0 there is no defect. Generally forn51 and 2 the
relevant energy is the defect core energy. However,
n.2 that is the bulk energy. This was shown using a g
eralized Porod law for the tail of the structure function@79,
80#:

S̃~x!;x2d2n. ~21!
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To evaluate the energy we notice that the temporal chang
the order parametercW is very slow, enough for the system t
be in a local equilibrium state. The local equlibrium assum
tion was successfully applied to the scalar order paramete
evaluate the interfacial energy@81#. The local equilibrium
assumption for the vector order parameters may also
valid. However, it is certainly different from that for th
scalar order parameter. Let the typical length scale at t
t be R. For instance,R is the average curvature of defe
core or average distance for which the direction of the or
parameter changes its angle by the amount 2p. The spatial
structure cannot relax to the equilibrium one independen
of surrounding structures. The surrounding structures pla
role of external constraints. Assuming that the local struct
is in a local equilibrium state under the surrounding co
straints, the determination of the local structure of the or
parameter is treated as the problem of solving the equa
giving the minimum of the free energy under a given co
straint:

dF

dc i
52g¹2c i2a~12ucu2!c i'0 with constraints.

~22!

If we honestly apply Eq.~22! to the dynamics, then the tim
derivative of the order parameter seems to vanish. Howe
this is not true since the constraints of this equation dep
on time. Equation~22! should be regarded as the balan
between two forces under a given constraint. Such a c
straint may be replaced by the condition of a fixed leng
scaleR. As an example we consider the simplest one dim
sional case without loss of generality. LetcW (x) be a one
dimensional vector order parameter and let the constraint
c i(0)5ai andc i(R)52ai . Under such constraints the vec
tor order parameter gradually changes as a function of c
dinatex, because such a gradual change does not cost m
energy. For instance, we havec;acos(px/R). Therefore

¹W c i;R21c i , ¹2c i;R22c i . ~23!

Such estimations generally hold for vector order parame
without singularity. The use of the evaluation~23! gives the
following energy scaling:

u¹W cW u2;R22, ~24!

~12c2!2;R24. ~25!

The second scaling is obtained with the use of Eq.~22! and
the second relation in Eq.~23!, since we have
(12c2)c;¹2c;R22. The same result is also given fo
energy density around spherically symmetric defect co
@4#. In this case the static equation is solved. Then the re
is applied to the dynamics. These procedures correspon
the local equilibrium assumption. The energy density of
vector order parameter is thus captured only by the grad
term in the late stage of the ordering process for the ve
order parameter:

F'
g

2E dr(
i 51

n

u¹W c i u25
gV

2 E k2S~k,t !dk, ~26!
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1440 56H. FURUKAWA
whereV is the total volume of the system. Notice that t
energy density for the scalar order parameter is also give
an equation similar to Eq.~26!, where, however, the contri
bution from the local energya(12c2)2/4 is equal to
gu¹W cu2/2 and hence a factor of 2 should be added to Eq.~26!
for the scalar order parameter@81#.

Two comments are needed for Eq.~26!. First, the defect
core energy can be captured also by Eq.~26!, in general. This
is because the defect core energy is given by the defect
size ~length, area, or volume! times some proportionality
constant. The defect core size is captured by means of
gularity of Eq. ~24! or Eq. ~25!, since Eqs.~24! and ~25!
become equally singular at the defect core. Second, the
served scalar order parameter has a nonvanishing
chemical potential m;O(1/R) in nonequilibrium state
~Gibbs-Thomson!, which is the deviation from Eq.~22!. This
bulk chemical potential gives deviations of the order para
eter from those in equilibrium single phase states,ceq
5 61. The deviation is given asDc [ c2ceq;1/R except
near the defect core region. This gives the following scalin
of bulk energies for the scalar order parameter:

u¹W cu2;R24, ~27!

~12c2!2;Dc2;R22. ~28!

The corresponding defect core energy density is of the o
1/R. Therefore bulk energies~27! and ~28! for the scalar
order parameter can be neglected compared with the co
sponding defect core energy, justifying that the domin
contribution to the energy comes from the defect core wh
can be captured by Eq.~26!.

Substituting Eq.~21! into the last side of Eq.~26! the
contribution from large wave numbers is given
F;gVR22(Rkc)

22n, where kc is the upper cutoff of the
integration. Therefore ifn,2 then the energy become
larger askc becomes larger. In this case the dominant c
tribution comes from large wave numbers. Since the ene
should be finite we must fix the microscopic upper cutoff
the wave number, i.e.,kc;j, where j is the microscopic
thermal correlation length. We then obtainF;gVR2njn22.
On the other hand, forn.2 the contribution from large wave
number is not important and we setkc;1/R. We then obtain
F;gV/R22. The usefulness of these evaluations of the
ergy was examined by applying it to the growth laws f
arbitrary values ofn, d, andu, Eqs.~5!–~7! @4,77#.

Since the hydrodynamic driving forceF given by Eq.~18!
is the superposition of contributions from all components
cW , the contributions from the bulk energy is expected to
small. Therefore we cannot simply apply the above meth
to the hydrodynamic case. To investigate the hydrodyna
growth laws we separate the energy into two parts, i.e.,
defect core energy (;R2n) and the bulk energy (;R22),
and we investigate the hydrodynamic growth laws us
these energies separately. The bulk energy density for
vector order parameter is captured simply by the grad
term of the free energyu¹W cu2/2 assuming there is no singu
larity:

eB;gR22;sjR22, ~29!
by
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wheres is a quantity corresponding to the surface tension
similar energy is given for the conserved scalar order par
eter by the local term~28!, but this bulk energy is not effec
tive since the defect core energy is dominant in this case.
defect core energy is proportional to the defect core size

eD;sjn21RD/Rd5sjn21R2n. ~30!

These evaluations give the same results as the above e
ations by the integration of the gradient energy term with
generalized Porod law. It is considered that the defect c
energyeD is not relevant forn.2 in the purely relaxationa
case~with no hydrodynamic term!. However, if the bulk en-
ergy eB becomes ineffective to the hydrodynamic drivin
force, theneD should be important even forn.2, if defects
exist.

Let us now examine hydrodynamic growth laws usi
these energies. Orderings independent of the velocity fi
v are not the hydrodynamic ones but the purely relaxatio
ones. Therefore we may examine only the case where
defect is comoving with the order parameter by the veloc
v. This allows us to have the following picture of the orde
ing. The potential energy is released according to the co
ening. The balance between the released defect energy
the fluid kinetic energy or the dissipated energy determi
the growth law of the length scaleR. This allows us to use
the dimensional analysis for the energy balance or the fo
balance.

The driving force is of the ordere/R, wheree is eD or
eB . The acceleration of the fluid of unit volume is of th
orderR/t2 and the friction by the dissipation is of the ord
h/(Rt). Then the velocity field equation~18! is transformed
into a dimensional equation:

rR/t21h/~Rt!'e/R. ~31!

Let us introduce the Reynolds number Re:

Re5
rR/t2

h/~Rt!
5

rR2

ht
. ~32!

For Re.1 the inertial term, the first term on the left han
side of Eq.~31!, is effective, while for Re,1 the dissipative
term, the second term, is effective. The condition Re51
givesR}t1/2.

A. Growth by defect core energy

Let us consider the case where the defect core ene
eD is the relevant driving force. Then we obtain

R;S sjn21

r D 1/~n12!

t2/~n12! for Re.1. ~33!

We have

R;S sjn21

h D 1/n

t1/n for Re,1. ~34!

Let R;ta. Then Re increases indefinitely fora.1/2. There-
fore the leading growth law in the long time limit is Eq.~33!
for n,2, whereas it is Eq.~34! for n.2. In the intermediate
time the leading growth law depends on the value of Re.
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n51 Eq.~33! gives at2/3 growth law@43# and Eq.~34! gives
t-linear growth laws@42#. A comment on the above growt
laws may be needed. The global connectivity of defects
important for the defect core energy to be effective to
hydrodynamic growth laws. If the defect core is not conn
tive, then the coarsening by the shrinking of defect co
does not continue. Let us consider only the case where
averages of compositions are the same for all compone
i.e., ^uc i u2&51/n for i 51,2, . . . ,n. Then for defects, which
are globally connective, the spatial dimensionality of the
fect should be larger than or equal to 1:

D[d2n>1. ~35!

For the bulk energyeB no such a restriction as Eq.~35!
exists. The other comment is given on Eq.~33!. For this
growth law the dissipation term is neglected, but this do
not mean that the hydrodynamic dissipation, represented
the second term on the right hand side of Eq.~18!, plays no
role, but plays a role of energy dissipation at shorter len
scales. If the kinetic energy released at the coarsening re
troys the order, then the growth law~33! will be modified.
This was discussed forn 51 @59#.

B. Growth by bulk energy

The effect of the bulk energy for the vector case (n>2)
to the hydrodynamic growth laws is very ambiguous. T
following is one of the possible estimations, but is not co
clusive. A straightforward application of the bulk energ
~29! gives another growth law:

R;Ct1/2. ~36!

The coefficientC is given by a simple dimensional analys
asC;(sj/r)1/3. However, this value ofC or Eq. ~36! may
be questioned. If Eq.~36! is observed, then this must occu
for very large length scales. This is because the hydro
namic force due to the bulk energy from each componen
the order parameter would be canceled out. We here pre
a very crude estimation of the hydrodynamic growth law
the bulk energy. The hydrodynamic force associated with
order parameterc is estimated~except near the defect cor
region! as

Fc,B;(
i

c i¹W ¹2c i;R22(
i

c i¹W c i;R22¹W ucW u2;R25,

~37!

where we have used Eq.~25! to obtain the last side. This
corresponds to replacingeB /R by eB /R3. Therefore Eq.~36!
may be replaced by

R;C8t1/3 for Re.1 ~38!

and

R;C9t1/4 for Re,1, ~39!

whereC8 and C9 are constants. In the long time limit th
leading growth law is Eq.~39!. Due to the approximation
used here estimated growth laws in this subsection are
conclusive, yet. Therefore further investigation should
is
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done. In the present paper we also report some results o
numerical simulation to investigate the effect of the bu
energy on the hydrodynamic growth. This is presented
Sec. IV.

C. Growth by thermal fluctuation „hydrodynamic case…

The reason the thermal fluctuation can be the driv
force of the ordering process is that the state we are con
ering is unstable and therefore any motion of the order
rameter contributes to the reduction of the free energy of
system. The effect of the thermal fluctuation on the hyd
dynamic growth law is examined by adding the fluctuati
force Qf to Eq. ~18!,

r
]v

]t
52r~v•¹W !v1h¹2v2f¹W mf2(

i
c i¹W m i1rQf .

~40!

The fluctuating forceQf is that of the fluid

^Qf~ t,r !•Qf~ t8,r 8!&52
2dkBTh

r2 ¹2d~ t2t8!d~r2r 8!,

~41!

in d dimensions. Then one can show that the thermal eq
librium fluctuation of the velocity field satisfies the equipa
tition law:

r^uvku2&5dkBT. ~42!

This relation represents the thermal fluctuation of the vel
ity field with the length scalek21. Applying this relation to
the velocity field with the length scaleR, and setting
^uvku2&;Rd(R/t)2, we obtain a growth law in the case whe
the viscosity is not important and hence the inertia is do
nant:

R;S kBT

r D 1/~d12!

t2/~d12! for Re.1. ~43!

We can also find a different kind of a growth law associa
with the inertia. By retaining only the fluctuating force in th
right hand side of Eq.~40! we obtain

]v

]t
5Qf . ~44!

This gives

]^uvku2&
]t

;E t

dt8^Qf ,k~ t !•Qf ,k~ t8!&;
kBThk2

r2 . ~45!

Corresponding to this relation we obtain

R;S kBTh

r2 D 1/~d14!

t3/~d14!, ~46!

where we have used the relationsvk
2;Rd(R/t)2 and

kR;1. This growth law is obtained forn51 in @59# by the
dimensional analysis and is explained as the growth law
sociated both with the dissipation and the inertia. We c
sider that Eq.~46! is valid when the inertial term and th
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1442 56H. FURUKAWA
dissipative term are of the same order, i.e., Re;1. Therefore
Eq. ~46! is not valid over long temporal range, in general

When the inertial term can be neglected we retain only
second and the last terms of Eq.~40!:

vk;k22n21Qf ,k . ~47!

Notice that the velocityvk in this case does not obey th
equipartition law~42!, since it is dissipative. Most convinc
ing ways of extracting the dissipative behavior of the ord
ing process are to combine Eq.~47! with the equation for
cW and then to use a scaling analysis. The same result ca
obtained by using a convenient relationQf ,k

2 t
;kBThk2/r2:

R;S kBT

h D 1/d

t1/d for Re,1. ~48!

Prefactors of these growth laws are only qualitativ
These growth laws are the same as originally given for
scalar order parameter, i.e., Eq.~48! by @40# and Eq.~43! by
@43#.

D. Growth by thermal fluctuation „purely relaxational case…

The growth law by the thermal fluctuation in the pure
dissipative case is given by adding the random forceQ to the
kinetic equation~13!:

]c i

]t
52L~ i¹W !2um i1¹uQi ~ i 51,2, . . . ,n!. ~49!

The random forcesQ are given to produce the thermal equ
librium fluctuation ofc:

^Qi~ t,r !Qj~ t8,r 8!&52kBTLd i , jd~ t2t8!d~r2r 8!.
~50!

Disregarding the first term on the right hand side of Eq.~49!
and applying the dimensional analysis we obtain

Rd12u;kBTLt. ~51!

The precoefficient is only qualitative, too. The above grow
law for u51 was originally given for the scalar order param
eter @2,40#.

Finally we note the relation between the above seve
hydrodynamic growth laws and the continuity equation~11!.
In the case ofn51, which corresponds to the binary mix
ture, the value of each component is 1 or21. Without
changing this local value the coarsening proceeds with
hydrodynamic motion. However, forn>2 the local value of
each componentc i of the vectorcW continuously changes. In
the hydrodynamic growth such changes are done not by
dissipational motion but by the drift motion obeying the co
tinuity equations~11!. Because the continuity equations~11!
have no dimensional restriction, the above hydrodyna
growth laws are not affected by the continuity equations.

IV. DISCUSSIONS AND REMARKS

As noted, the hydrodynamic growth laws in Sec.
evaluated using the bulk energy~29! are very ambiguous. In
e

-

be

.
e

al

e

he
-

ic

order to examine the effect of the bulk energy on the hyd
dynamic motion we have performed the numerical simu
tion for the conserved order parameter withn52 in two
dimensions and withn53 in three dimensions. In this simu
lation we disregarded the compressibility term in the hyd
dynamic equation. Namely, we used Eq.~13! with u51 and
Eq. ~18! without the third term associated withf. For two
dimensional simulation we have chosena51, L51/4,
m51 (f5r), g51/4, andh50.1. The numerical method i
the Euler method or the method of the cell dynamical syst
@33#. In this simulation we did only a single run for th
system with 5122 cells. A discrete timedt50.1 was used and
the final computation time is 203512. The length scaleR is
calculated by

R~ t !5S *kDSk~ t !dk

*Sk~ t !dk D 21/D

, D;0. ~52!

Here the result is almost independent of the value ofD.
Time-dependent length scalesR(t) with and without the hy-
drodynamic term are shown forn52 ~Fig. 1!. In this figure
t05512, andR0 is the length scale att 5 t0 in the nonhy-
drodynamic case. Two straight lines indicateR}t0.25. The
hydrodynamic length scale is about two times larger than
nonhydrodynamic one at the same time. The growth law
the nonhydrodynamic case supports Eq.~6! or Eq.~7! for the
conserved order parameter@82#. The growth law in the hy-
drodynamic case seems to support Eq.~39!. Since the defect
core is a point in this case, no defect core energy is relev
to the hydrodynamic force.

We have also performed a simulation forn53 in three
dimensions. The system size is 1283. In this case we used
g51/6. Other parameters are the same as in two dimensi
The final simulation time is 40364. The defect is a point in
this case, too. In this case we calculated the length scale
different method from Eq.~52!. Namely, we calculated it by
the relation

R~ t !}ND~ t !21/d, ~53!

FIG. 1. R(t) for n52 in two dimensions. Open circles indicat
the case of purely dissipative, and closed circles indicate the hy
dynamic case.t05512 andR0 is the value ofR at t5t0 in the
nonhydrodynamic case. Two straight lines have a slope 0.25.
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where ND is the number of defect cores. We defined t
defect core byucW u2,0.8, and actuallyND is identified with
the number of cells satisfying this inequality. Figure 2 sho
the length scale in this case. Although the final time is
times shorter than that in two dimensions and the simula

FIG. 2. R(t) in hydrodynamic case forn52 in three dimen-
sions. The straight line has the slope 1/3.t0564 andR0 is the value
of R at t5t0.
-

s

et
s
4
n

was done only for the single run, the length scale exhibits
t1/3 dependence. Although Eq.~34! gives the same exponen
1/3 for n53, this growth law cannot be applied to th
present case because the defect morphology is a point in
case. The present simulation may support Eq.~38!. But it is
not clear why different growth exponents are observed
two and in three dimensions.

We have proposed a fluid vector model and we have s
ied its ordering processes from theoretical and numer
viewpoints. The hydrodynamic growth laws in the vect
fluid are rather complicated. Further theoretical and num
cal analyses are desired to clarify the nature of the hydro
namic growth for the vector model. If the bulk energy~29! is
not effective to the hydrodynamic growth, then the hydrod
namic growth laws by the defect core energy~33! and ~34!
together with Eq.~35! become important even forn.2 in
the case of the conserved order parameter. In this case
condition D[d2n.1 must be satisfied. For the prese
simulation D51 and therefore these growth laws are n
applied. Since Eqs.~33! and ~34! become smaller asn in-
creases, the growth laws by the nonhydrodynamic gro
laws and those by the thermal fluctuation becomes import
and the classification of growth laws becomes complicat
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