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Critical dynamics of nonperiodic Ising chains
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The critical dynamics of the nonperiodic ferromagnetic Ising chains with two different coupling constants
(J;>J,>0) arranged in nonperiodic sequences are studied by trace map method. For Glauber dynamics, it is
found that the dynamical critical exponert 1+ J, /J, for the Fibonacci, general Fibonadei.g., silver-mean,
copper-mean and period-doubling ferromagnetic Ising chains. The applicability of the trace map method and
the origin of the nonuniversality are briefly discussggtl063-651X%97)05007-1

PACS numbe(s): 64.60.Fr, 05.50tq, 64.60.Ht

[. INTRODUCTION general Fibonacci and period-doubling Ising chains in Secs.
Il and IV. Some conclusions and discussions are given in
In the last two decades, there has been much interest iBec. V.
studying the universality of the dynamical critical exponent

z for the one-dimensional Ising model within Glauber dy- Il. TRACE MAP METHOD

namics[1-15]. It is well known thatz=2 for the infinite

uniform ferromagnetic chaif2] andz=1 for the finite fer- The one-dimensional1D) nonperiodic ferromagnetic
romagnetic chain with open boundary conditi¢g8$ More-  Ising model is defined by the following Hamiltonigh5,21]:
over, the exponent of the infinite ferromagnetic chain can

vary with a transition rate parameter in the master equation BH= _Z K:S_ .S, 1)

[4]. Droz et al.[5] found that the alternating-bond ferromag-

netic Ising chain does not belong to the universality class of

the uniform ferromagnetic chain but has a nonuniversalvhere 8=1/kgT, S==1, and {K;=J;/kgT} are the re-
valuez=1+J,/J,, whereJ; andJ, are the alternating cou- duced ferromagnetic couplings. The coupling constahts
pling constants withJ;>J,>0. Recently, Achiam and between the nearest-neighbor spins take two valyeand
Southern9,10] pointed out that this nonuniversality is a re- J, (J;>J,>0) arranged in a nonperiodic sequence. The
sult of two different contributions. One is due to long rangedstatic properties of this model can be easily obtaifigt].
fluctuations near the critical point and the other is due toThe critical temperature i§.=0. The correlation length
short ranged phenomena. For more inhomogeneous ferrgearT, depends only on the weak interactidp i.e.,
magnetic chains, such as a random two coupling constant

ferromagnetic chain, it is also known that1+J,/J, by E~exd 2K,]. 2

the movement of domain-wall argumer,11,19. Further-

more, it is found that=1+Jy, /J,, for a periodic Ising chain The time evolution of the system is described by a Mar-
with a basic unit cel{Jq, ... J,} containing an arbitrary set kov process with Glauber dynamics. Therefore the probabil-
of n ferromagnetic coupling constants, whdg andJ,, are ity P(S;,S,, . ..,Sy;t) of finding the system in the configu-
the maximum and minimum ofd,, ... J,}, respectively ration{S} at timet obeys the master equation

[11,13.

On the other hand, there are many kinds of nonperiodic ¢ N

one-dimensional systenfd6-1g. These systems lack the  g;P(S1, ... .SyiD)= —_Zl wi(S)P(S, ... ,Syit)
translational invariance but are self-similar by construction, =

and can be loosely regarded as the intermediate between the N

periodic and random systems. Therefore it is natural to ex- +> 0(—S)

amine ifz=1+J,/J, also holds for two coupling constant =1

nonperiodic Ising chains. Recently, some authfid,15 XP(S;, ... ~S Syit)
have studied the dynamics of the two coupling constant T TR
Fibonacci Ising chain and obtaine¢=1+J,/J, by ()]

renormalization-group method. ) - - o

It has been shown that the trace map method is one of th!éeregi(a_) is the transition probability per unit time that the
most effective techniques for studying deterministic nonpelith spin flips from the valu& to —S; while all others are
riodic systemq19,20. In this paper we use this method to unaffected. These transition rates satisfy the detailed balance
Ising chains. The paper is organized as follows. In Sec. Il wdorm
present the trace map method and illustrate its use by repro- 1
ducing the known results for the uniform and alternating- . _= _art _ac-
bond ferromagnetic Ising chains. We study the dynamics of @i(S) ZF(1 SCIS-17SC S, @
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with (1) Uniform ferromagnetic Ising chainFor the uniform
ferromagnetic Ising chain, J;=J,=J>0 and

L1 Cr=C =C=kanh(x). And MM =MN with
CF =S ltantK; +Kp, ) =tankK—K;. 9] () G TG T CTHA@) 0

1-\

andI" a positive constant defining the time scale of the evo- I —
lution of the system. In this paper we taKe= 1 without loss Mo=| C . (13
of generality. 1 0

The equation of motion for local magnetization

ai(H)=(S)H=Trg[SP(S;, ....S D] (6) @ unimodular matrix. From the well-known result for the
' e T powers of 2< 2 unimodular matrix

d MG'=Up_1(X0)Mo—=Up_2(Xo)! (14)
aqi(t):_2<siwi(sﬂ)>t
for m=1 with xo=3TrM,, we obtain the trace dfiY) as a

=—qi()+C g 1(D+Ci g1 1(b). (7)  function ofxo:

The Laplace transform of Eq7) yields[14,15

1
N _ Xn(Xo) = ET"M(N): XoUn-1(Xo) =Un-2(Xp). (19
“AQi=—QitCi Qi1+ C; Qiya, 8
where—\ is the variable conjugate tp andQ;(—\) isthe  HereU,(x) is themth Chebyshev polynomial of the second

Laplace transform ofji(t). The relaxation ofg;(t)} towards  kind. It satisfies the recursion relation
the equilibrium is governed by a set of relaxation times

{m,=1I\,}, where{\,} are the solutions of Eq8). The
asymptotic long-time behavior ofg;(t)} is given by the
smallest valuexg of {\,} [13,15.

Un(X)=2xUp_1(X)—Up_o(x)  for m=1, (16)

Equation(8) can be written in transfer matrix form with U _1(x)=0 andUy(x)=1.
Becausexy=(1—\)/2C, N\ corresponds to the largest
1-A (of) Xo satisfying the conditionxy(Xg)|<1. From Egs(15) and

PR [

M (Qi ) © (16), we can see thaty(xg) is anN order polynomial of
Qi 1 0 Qi-1 ' '

Qi_; Xo and the coefficient ORB‘ is positive. Hence the largest
Xo satisfying the condition12) is the largest root of the
equationxy(Xg)=1. It can be easily checked, by noting the

Then equationU,(1)=N+1, thatxyg=1 is the root of the equa-
tion xp(Xp)=1.
Qn+1 Q1 We can further prove thaty=1 is actually the largest
Qx =M Qo | (100  root. First we note that Xy(Xo)—Xn_1(X0)=(Xo
—1){Upn_1(Xg) +Un_2(Xg) }. If Un(X0)>0 whenxy>1 for

N o ) ] ~everyN, thenxy>Xxy_1>>- - - >X;=Xg>1. This implies that
whereM™ =My - -M;. For a finiteN spin chain, the ei- there is no root for the equatiof(xo) = 1 whenx,>1, thus

genvalues ; , of MM are Xo=1 is the largest root. By mathematical induction it can be
1 proved that indeed that is the case. Fd=1,
r == {TIMM = [(TrM™N)2— 4detm V]2 Ui(x)=2x>Uy(x)=1>0 for x>1. Now assume that
, 2 - '

Un_1(X)>Upn_2(X)>0 for x>1, thenUy(x) =2xUyn_1(X)
. . - —Upn-2(X)>2Up_1(X) =Un—2(X) >Up-1(X)>0. That is,
It is commonly required that th@y of a periodic system y (x)>U\_,(x)>--->Uy(x)>0 for x>1. Therefore

with a period ofN should not diverge, thus satisfies Un(x)>0 whenx>1 for everyN.
Thus \g is the root of the equationxy=1, i.e.,
E|TrM(N)|$(de1M(N))1/2, (12) 1-Ng=2C or Ag=1-2C=1-tanh(X)—exd—4K] as
2 K=J/kgT—o. According to the defintion for the dynamical

. . . critical exponentz,
which for unimodulaM®™ (i.e., deM™=1) becomes

1 =1\~ &, (17)
ST ®M=<1. (12)

we obtainz=2, which is the well-known resul[2].
To illustrate the use of the trace map method, let us cal- (2) Alternating-bond ferromagnetic Ising chaili/e con-
culate the dynamical critical exponents for the uniform andsider an alternating-bond ferromagnetic Ising chain with
alternating-bond ferromagnetic Ising chains. Joi_1=J37>0 andJ,;=J,>0. ThenM(N)zMT’2 with
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1-\ C,\ /1—-\ C, For thelth Fibonacci sequence, there &gspins in the
C - C. C el chain. Under the periodic boundary conditions, the transfer
M,= 1 1 2 2 . — 1 (FD) ; .
matrix M,=M'"V follows the recursion relation
1 0 1 0
(1-\)? C 1-\
- - Mi=M; M), (24)
C.C C C,
= 1
1-\ C, (18
C, - C_2 with
Here
1-\
1 oo 1
Cyo=5[tanh(Ky+Ky) T tanh(K; — Ky)] (19 Mo= 3 (25
1 0

and M, is also a unimodular matrix. Similarlyy¢ is the

smallest root of the equatiojTrM,;=1, or andM, given by Eq.(18).

(1-\)2 C; C, The matrices; andM are both unimodular. According
—_— =2, (200  to the recursion relatio(24), we can see that déj=1 for
all 1=0. From Eq.(24) and the unimodularity oM, we

R . _1 .
We obtain Ae=1-C,—C,=1—tanhK,+K,) obtain the following trace map fof;=3;TrM, [19]:

—exd —2(K;+K,)] as T—0. From Egs.(2) and (17), we
obtain the dynamical critical exponent1+J,/J,, which is

the same as the result obtained by Datal. [5]. X1 =2X-1X-~ X3 for 1=3, (26)

with initial conditions
I1l. QUASIPERIODIC CHAIN

For the quasiperiodic ferromagnetic Ising chain, the cou-
pling constants]; of the nearest neighbor take two values
J; andJ, (J;>J,>0) arranged in a general Fibonacci se-
guence. The general Fibonacci sequeBgeis constructed and
recursively asS ,,={S"S"_;} for =1, with Sy={J,} and
S,={J.}, whereS" denotes the string ah §. Here,m and 5
n are integers. Alternatively, the general Fibonacci sequence - (1-0)°" (A-MC 1-A
can be generated from a seézlg., J;), by following the 272C,C,C,4 2C,C3 C, ’
substitution ruleJ;—J7J3, J,—J,, whereJ]" represents a
string ofm J;’s. Due to the construction rule f@;, the total
number of symbols in the sequen& follows the recur For the Fibonacci ferromagnetic Ising chain, the dynami-
sion relation F,.;=mF+nF_; for I=1, with cal critical exponent is determined by the smallestsatis-
Fo=F;:=1. Inthe limitl—o, F,_,/F, approaches the value fying the condition|x,|<1. From Eq.(26) one can see that
o=(1/2n)[(m?+4n)*?—m], which is the positive root of x, is anF, order polynomial ofx. That is,
the equatiomo?®+mo—1=0.

(1) Fibonacci ferromagnetic Ising chainthe Fibonacci

ferromagnetic Ising chain is a quasiperiodic Ising chain with Fi
m=n=1, for which ¢=%(\/5—1). The substitution rule xi= > AA™ (27)
gives the following sequence df andJ,: n=0
3135313135313,31313531 - - - (21) Under the periodic boundary conditions there Biebands
satisfying the conditiorjx;|<1 for the Ith Fibonacci Ising
The sequenc€;’ is chain. The F, edges ofF, bands are determined by the
equations;=1 andx;=—1. We can also see that the coef-
C,C,C5C,C,C,C,C4C1Cyp- - -, (22) ficient of AFI of x, is positive forF, even and negative for

F| odd,x, goes to positive infinite as— — o for everyl and
where theC, , are given by Eq(19) and C;= jtanh(X;).  decreases as increases. Therefore, is the smallest root of
This sequence can be obtained from sequg@dg by the  the equatiorx,=1. At very low temperature there is no need
substitution rule:J;—C,C,, J,—Cj5. Similarly, the se- for the full solution of the equatior =1. This is because the
quenceC; is obtained from sequend@l) by the constitu- largest relaxation timery, = 1/As dominates thex 7, at low
tion rule: J;—C,C4, J,— Cj, yielding T [13], where 7,=1/\, and A\, (n=1,... F|) are theF,

roots of the equatiorx;=1. Therefore, at sufficiently low

C,C,C;C,CC,C1C3CLCy - - - (23 temperature, the relevant relaxation time is given by
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Fi Fi ()
1 Al h, 40
~ = — ==, 28 B
LRPIRED A1 g1 %
35
whereg,=A{’ andh,=A{". The dynamical critical expo- A
nent can be determined by the equation 30r
din(7y) z °r
z=lim———. 29
"M d(2K) @9 :
20 r
g, andh, satisfy the recursion relations
15}
91=29-191-2—9i-3, _
1.0

hi=29,_1h,_,+2g, 5h;_1—h,_3, (30)

with initial conditions

FIG. 1. The dynamical critical exponent of the Fibonacci ferro-
_~2 2 A2 magnetic Ising chain as functions &f,=J,/kgT at J,/J,=1.2,
gozi 91:& gzzw 1.5, 2.0, and 2.5 for the chaif21) (full lines) and its dual chain
2C3 2C,C, 2C,C,C5 (dashed lines The curves are obtained for thg,= 144 spin chain
(3D under periodic boundary conditions. We can see #val +J,/J,
asKy,—o0,

and (2) Silver-mean ferromagnetic Ising chaihe silver-
mean ferromagnetic Ising chain is a general quasiperiodic

) Ising chain withm=2 andn=1, for whiche=\2—-1. The

he= — 1 hy= — 1 _ —3+C3+2C,Cq substitution rule gives the following sequencelgfandJ,:

C,C,’ hy= 2C,C,C,4

(32) Jl\]1J2J1J1J2J1J1J1J2J1J1J2' . (33)

By using Eqs(28)—(30) and initial conditiong31) and(32),  Then the sequendg;” is

we can obtain numerically the dynamical critical exponent

z for largel and smallT. In gig. 1 Wi- show the value af?or CaC1CaCaC1CRCaC5C,CoCCHC, - (34)
the finite Fibonacci ferromagnetic Ising chain with
F11=144 spins as functions df,=J,/kgT (full lines) at  This sequence can be obtained from sequeB&e by the
J113,=1.2, 1.5, 2.0, and 2.5. From Fig. 1 one can see thagypstitution rule:J;— C3C,C,, J»—Cs. Similarly, the se-
z=1+4J,/J; asK,—» (T—0), which agrees with the re- quenceC;” is obtained from sequend@3) by the constitu-

sult obtained by renormalization-group mettdd,15. tion rule: J;— C3C,Cy, J— Ca,
We can also study the dynamics of the Fibonacci ferro-
magnetic Ising chain witll; <J,. This chain is equivalent to C3C,C,C3C,C1C3C3C,C1C3CC - - - (35

the chain(21) but with J; andJ, interchanged. We call this - "

chain a dual chain of chaif21). We can obtain the dynami- Under thg periodic boun_dary cpndltlons, the transfe_r ma-
cal critical exponent by using Eq&28)—(32) with Cy, C,, X I_\/I|EM( ) of the F, spin chain follows the recursion
and C; substituted byC,, C,, and 3tanh(X,). In Fig. 1 we relation

also plot the similarz~K, curves (dashed lines for M, =M, 2Mz (36)
J.113,=1.2, 1.5, 2.0, and 2.5. Again one finds that B
z=1+J,/J, asT—0. with Mg given by Eq.(25) and

1-X) C 1—\ C 1—\ (1_)\)3 (1-NM)C, 1-—A\ (1_)\)2 C,
_x2 - -1 CiC,C;  C4Cy c, cc, "¢,
M,=| Ci1 C, C, C, Cs - )
1 0 1 0 1 0 (1=)) _& 12
C2Cs C, C,

(37)
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From the unimodularity of matricel, andM; and the 4.0
recursion relation(36), we obtain deé¥l;=1 for all 1=0.

Also, from Eg.(36) and the unimodularity oM, we can [ M
obtain the following trace map foq,=3TrM, [20]: 35t

Xi-1 X|—3X|-1
X|—4X|2 1X|—2—E— |72—T for =3, ok
(39 [
with initial conditions z 252_ =15
11—\ ~(1-M)% (1-MC, 1-\ ! 12
X=3¢c,r "T2c,C,C,  2C,C;  C, o
and [
S (1-N0" (1-0° 2(0-0)° (1-0)° P T S S
720Ic5c T €l CiCic}  2¢icic, S D
2

~%\3c2 _ )3 _ )3 _\\3
(1-M)°C; 2(1-™) 5(1—-™) (1-M) FIG. 2. The dynamical critical exponent of the silver-mean fer-

ZCECg C1C§ 2C§C3 Cic:g romagnetic Ising chain as functions K= J,/kgT at J;/J,=1.2,
1.5, 2.0, and 2.5. The curves are obtained forRje 99 spin chain
(1_)\)3 (1-)\) (1-)\)C (1-)\) under periodic boundary condition. We can see #al +J,/J, as
1
— — — K2—>OO_
C,C3 Cs C3 C,
) C,C,CC3C5C,C4C1C,CLC - - - (42
(1-MG ”
2c2C; - (39 The transfer matritM, =M1 of the F, spin chain fol-

lows the recursion relation
For the silver-mean ferromagnetic Ising chain, the dy-
namical critical exponent is determined by the smalbest |\/||=|v||2_2|\/||_1, (43)
satisfying the conditionx;|<1. According to the discussion
for the Fibonacci chain, we can conclude thais the small-  \ith M, given by Eq.(25) and
est root of the equatior,=1. This conclusion is also veri-
fied by numerical method. From m&p8) and initial condi-

. ; X " 1-x Co\ [1—-\ 1-A C,
tions (39), we can obtain the dynamical critical exponent - == -1 -
for largel and smallT by solving the equatior,=1 numeri- Mi=| Ci Cy Cq Co Co
cally. In Fig. 2 we show thez for the finite silver-mean 1 0 1 0 1 0
ferromagnetic Ising chain withF=99 as functions of
K,=1/kgaT atd,/J,=1.2, 1.5, 2.0, and 2.5. From Fig. 2, one (1-0° 21— (A-M)°
sees thaz=1+J,/J, as T—0. As in the case of the Fi- C1CoCy Ci C.Cy
bonacci chain, we can also study the dynamics of the dual ~ — (1—\)2 (1-nMC, |- (44)
chain of the silver-mean ferromagnetic Ising ch@B). This - -

C,C, C,C,

chain can be obtained from E@J) by interchangingl, and
J,. And we find agaire=1+J,/J,. - . . .
(3) Copper-mean ferromagnetic Ising chaifhe copper- Similarly, from the un|mo'dular|ty of matriceM anq
mean ferromagnetic Ising chain is a general quasiperiodi®1 @nd the recursion relatiot43), we can also obtain
Ising chain withm=1 andn=2, for which o= 1. The sub- detM,=1 for all I=0. From Eq.(43) and the unimodularity

stitution rule gives the following sequence bf and J: of M, we can obtain the following trace map fof
=1TrM, [20]:
J13535313131323531d2d5- - - (40
X, =4X|_1XP_ o= X|_1—4X X2 3+ 2x_, for =3
Then the sequendg;” is (45)
C1C4C,C5C3C1C4CC1CaCsp- - - (41)

with initial conditions

with C;, given by Eg. (19), Csz=s3tanh(X,), and C,

=1tanh(X,). This sequence can be obtained from sequence X :1_)‘ o= (1-0)° _ (1-MCy _ 1-A
(40) by the substitution ruled;—C,C,C,, J,—Cj. Simi- 7 2C;’ "' 2C,C,C,  2C,C, C, "’
larly, the sequenc€; is obtained from sequenc40) by the

constitution rule:J;—C,C,C,, J,— C3, which is and
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NS S0 O N € b VM €y O Cd O 0I=401 107 >~ 4091 297 3~ 9-1+29»  (46)
272C,C,C3C, C;C2 2C,C,C, C,CsC,
N 1I-» 1-N (1-N)Cy and
C, GCs 2C,C,
_ 2 2
As for the Fibonacci ferromagnetic Ising chalv is the hy=4h_197 > +80-191-2h-2—4h|_20{ 3
m = SF AN N_ .
sma!lest rggt of the equatuom'—En':.OAn A"=1. The dy —80,_,0/_3h_3—h_;+2h,_5, 47
namical critical exponent is determined by Eq928) and
(29), with the coefficientgy, andh, derived from the recur-
sion relations with initial conditions
|
1 1-C%-2C,C,
g0_2C31 gl_ 2C1C2C4 ’
1-2C,C,4—2C,C3— C5+2C,C5C,+2C,C,C3C,+C2C3 48
gz_ 2C102C§C4 ’ ( )
and
) 1 . —3+C2+2C,C,
°” 2cy’ Y 2c,C,Cp
. —5+6C,C,+6C,C3+3C5—2C,C5C,—2C,C,C4C,—C2C3 @9
2= .

Figure 3 shows the numerical resultzofor the finite copper-

mean ferromagnetic Ising chain willy=171 spins as func-
tions of K,=1/kgT atJ;/J,=1.2, 1.5, 2.0, and 2.5. From
this figure it is found again that=1+J,/J, asT—0. Simi-

40
L J,=25
35}
i JH,=2.0
30}
25
z
20F
15}
[
10

2C,C,C3C,

larly, we can study the dynamics of the dual chain of the
copper-mean ferromagnetic Ising cha40). This chain is
obtained from Eq(40) by interchanging); andJ,. We also
obtain thatz=1+J,/J,.

IV. PERIOD-DOUBLING CHAIN

For the period-doubling ferromagnetic Ising chain, the
nearest-neighbor coupling constadtstake two values];
andJ, (J;>J,>0) arranged in a period-doubling sequence.
The period-doubling sequence is aperiodic and is different
from quasiperiodic sequences. This sequence is generated
from a seed(e.g., J;), by the following substitution rule:
J1— 3135, Jo—J1d4 [17],

313,3131313,3135313531313,3,3,3, - . (50)
Then the sequendg;” is
C,C,C3C5C4C,C1C,C,CLC5C5C1Ch- -+, (B))

with C;=3tanh(Z,). This sequence can be obtained from
sequence50) by the substitution ruled;—C;C,, J,—Cs.
Similarly, the sequenc€; is obtained from sequend&0)
by the constitution ruled;—C,C4, J,—C3, which yields

FIG. 3. The dynamical critical exponent of the copper-mean
ferromagnetic Ising chain as functions of,=J,/kgT at
J./3,=1.2, 1.5, 2.0, and 2.5. The curves are obtained for the
Fg=171 spin chain under periodic boundary conditions. We can For thelth period-doubling sequence, there afesgins in
see thaz=1+J,/J, asK,— . the chain. Under the periodic boundary conditions, the trans-

C,C1C3C3C,C1C,C,C,C1C5C4C,C- . (52)
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fer matrix M|EM(2') follows the same recursion relation 40
(43) of the copper-mean chain with different initial condi- !
tions: ; [ J1y=25
35
1-\ Ci\ /1-A C, i e
M,=| Co C, C, [ sof L
1 0 1 0 J =15
(1-M)2 G, 1-\ 2 25 —
C.C;, C G ;
= 53 L
1o c (53 20}
C, [ _
15 |

andM, is given by Eq.(25). x,=3TrM, satisfies the recur-

sion relation(45) with initial conditions 0
1-\ (1-M)? C, Cy
Xo= , X1= — = 5>
0 2C3 ! 2C,C, 2C; 2C, FIG. 4. The dynamical critical exponent of the period-doubling

ferromagnetic Ising chain as functions dk,=J,/kgT at
J;13,=1.2, 1.5, 2.0, and 2.5. The curves are obtained for the

and F,=128 spin chain under periodic boundary conditions. We can
see thaz=1+J,/J, asK,—x.

_(1—7\)4 (1-M)2C, (1-\)?
X2=%¢,6,c2~ " 2¢,¢2 | 2C.C,

z=1+J,/J, asT—0. The study of the dual chain of the
(1—)\)? N C, C; period-doubling ferromagnetic Ising chain again gives
C,Cs  2C, 2C, z=1+J3,/3,.

V. CONCLUSION AND DISCUSSION
As in the case of the copper-mean chain, we can obtain the
dynamical critical exponent by using Eqs.(46) and (47)
with the initial conditions

We have used the trace map method to study the dynami-
cal critical exponent for the general Fibonacci and period-
doubling ferromagnetic Ising chains with Glauber dynamics.
For the well-known uniform and alternating-bond ferromag-

_~2_ A2 netic chains, we reproduced the standard results. For the Fi-
1 1 Cl C2 - . - .
Jo=s—, O1=——— <, bonacci, silver-mean, copper-mean, and period-doubling fer-
2C; 2C,C, romagnetic Ising chains, we found that the dynamical critical

exponentz is nonuniversal and is identical to that obtained
for the alternating-bond ferromagnetic Ising chain. It can be
1-C5—C5—2C,C4+C5C3+CIC3 verified that the domain-wall arguments, along the lines
92~ 2C,C,C2 ' (54) given by Drozet al. [5], give the same results. Our results
for the Fibonacci ferromagnetic chain agree with that ob-
tained by renormalization-group meth¢ti4,15. Based on
and the distribution of inverse relaxation timégse., \), which
were obtained from generating function using
1 1 renormalization-group method, Southern and Achigif]
- 2_C3’h1:_ C.Cy’ pointed out that the nonuniversal value ofis due to the
width of the lowest band, which tends to zero as the tem-
perature approaches zero. This narrowing of the band gives
an additional contribution to the critical slowing down since
_ _2+C§+C§+2C1C3 a new time scale is introduced. From our disgussion in this
2 CC.C2 . (55 i . . . ;
1C,C3 paper, we can obtain the width of bands by iterating numeri-
cally the trace maps and show that the width of the band
tends to zero as the temperature approaches zero. Therefore,
In Fig. 4 we showz of finite period-doubling ferromagnetic for the general Fibonacci and period-doubling ferromagnetic
Ising chain withF,= 128 spins as functions &,=1/kgT at  Ising chains with Glauber dynamics, the nonuniversality is
J1/3,=1.2, 1.5, 2.0, and 2.5. From Fig. 4 one can see tha#lso a result of two different contributions: the univeral long

hO:




1378 PEIQING TONG 56

ranged fluctuations near critical point and short ranged pheguences. But, we cannot use the trace map method to study
nomena, as first concluded by Southern and Achianthe dynamics of the Thue-Morse Ising chain. This is because
[9,10,18. we cannot obtain the close recursion relation for the transfer
From the results of the present paper, we conclude thahatrix of the Thue-Morse chain analyticallg2].

the trace map method is also a very useful method in study-
ing the dynamics of the nonperiodic Ising chains. Moreover,
although the nonperiodic Ising chains investigated in this
paper are ferromagnetic, the trace map method is also appli-
cable to antiferromagnetic or ferromagnetic and antiferro- | would like to thank David Goodings and the theory
magnetic Ising chains, since the method used here does ngtoup of the Department of Physics and Astronomy at
rely on the sign of the coupling constants. Beside the nonpaMcMaster University for their hospitality. Part of this work
riodic sequences discussed in the present paper, the Thugas done during my visit there. | would also like to thank
Morse sequence is one of the most popular nonperiodic s&uoxiong Jin for a critical reading of the manuscript.
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