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Ising model on a Cayley tree with competing and aperiodic interactions
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We include extra aperiodic interactions in the Ising model with competing ferromagnetic and antiferromag-
netic interactions between first and second neighbors along the branches of a Cayley tree. The problem is
formulated as a nonlinear map whose attractors correspond to solutions deep in the interior of the tree. We
present some analytical and numerical calculations for aperiodic interactions introduced according to the rules
of a Koch curve and a Fibonacci sequence. For small values of a parameter of aperiodicity, there are no
relevant changes in the phase diagram, except for the appearance of some bumps along the paramagnetic-
modulated transition. As the aperiodic interactions become more important, there are several new phenomena,
such as phase locking and phase splitting, and the enhancement of the regions of chaotic attractors and of
co-stability of different structure$S1063-651X97)14307-Q

PACS numbsdis): 05.50+q

I. INTRODUCTION define the model, and formulate the problem according to a
scheme of successive periodic approximations. In Sec. I,
The presence of competing interactions in magnetic anave obtain the borders of stability of the paramagnetic phase
ferroelectric systems leads to complex phase diagrams with @vhich anticipates the most important features of the phase
variety of transition lines and modulated phases. Theliagram. In Sec. IV, we analyze the phase diagram in terms
ANNNI model, which consists of an Ising spin Hamiltonian Of the relative s_trength of the aperiodic inte_ractions. A sum-
on a cubic lattice, with ferromagnetic interactions on theMary of the main results and some conclusions are presented
planes, and competing ferromagnetic and antiferromagneti Sec. V.
interactions between nearest and next-nearest neighbors
along an axial direction, is known to reproduce some fea- [l. FORMULATION OF THE PROBLEM
tures of these complex phase diagrafi$ Qualitatively
similar phase diagrams can also be obtained from som&
counterparts of the ANNNI model on a Cayley trg2|.

We consider spin variablesr;=*1, on the sites of a
ayley tree, with ferromagneticJ{>0) interactions be-
_tween first neighbors, and antiferromagnetlg<0) interac-
éi_ons between second neighbors along the branches of the

spond to physical solutions deep in the interior of the treéree(ir_] Fig. 1, we draw some generations of a Cayley treg of
[3]. coordinationz=3). Now, we add extra second-neighbor in-

It is certainly interesting to investigate how the sequences
of modulated phases and transition lines in these rich phase
diagrams can be affected by the presence of random impuri-
ties (as random or diluted bonds or sites, for examgie the
easier, and less relevant, case of annealed impurities, some
mean-field calculations for the ANNNI model indicate slight
changes in the transition lines, and the persistence of the
overall structure of the modulated pha$és In the physi-
cally more relevant case of quenched impurities, there are
some arguments to claim that the long-period commensurate
phases are unstable in three dimensidjsVery recent cal-
culations for the ANNNI model in a random field indicate
almost no changes in weak fields, but a variety of new fea-
tures as the field increasgB]. In the present paper, instead
of looking at a really disordered situation, we mimic the
effects of quenched impurities by considering an Ising model
with deterministic but aperiodic competing interactions. FIG. 1. Three shells of a Cayley tree with coordinatioa 3.

We use the Koch curve and the standard Fibonacci serhe solid and dashed lines indicate the interactions between first
guence to add extra deterministic but aperiodic interactiongj,>0) and second neighborslf<0), respectively. The dot-
to the analog of the ANNNI model on a Cayley tree intro- dashed lines indicate the sum of the periodic and the extra aperiodic
duced by Yokoi, de Oliveira, and Salinf3]. In Sec. Il, we interactions between second neighbals+ Jg).
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length of the unit cell of each array increases with the order

G of the approximation. A$ increases, the aperiodic unit

cell captures more and more features associated with the ef-

fects of aperiodicity. The behavior of the aperiodic systems

is then obtained from the limit of the periodic approxima-

tions (G—=). To carry out the calculations, we replace

t(n) in Eq. (4) by tg(n), which restricts the aperiodicity in

the model to the length ¢ of the unit cell in each periodic
FIG. 2. Third step in the construction of the Koch curve. The approximation.

sites located at the kinks of the fractal define an aperiodic sequence In the case of the Koch rul& =0 corresponds to a linear

of integer numbergthey are selected by Edl), and define an chain.G=1,2,3, ... corresponds to successive stages in the

aperiodic sequence of second-neighbor interactions construction of the fractal. The length of the unit cell in each

stage isLg=4C%. The functiontg(i) is given by
teractions Jg>0), according to an aperiodic rule. In this

work, we use the Koch curve and the Fibonacci sequence to Gl ys
choose these extra aperiodic interactions. to(i)=8(0i[mod4®]) + >, 5(§,i[m0d4s])- )
In the nonbranching Koch fractal, the sites at acute angles st
define an aperiodic set along the chesee Fig. 2 To select For the Fibonacci rule, the length of the successive unit
the pairs of second-neighbor interactions along the tree, Wgells is given by the Fibonacci numbers. Thus, the lengths
use the function L are obtained from the iterations
w . _
t=oi.0+3 5(45,i[mod451), (1) Lor1=lotle-1, with Li=Lo=1. ©
&

According to Eq.(2), a linear chain of elements of typk
which is +1 for sites corresponding to acute angles a|0n§f:orresponds t&=1. The effects of aperiodicity first appear

the Koch curve, and vanishes otherwjga In the G=2 approximation. The functioty(i) is given by
'.I'he. simple Flbc_macq sequence of two elemeAtsand 0 if ifmod Lg] corresponds to an elemerit
B, is given by the inflation rule te(i)= o
1 if ifmod Lg] corresponds to an elemef.
A—AB; B—A. 2 (7)
If we start with a single elememd, the recursive use of these Il STABILITY OF THE PARAMAGNETIC PHASE

rules gives rise to a truly aperiodic sequencefofind B
elements. To use this sequence to select sites with extra To analyze the linear stability of the trivial attractor,
second-neighbor interactions, we define (X*,Y*)=(0,0), associated with the paramagnetic phase,
we write the linear form
Xn
)- tS)

Yn

0 if i corresponds to an elemerit
1 if i corresponds to an elemef. @ (X”“)_(

t(i)=

1T 1)
Yn-%—l

(rt(n)—p)/T O

Although keeping all the main features of the complex
phase diagrams, the problem can be drastically simplified iPue to the existence of sites that interact in different ways
the limit of infinite coordination of the treez(~, while  with their neighbors, we have a site-dependent linear stabil-
zJ; and z2J, remain finitg. Now, as in the work of Yokoi ity matrix, which assumes two different formsl, or My,
et al. [3], we take advantage of this limit to write the map according to whethet(n)=0 or 1. It is easy to see that

Xp1=tanf X, /T+Y,], Syl 9
O\ —p/T © ©
Yne1=Xplrt(n)—pJ/T, (4)
and
wheren=1,2,3, ... refers to a generation of the tréeis
the temperaturgin units of zJ,), p=—(22J,)/(zJ,) is the T 1
parameter of competitiom,=(z2Jg)/(zJ;) gauges the effect 1= (r—p)/T 0} (10
of the aperiodicity, and the functior{n) is given by either
Eqg. (1), in the Koch case, or E(q3), for a Fibonacci rule. with eigenvalues
The essential point of this work consists in the introduction 1
of r-mediated second-neighbor interactions whose aperiodic- . T
ity is given byt(n). The caseg =0 corresponds to the origi- Mo _ﬁ[li 1-4Tp] 1D

nal uniform model3].
Along the lines of previous analysis of aperiodic systemsand
[7], in this investigation we use a scheme of periodic ap-

proximations. According to this scheme, the aperiodic sys- t:i + [1+4T(r—p)
tem is replaced by a set of periodic arrays, such that the M 2T[1_ 1+4T(r=p)l, (12



56 ISING MODEL ON A CAYLEY TREE WITH COMPETING ... 1431

respectively. cate the nature of the phase just below the paramagnetic
In the uniform case r(=0), the stability region of the border. Thus, provided that 2, the region of paramagnetic
paramagnetic fixed point, coming from stability, given by
Abs(\g \g)<1, (13 r+r2+4 , rooré+2
Tz—F—-p if p<s+—7—=, (18
o 2 2 2Jr’+4
is given by
and

T=1-p if p<1/2; T=p if p>1/2. (19

_ r r2+2
For p<1/2, the eigenvalues are real, and there is a transition T=pyl=-r/p if p>5+ Ny (19
between a paramagnetic and a ferromagnetic phase. For

p>1/2, the eigenvalues are complex, and the transition igndergoes minor changes with respect to the uniform case.
between a paramagnetic phase and a modulated Structuig,vever, ifr>2, there are significant changes in the phase

with a continuously varying wave number. .. diagram. The curve given by E@19) is not entirely con-
In the aperiodic problem, the discussion of the stabilitysined in the region of complex eigenvalues. Thuspds-

depends on the eigenvaluks of a matrixM.. that comes  raases above some threshgdg, the line of transitions

from the product of an infinite number of factol, and  comes back to the region of real eigenvalues, and the para-
M, in a well-defined(aperiodig way. As the matriceM,  magnetic phase is stable for

andM; do not commute, the calculation of these eigenvalues

is nontrivial, so we are forced to resort to numerical meth- r+Jr’—4 r r2-2
ods. Within the scheme of periodic approximations, we con- T=p-— 5 if p> pR=§ + . (20
sider sequences of matricéd, at all ordersG, consisting vre—4

of aperiodic finite strings of factoll, and M. The eigen- The appearance of real eigenvalues in the region that was

valuesig of Mg cpmpletely determine the stability rggion formerly characterized by complex ones is the most impor-

of thﬁ paramagnetic Iphase to ﬁrdk_rof the ar:)pl)roxmatlon. tant change introduced by the extra aperiodic interactions. In
There is a particular case that is amenable o Some angsg first order of the approximation this new feature is re-

lytical calculations. For =p, M, has one vanishing €igen-  gyjcteq to large values af, but at higher orders it is ob-

value. In the basis wher#, is diagonal (indicated by  sorveq for allr>0. Indeed, the eigenvalues; of M, are
Mg), M, assumes the form given by

_ [N+PIS Ng—pIS\ [a B
Ml: =

1
= , 15 A3 ==—3[1+rT-3pT
No+pIS Ng—plS) \a B) @39 *oar

+ — — 272
Where V(1+rT—pT)(1+rT—-5pT+4p*T?)]. (21
The existence of real or complex eigenvalues depends on the
S={1-4Tp. (16)  cubic polynomial inT in the square root. The regions of real
eigenvalues in th@ X T plane are given by
From this particular form, we calculate the finite eigenvalue,
and analyze the stability properties associated with all matri- _o°—v9-1eT

cesM¢. This case, which we plan to examine in full detail P 8T
in a forthcoming paper, corresponds to the removal of a set
of bonds from the original uniform model. an

At each order of the periodic approximation, we have to
evaluate the eigenvalues of the corresponding22matrix S+yo- 16T
Mg . As the orderG increases, the matrix elements become 8T
high-degree polynomials ip and T, and we are forced to N N . . .
resort to numerical calculations. However, the exact analysidne stability condition|\3|<1, in the regions of complex
of the lowest-order approximations already gives an overalfigenvalues is expressed as
picture of how the system behaves at higher orders. Let us 13
consider the first two orders in the Fibonacci case. For T=p[1-r/p]™ (24)
G=2 and 3, we havM,=MM,, andMz=MsM My, re-
spectively. The eigenvalues, of M, are given by

(22

1+rT
T

<ps<

(23

In the region of real eigenvalues the stability condition de-
pends on the roots of a cubic equation. Instead of presenting
1 an analytical discussion of all cases, in Fig. 3 we draw the
x_ = _ + J(1+rT)2—4pT]. regions of real and complex elgenvaly_es as exp'ressed by
A2 2T2[1+rT 2pT=N(1+rT)"—4pT]. (17 Egs. (22) and (23), as well as the transition lines given by
Eq. (24) for the particular value =0.1. When the eigenval-
These eigenvalues are real if {¥T)%/4T<p. As in the ues are real, the transition line was obtained by numerically
original uniform model, real and complex eigenvalues indi-evaluating the roots of a cubic equation. The new feature of



1432 R. F. S. ANDRADE AND S. R. SALINAS 56

2.0 . . . . IV. ANALYSIS OF THE PHASE DIAGRAMS

We have performed numerical integrations of the r¥ap
to determine the dependence of the phase diagrams on the
parameter and to investigate the convergence of the results

1.5 obtained from the periodic approximations. We always cal-
culate the largest Lyapunov exponenbf the attractor, and
. identify the wave numbek (in units of 27r) associated with
T=p[1-1/p] the dominant mode. ThpX T plane has been scanned for
10k J pe[0.5,3. and T €[0.001,3.9, with a grid whose typical

intervals aresp~0.001 andsT~0.01. A particular point
(p,T) is associated with a modulated phase if at least one
neighboring point has a dominant mode with the same wave
number(and a negative Lyapunov expongnh the illustra-
tions we draw only the most important phases.

In Fig. 4a we show apX T phase diagram for the first
Koch approximationG=1, Lg=4, andr=0.1, which is
similar to the case discussed in the previous section. The

051 p=[5+[9-16rT]""2)/8T]

[ p=[5-[9-16T]"?)/8T

0% 0 ’ 0'5 ’ 1'0 : 1'5 ' 20 paramagnetic line displays only one single bump. All major
' | | ' ' phases of the uniform case=0) are still presenfand can
p be obtained according to a Farey summation {ép. The

main difference with respect to the uniform case refers to the
FIG. 3. Detail of the paramagnetic stability region of the phasek=1/8 phase, which has become much broader, its upper
diagram for the Fibonacci rule at th®@=3 approximation. The part occupying the region of the bump. This phase-locking
regions of real eigenvalues, given by EG&2) and(23), contain the  effect induced by the period of the larger unit cell is typical
border of the ferromagnetic phase and the bump associated with thg 5 higher-order approximations. All bumps due to the
1/6 phase. presence of real eigenvalues, in a region otherwise charac-
terized by complex eigenvalues, will be filled up by a single
'Bhase, at least for small values rof
As the modulated phases keep their character up to the
paramagnetic line, the selection rules for the wave numbers
f the phases that fill up the different bumps should be de-
ermined from a more thorough investigation of the proper-
ties of the eigenvalues along the transition. Except for small
values ofG, it is not possible to carry out this analysis ex-
actly. Then, let us use th® =3 Fibonacci approximation to
fustrate the essential steps and arguments that can be ex-

This ind of benavior s ypcel at all igh-orcer appro. 1060 0 Nahercrder spproxmatons, L
mations, although the details become increasingly difficult to . + . .
work out exactly(due to the degree of the associated poly—part of th? eigenvalug, varies cc_)ntmuously from0 to 1 as
nomialg. For G=2 andG= 3, we note that the changes in p=T. vanles fron‘1 1/2 to. In this case, the effect dil,
the real character of the eigenvalues depend on the secof@NSists in rotating the VeCtOé,ﬁ(), whose components are
and third-degree polynomials under the square root in Eqshe local effective magnetizations per spin of two successive
(17) and(21). On the other hand, these expressions dependenerations of the Cayley tree, by an angle
upon the traces and determinants\dj and M3, which are  g=sin"Y{Im(\,)] [0,7/2). The wavelength of the modu-
given by twofold and threefold products of matriddg and  lated phase is given bi,V, wherel, is the distance be-
M;. Due to the particular dependence of the elements ofween adjacent spins and/{ 1) is the number of non-
Mgy and M, uponp andT, it is possible to show that the equivalent sites between two successive equivalent sites.
degree of the polynomial is given by the number of factorsThus,V is also the number of factoMd , that are required to
Mg or My in Mg (hence, by the number of sités; in the  pring (Im) back to its original orientation, that is,
unit cell). If Lg is odd, this polynomial may give rise to n
(Lg—1)/2 stripegas in the case d¥13). If L is even, there
can exist [ g—2)/2 stripes, besides an infinite region of real
eigenvalues for large enough(as forM,). For increasing
values ofr, there is a broadening of the stripes and the cor
responding bumps. After a certain point, the bumps become 1
so large that they start to push each other, and the aperiodic k= —
rule selects which of the bumps will either survive or be \%
destroyed for large values of In the following section, we
report a numerical integration of the map to analyze theThe eigenvalué 3 , with r =0, describes the same situation
mechanisms of phase selection. as above. However, as<[0,37/2), we have

this diagram is the presence of a small bump in the transitio
from the paramagnetic to a modulated phgbat is, in the
region, given by Eq(23), where the eigenvalues become real
and Eq.(24) does not hold anymoteThe finite stripe with
real eigenvalues is analogous to the infinite region with re
eigenvalues in the former casp> pg for r>2). From Egs.
(22) and(23), it can be seen that the stripe with real eigen-
values increases with Forr=0.8, the bump is so large that
it touches the descending branch of the paramagnetic lin
where the eigenvalues are real.

VO=27. (25

In units of 27, the dimensionless wave number is given by

0
> (26)
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2.0 T T T T T T T T T 2.0 T T T T T T

PARAMAGNETIC

1.6 1.6

PARAMAGNETIC

1.2 1.2
- —
0.8+ 0.8 1
0.4 0.4 1
0.0 0.0 T T . T T T .
0.0 0.4 0.8 1.2 1.6 2.0
(a) p
2.0 FIG. 5. Phase diagram according to the Fibonacci rule, for
r=0.1, andG=9, corresponding th ;=55. Notice the changes in
the ground stateT(=0).
1.6
interval of definition of the angl®, and in the denominator
of Eq. (27), by a factor 4, which is the length, in terms of
10 Lo, of the unit cell at ordeG=1.
’ The analysis for larger values &f is essentially the same.
The angle# belongs to the interval0.Ls7/2), and the
= (Lg—1)/2 bumps that appear in the stripes of real eigenval-
0.8 4 ues are filled up by phases with wave numbers given by
K=" ith m=1,2 Le—1)/2. (28
0.4- m—m, with m=12,...,(Lg—1)/2. (28
The effect of higher-order approximations is illustrated in
0.0 Fig. 4(b) for the Koch rule with the same value=0.1, at
0.4 order G=3, corresponding td.c=64. A comparison with
(b) D the diagram forG=4, Ls=256 (not shown hergindicates

that, within the accuracy of the grid, we have already reached
the G—oo limit of a full Koch sequence. We note that, from
the main commensurate phases of the original uniform
model, only thek=1/6 phase survives. The other phases,
1/6 phase from th&=0 axis. The main modulated phases close toespeCIaIIy in the region of small wave numbers bo“”d?d by
the 1/8 phase, as 1/10 or 1/7, become very ttiie superscrip is ~ the k=1/6 phase, have become much less relevant with re-
omitted in the notation of the wave numberéy) G=3; the 16  SPect to those with wave numbek§, given by Eq.(28),
bumps are more densely distributed in the region of small wavavhich occupy the bumps with real eigenvalues. As
numbers. At the precision of the calculations, a unit cell with 64Lg=4C, all phases from one given order of the approxima-
aperiodic bonds already gives the main features ofGhe limit. tion, associated with the wave numbd(%, will also be

FIG. 4. Phase diagrams according to the Koch rule, for
r=0.1, at different orders of the periodic approximatiot@)
G=1; the only bump is occupied by the 1/8 phase that lifts the

We indicate a narrow region of chaotic attractors. present at all higher-order approximations.
This situation is similar for the Fibonacci rule. In Fig. 5
0 we show the diagram for the Fibonacci rule at or@e+ 9,
k= 3IX 2’ (27 corresponding td¢=>55. Within the numerical accuracy of

the calculations, these diagrams have already converged to
For r #0, the situation is very much the same, except thathe typical forms associated with tii&—< limit. There are
phase locking occurs faf= 7, that is, for real eigenvalues. two major differences with respect to the Koch rule. First,
The corresponding phase is associated with the wave numbtire successive values b have no common factors, so that
k=1/6, as can be checked numerically. A phase diagram ahe phase&S change from one generation to the next. Nev-
in Fig. 4(a) can be obtained by replacing the factor 3 in theertheless, we note that the changes in the wave number be-
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2.0 T T T 2.0 T T T

PARAMAGNETIC

PARAMAGNETIC

FIG. 6. Phase diagrams according to the KéahorderG=3) and Fibonaccfat orderG=9) rules, for increasing values of (a) Koch
rule forr =0.5; besidek=1/4, the dominant modulated phases lasg kg, koo, andk,,. The 1/6 phase is greatly reducet) Fibonacci
rule forr =0.5; thek,, phase dominates the diagram. Other relevant phasés paedk,;. The chaotic regiofiindicated by small dojshas
been considerably enlarge@;) Koch rule forr=1.0; the dominant phases are skill;, kig, koo, andk,,. There is a splitting of some
regions(for example,k,, appears in two distinct regiopsand a new region of chaotic phasésr p~1.2—1.4); (d) Fibonacci rule for
r=1.0; thek,; phase and the chaotic region dominate the diagram. There is a splitting of the other relevant lphasesbk(-); (¢) Koch
rule for r=1.5; the dominant phases &e,, k,;, andk,,. Splitting and co-stability of phases are present in many regions of the phase
diagram. The chaotic region extends uppte 1.6.

come smaller for increasinG, and it is possible to follow $%/2, where ¢=(y/5—1)/2 is the inverse of the golden
this convergence towards well-defined limits. The second asnean.

pect refers to the existence of an interval of length Now we analyze the dependence of the diagrams on the
Ap=0.1, along thep axis, in the ground stateT&0), be-  strength of the aperiodic couplings. In Figgap-6(e), we
tween the ferromagnetic and the 1/4 phases. The phase aghow diagrams for different values of with G=3 and

this interval belongs to the set given by H@8), as it ex- G=9, for Koch and Fibonacci rules. As should be antici-
tends upwards, at higher temperatures, until occupying pated, for increasing values ofthe system develops some
bump in the transition line. From the periodic approxima-new features, which are quite distinct from those of the origi-
tions, we see that the associated wave number converges nal uniform model. For instance, the bumps become larger
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TABLE I. Limit values of some relevant structures of the phaseFor k> ¢?/2, the phases are certainly distorted, although

diagrams according to the Koch and Fibonacci rules. keeping some similarities with the uniform model. Also, the
chaotic attractors tend to occupy larger regions of the phase
Koch G=1 G=2 G=3 G=4 G—ee diagram. In the Koch case, they appear Kor0.2, whereas
18 3/32  11/128  43/512 1/12 th_ey were previously confined to the regikf 0-0.1. In_the
1/8 532 21/128  85/512 1/6 Fibonacci case, they occupy a very large extension, for

k< ¢?/2, between the dominant phages low temperaturés
and the paramagnetic transition line.

Flbonacci  G=6 G=7 G=8 G=9 G In the Fibonacci case the=1 diagram already contains
5/26  16/84 26/136  21/110 312 all main features that will also be present for larger values of
4/26  13/84 21/136  17/110 bl r. In the Koch case, as shown in Figeh we have to go to
3/26 10/84 16/136  13/110 &312 r as large as 1.5 to see the dominant role of the aperiodic

interactions. The characteristic feature is the domination of
thek3, andk3, phases, which are proportional to the fraction
and the filling phases will start to compete among them-o_f the number of sites with-mediated interactions._From the
selves. For =0.5, as in Figs. @) and Gb), the phasekﬁ, diagrams, we see that the bumps corresponding to these

: phases tend to join each other, while the bumps associated
with small values ofn such thak,,<<1/6, occupy almost the with previously significant phase@ior example, with the

entire region under the paramagnetic line. Some phases stalr phasghave been destroyed. The extension of the regions

to split into disconnected regiortéor example.k;, in the of chaotic attractors has been substantially enlarged in com-
parison with the former situations.

Koch case, andg for the Fibonacci rule Also, there appear
regions of co-stability of attractors. Some modulated struc-

tures penetrate into the region of stability of the trivial para-

magnetic fixed point, and even occupy the bumps associated V. CONCLUSIONS

with other phases. This is the case of the phase diagram for \ye have investigated the effects of the inclusion of ape-

the Koch rule, with all trajectories starting from (0.5,0.5). (jodic interactions in the phase diagram of an analog of the
The diagrams for the Fibonacci rule were constructed withh NNNT model on a Cayley tree. The problem is formulated
trajectories from (0.1,0.1), so that the modulated phases ds 5 two-dimensional nonlinear dissipative map whose at-
not penetrate into the region dineay stability of the para-  (ractors correspond to solutions deep in the interior of a large
magnetic fixed point. In both diagrams, the surviving 1/6yree. \We use a scheme of periodic approximations to find the
phase IS now very slim. We also note that the regions ofenhavior of the system under aperiodic rules generated by a
some ky, phases become dominant over the neighboringoch curve and a simple Fibonacci sequence. Some analyti-
phasegwhich is still more evident for larger values of. It cal and numerical calculations have been performed to ob-
is important to follow the successive periodic approXima-tain the region of stability of the paramagnetic phase and the
tions in order to extract the rule of formation of the relevantmain structures of tha@ x p sections of the phase diagram,
phases and to identify the remaining structures in theor different values of the parameterof aperiodicity.
G—oe limit. In Table I, we list some of the relevant phases The appearance of some bumps in the modulated region
in Figs. 6a)—6(e) with their respective limit values. Figure of the paramagnetic transition line is one of the features of
6(b) shows that theh*/2 phase occupies a segment of exten-the phase diagrams that we believe to be new. We show that
sion Ap=0.5 along theT=0 axis. Numerical tests confirm these bumps correspond to regions of real eigenvalues of the
that this is the dominant structure of the phase diagram, witfinear stability matrix of the paramagnetic phase. For small
a segment of lengthp=r at T=0. Finally, we observe a values ofr, they are filled up by single phases, giving rise to
substantial increase in the region of chaotic attractors, whicl phase-locking phenomenon. We have obtained the rules for
is even more pronounced in the Fibonacci case. the number of bumps and the phase selection, in terms of the
Forr=1.0[Figs. 6c) and &d)], the aperiodic couplings |ength of the unit cells of the periodic approximations.
cause further modifications in both Koch and Fibonacci For small values of, the effects of aperiodicity are re-
rules. In general, however, the changes in the diagram of thexricted to the regions of small wave numbers, corresponding
Fibonacci case have been more dramatic. In both cases, sa¥-small values of the parameterof competition. For large
eral phases disappear, due to the enlargement of the regiopSthe aperiodic interactions become less important and the
of the dominant phasgsee Table)l Other phases still sur- diagram keeps the original structure. As the parametef
vive, but they have lost their contacts with the paramagnetigperiodicity increases, there is a corresponding enlargement
transition line(that is, the corresponding bumps have disap-f the regions with relevant changes in the phase diagram.
peared. The number of important phases with large discon-a|so, there appear drastic modifications in the regions of
nected regiongfor example,kjy or k3;, in the Koch case, smallp (or k), in which several phases are either wiped out
andk3; or k3g, for the Fibonacci rulis also a novel feature of the diagram or split into disconnected regions. The emer-
of the diagrams. In the Koch case, there is no intermediatgence of large regions with chaotic orbits is a typical feature
phase along th&=0 axis between the ferromagnetic and theof aperiodicity for large values df.
1/4 phase. In the Fibonacci case, the very large extension of The analysis of models with two different aperiodic se-
the ¢?/2 phase produces a clear distinction between two requences, according to the Koch and Fibonacci rules, indi-
gions. Fork< ¢?/2, the aperiodic interaction dominates, with cates some common features, such as the existence of
phasek;, andks, or ki, as well as a large chaotic region. bumps, the phenomenon of phase locking, and, for large



1436 R. F. S. ANDRADE AND S. R. SALINAS 56

the existence of a single structure that survives in the centradhases. This new structure, with wave numiggéf2 in the

part of the phase diagram, with a large chaotic region andimit of large aperiodic cells, extends up to the paramagnetic
some remnants of the old sequence of modulated phasdie and dominates the phase diagram for large valuas of
However, there are some differences. The most significant ofhis difference may be traced back to a special feature of the
them refers to the behavior along the-0 axis. In the Koch Koch case, as the length of the unit cell in any periodic
case, the multiphase point of the original uniform model stillapproximation is a power of 4. A rough look at the same
survives atp=1, as the meeting point of the ferromagnetic model according to a generalized Fibonacci r(generated
(k=0) and thek=1/4 phases. In the Fibonacci case, thereby the substitutionsA— AB", andB— A, with n=2) indi-
appears a new phase along the0 axis, fromp=1 to cates the presence of another phase between the ferromag-
p=1+r, separating the ferromagnetic and the=1/4 netic and the 1/4 phases in the ground state.
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