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Critical dynamics of nonperiodic Ising chains

Peiqing Tong
Department of Physics, Nanjing Normal University, Nanjing, Jiangsu 210097, People’s Republic of China

~Received 13 January 1997!

The critical dynamics of the nonperiodic ferromagnetic Ising chains with two different coupling constants
(J1.J2.0) arranged in nonperiodic sequences are studied by trace map method. For Glauber dynamics, it is
found that the dynamical critical exponentz511J1 /J2 for the Fibonacci, general Fibonacci~e.g., silver-mean,
copper-mean!, and period-doubling ferromagnetic Ising chains. The applicability of the trace map method and
the origin of the nonuniversality are briefly discussed.@S1063-651X~97!05007-1#

PACS number~s!: 64.60.Fr, 05.50.1q, 64.60.Ht
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I. INTRODUCTION

In the last two decades, there has been much intere
studying the universality of the dynamical critical expone
z for the one-dimensional Ising model within Glauber d
namics@1–15#. It is well known thatz52 for the infinite
uniform ferromagnetic chain@2# andz51 for the finite fer-
romagnetic chain with open boundary conditions@3#. More-
over, the exponent of the infinite ferromagnetic chain c
vary with a transition rate parameter in the master equa
@4#. Droz et al. @5# found that the alternating-bond ferroma
netic Ising chain does not belong to the universality class
the uniform ferromagnetic chain but has a nonuniver
valuez511J1 /J2, whereJ1 andJ2 are the alternating cou
pling constants withJ1.J2.0. Recently, Achiam and
Southern@9,10# pointed out that this nonuniversality is a r
sult of two different contributions. One is due to long rang
fluctuations near the critical point and the other is due
short ranged phenomena. For more inhomogeneous fe
magnetic chains, such as a random two coupling cons
ferromagnetic chain, it is also known thatz511J1 /J2 by
the movement of domain-wall argument@5,11,12#. Further-
more, it is found thatz511JM /Jm for a periodic Ising chain
with a basic unit cell$J1 , . . . ,Jn% containing an arbitrary se
of n ferromagnetic coupling constants, whereJM andJm are
the maximum and minimum of$J1 , . . . ,Jn%, respectively
@11,13#.

On the other hand, there are many kinds of nonperio
one-dimensional systems@16–18#. These systems lack th
translational invariance but are self-similar by constructi
and can be loosely regarded as the intermediate betwee
periodic and random systems. Therefore it is natural to
amine if z511J1 /J2 also holds for two coupling constan
nonperiodic Ising chains. Recently, some authors@14,15#
have studied the dynamics of the two coupling const
Fibonacci Ising chain and obtainedz511J1 /J2 by
renormalization-group method.

It has been shown that the trace map method is one o
most effective techniques for studying deterministic non
riodic systems@19,20#. In this paper we use this method
study the dynamics of two coupling constant nonperio
Ising chains. The paper is organized as follows. In Sec. II
present the trace map method and illustrate its use by re
ducing the known results for the uniform and alternatin
bond ferromagnetic Ising chains. We study the dynamics
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general Fibonacci and period-doubling Ising chains in Se
III and IV. Some conclusions and discussions are given
Sec. V.

II. TRACE MAP METHOD

The one-dimensional~1D! nonperiodic ferromagnetic
Ising model is defined by the following Hamiltonian@15,21#:

bH52(
i

KiSi 21Si , ~1!

where b51/kBT, Si561, and $Ki5Ji /kBT% are the re-
duced ferromagnetic couplings. The coupling constantsJi
between the nearest-neighbor spins take two valuesJ1 and
J2 (J1.J2.0) arranged in a nonperiodic sequence. T
static properties of this model can be easily obtained@21#.
The critical temperature isTc50. The correlation length
nearTc depends only on the weak interactionJ2, i.e.,

j;exp@2K2#. ~2!

The time evolution of the system is described by a M
kov process with Glauber dynamics. Therefore the proba
ity P(S1 ,S2 , . . . ,SN ;t) of finding the system in the configu
ration $Si% at time t obeys the master equation

d

dt
P~S1 , . . . ,SN ;t !52(

i 51

N

v i~Si !P~S1 , . . . ,SN ;t !

1(
i 51

N

v i~2Si !

3P~S1 , . . . ,2Si , . . . ,SN ;t !.

~3!

Herev i(Si) is the transition probability per unit time that th
i th spin flips from the valueSi to 2Si while all others are
unaffected. These transition rates satisfy the detailed bala
condition. In the present situation, they take the Glau
form

v i~Si !5
1

2
G~12SiCi

1Si 212SiCi
2Si 11!, ~4!
1371 © 1997 The American Physical Society
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with

Ci
65

1

2
@ tanh~Ki1Ki 11!6tanh~Ki2Ki 11!# ~5!

andG a positive constant defining the time scale of the e
lution of the system. In this paper we takeG51 without loss
of generality.

The equation of motion for local magnetization

qi~ t !5^Si& t5Tr$S%@Si P~S1 , . . . ,SN ;t !# ~6!

is

d

dt
qi~ t !522^Siv i~Si !& t

52qi~ t !1Ci
1qi 21~ t !1Ci

2qi 11~ t !. ~7!

The Laplace transform of Eq.~7! yields @14,15#

2lQi52Qi1Ci
1Qi 211Ci

2Qi 11 , ~8!

where2l is the variable conjugate tot, andQi(2l) is the
Laplace transform ofqi(t). The relaxation of$qi(t)% towards
the equilibrium is governed by a set of relaxation tim
$tn51/ln%, where $ln% are the solutions of Eq.~8!. The
asymptotic long-time behavior of$qi(t)% is given by the
smallest valuels of $ln% @13,15#.

Equation~8! can be written in transfer matrix form

S Qi 11

Qi
D 5S 12l

Ci
2 2

Ci
1

Ci
2

1 0
D S Qi

Qi 21
D 5M i S Qi

Qi 21
D . ~9!

Then

S QN11

QN D 5M ~N!S Q1

Q0D , ~10!

whereM (N)5MN•••M1. For a finiteN spin chain, the ei-
genvaluesr 1,2 of M (N) are

r 1,25
1

2
$TrM ~N!6@~TrM ~N!!224detM ~N!#1/2%.

It is commonly required that theQN of a periodic system
with a period ofN should not diverge, thusl satisfies

1

2
uTrM ~N!u<~detM ~N!!1/2, ~11!

which for unimodularM (N) ~i.e., detM (N)51) becomes

1

2
uTrM ~N!u<1. ~12!

To illustrate the use of the trace map method, let us c
culate the dynamical critical exponents for the uniform a
alternating-bond ferromagnetic Ising chains.
-

l-
d

(1) Uniform ferromagnetic Ising chain:For the uniform
ferromagnetic Ising chain, J15J25J.0 and
Ci

15Ci
25C5 1

2tanh(2K). And M (N)5M0
N with

M05S 12l

C
21

1 0
D , ~13!

a unimodular matrix. From the well-known result for th
powers of 232 unimodular matrix

M0
m5Um21~x0!M02Um22~x0!I ~14!

for m>1 with x05 1
2TrM0, we obtain the trace ofM (N) as a

function of x0:

xN~x0![
1

2
TrM ~N!5x0UN21~x0!2UN22~x0!. ~15!

HereUm(x) is themth Chebyshev polynomial of the secon
kind. It satisfies the recursion relation

Um~x!52xUm21~x!2Um22~x! for m>1, ~16!

with U21(x)50 andU0(x)51.
Becausex05(12l)/2C, ls corresponds to the larges

x0 satisfying the conditionuxN(x0)u<1. From Eqs.~15! and
~16!, we can see thatxN(x0) is an N order polynomial of
x0 and the coefficient ofx0

N is positive. Hence the larges
x0 satisfying the condition~12! is the largest root of the
equationxN(x0)51. It can be easily checked, by noting th
equationUN(1)5N11, thatx051 is the root of the equa
tion xN(x0)51.

We can further prove thatx051 is actually the larges
root. First we note that xN(x0)2xN21(x0)5(x0
21)$UN21(x0)1UN22(x0)%. If UN(x0).0 whenx0.1 for
everyN, thenxN.xN21.•••.x15x0.1. This implies that
there is no root for the equationxN(x0)51 whenx0.1, thus
x051 is the largest root. By mathematical induction it can
proved that indeed that is the case. ForN51,
U1(x)52x.U0(x)51.0 for x.1. Now assume tha
UN21(x).UN22(x).0 for x.1, thenUN(x)52xUN21~x!
2UN22(x).2UN21(x)2UN22(x).UN21(x).0. That is,
UN(x).UN21(x).•••.U0(x).0 for x.1. Therefore
UN(x).0 whenx.1 for everyN.

Thus ls is the root of the equationx051, i.e.,
12ls52C or ls5122C512tanh(2K)→exp@24K# as
K5J/kBT→`. According to the defintion for the dynamica
critical exponentz,

ts51/ls;jz, ~17!

we obtainz52, which is the well-known result@2#.
(2) Alternating-bond ferromagnetic Ising chain:We con-

sider an alternating-bond ferromagnetic Ising chain w
J2i 215J1.0 andJ2i5J2.0. ThenM (N)5M1

N/2 with



ou
es
e-

n

e

ith

fer

i-

t

e
f-

r

d
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M15S 12l

C1
2

C2

C1

1 0
D S 12l

C2
2

C1

C2

1 0
D

5S ~12l!2

C1C2
2

C2

C1
2

12l

C2

12l

C2
2

C1

C2

D . ~18!

Here

C1,25
1

2
@ tanh~K11K2!6tanh~K12K2!# ~19!

and M1 is also a unimodular matrix. Similarly,ls is the
smallest root of the equation12TrM151, or

~12l!2

C1C2
2

C1

C2
2

C2

C1
52. ~20!

We obtain ls512C12C2512tanh(K11K2)
→exp@22(K11K2)] as T→0. From Eqs.~2! and ~17!, we
obtain the dynamical critical exponentz511J1 /J2, which is
the same as the result obtained by Drozet al. @5#.

III. QUASIPERIODIC CHAIN

For the quasiperiodic ferromagnetic Ising chain, the c
pling constantsJi of the nearest neighbor take two valu
J1 and J2 (J1.J2.0) arranged in a general Fibonacci s
quence. The general Fibonacci sequenceS` is constructed
recursively asSl 115$Sl

mSl 21
n % for l>1, with S05$J2% and

S15$J1%, whereSl
m denotes the string ofm Sl . Here,m and

n are integers. Alternatively, the general Fibonacci seque
can be generated from a seed~e.g., J1), by following the
substitution rule:J1→J1

mJ2
n , J2→J1, whereJ1

m represents a
string ofm J1’s. Due to the construction rule forSl , the total
number of symbols in the sequenceSl follows the recur
sion relation Fl 115mFl1nFl 21 for l>1, with
F05F151. In the limit l→`, Fl 21 /Fl approaches the valu
s5(1/2n)@(m214n)1/22m#, which is the positive root of
the equationns21ms2150.

(1) Fibonacci ferromagnetic Ising chain:The Fibonacci
ferromagnetic Ising chain is a quasiperiodic Ising chain w
m5n51, for which s5 1

2(A521). The substitution rule
gives the following sequence ofJ1 andJ2:

J1J2J1J1J2J1J2J1J1J2J1•••. ~21!

The sequenceCi
1 is

C1C2C3C1C2C1C2C3C1C2•••, ~22!

where theC1,2 are given by Eq.~19! and C35 1
2tanh(2K1).

This sequence can be obtained from sequence~21! by the
substitution rule:J1→C1C2, J2→C3. Similarly, the se-
quenceCi

2 is obtained from sequence~21! by the constitu-
tion rule: J1→C2C1, J2→C3, yielding

C2C1C3C2C1C2C1C3C2C1•••. ~23!
-

ce

For the l th Fibonacci sequence, there areFl spins in the
chain. Under the periodic boundary conditions, the trans
matrix M l[M (Fl ) follows the recursion relation

M l5M l 22M l 21 , ~24!

with

M05S 12l

C3
21

1 0
D ~25!

andM1 given by Eq.~18!.
The matricesM0 andM1 are both unimodular. According

to the recursion relation~24!, we can see that detM l51 for
all l>0. From Eq.~24! and the unimodularity ofM l , we
obtain the following trace map forxl5

1
2TrM l @19#:

xl52xl 21xl 222xl 23 for l>3, ~26!

with initial conditions

x05
12l

2C3
, x15

~12l!2

2C1C2
2

C1

2C2
2

C2

2C1
,

and

x25
~12l!3

2C1C2C3
2

~12l!C2

2C1C3
2

12l

C2
.

For the Fibonacci ferromagnetic Ising chain, the dynam
cal critical exponent is determined by the smallestls satis-
fying the conditionuxl u<1. From Eq.~26! one can see tha
xl is anFl order polynomial ofl. That is,

xl5 (
n50

Fl

An
~ l !ln. ~27!

Under the periodic boundary conditions there areFl bands
satisfying the conditionuxl u<1 for the l th Fibonacci Ising
chain. The 2Fl edges ofFl bands are determined by th
equationsxl51 andxl521. We can also see that the coe
ficient of lFl of xl is positive forFl even and negative fo
Fl odd,xl goes to positive infinite asl→2` for everyl and
decreases asl increases. Thereforels is the smallest root of
the equationxl51. At very low temperature there is no nee
for the full solution of the equationxl51. This is because the
largest relaxation timetM51/ls dominates the(tn at low
T @13#, where tn51/ln and ln (n51, . . . ,Fl) are theFl
roots of the equationxl51. Therefore, at sufficiently low
temperature, the relevant relaxation time is given by
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tM' (
n51

Fl

tn5 (
n51

Fl 1

ln
5

A1
~ l !

A0
~ l !21

[
hl

gl21
, ~28!

wheregl[A0
( l ) and hl[A1

( l ) . The dynamical critical expo-
nent can be determined by the equation

z5 lim
l→`

dln~tM !

d~2K2!
. ~29!

gl andhl satisfy the recursion relations

gl52gl 21gl 222gl 23 ,

hl52gl 21hl 2212gl 22hl 212hl 23 , ~30!

with initial conditions

g05
1

2C3
, g15

12C1
22C2

2

2C1C2
, g25

12C2
222C1C3

2C1C2C3
,

~31!

and

h052
1

2C3
, h152

1

C1C2
, h25

231C2
212C1C3

2C1C2C3
.

~32!

By using Eqs.~28!–~30! and initial conditions~31! and~32!,
we can obtain numerically the dynamical critical expone
z for largel and smallT. In Fig. 1 we show the value ofz for
the finite Fibonacci ferromagnetic Ising chain wi
F115144 spins as functions ofK25J2 /kBT ~full lines! at
J1 /J251.2, 1.5, 2.0, and 2.5. From Fig. 1 one can see t
z511J1 /J2 as K2→` (T→0), which agrees with the re
sult obtained by renormalization-group method@14,15#.

We can also study the dynamics of the Fibonacci fer
magnetic Ising chain withJ1,J2. This chain is equivalent to
the chain~21! but with J1 andJ2 interchanged. We call this
chain a dual chain of chain~21!. We can obtain the dynami
cal critical exponent by using Eqs.~28!–~32! with C1, C2,
andC3 substituted byC2, C1, and 1

2tanh(2K2). In Fig. 1 we
also plot the similar z;K2 curves ~dashed lines! for
J1 /J251.2, 1.5, 2.0, and 2.5. Again one finds th
z511J1 /J2 asT→0.
t

at

-

(2) Silver-mean ferromagnetic Ising chain:The silver-
mean ferromagnetic Ising chain is a general quasiperio
Ising chain withm52 andn51, for whichs5A221. The
substitution rule gives the following sequence ofJ1 andJ2:

J1J1J2J1J1J2J1J1J1J2J1J1J2•••. ~33!

Then the sequenceCi
1 is

C3C1C2C3C1C2C3C3C1C2C3C1C2•••. ~34!

This sequence can be obtained from sequence~33! by the
substitution rule:J1→C3C1C2, J2→C3. Similarly, the se-
quenceCi

2 is obtained from sequence~33! by the constitu-
tion rule: J1→C3C2C1, J2→C3,

C3C2C1C3C2C1C3C3C2C1C3C2C1•••. ~35!

Under the periodic boundary conditions, the transfer m
trix M l[M (Fl ) of the Fl spin chain follows the recursion
relation

M l5M l 22M l 21
2 , ~36!

with M0 given by Eq.~25! and

FIG. 1. The dynamical critical exponent of the Fibonacci ferr
magnetic Ising chain as functions ofK25J2 /kBT at J1 /J251.2,
1.5, 2.0, and 2.5 for the chain~21! ~full lines! and its dual chain
~dashed lines!. The curves are obtained for theF115144 spin chain
under periodic boundary conditions. We can see thatz511J1 /J2

asK2→`.
M15S 12l

C1
2

C2

C1

1 0
D S 12l

C2
2

C1

C2

1 0
D S 12l

C3
21

1 0
D 5S ~12l!3

C1C2C3
2

~12l!C2

C1C3
2

12l

C2
2

~12l!2

C1C2
1

C2

C1

~12l!2

C2C3
2

C1

C2
2

12l

C2

D .

~37!
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From the unimodularity of matricesM0 and M1 and the
recursion relation~36!, we obtain detM l51 for all l>0.
Also, from Eq. ~36! and the unimodularity ofM l , we can
obtain the following trace map forxl5

1
2TrM l @20#:

xl54xl 21
2 xl 222

xl 21
2

xl 22
2xl 222

xl 23xl 21

xl 22
for l>3,

~38!

with initial conditions

x05
12l

2C3
, x15

~12l!3

2C1C2C3
2

~12l!C2

2C1C3
2

12l

C2
,

and

x25
~12l!7

2C1
2C2

2C3
3 2

~12l!5

C1
2C3

3 2
2~12l!5

C1C2
2C3

2 2
~12l!5

2C1
2C2

2C3

1
~12l!3C2

2

2C1
2C3

3 1
2~12l!3

C1C3
2 1

5~12l!3

2C2
2C3

1
~12l!3

C1
2C3

1
~12l!3

C1C2
2 2

~12l!

C3
2

~12l!C1

C2
2 2

~12l!

C1

2
~12l!C2

2

2C1
2C3

. ~39!

For the silver-mean ferromagnetic Ising chain, the d
namical critical exponent is determined by the smallestls
satisfying the conditionuxl u<1. According to the discussion
for the Fibonacci chain, we can conclude thatls is the small-
est root of the equationxl51. This conclusion is also veri
fied by numerical method. From map~38! and initial condi-
tions ~39!, we can obtain the dynamical critical exponentz
for largel and smallT by solving the equationxl51 numeri-
cally. In Fig. 2 we show thez for the finite silver-mean
ferromagnetic Ising chain withF6599 as functions of
K251/kBT at J1 /J251.2, 1.5, 2.0, and 2.5. From Fig. 2, on
sees thatz511J1 /J2 as T→0. As in the case of the Fi
bonacci chain, we can also study the dynamics of the d
chain of the silver-mean ferromagnetic Ising chain~33!. This
chain can be obtained from Eq.~33! by interchangingJ1 and
J2. And we find againz511J1 /J2.

(3) Copper-mean ferromagnetic Ising chain:The copper-
mean ferromagnetic Ising chain is a general quasiperio
Ising chain withm51 andn52, for which s5 1

2. The sub-
stitution rule gives the following sequence ofJ1 andJ2:

J1J2J2J1J1J1J2J2J1J2J2•••. ~40!

Then the sequenceCi
1 is

C1C4C2C3C3C1C4C2C1C4C2•••. ~41!

with C1,2 given by Eq. ~19!, C351
2tanh(2K1), and C4

51
2tanh(2K2). This sequence can be obtained from seque

~40! by the substitution rule:J1→C1C4C2, J2→C3. Simi-
larly, the sequenceCi

2 is obtained from sequence~40! by the
constitution rule:J1→C2C4C1, J2→C3, which is
-

al

ic

e

C2C4C1C3C3C2C4C1C2C4C1•••. ~42!

The transfer matrixM l[M (Fl ) of the Fl spin chain fol-
lows the recursion relation

M l5M l 22
2 M l 21 , ~43!

with M0 given by Eq.~25! and

M15S 12l

C1
2

C2

C1

1 0
D S 12l

C4
21

1 0
D S 12l

C2
2

C1

C2

1 0
D

5S ~12l!3

C1C2C4
2

2~12l!

C1
2

~12l!2

C2C4
11

~12l!2

C2C4
21 2

~12l!C1

C2C4

D . ~44!

Similarly, from the unimodularity of matricesM0 and
M1 and the recursion relation~43!, we can also obtain
detM l51 for all l>0. From Eq.~43! and the unimodularity
of M l , we can obtain the following trace map forxl
51

2TrM l [20]:

xl54xl 21xl 22
2 2xl 2124xl 22xl 23

2 12xl 22 for l>3
~45!

with initial conditions

x05
12l

2C3
, x15

~12l!3

2C1C2C4
2

~12l!C1

2C2C4
2

12l

C1
,

and

FIG. 2. The dynamical critical exponent of the silver-mean f
romagnetic Ising chain as functions ofK25J2 /kBT at J1 /J251.2,
1.5, 2.0, and 2.5. The curves are obtained for theF6599 spin chain
under periodic boundary condition. We can see thatz511J1 /J2 as
K2→`.
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x25
~12l!5

2C1C2C3
2C4

2
~12l!3

C1C3
2 2

~12l!3

2C1C2C4
2

~12l!3

C2C3C4

1
12l

C1
1

12l

C3
1

~12l!C1

2C2C4
.

As for the Fibonacci ferromagnetic Ising chain,ls is the
smallest root of the equationxl5(n50

Fl An
( l )ln51. The dy-

namical critical exponentz is determined by Eqs.~28! and
~29!, with the coefficientsgl andhl derived from the recur-
sion relations
a

th
a

gl54gl 21gl 22
2 24gl 22gl 23

2 2gl 2112gl 22 ~46!

and

hl54hl 21gl 22
2 18gl 21gl 22hl 2224hl 22gl 23

2

28gl 22gl 23hl 232hl 2112hl 22 , ~47!

with initial conditions
g05
1

2C3
, g15

12C1
222C2C4

2C1C2C4
,

g25
122C2C422C1C32C3

212C2C3
2C412C1C2C3C41C1

2C3
2

2C1C2C3
2C4

, ~48!

and

h052
1

2C3
, h15

231C1
212C2C4

2C1C2C4
,

h25
2516C2C416C1C313C3

222C2C3
2C422C1C2C3C42C1

2C3
2

2C1C2C3
2C4

. ~49!
he

he

e.
ent
ated

m

ns-
Figure 3 shows the numerical result ofz for the finite copper-
mean ferromagnetic Ising chain withF85171 spins as func-
tions of K251/kBT at J1 /J251.2, 1.5, 2.0, and 2.5. From
this figure it is found again thatz511J1 /J2 asT→0. Simi-

FIG. 3. The dynamical critical exponent of the copper-me
ferromagnetic Ising chain as functions ofK25J2 /kBT at
J1 /J251.2, 1.5, 2.0, and 2.5. The curves are obtained for
F85171 spin chain under periodic boundary conditions. We c
see thatz511J1 /J2 asK2→`.
larly, we can study the dynamics of the dual chain of t
copper-mean ferromagnetic Ising chain~40!. This chain is
obtained from Eq.~40! by interchangingJ1 andJ2. We also
obtain thatz511J1 /J2.

IV. PERIOD-DOUBLING CHAIN

For the period-doubling ferromagnetic Ising chain, t
nearest-neighbor coupling constantsJi take two valuesJ1
andJ2 (J1.J2.0) arranged in a period-doubling sequenc
The period-doubling sequence is aperiodic and is differ
from quasiperiodic sequences. This sequence is gener
from a seed~e.g., J1), by the following substitution rule:
J1→J1J2, J2→J1J1 @17#,

J1J2J1J1J1J2J1J2J1J2J1J1J1J2J1J1•••. ~50!

Then the sequenceCi
1 is

C1C2C3C3C1C2C1C2C1C2C3C3C1C2•••, ~51!

with C35 1
2tanh(2K1). This sequence can be obtained fro

sequence~50! by the substitution rule:J1→C1C2, J2→C3.
Similarly, the sequenceCi

2 is obtained from sequence~50!
by the constitution rule:J1→C2C1, J2→C3, which yields

C2C1C3C3C2C1C2C1C2C1C3C3C2C1•••. ~52!

For thel th period-doubling sequence, there are 2l spins in
the chain. Under the periodic boundary conditions, the tra

n
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fer matrix M l[M (2l ) follows the same recursion relatio
~43! of the copper-mean chain with different initial cond
tions:

M15S 12l

C2
2

C1

C2

1 0
D S 12l

C1
2

C2

C1

1 0
D

5S ~12l!2

C1C2
2

C2

C1
2

12l

C2

12l

C2
2

C1

C2

D ~53!

andM0 is given by Eq.~25!. xl5
1
2TrM l satisfies the recur

sion relation~45! with initial conditions

x05
12l

2C3
, x15

~12l!2

2C1C2
2

C2

2C1
2

C1

2C2
,

and

x25
~12l!4

2C1C2C3
2 2

~12l!2C2

2C1C3
2 2

~12l!2

2C1C2

2
~12l!2

C2C3
1

C2

2C1
1

C1

2C2
.

As in the case of the copper-mean chain, we can obtain
dynamical critical exponentz by using Eqs.~46! and ~47!
with the initial conditions

g05
1

2C3
, g15

12C1
22C2

2

2C1C2
,

g25
12C2

22C3
222C1C31C2

2C3
21C1

2C3
2

2C1C2C3
2 , ~54!

and

h052
1

2C3
,h152

1

C1C2
,

h25
221C2

21C3
212C1C3

C1C2C3
2 . ~55!

In Fig. 4 we showz of finite period-doubling ferromagneti
Ising chain withF75128 spins as functions ofK251/kBT at
J1 /J251.2, 1.5, 2.0, and 2.5. From Fig. 4 one can see t
he

at

z511J1 /J2 as T→0. The study of the dual chain of th
period-doubling ferromagnetic Ising chain again giv
z511J1 /J2.

V. CONCLUSION AND DISCUSSION

We have used the trace map method to study the dyna
cal critical exponentz for the general Fibonacci and period
doubling ferromagnetic Ising chains with Glauber dynami
For the well-known uniform and alternating-bond ferroma
netic chains, we reproduced the standard results. For the
bonacci, silver-mean, copper-mean, and period-doubling
romagnetic Ising chains, we found that the dynamical criti
exponentz is nonuniversal and is identical to that obtain
for the alternating-bond ferromagnetic Ising chain. It can
verified that the domain-wall arguments, along the lin
given by Drozet al. @5#, give the same results. Our resul
for the Fibonacci ferromagnetic chain agree with that o
tained by renormalization-group method@14,15#. Based on
the distribution of inverse relaxation times~i.e., l), which
were obtained from generating function usin
renormalization-group method, Southern and Achiam@15#
pointed out that the nonuniversal value ofz is due to the
width of the lowest band, which tends to zero as the te
perature approaches zero. This narrowing of the band g
an additional contribution to the critical slowing down sin
a new time scale is introduced. From our discussion in t
paper, we can obtain the width of bands by iterating num
cally the trace maps and show that the width of the ba
tends to zero as the temperature approaches zero. There
for the general Fibonacci and period-doubling ferromagne
Ising chains with Glauber dynamics, the nonuniversality
also a result of two different contributions: the univeral lo

FIG. 4. The dynamical critical exponent of the period-doubli
ferromagnetic Ising chain as functions ofK25J2 /kBT at
J1 /J251.2, 1.5, 2.0, and 2.5. The curves are obtained for
F75128 spin chain under periodic boundary conditions. We c
see thatz511J1 /J2 asK2→`.
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ranged fluctuations near critical point and short ranged p
nomena, as first concluded by Southern and Achi
@9,10,15#.

From the results of the present paper, we conclude
the trace map method is also a very useful method in stu
ing the dynamics of the nonperiodic Ising chains. Moreov
although the nonperiodic Ising chains investigated in t
paper are ferromagnetic, the trace map method is also a
cable to antiferromagnetic or ferromagnetic and antifer
magnetic Ising chains, since the method used here does
rely on the sign of the coupling constants. Beside the non
riodic sequences discussed in the present paper, the T
Morse sequence is one of the most popular nonperiodic
ev

as
e-

at
y-
r,
s
li-
-

not
e-
ue-
e-

quences. But, we cannot use the trace map method to s
the dynamics of the Thue-Morse Ising chain. This is beca
we cannot obtain the close recursion relation for the tran
matrix of the Thue-Morse chain analytically@22#.
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