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Ising model on a Cayley tree with competing and aperiodic interactions
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~Received 25 February 1997!

We include extra aperiodic interactions in the Ising model with competing ferromagnetic and antiferromag-
netic interactions between first and second neighbors along the branches of a Cayley tree. The problem is
formulated as a nonlinear map whose attractors correspond to solutions deep in the interior of the tree. We
present some analytical and numerical calculations for aperiodic interactions introduced according to the rules
of a Koch curve and a Fibonacci sequence. For small values of a parameter of aperiodicity, there are no
relevant changes in the phase diagram, except for the appearance of some bumps along the paramagnetic-
modulated transition. As the aperiodic interactions become more important, there are several new phenomena,
such as phase locking and phase splitting, and the enhancement of the regions of chaotic attractors and of
co-stability of different structures.@S1063-651X~97!14307-0#

PACS number~s!: 05.50.1q
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I. INTRODUCTION

The presence of competing interactions in magnetic
ferroelectric systems leads to complex phase diagrams w
variety of transition lines and modulated phases. T
ANNNI model, which consists of an Ising spin Hamiltonia
on a cubic lattice, with ferromagnetic interactions on t
planes, and competing ferromagnetic and antiferromagn
interactions between nearest and next-nearest neigh
along an axial direction, is known to reproduce some f
tures of these complex phase diagrams@1#. Qualitatively
similar phase diagrams can also be obtained from so
counterparts of the ANNNI model on a Cayley tree@2#.
These simple analogs of the ANNNI model can be form
lated as a nonlinear dissipative map whose attractors co
spond to physical solutions deep in the interior of the t
@3#.

It is certainly interesting to investigate how the sequen
of modulated phases and transition lines in these rich ph
diagrams can be affected by the presence of random imp
ties~as random or diluted bonds or sites, for example!. In the
easier, and less relevant, case of annealed impurities, s
mean-field calculations for the ANNNI model indicate slig
changes in the transition lines, and the persistence of
overall structure of the modulated phases@4#. In the physi-
cally more relevant case of quenched impurities, there
some arguments to claim that the long-period commensu
phases are unstable in three dimensions@5#. Very recent cal-
culations for the ANNNI model in a random field indica
almost no changes in weak fields, but a variety of new f
tures as the field increases@6#. In the present paper, instea
of looking at a really disordered situation, we mimic th
effects of quenched impurities by considering an Ising mo
with deterministic but aperiodic competing interactions.

We use the Koch curve and the standard Fibonacci
quence to add extra deterministic but aperiodic interacti
to the analog of the ANNNI model on a Cayley tree intr
duced by Yokoi, de Oliveira, and Salinas@3#. In Sec. II, we
561063-651X/97/56~2!/1429~8!/$10.00
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define the model, and formulate the problem according t
scheme of successive periodic approximations. In Sec.
we obtain the borders of stability of the paramagnetic ph
~which anticipates the most important features of the ph
diagram!. In Sec. IV, we analyze the phase diagram in ter
of the relative strength of the aperiodic interactions. A su
mary of the main results and some conclusions are prese
in Sec. V.

II. FORMULATION OF THE PROBLEM

We consider spin variables,s i561, on the sites of a
Cayley tree, with ferromagnetic (J1.0) interactions be-
tween first neighbors, and antiferromagnetic (J2,0) interac-
tions between second neighbors along the branches of
tree~in Fig. 1, we draw some generations of a Cayley tree
coordinationz53). Now, we add extra second-neighbor i

FIG. 1. Three shells of a Cayley tree with coordinationz53.
The solid and dashed lines indicate the interactions between
(J1.0) and second neighbors (J2,0), respectively. The dot-
dashed lines indicate the sum of the periodic and the extra aper
interactions between second neighbors (J21JF).
1429 © 1997 The American Physical Society
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1430 56R. F. S. ANDRADE AND S. R. SALINAS
teractions (JF.0), according to an aperiodic rule. In th
work, we use the Koch curve and the Fibonacci sequenc
choose these extra aperiodic interactions.

In the nonbranching Koch fractal, the sites at acute ang
define an aperiodic set along the chain~see Fig. 2!. To select
the pairs of second-neighbor interactions along the tree,
use the function

t~ i !5d~ i ,0!1(
s51

`

dS 4s

2
,i @mod4s# D , ~1!

which is 11 for sites corresponding to acute angles alo
the Koch curve, and vanishes otherwise@7#.

The simple Fibonacci sequence of two elements,A and
B, is given by the inflation rule

A→AB; B→A. ~2!

If we start with a single elementA, the recursive use of thes
rules gives rise to a truly aperiodic sequence ofA and B
elements. To use this sequence to select sites with e
second-neighbor interactions, we define

t~ i !5H 0 if i corresponds to an elementA

1 if i corresponds to an elementB.
~3!

Although keeping all the main features of the compl
phase diagrams, the problem can be drastically simplifie
the limit of infinite coordination of the tree (z→`, while
zJ1 and z2J2 remain finite!. Now, as in the work of Yokoi
et al. @3#, we take advantage of this limit to write the map

Xn115tanh@Xn /T1Yn#,

Yn115Xn@rt ~n!2p#/T, ~4!

wheren51,2,3, . . . refers to a generation of the tree,T is
the temperature~in units of zJ1), p52(z2J2)/(zJ1) is the
parameter of competition,r 5(z2JF)/(zJ1) gauges the effec
of the aperiodicity, and the functiont(n) is given by either
Eq. ~1!, in the Koch case, or Eq.~3!, for a Fibonacci rule.
The essential point of this work consists in the introduct
of r -mediated second-neighbor interactions whose aperio
ity is given byt(n). The caser[0 corresponds to the origi
nal uniform model@3#.

Along the lines of previous analysis of aperiodic syste
@7#, in this investigation we use a scheme of periodic a
proximations. According to this scheme, the aperiodic s
tem is replaced by a set of periodic arrays, such that

FIG. 2. Third step in the construction of the Koch curve. T
sites located at the kinks of the fractal define an aperiodic sequ
of integer numbers@they are selected by Eq.~1!, and define an
aperiodic sequence of second-neighbor interactions#.
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length of the unit cell of each array increases with the or
G of the approximation. AsG increases, the aperiodic un
cell captures more and more features associated with the
fects of aperiodicity. The behavior of the aperiodic syste
is then obtained from the limit of the periodic approxim
tions (G→`). To carry out the calculations, we replac
t(n) in Eq. ~4! by tG(n), which restricts the aperiodicity in
the model to the lengthLG of the unit cell in each periodic
approximation.

In the case of the Koch rule,G50 corresponds to a linea
chain.G51,2,3, . . . corresponds to successive stages in
construction of the fractal. The length of the unit cell in ea
stage isLG54G. The functiontG( i ) is given by

tG~ i !5d~0,i @mod4G# !1 (
s51

G21

dS 4s

2
,i @mod4s# D . ~5!

For the Fibonacci rule, the length of the successive u
cells is given by the Fibonacci numbers. Thus, the leng
LG are obtained from the iterations

LG115LG1LG21 , with L15L051. ~6!

According to Eq.~2!, a linear chain of elements of typeA
corresponds toG51. The effects of aperiodicity first appea
in the G52 approximation. The functiontG( i ) is given by

tG~ i !5H 0 if i @mod LG# corresponds to an elementA

1 if i @mod LG# corresponds to an elementB.
~7!

III. STABILITY OF THE PARAMAGNETIC PHASE

To analyze the linear stability of the trivial attracto
(X* ,Y* )5(0,0), associated with the paramagnetic pha
we write the linear form

S Xn11

Yn11
D 5S 1/T 1

~rt ~n!2p!/T 0D S Xn

Yn
D . ~8!

Due to the existence of sites that interact in different wa
with their neighbors, we have a site-dependent linear sta
ity matrix, which assumes two different forms,M0 or M1,
according to whethert(n)50 or 1. It is easy to see that

M05S 1/T 1

2p/T 0D ~9!

and

M15S 1/T 1

~r 2p!/T 0D , ~10!

with eigenvalues

l0
65

1

2T
@16A124Tp# ~11!

and

l1
65

1

2T
@16A114T~r 2p!#, ~12!

ce
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56 1431ISING MODEL ON A CAYLEY TREE WITH COMPETING . . .
respectively.
In the uniform case (r 50), the stability region of the

paramagnetic fixed point, coming from

Abs~l0
1 ,l0

2!<1, ~13!

is given by

T>12p if p,1/2; T>p if p.1/2. ~14!

For p,1/2, the eigenvalues are real, and there is a transi
between a paramagnetic and a ferromagnetic phase.
p.1/2, the eigenvalues are complex, and the transition
between a paramagnetic phase and a modulated stru
with a continuously varying wave number.

In the aperiodic problem, the discussion of the stabi
depends on the eigenvaluesl`

6 of a matrix M` that comes
from the product of an infinite number of factorsM0 and
M1 in a well-defined~aperiodic! way. As the matricesM0
andM1 do not commute, the calculation of these eigenval
is nontrivial, so we are forced to resort to numerical me
ods. Within the scheme of periodic approximations, we c
sider sequences of matrices,MG , at all ordersG, consisting
of aperiodic finite strings of factorsM0 andM1. The eigen-
valueslG

6 of MG completely determine the stability regio
of the paramagnetic phase to orderG of the approximation.

There is a particular case that is amenable to some
lytical calculations. Forr 5p, M1 has one vanishing eigen
value. In the basis whereM0 is diagonal ~indicated by
M̄0), M1 assumes the form

M̄15S l0
11p/S l0

22p/S

l0
11p/S l0

22p/S
D 5S a b

a b D , ~15!

where

S5A124Tp. ~16!

From this particular form, we calculate the finite eigenval
and analyze the stability properties associated with all ma
cesM̄G . This case, which we plan to examine in full deta
in a forthcoming paper, corresponds to the removal of a
of bonds from the original uniform model.

At each order of the periodic approximation, we have
evaluate the eigenvalues of the corresponding 232 matrix
MG . As the orderG increases, the matrix elements becom
high-degree polynomials inp and T, and we are forced to
resort to numerical calculations. However, the exact anal
of the lowest-order approximations already gives an ove
picture of how the system behaves at higher orders. Le
consider the first two orders in the Fibonacci case.
G52 and 3, we haveM25M0M1, andM35M0M1M0, re-
spectively. The eigenvaluesl2

6 of M2 are given by

l2
65

1

2T2 @11rT22pT6A~11rT !224pT#. ~17!

These eigenvalues are real if (11rT)2/4T<p. As in the
original uniform model, real and complex eigenvalues in
n
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cate the nature of the phase just below the paramagn
border. Thus, provided thatr<2, the region of paramagneti
stability, given by

T>
r 1Ar 214

2
2p if p,

r

2
1

r 212

2Ar 214
, ~18!

and

T>pA12r /p if p.
r

2
1

r 212

2Ar 214
, ~19!

undergoes minor changes with respect to the uniform c
However, if r .2, there are significant changes in the pha
diagram. The curve given by Eq.~19! is not entirely con-
tained in the region of complex eigenvalues. Thus, asp in-
creases above some thresholdpR , the line of transitions
comes back to the region of real eigenvalues, and the p
magnetic phase is stable for

T>p2
r 1Ar 224

2
if p.pR5

r

2
1

r 222

2Ar 224
. ~20!

The appearance of real eigenvalues in the region that
formerly characterized by complex ones is the most imp
tant change introduced by the extra aperiodic interactions
the first order of the approximation this new feature is
stricted to large values ofr , but at higher orders it is ob
served for allr .0. Indeed, the eigenvaluesl3

6 of M3 are
given by

l3
65

1

2T3 @11rT23pT

6A~11rT2pT!~11rT25pT14p2T2!#. ~21!

The existence of real or complex eigenvalues depends on
cubic polynomial inT in the square root. The regions of re
eigenvalues in thep3T plane are given by

p<
52A9216rT

8T
~22!

and

51A9216rT

8T
<p<

11rT

T
. ~23!

The stability condition,ul3
6u<1, in the regions of complex

eigenvalues is expressed as

T>p@12r /p#1/3. ~24!

In the region of real eigenvalues the stability condition d
pends on the roots of a cubic equation. Instead of presen
an analytical discussion of all cases, in Fig. 3 we draw
regions of real and complex eigenvalues as expressed
Eqs. ~22! and ~23!, as well as the transition lines given b
Eq. ~24! for the particular valuer 50.1. When the eigenval
ues are real, the transition line was obtained by numeric
evaluating the roots of a cubic equation. The new feature
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1432 56R. F. S. ANDRADE AND S. R. SALINAS
this diagram is the presence of a small bump in the transi
from the paramagnetic to a modulated phase@that is, in the
region, given by Eq.~23!, where the eigenvalues become re
and Eq.~24! does not hold anymore#. The finite stripe with
real eigenvalues is analogous to the infinite region with r
eigenvalues in the former case (p.pR for r .2). From Eqs.
~22! and ~23!, it can be seen that the stripe with real eige
values increases withr . For r'0.8, the bump is so large tha
it touches the descending branch of the paramagnetic
where the eigenvalues are real.

This kind of behavior is typical at all high-order approx
mations, although the details become increasingly difficul
work out exactly~due to the degree of the associated po
nomials!. For G52 andG53, we note that the changes
the real character of the eigenvalues depend on the se
and third-degree polynomials under the square root in E
~17! and ~21!. On the other hand, these expressions dep
upon the traces and determinants ofM2 and M3, which are
given by twofold and threefold products of matricesM0 and
M1. Due to the particular dependence of the elements
M0 and M1 upon p and T, it is possible to show that the
degree of the polynomial is given by the number of fact
M0 or M1 in MG ~hence, by the number of sitesLG in the
unit cell!. If LG is odd, this polynomial may give rise t
(LG21)/2 stripes~as in the case ofM3). If LG is even, there
can exist (LG22)/2 stripes, besides an infinite region of re
eigenvalues for large enoughp ~as for M2). For increasing
values ofr , there is a broadening of the stripes and the c
responding bumps. After a certain point, the bumps beco
so large that they start to push each other, and the aper
rule selects which of the bumps will either survive or
destroyed for large values ofr . In the following section, we
report a numerical integration of the map to analyze
mechanisms of phase selection.

FIG. 3. Detail of the paramagnetic stability region of the pha
diagram for the Fibonacci rule at theG53 approximation. The
regions of real eigenvalues, given by Eqs.~22! and~23!, contain the
border of the ferromagnetic phase and the bump associated wit
1/6 phase.
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IV. ANALYSIS OF THE PHASE DIAGRAMS

We have performed numerical integrations of the map~4!
to determine the dependence of the phase diagrams on
parameterr and to investigate the convergence of the resu
obtained from the periodic approximations. We always c
culate the largest Lyapunov exponenth of the attractor, and
identify the wave numberk ~in units of 2p) associated with
the dominant mode. Thep3T plane has been scanned f
pP@0.5,3.0# and TP@0.001,3.0#, with a grid whose typical
intervals aredp;0.001 anddT;0.01. A particular point
(p,T) is associated with a modulated phase if at least
neighboring point has a dominant mode with the same w
number~and a negative Lyapunov exponent!. In the illustra-
tions we draw only the most important phases.

In Fig. 4~a! we show ap3T phase diagram for the firs
Koch approximation,G51, LG54, and r 50.1, which is
similar to the case discussed in the previous section.
paramagnetic line displays only one single bump. All ma
phases of the uniform case (r 50) are still present~and can
be obtained according to a Farey summation rule@6#!. The
main difference with respect to the uniform case refers to
k51/8 phase, which has become much broader, its up
part occupying the region of the bump. This phase-lock
effect induced by the period of the larger unit cell is typic
at all higher-order approximations. All bumps due to t
presence of real eigenvalues, in a region otherwise cha
terized by complex eigenvalues, will be filled up by a sing
phase, at least for small values ofr .

As the modulated phases keep their character up to
paramagnetic line, the selection rules for the wave numb
of the phases that fill up the different bumps should be
termined from a more thorough investigation of the prop
ties of the eigenvalues along the transition. Except for sm
values ofG, it is not possible to carry out this analysis e
actly. Then, let us use theG53 Fibonacci approximation to
illustrate the essential steps and arguments that can be
tended to higher-order approximations.

First, we note that, in the uniform model, the imagina
part of the eigenvaluel0

1 varies continuously from 0 to 1 a
p5T varies from 1/2 to`. In this case, the effect ofM0

consists in rotating the vector (Yn

Xn), whose components ar

the local effective magnetizations per spin of two success
generations of the Cayley tree, by an ang
u5sin21@Im(l0

1)#P@0,p/2). The wavelength of the modu
lated phase is given byL0V, whereL0 is the distance be-
tween adjacent spins and (V21) is the number of non-
equivalent sites between two successive equivalent s
Thus,V is also the number of factorsM0 that are required to
bring (Yn

Xn) back to its original orientation, that is,

Vu52p. ~25!

In units of 2p, the dimensionless wave number is given b

k5
1

V
5

u

2p
. ~26!

The eigenvaluel3
1 , with r 50, describes the same situatio

as above. However, asuP@0,3p/2), we have

e

the
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k5
u

332p
. ~27!

For rÞ0, the situation is very much the same, except th
phase locking occurs foru5p, that is, for real eigenvalues.
The corresponding phase is associated with the wave num
k51/6, as can be checked numerically. A phase diagram
in Fig. 4~a! can be obtained by replacing the factor 3 in th

FIG. 4. Phase diagrams according to the Koch rule, fo
r 50.1, at different orders of the periodic approximation:~a!
G51; the only bump is occupied by the 1/8 phase that lifts th
1/6 phase from theT50 axis. The main modulated phases close t
the 1/8 phase, as 1/10 or 1/7, become very thin~the superscriptG is
omitted in the notation of the wave numbers!; ~b! G53; the 16
bumps are more densely distributed in the region of small wa
numbers. At the precision of the calculations, a unit cell with 6
aperiodic bonds already gives the main features of theG→` limit.
We indicate a narrow region of chaotic attractors.
t

er
as

interval of definition of the angleu, and in the denominato
of Eq. ~27!, by a factor 4, which is the length, in terms o
L0, of the unit cell at orderG51.

The analysis for larger values ofG is essentially the same
The angleu belongs to the interval@0,LGp/2), and the
(LG21)/2 bumps that appear in the stripes of real eigenv
ues are filled up by phases with wave numbers given by

km
G5

m

2LG
, with m51,2, . . . ,~LG21!/2. ~28!

The effect of higher-order approximations is illustrated
Fig. 4~b! for the Koch rule with the same valuer 50.1, at
order G53, corresponding toLG564. A comparison with
the diagram forG54, LG5256 ~not shown here! indicates
that, within the accuracy of the grid, we have already reac
theG→` limit of a full Koch sequence. We note that, from
the main commensurate phases of the original unifo
model, only thek51/6 phase survives. The other phas
especially in the region of small wave numbers bounded
the k51/6 phase, have become much less relevant with
spect to those with wave numberskm

G , given by Eq.~28!,
which occupy the bumps with real eigenvalues.
LG54G, all phases from one given order of the approxim
tion, associated with the wave numberskm

G , will also be
present at all higher-order approximations.

This situation is similar for the Fibonacci rule. In Fig.
we show the diagram for the Fibonacci rule at orderG59,
corresponding toLG555. Within the numerical accuracy o
the calculations, these diagrams have already converge
the typical forms associated with theG→` limit. There are
two major differences with respect to the Koch rule. Fir
the successive values ofLG have no common factors, so tha
the phaseskm

G change from one generation to the next. Ne
ertheless, we note that the changes in the wave numbe

r

e

e

FIG. 5. Phase diagram according to the Fibonacci rule,
r 50.1, andG59, corresponding toLG555. Notice the changes in
the ground state (T50).
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FIG. 6. Phase diagrams according to the Koch~at orderG53) and Fibonacci~at orderG59) rules, for increasing values ofr : ~a! Koch
rule for r 50.5; besidesk51/4, the dominant modulated phases arek11, k16, k20, andk24. The 1/6 phase is greatly reduced;~b! Fibonacci
rule for r 50.5; thek21 phase dominates the diagram. Other relevant phases arek13 andk17. The chaotic region~indicated by small dots! has
been considerably enlarged;~c! Koch rule for r 51.0; the dominant phases are stillk11, k16, k20, andk24. There is a splitting of some
regions~for example,k21 appears in two distinct regions!, and a new region of chaotic phases~for p;1.221.4); ~d! Fibonacci rule for
r 51.0; thek21 phase and the chaotic region dominate the diagram. There is a splitting of the other relevant phases (k13 andk17); ~e! Koch
rule for r 51.5; the dominant phases arek11, k21, andk24. Splitting and co-stability of phases are present in many regions of the p
diagram. The chaotic region extends up top;1.6.
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come smaller for increasingG, and it is possible to follow
this convergence towards well-defined limits. The second
pect refers to the existence of an interval of leng
Dp50.1, along thep axis, in the ground state (T50), be-
tween the ferromagnetic and the 1/4 phases. The phas
this interval belongs to the set given by Eq.~28!, as it ex-
tends upwards, at higher temperatures, until occupyin
bump in the transition line. From the periodic approxim
tions, we see that the associated wave number converg
s-

on

a
-

to

f2/2, where f5(A521)/2 is the inverse of the golde
mean.

Now we analyze the dependence of the diagrams on
strength of the aperiodic couplings. In Figs. 6~a!–6~e!, we
show diagrams for different values ofr , with G53 and
G59, for Koch and Fibonacci rules. As should be anti
pated, for increasing values ofr the system develops som
new features, which are quite distinct from those of the ori
nal uniform model. For instance, the bumps become lar
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and the filling phases will start to compete among the
selves. Forr 50.5, as in Figs. 6~a! and 6~b!, the phaseskm

G ,
with small values ofm such thatkm,1/6, occupy almost the
entire region under the paramagnetic line. Some phases
to split into disconnected regions~for example,k10

3 in the
Koch case, andk8

9 for the Fibonacci rule!. Also, there appea
regions of co-stability of attractors. Some modulated str
tures penetrate into the region of stability of the trivial pa
magnetic fixed point, and even occupy the bumps associ
with other phases. This is the case of the phase diagram
the Koch rule, with all trajectories starting from (0.5,0.5
The diagrams for the Fibonacci rule were constructed w
trajectories from (0.1,0.1), so that the modulated phases
not penetrate into the region of~linear! stability of the para-
magnetic fixed point. In both diagrams, the surviving 1
phase is now very slim. We also note that the regions
some km

G phases become dominant over the neighbor
phases~which is still more evident for larger values ofr ). It
is important to follow the successive periodic approxim
tions in order to extract the rule of formation of the releva
phases and to identify the remaining structures in
G→` limit. In Table I, we list some of the relevant phas
in Figs. 6~a!–6~e! with their respective limit values. Figur
6~b! shows that thef2/2 phase occupies a segment of exte
sion Dp50.5 along theT50 axis. Numerical tests confirm
that this is the dominant structure of the phase diagram, w
a segment of lengthDp5r at T50. Finally, we observe a
substantial increase in the region of chaotic attractors, wh
is even more pronounced in the Fibonacci case.

For r 51.0 @Figs. 6~c! and 6~d!#, the aperiodic couplings
cause further modifications in both Koch and Fibona
rules. In general, however, the changes in the diagram of
Fibonacci case have been more dramatic. In both cases,
eral phases disappear, due to the enlargement of the reg
of the dominant phases~see Table I!. Other phases still sur
vive, but they have lost their contacts with the paramagn
transition line~that is, the corresponding bumps have disa
peared!. The number of important phases with large disco
nected regions~for example,k19

3 or k21
3 , in the Koch case,

andk17
9 or k18

9 , for the Fibonacci rule! is also a novel feature
of the diagrams. In the Koch case, there is no intermed
phase along theT50 axis between the ferromagnetic and t
1/4 phase. In the Fibonacci case, the very large extensio
the f2/2 phase produces a clear distinction between two
gions. Fork,f2/2, the aperiodic interaction dominates, wi
phasesk13

9 , andk17
9 or k18

9 , as well as a large chaotic regio

TABLE I. Limit values of some relevant structures of the pha
diagrams according to the Koch and Fibonacci rules.

Koch G51 G52 G53 G54 G→`

1/8 3/32 11/128 43/512 1/12
1/8 5/32 21/128 85/512 1/6

Fibonacci G56 G57 G58 G59 G→`

5/26 16/84 26/136 21/110 f2/2
4/26 13/84 21/136 17/110 f/4
3/26 10/84 16/136 13/110 f3/2
-

tart

-
-
ed
for

h
do

f
g

-
t
e

-

th

h

i
he
ev-
ns

ic
-
-

te

of
-

For k.f2/2, the phases are certainly distorted, althou
keeping some similarities with the uniform model. Also, t
chaotic attractors tend to occupy larger regions of the ph
diagram. In the Koch case, they appear fork;0.2, whereas
they were previously confined to the regionk;0 –0.1. In the
Fibonacci case, they occupy a very large extension,
k,f2/2, between the dominant phases~at low temperatures!
and the paramagnetic transition line.

In the Fibonacci case ther 51 diagram already contain
all main features that will also be present for larger values
r . In the Koch case, as shown in Fig. 6~e!, we have to go to
r as large as 1.5 to see the dominant role of the aperio
interactions. The characteristic feature is the domination
thek11

3 andk21
3 phases, which are proportional to the fractio

of the number of sites withr -mediated interactions. From th
diagrams, we see that the bumps corresponding to th
phases tend to join each other, while the bumps associ
with previously significant phases~for example, with the
1/8 phase! have been destroyed. The extension of the regi
of chaotic attractors has been substantially enlarged in c
parison with the former situations.

V. CONCLUSIONS

We have investigated the effects of the inclusion of a
riodic interactions in the phase diagram of an analog of
ANNNI model on a Cayley tree. The problem is formulate
as a two-dimensional nonlinear dissipative map whose
tractors correspond to solutions deep in the interior of a la
tree. We use a scheme of periodic approximations to find
behavior of the system under aperiodic rules generated
Koch curve and a simple Fibonacci sequence. Some ana
cal and numerical calculations have been performed to
tain the region of stability of the paramagnetic phase and
main structures of theT3p sections of the phase diagram
for different values of the parameterr of aperiodicity.

The appearance of some bumps in the modulated re
of the paramagnetic transition line is one of the features
the phase diagrams that we believe to be new. We show
these bumps correspond to regions of real eigenvalues o
linear stability matrix of the paramagnetic phase. For sm
values ofr , they are filled up by single phases, giving rise
a phase-locking phenomenon. We have obtained the rule
the number of bumps and the phase selection, in terms o
length of the unit cells of the periodic approximations.

For small values ofr , the effects of aperiodicity are re
stricted to the regions of small wave numbers, correspond
to small values of the parameterp of competition. For large
p, the aperiodic interactions become less important and
diagram keeps the original structure. As the parameterr of
aperiodicity increases, there is a corresponding enlargem
of the regions with relevant changes in the phase diagr
Also, there appear drastic modifications in the regions
small p ~or k), in which several phases are either wiped o
of the diagram or split into disconnected regions. The em
gence of large regions with chaotic orbits is a typical feat
of aperiodicity for large values ofr .

The analysis of models with two different aperiodic s
quences, according to the Koch and Fibonacci rules, in
cates some common features, such as the existenc
bumps, the phenomenon of phase locking, and, for largr ,
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the existence of a single structure that survives in the cen
part of the phase diagram, with a large chaotic region
some remnants of the old sequence of modulated pha
However, there are some differences. The most significan
them refers to the behavior along theT50 axis. In the Koch
case, the multiphase point of the original uniform model s
survives atp51, as the meeting point of the ferromagne
(k50) and thek51/4 phases. In the Fibonacci case, the
appears a new phase along theT50 axis, from p51 to
p511r , separating the ferromagnetic and thek51/4
.

-

al
d
es.
of

l

e

phases. This new structure, with wave numberf2/2 in the
limit of large aperiodic cells, extends up to the paramagne
line and dominates the phase diagram for large values or .
This difference may be traced back to a special feature of
Koch case, as the length of the unit cell in any period
approximation is a power of 4. A rough look at the sam
model according to a generalized Fibonacci rule~generated
by the substitutionsA→ABn, and B→A, with n>2) indi-
cates the presence of another phase between the ferro
netic and the 1/4 phases in the ground state.
ev.
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