PHYSICAL REVIEW E VOLUME 56, NUMBER 2 AUGUST 1997

Statistical mechanics of the randomK-satisfiability model
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The randonK-satisfiability problem, consisting in verifying the existence of an assignment Bbolean
variables that satisfy a set M = «N random logical clauses containikgvariables each, is studied using the
replica symmetric framework of diluted disordered systems. We present an exact iterative scheme for the
replica symmetric functional order parameter together for the different cases of interest K=3, and
K>1. The calculation of the number of solutions, which allowed PBys. Rev. Lett76, 3881(1996] to
predict a first order jump at the threshold where the Boolean expressions become unsatisfiable with probability
one, is thoroughly displayed. In the case- 2, the(rigorously known critical value (@=1) of the number of
clauses per Boolean variable is recovered whileer3 we show that the system exhibits a replica symmetry
breaking transition. The annealed approximation is proven to be exact forda{@1063-651X%97)10106-4

PACS numbegps): 05.20-y, 64.60—i, 87.10+e

[. INTRODUCTION complete decision problems that are computationally hard in
the worst case appear not to be really so in the typical case,
The emergent collective behaviors observed in a varietgxcept in critical regions of their parameter spdedth a
of models of statistical mechanics and in particular in frus-polynomial-exponential patterrwhere almost all instances
trated disordered systems have been recognized to play d the problems become computationally hard to solve. Far
relevant role in apparently distant fields such as theoreticdfom criticality, the problems are either underconstrained or
computer science, discrete mathematics, and complex syeverconstrained and both the stochastic and systematic
tems theonf1-5]. Computationally hard problems, charac- search procedures are capable of finding solutions in polyno-
terized(in worst casesby exponential running time scaling mial times.
of their algorithms or memory requirements, the so-called One of the major theoretical open questions in this con-
NP-complete problem§G], are known to be in one-to-one text would be how typical-case complexity theory of com-
correspondence with the ground state properties of spimputer science and spin-glass transitions, the so-called replica
glass-like modelg¢see Ref[1] and references thergilMs a  symmetry breaking transitiofiL], are related. In turn, com-
consequence, tools and concepts of statistical physics hayiter science is a source of highly nontrivial models contain-
shed some new light onto the notion of the typical complex-ing all the paradigms necessary for a deeper understanding of
ity of NP-complete problems and have led to the definitionthe physical properties of disordered frustrated systems, in
of new search algorithms such as the simulated annealingarticular diluted models for which the theoretical frame-
algorithm, based on the introduction of an artificial tempera-work is still to be complete@9—14.
ture and some cooling proceduréd. Among the known NP-complete problems, the SAT prob-
Very recently, other techniques inspired from statisticallem is at the same time the root problem of complexity
mechanics, namely, finite size scaling analysis, have beetheory[6] and a prototype model for phase transition in ran-
applied[8] also to the study of universal behavior in the dom combinatorial structurg8,15]. SAT was the first prob-
computational costrunning time of some classes of algo- lem proved to be NP-complete by Cook in 19[/16] and
rithms in the course of searching for solutions of randomopened the way for the identification of a vast family of other
realizations of the prototype of NP-complete problems, theNP-complete problems for which a polynomial reduction to
satisfiability (SAT) problem we shall discuss. SAT became availablgg]. In particular theK-satisfiability
More generally, phase transition concepts are starting toK-SAT) problem, a version of SAT we shall discuss in
play a relevant role in theoretical computer sciejdé  great detail in the following, besides playing a central role in
where the analysis of general search methods applied to vatNP-completeness proving proceduréd, is a widespread
ous classes of hard computational problems, characterized ligst for the evaluation of the performance of combinatorial
a large number of relevant variables and generated accordirggarch algorithms, due to the typical intractability of random
to some probability distributions, is of crucial importance in samples generated near criticality.
building a theory for the typical-case complexity. NP- In a recent wor5], we have shown that the methods of
statistical mechanics of random systems allow one to com-
pute some algorithmically relevant quantities such as the
*Electronic address: monasson@physique.ens.fr. LPTENS is gypical entropy of the problem, i.e., the typical number of its
unite propre du CNRS, assoeieal'Ecole Normale Supeeure et'a  solutions, and to clarify the nature of the threshold behavior.

I'Universite de Paris—Sud. The scope of this paper is twofold. On the one hand, we aim
TAlso at INFN sezione Torino. at giving a thorough discussion of the analytical derivation of
Electronic address: zecchina@to.infn.it the above results, mainly the calculation of the entropy jump
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at the transition. On the other hand, we expose in detail the Very schematically, the known results df-SAT that
replica symmetric theory of th&-SAT problem both by have been obtained in the framework of complexity theory
showing how to go beyond the simplest solution proposed itmay be summarized as follows.
our previous worK5] and by clarifying the connections with (1) For K=2, 2-SAT belongs to the cla$® of polyno-
known results in statistical mechanics of diluted models.  mial problemd18]. P is defined as the set of computational

This paper is organized as follows. Section Il is devotedoroblems whose best solving algorithms have running times
to the presentation of thi€-SAT problem and of the known increasing polynomially with the number of relevant vari-
exact results. Section Il contains an outline of the statisticahbles[6]. For > a., MAX-2-SAT is NP-completd6]: NP-
mechanics approach whereas the replica symmetric solutiom®mplete problems are the hardest nondeterministic polyno-
are exposed in Sec. IV. In the successive sections, from V tmial problems, whose solutions may be found by the
VI, the outcomes of the analytical calculations are exposedxhaustive inspection of a decision tree of logical depth
in detail for the different values df of interest. In Sec. IX, growing in a polynomial way with the number of relevant
we show how to rederive some of the previous results usingariables; it is generally thought that the running times of
a simple probabilistic approach. Finally, in Sec. X, some newtheir best solving algorithms scale exponentially with the
perspectives opened by the introduction of a model that innumber of relevant variabld§]. The mapping of 2-SAT on
terpolates smoothly between 2-SAT and 3-SAT are brieflydirected graph theory19] allows one to derive rigorously
discussed. the threshold value,,=1 and an explicit 2-SAT polynomial
algorithm working fora< a. has been developdd8].

(2) For K=3, bothK-SAT and MAX-K-SAT belong to
the NP-complete class. Only upper and lower bounds on
a:(K) are known from a rigorous point of vief17,20,21.
Given a set oN Boolean variable$x;=0,1}_;  y,we Finite size scaling techniques have, recently, allowed one to

first randomly choos& among theN possible indices and ~ find precise numerical values of; for K=3,4,5,6[3].
then, for each of them, choose a literlthat is the corre- (3) For K>1, clauses become decoupled and an

- ; inp ~ oK i ;
spondingx; or its negationx; with equal probabilities of asymptotic expressmac—_z In 2 can b? easily found. It is
one-half. A clauseC is the logicaloR of the K previously not yet known whether this scaling law is correct or not from

chosen literals, that i€ will be true (or satisfiedif and only a rigorous point of view.

. : . ; For brevity, we do not discuss here the results concerning
if at least one literal is true. Next, we repeat this process t 2
obtain M independently chosen clausgs,},_, and ?he algorithmic approaches tK-SAT and MAXK-SAT

ask for all of them to be true at the same time; i.e., we tak r118,22l’)2:li. WefJIL\J“SDt mentllo? thathI\/IAXKt;]S,tAT”belo?gs 0 |
the logicalAND of the M clauses thus obtaining a Boolean € subciass o ~comprete probiems fhat atows for & poly=

expression in the so-called conjunctive normal foi@NF) nomial approximation scheme for quasioptimal solutions
The resultingk-CNF formulaF may be written as [22]. A recent numerical study of the critical behavior in the

computational cost of satisfiability testing can be found in
[8].

For a=M/N>0, K-SAT can be cast in the framework of
statistical mechanics of random diluted systems by the iden-
tification of an energy-cost functio&(K,«) equal to the
number of violated clausg$,15]. The study of its ground
where/\ and\/ stand for the logicahkND andoRr operations, state allows one to address the optimization version of the
respectively. K-SAT problem as well as to characterize the space of solu-

A logical assignment of thé¢x;}'s satisfying all clauses, tions by its typical entropy, i.e., the degeneracy of the ground
that is, evaluating= to be true, is called a solution of the state. The vanishing condition on the ground state energy for
K -satisfiability problem. If no such assignment exidtsis  a givenK corresponds to the existence of a solution to the
said to be unsatisfiable. K-SAT problem and thus identifies a critical valag(K) of

When the number of clauses becomes of the same order below which random formulas are satisfiable with prob-
as the number of variables(=aN) and in the largeN ability one. Fora> a(K), the ground state energy becomes
limit—indeed the case of interest also in the fields of com-nonzero and gives information on the maximum number of
puter science and artificial intelligen€#5,17—the K-SAT  satisfiable clauses, i.e., on the MAX-SAT problem. Previ-
problem exhibits a striking threshold phenomenon. Numeri-ous works on the statistical mechanics of combinatorial op-
cal experiments have shown that the probability of finding aimization problems—such as traveling salesman, graph par-
correct Boolean assignment falls abruptly from one down tditioning, or matching problemfsl,24,10,9—focused mainly
zero whena crosses a critical value (K) of the number of on the comparison between the typical cost of optimal con-
clauses per variable. Above.(K), all clauses cannot be figurations and the algorithmic results. The issues arising in
satisfied any longer and one gets interested in minimizing th&-SAT are of a different nature, and the key quantity to be
number of unsatisfiable clauses, which is the optimizatiordiscussed20] is rather the typical number of existing solu-
version of K-SAT also referred to as MAX-SAT. More-  tions, i.e., the ground state typical entroBy(«).
over, neara.(K), heuristic search algorithms get stuck in A crucial rigorous result on which the whole statistical
nonoptimal solutions and a slowdown effect is obserird  mechanics approach is founded concerns the self-averaging
tractability concentration On the contrary, far from critical- taking place in MAXK-SAT. For anyK, independently of
ity heuristic processes are typically rather efficig8i the particular but randomly chosen sampldwfclauses, the

Il. THE K-SAT PROBLEM AND A BRIEF SURVEY
OF KNOWN RESULTS

M M K
F=AC,=N (vZ)), 1)
/=1 /=1 i=1
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minimal fraction of violated clauses is narrowly peakedshall use below an order parameter formulation, inspired by

around its mean value whe¥— oo at fixed o [23]. [12,13, which results much more conveniently than usual
overlaps.
. STATISTICAL MECHANICS OF THE K-SAT To compute the ground state energy, we first introduce a
AND MAX- K-SAT COST FUNCTION fictitious temperature B to regularize all mathematical ex-

] pressions and sengl—oc at the end of the calculation. Note
As discussed above, we map the random SAT probleny,t the introduction of a finite temperature also greatly helps
onto a diluted spin energy-cost function through the intro-gne to understand the physical properties of the model. We
duction of spi_n var_iablesﬁzl if the Boolean variabl_exi is proceed by computing the model “free-energy” density at
true, §=—1 if x; is false. The clauses’ structure is taken jnyerse temperatur@, averaged over the clauses’ distribu-
into account by atM XN quenched random matrix where  tjgn
A, i=—1 (+1) if clauseC, containsx; (x;), O otherwise.

: 1
Then the function F(B)=— ,B_NInZ[A]’ (6)

' 2) whereZ[ A] is the partition function:

N
21 Asi §,—K

M
E[A,S]zz,l 5

where d[i;]] denotes the Kronecker symbol, turns out to be
equal to the number of violated clauses in that the quantity
EiN:l A,; S equals—K if and only if all Boolean variables
in the/th clause take the values opposite to the desired oneé\s already mentioned, the enerd®) is self-averaging and
i.e., if the clause itself is false. The above expression can alsean therefore be obtained from the above free energy. The
be written in a way that is manifestly reminiscent of spin-overline denotes the average over the random clauses’ ma-
glass model§and more precisely neural networks with an trices satisfying the constraif®) and is performed using the
extended Hebbian rulg]), replica trick InZ=lim,_o(Z"—1)/n, starting from integer
values ofn. The typical properties of the ground state, i.e.,

Z[A]={§_} exp( — BE[A,S)). @

K . . .
o« R the internal energy and the entropy, will then be recovered in
B[AS]=zxN+ 2 (-DF > the B—oc limit.
R=1 i1<ip<.---<ig . .
Once averaged over the clauses choices,ntheinteger
Xdi g, i S, - - Sig (3 moment of the partition function depends on the spins only

through the multioverlaps
where the couplings are defined by

N
1
M aj ,a e Aop — a a.: a.
1 Qa1-22 v2r_—2 stige. .. g )
Ji iy g™ —ZKZI AsiAsi Ay (4) Ni<p ™ '

, . involving an even number of replicas. To avoid the introduc-
In view of the above formulatlon and of the current knowl- oy of conjugated Lagrange parameters, we introduce along
edge on long-range spin glasses, we may already expegie |ines of[12,13 the generating function
qualitatively different behaviors forK=2 (similar to

Sherrington-Kirkpatrick modgland K=3 (closer to the so- R n/2
calledp spins or Potts modelg1]. We shall see in the fol- c(a)zﬁ 1+, > Q- Axgligl. .. gl |
lowing that analytical calculations support this intuitive feel- r=lag<---<ay ©
ing.

Finally, to ensure that the number of Boolean variables in

- _ (1 2 n
any clause is exactly equal #, we impose oA the fol-  Whereo=(o"0%, ... .0") shans the space of all ectors
lowing constraints: with n binary componentgr®=*1. The use of this order

parameter leads to simpler algebraic calculations than the
N usual procedure involving the overlap@) and their

2 A,Z/,i:K' V/=1,..., M. (5) Lagrange multipliers. Its physical interpretation is straight-
=1 forward: c((;) equals the fraction of siteés(among all pos-

The ground statéGS) properties of the cost functiof®) sibleN Booleanavarlablessuch thatS’=0?, Va=1,...n.
will reflect those of K-SAT (Egs=0) and MAXK-SAT  Therefore, allc(o)’s range from zero to one and the global
(Egs>0). In Eq.(2), one may interpreK as the number of normalization condition implies that
“neighbors” to which each spin is coupled inside a clause.

To study the ground state properties for the cost fund@®n 2 c(o)=1 (10)
we follow the replica approach in the framework of diluted - '
models, which is indeed much more complicated than that of
long-range fully connected disordered models. As we shalln addition, the vanishing condition on overlaps with an odd
see below, replica theory must be formulated in a functionahumber of replica indices reads

form involving not only interactions between pairs of repli- R R .

cas but all multireplicas overlaps. To be more precise, we c(o)=c(—-o), Vo. (11

o
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The averaged integer moments of the partition function u [(1+x
are then given by the following formula: P(x)= —zJ du cog3 In{ 7 —
R 1 R
Z[A]"= joH de(o) et Pk, (12) Xexp —aK+aK H dx,
o -1/=1
where the integration measure is restrictect¢o)’s fulfill- u
ing constraintg10), (11) and X P(x/)cos<§ In A(K_1)> , 17
F{c},K,a,B] with
- - > > Tt 1+x
=-2 c(o)nc(@)taln X c(ay)-clok) Ax-n=Ak-1{x}.B) =1+ -1 ]] ( > -
o O1, e oK - /=1
n K (18
Xaﬂl 1+(e7F-1) 1_:[1 oo} ?1]”- (13 The corresponding replica symmetric free energy reads

1
We may interpret the above free-energy functional as the — gr(B)= In2+ a(l—K)j [T dx,P(x,)In Ak,
free energy of a system with"2nteracting levels. While the -1/=1 '

first term inF simply accounts for the statistical entropy, the TS
second term represents the interactions between the levels at @ f
+— dx, P(x,)In A

an effective “temperature” k. I, dx POx)In A

In the largeN,M limit (with fixed «=M/N), the partition 1
function (12) may be evaluated by taking the saddle point _ _j PO IN( L — X2 1
over all order parameters Since the functiorf is invariant 2 dxPOOIN(L=x7). (19)
under permutation of replicas, a possible natural saddle point
can be sought within the so-called replica symmetRS) Note that in EQ.(19) A, is given by a formula similar to
ansat710,9,12,13% Eq. (18), where the upper bound of the product is replaced
by K. To conclude, let us remark that §d.7) can in turn be
transformed into an integrodifferential equation

c(oto?, ... 0"= C(E Mo 1]), (14)

ap(x)——KP +Kf1 K]:[1d
which preserves permutation invariance. Constraifi8) Ja (x) -17=1 X
and(11) now read IP(x0)
" x| PO +a(K=1) — 2 P(xp) - P(xk 1)
2 ( )cm 1, C(n—))=C(j) (0=j=n).
= an(x) 77(— )
(15) ><§—P( 7(X))+ P(n(=x))|, (20

We obtainn+1 saddle-point equations for &ll(j)'s by |, 1are X x4+ DA = 11T+ A 1
differentiating Eq.(13) with respect to the order parameters. —x] and fZ)(r 3vh|[c(h th e) béKu nld) ary cor]1d[|§|on é g(:\(/eln) by the
In then—0 limit, we are therefore provided with an infinity ¢\ "tion of Eq.(17) in a=0:

of order parameter€(j) for any real numbej. To reach a
simple final expression of the order parameters, we now P(X)|ge0=8(X). (21)
adopt the functional formalism proposed[ib0,11]. Let us
call P(x) the (even probability distribution of the Boolean
magnetizationsx=(S), averaged over the disorder. We

show in the Appendix that TheK =1 case can be solved either by a direct combina-
y torial method or within our statistical mechanics approach.
_ — Though this particular case does not present any critical be-
ci)= f dx P0) (1+x (16 havior, its study will turn out to be useful in understanding
the K>1 models in which we are interested. Moreover, the
in the limit n— 0. The advantage of the above formulation isK=1 toy model allows one to check the correctness of the
that P(x) has a clear significance, directly comparable tostatistical mechanics results.
numerical simulations. We shall come back on this point In this case, a sample d¥l clauses is completely de-
below. scribed by giving directly the numbets and f; of clauses
After some algebra, we find the self-consistent equationmposing that a certain Boolean variat3e must be true or
for the magnetizations distributidR(x) taking into account false, respectively. Therefore the partition function corre-
saddle-point conditions for all(j)’s, sponding to a given sample reads

IV. ATOY MODEL: THE K=1 CASE

i
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N
Z{t. =11 (e ire ), (22

and the average over the disorder gives

M! 0.5l

In Z[{t,f}]

st

(23

1——— 1 ;
NI 2 T

= In 2—012—B+|_E_ e I (a)ln

wherel, denotes théth modified Bessel function. The zero e
temperature limit gives the ground state energy

Ecda)=5[1-€ “Ig(@)—e I j(a)] (24

and the ground state entropy

M/N

Seda)=€e “lo(a) In 2. (25 FIG. 1. Ground state cogbold line), or fraction of violated

. . clauses, and entropyhin line) vs a=M/N for K=1.
One may notice that for any>0, the ground-state energy is o ) v o

positive. Therefore, the clauses are never satisfiable all to- ) o
gether and the overall functiofl) is false with probability [2=O(1)], in the limit of zero temperature and for
one. Nonetheless, the entropy is finite, implying an exponen@— a.. The emergence of Dirac peaks X+ *1 signals
tial degeneracy of the ground state describing the minimunihat a freezing process has just occurred and that a further
number NEgg(@) of unsatisfiable clauses. Such a degen-ncrease ok beyonda, would cause the appearance of un-
eracy is due to the presence of a finite fraction of variablesatisfiable clauses. This scenario—which can be verified by
e “lo(a), which are subject to equal opposite constraintgnspection of Eq(26) for K=1—is true also folK>1. In
ti = fi , and whose Corresponding Spins may be chosen up dﬁ.ct, by Computlng the fraction of violated clauses through
down indifferently without changing the energy.

The above results are indeed recovered in our approach, 14
showing that the RS ansatz is exact for glland @ when E= In Z[A], (29)

K=1. Equation(17) can be explicitly solved at any tempera- N B
ture 18 and the solution reads
t B
X—1lan 7

which, in the limit of physical intereg8— o, becomes

at temperature B, one sees that the ground state energy
, (26) depends only upon the magnetizations of order
i[l—O(e*|Z|ﬂ)], if any, and that such contributions can be
described by the introduction of the rescaled function

tan)'( %) %tam( %) ] , (29

Whose meaning will be clarified in Sec. IX. From E47),
g(z) fulfills the saddle-point equation

PO)= 2 el (a)d

P(x)=e “lo(@)8(x)+3[1—e “lg(a)]

X[8(x—1)+ 8(x+1)]. 27) R(Z):gmlp

The finite value of the ground state entropy may be ascribed
to the existence of unfrozen spins whose fractional number i
simply the weight of thes function in x=0. At the same
time, it appears that the nonzero value of the ground stat
energy is due to the presence of completely frozen spins of
magnetizationsx=*+1. This is an important feature of the = d JK-1

. : . . u aK
problem, which remains valid for ark, as we shall see in R(Z):J — cos{uz)ex;{ — ﬁJraKJ H dz,
the following. In Fig. 1 we report the plots of the above —2m 2 0 /=1
energy and entropy at zero temperature.

XR(z,)cogu min(1,zq, . .. ,zK_l)]}. (30
V. REPLICA SYMMETRIC SOLUTIONS FOR ALL K

A relevant general mechanism for the comprehension of

the overcoming critical behavior IK-SAT is the accumula-  The corresponding ground state energy rdage Eqs(19)
tion of Boolean magnetizationgS)=+[1-0(e"?#)]  and(29)]



1362 REMI MONASSON AND RICCARDO ZECCHINA 56

« K The physical meaning of; may be understood by looking at
EGS(a):a(l—K)f H dz,R(z,)min(1,z;, ... ,zk) the definition of the rescaled function order paramégs).

0/=1 Turning back to the magnetization distribution, we indeed
find in the zero temperature limit

P(x)=e "o(y)P(X)+3[1—€ "tg(yy)]
X[8(x—1)+8(x+1)], (349

K-1
aK (= )
+—f II dzR(z)min(1z,, ... ,z¢_1)
2 Jo/=1

—f dzR2)z. (31
0 where P,(x) is a regular (i.e., without Dirac peaks in
x=*1) magnetization distribution normalized to unity. The
above identity is a straightforward extension of the expres-
sion (27) [when K=1, y;=a from Eqg. (33) and
P.(x)=8(x)] to any value ofK. Inserting Eq.(32) in Eq.

(31) gives the value of the cost energy

It is easy to see that the saddle-point equati®) is in
fact a self-consistent identity foR(z) in the rangez
€[0,1] only. Outside this interval, Eq30) is merely a defi-
nition of the functional order parametBr:. This remark will
be useful in the following.

To start with,R(z) = 8(z) is obviously a solution of30)

Y1 _ _
for all values ofa andK, giving a zero ground state energy Eos(a)= 5 [1—€e Mlo(y1) —Ke y(yy)]. (39
since no spins are frozen with magnetizationg. Let us
assume thaR(z) includes another Dirac peak in<zp<1. |t is therefore clear that, in the RS context, the SAT to un-

Then, inserting this distribution in the exponential term onSAT transition corresponds to the emergence of peaks cen-
the right-hand sidérhs) of Eq. (30), we find thatR(z) onthe  tered inx= =1 with finite weights, that is to a transition
left-hand side(lhs) necessarily includes all Dirac peaks cen-from y,=0 to y,>0. This simplest solution centered on
tered inkzy, wherek=0,+1,=2,+3, ... .Next, we proceed integer numbers, similar to previous finding®,11,25, was
iteratively by inserting again the whole series in the rhs ofpresented in Ref5].

Eq. (30). For large enough, kz, is larger than one and the  |n addition to Eq.(32), there exist other RS solutions to
exponentiated term includes a aoscontribution, which  the saddle-point equatiori®6]. For instance, if we choose
causes the presence of Dirac distributions centered in ajl,=1  the insertion process ends up after two iterations and
(positive and negativeintegers. Therefore, as soonR6z)  generates Dirac peaks centered in all integer and half-integer

is different from &(z), it contains an infinite set of Dirac numbers. More generally, for any integex 1, we may de-
functions peaked around all integer numbers. Clearly, théine the solution to Eq(30),

simplest self-consistent solution to EGO) will be obtained

[

for zo=1 since the process described above closes after one 7
iteration. This solution reads$] R(Z)=|:E_x r, é\z- p) (36)
. _ : having exactlyp peaks in the intervdl0,1], whose centers
— Y Ny ) . .
R(2) /;m e M Ay)8(z=7), (32) arez,=/p, /=0, ... p—1. The coefficients , of these

distributions are self-consistently found through
wherey; depends oK and« and fulfills the implicit equa-
tion 2rdo ‘ i .
r/=f 2—cos{/0)ex E yjlcogjo)—1]| (37)
0 &7 =1

vi=aK (33

1—8_71|o(71)r_1

2 forall /=0,... p—1, where

(38)

The corresponding energy reads, from E@&) and (31),

K p-1

EGS:a(l—K)[(l—ro

p

j—1
ro I
2+2+2r|). (39)



56

STATISTICAL MECHANICS OF THE RANDOMK- . . . 1363

Note that the last term of Eq39) includes the coefficient L
rp, which may be computed using identity7). It is easy to
check that the first nontrivial solutiof82) corresponds to
p=1. Though there might be continuous solutions to Eq.
(30), we believe they can be reasonably approximated by the®**
largep solutions we have presented hg2é]. In the follow-

ing sections, we shall therefore analyze which are the physi-
cal implications of the above solutions in the different cases
of interest, K=2,K=3, andK>1.

VI. THE K=2 CASE

The caseK=2 is the first relevant instance &f-SAT.
Graph theory has allowed onfl9] to show that for
a=a(2)=1 the problem undergoes a satisfiability transi-
tion that can be also viewed asPa-NP-complete transition, ,
from 2-SAT to MAX-2-SAT.

Let us first consider the simplept=1 RS solution[5].
Self-consistency equatio(83) leads to the solutiony;=0
for any «. However, fora>1 one finds another solution 0
v1(a@)>0, which maximizes the free energgndEgg and
therefore must be choséthis is a well-known peculiar as-
pect of the replicas formalisfil]). When approaching the
threshold from above, we indeed find

FIG. 2. Order parameters (i=0, ..., p—1) corresponding to
the different RS solutionp=1 (dashed ling p=5 (dashed-dotted
lines), and p=10 (continuous lines for K=2 and a=M/Ne
[1,3]. The upper curve within each group representvhereas the
overlapping ones in the lower part of the figure represerfor

4
— - —_ 133 _1\4
Ecdalp=1)= 55 (a=1)°+0((a—1)%) i=1...p-1 (p=5.10).

=0.1481 (a—1)3. (40)

which is slightly larger than thp=1 result(40). Numerical
calculations for higher values gf=3 confirm that the en-
ergy increases very slowly with. We have found that for

an?ZI)EESf_ ?orWhﬁq ?hi%‘;agi?g?\gofb\?g:;tg];clr;gu?s,rgsusber:osrw(tesIarge p’s the ground state energy is almost stationary, so that
Gero)= = 0 & the p=10 solution can be considered as a very fair approxi-

finite aﬁd the cor.r.esponding CNF fp_rmulas_ turn out to bemation of the optimalp—o RS solution. The coefficients
false with probab|llty one. The transition taking placeagt r, of the distributions present in the order parameéz)
IS of second <_)rder with respect o the order paramejend . 36) are displayed in Fig. 2 for different values afand in
is accompanied by the progressive appearance of two DII’%

. o . ; e casep=1, p=5, andp=10.
Fleakes_ nflor( YP)(T/)Z N x=*1 with equal amplitudes The ground state energy predicted by e 10 RS solu-
- o\’1 .

It is straightforward to verify that RS solutions with tion is compared to numerical exhaustive simulations carried

- out for small sized systems in Fig 3. Fa>a.=1, the
p=2 are not present below=1. However, above the theoretical estimate dfsg seems to slightly deviate from the
threshold, one has to check whether their ground state ener GS gntly

Rimerical findings, which signals the occurrence of a replica
is larger than that of thp=1 solution, that is, if they can be 2 o E
relevant for MAXK-SAT. Forp=2, resolution of Eqs(37) symmetry breakingRSB) transition at the threshold. This is

. : ; in agreement with a stability calculation performed on the
an(_j (38) glose 10 arg(2) Iead_s to (d|spard|ng the choice Viana-Bray mode[29] around the critical pointe=1 [13].
r,=0, which amounts to the=1 solution

Note that the Viana-Bray energy is, up to ttigelevant at
8+2\/§ zero temperatube_random field in Eq(3), equivalent to the
ro=1— (a—1)+0(a—1)?), 2-SAT cost function. We may therefore expect that the result
7 derived in[13] applies to our case. If it were so, there would
3 be an instability of the replica symmetric saddle point at the
3—42

As expected, thgp=1 RS theory predictE;s=0 for a<1

r= (a—1)+0((a—1)?) (41)

7

for the coefficients of the Dirac peaks =0 and z=3,
respectively. Inserting these expansions into the ene3gy
one finds

9+4.2
Ecdalp=2)= %

~0.1496 (a—1)3,

(a—1)3+0(a—1)%

(42

threshold due to repliconlike fluctuations, breaking replica
symmetry abovey.. The situation would be reminiscent of
the case of neural networks with continuous weights, where
RS theory is able to localize the storage capacity but not able
to predict the minimal fraction of errors beyond the transition
[2,28]. The 1N extrapolation of the simulations resulting
from finite systems tdN— « is shown in Fig. 4 for the par-
ticular choicea=3. Data seem in favor of RSB but one
cannot exclude that W? effects could make both numerics
and theory coincide. However, one should notice that for
a>1, the exact asymptotic scaling of the ground state en-
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Ln(2)

RS-values

0.14 K=2, M/N=3, N=18,20,22,24,26

0.01 0.02 0.03 0.04 0.05 0.06
1/N

0.5

FIG. 3. RS ground state entroffflecreasing curve, left scale FIG. 4. 1N extrapolation of the minimal fraction of violated
and RS ground state coéhcreasing overlapping curves computed clauses(i.e., ground state cosfor =3 and N=18,20,22,24,26
for p=1,...,10, right scalpvs a=M/N for K=2. At a=a=1 averaged over 20 000,15 000,10 000,7500, and 5000 samples, re-
the ground state cost becomes positive, signaling a second ordépectively. The extrapolated value appears to be different from the
SAT/un-SAT transition(at the same point the RS solution becomesVvalue 0.14472 toward which the RS solutions with increaging
unstablg. The value of the entropy at the critical ratio is 0.38. The rapidly converge. This is in agreement with the expected instability
dashed lines interpolate the numerical data of exhaustive simul&f the RS solutions for>«..
tions on systems of sizeN=16,20,24 and averaged over
15000,7500,2500 samples, respectively. Errors bars are withigyhich coincides with the annealed res[820]. Then, we
10% for the entropy and even smaller for the energy and thus nqjse Eq.(20) to compute the first derivative of the magneti-
reported explicitly. zations distribution int=0,

ergy Ege=a/4 [23] is compatible with the RS prediction.
From the above discussion, it is reasonable to conclude dP(x)
that RS theory is exact in the regionrs@v<1. As already Jda Xtox—q
mentioned, the key quantity to study in this range is the
typical number of solutions to the problem, i.e., the typical aK ( 1 )

aK
=—aKs(X)+ — &
a=0 2

ground state entropySgg(a) given by Eq.(19) in the +t—5 9 (45)

B— limit. Notice that a simpler expression of the ground

state entropy, more precisely of its derivative, may be ob-

tained by differentiating19) with respect tox and using the Now, we differentiate Eq(43) with respect toa and inject

saddle-point equatiof0). The result reads the above result, which is needed to obtain the second de-
rivative of the ground state entropy at=0,

XTokTq

K K
dSgs fl (1+X/
= dx, P(x,)In| 1— ,
70 (=] 11 dx Px)ini1-T] 25 1)L .
(43 ga? | TR AIT )TNty

and is valid for anye and K. Using the initial value K2 oK-1_1
Scd.—0= In 2 and the above equati@43), one can in prin- +— In( 1— W) , (46)
ciple compute the ground state entropy for any valuerof 2 27427 -1)

However, due to the difficulty in finding a solution of the

integral equation(17), it turns out to be convenient to de- \yhich is negative as required since the entropy is expected to
velop a systematic expansion of the entropy in the parametgfg 5 concave function af. The whole procedure, consisting

a. We now briefly present the procedure to be employed fof, o,ccessive differentiations of Eq20) and (43) can then

a generic value oK. _ . be iterated to compute symbolically all the derivatives of
Inserting P(X)| ,—o= 8(x) into formula (43), we obtain P(x) and Seg(«) with respect tow in @=0.

the slope of the entropy at the origin: IntheK =2 case, we have calculated the power expansion

9Sg 1 of Sgg(@) up to the seventh order i (which shows an
Ts = In( 1- 5 ) (44)  uncertainty less than 1% with respect to the sixth order Tay-
a
=0

a= lor expansion on the rangee[0;1]). The result reads
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Ses(@)= In2—0.2876820&—0.012422522
—0.0048241588°—0.0023958362*
—0.0013119156°—0.00081617226°
—0.00053068034'— - - -, (47) oal}

0.125

in which, for simplicity, we have reported only a few signifi-
cant digits of the coefficients. The latter are computed sym-
bolically and have the form of a logarithm of rational num-
ber. At the transition we fin@g 4 a.) =0.38, which is indeed
very high as compared t85;40)= In 2. A plot of the en-
tropy versuswe is shown Fig. 3. For completeness, we stress
that the ground state entropy and the logarithm of the num-_ .. [
ber of solutions, which coincide below., have different
meanings(and valuep above the threshold. In this region,

the latter equals— since all solutions have disappeared 0
while the former quantity reflects the degeneracy of the low-

est statgwith strictly positive energyand is continuous at

the transition as shown by simulations. N

Since, fora>ac, sets ofS’s no longer exist such that 15 5. Rs ground state energy fér=3 (continuous lines
the energy(2) remains nonzero, the vanishing of the expo-myyted fop=1, . . . ,10(lines corresponding to larger values of
nentially large number of solutions that were present below, \oyuid not be distinguishableand compared with the results of
the threshold is surprisingly abrupt. We then conclude thahymerical simulations on systems of sike=16,20,24 and aver-
the transition itself is due to the appearance, with probabilityaged over 15 000,7500,2500 samples, respectieetgr bars are of
one, of contradictory logical loops in all the solutions and notthe order of the size of the dotsThe RS ground state energy
to a progressive disappearance of the number of these solgecomes positivéfor p>>1) at a;=4.60 whereas the value at
tions down to zero. This perfectly agrees with the graph-which the unstable solution appearsaig=4.428. Both values are
theoretical derivation of the criticat, which is indeed based greater than the numerical estimate of the critical ratio (4.2). Scope
on a probabilistic calculation of appearance of contradictonyf the dashed line is to help the eye in following the expected, yet
cycles in oriented random graphs representing Boolean fornknown, RSB behavior of the ground state energy.
mulas.

0.075 |

of the abovep=1 RS prediction is also confirmed by the

large K limit. One finds an(K)~K2%/(167) and
VIl. THE K=3 CASE ag(K)~K2X/(47), which are larger than the exact

asymptotic valuea (K)~2% In 2. It is worth noticing that

The K=3 case is the first NP-complete instance of(Similarly to theK=2 casg though the scaling of;(K) for

K-SAT. The resolution of the RS equations leads to a scel@'9€K is wrong within thep=1 RS ansatz, the asymptotic

S ; _ lue for largea (and anyK) of the ground state energy for
nario different from the previouk =2 case. We shall see V2 ge e ¢ .
below that RS theory does not allow one to derive the vaIué\AAWX(;K&?@E{'Jsrnc?gr?ﬁ?yrggg'Cé?i%sl(u‘;‘iz);:/bz |[0203|15n at
of the thresholdx.(3)=4.2, which was estimated by means P y 9

S d . . larger values ofb. Whenp=2, the previous transition sce-
of finite size scaling techniqud8]. This is due to the fact : : L ' :
: . . . nario remains qualitatively unaltered, but the precise values
that the calculation ofx (3) requires the introduction of 9 y P

. . . of the spinodal and the threshold points are quantitatively
RSB, leading to very complicated equations we have not yel, ified. One finds(see Fig. 5 that a,(3|p=2)=4.45

succeeded in solving. However, it is a remarkable fact thaty hie as(3|p=2)=4.82. The ground state energy curve is
in the relevant region for 3-SAT, i.e., far ranging from  gimjjar to thep=1 curve but is shifted to the left. Though
zero up toac(3), theground state entropy computed using stj|| incorrect, thep=2 prediction is thus closer to the real
RS theory seems to be exact. threshold value. For larger integeps we have found that
Let us start with thep=1 RS solution(32). Solving Eq. 4, (3|p) and a(3|p) still decrease but quickly converge to
(33 leads to the following scenarigsee Fig. 3 For  the values 4.428 and 4.60, respectivélye observed a
a<ap(3)=4.667, there exists the solution =0 only. At  power law convergence by considering valuespofip to
am(3), a nonzero solutiony,(a)#0 discontinuously ap- 30, see Table)! In Fig. 6, we have plotted the values of the
pears. The corresponding ground state energy is negative goefficientsr, (/=0,...p—1) entering Eg.(36) for
the rangee(3)< a<ay(3)=5.181, meaning that the new p=1, p=5, and p=10. The departure of the coefficient
solution is metastable and th&;s=0 up to ay4(3). For  curves forp=5 from the p=10 curves displaying, r»,
a>ag(3) the y,(a)#0 solution becomes thermodynami- r,, rg, andrg is clearly visible as soon as the remaining
cally stable[31]. coefficients of thep= 10 solution, namely;, rs, rs, r7, and
From the above scheme one is tempted to conclude that, which are implicitly set to zero in th@=5 solution,
ag(3) corresponds to the desired threshald3). However,  acquire a non-negligible value.
this prediction is wrong since the experimental value The first order jump of the order parameteyss has a
a¢(3)=4.2 is lower than botla,(3) andag(3). Thefailure  precise meaning in terms of the fraction of Boolean variables
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TABLE I. p dependence of the RS critical raid® and of the  yelation Sge=< (1 f)In 2, leading tof <0.96. Moreover, nu-
fraction f of fixed variables. merical investigations confirm that a quite large fraction of
the Boolean variables have the same valeither always

RS
P ®s f true or false in all satisfying logical assignments at the
1 5.1812 0.6561 thresholdacx4.2 [27]
3 4.7271 0.7889 Thereforg, we may conclude from thg above analysis that
6 4.6451 0.8497 RS th_eory is unable to correctly pre<_j|ct the vglue of t_he
9 4.6240 0.8765 transition threshold but provides us with a sensible qualita-
12 4.6153 0.8920 tive pattern of the SAT/un-SAT transition. When crossing
' ' the latter, a first order replica symmetry breaking transition
15 4.6107 0.9022 d
18 4.6080 0.9095 presumably takes place. The calculation of the threshold
1 4‘6063 0'9150 value would require the introduction of a replica symmetry
) ) broken ansatz to replace E44). However, the issue of RSB
24 4.6051 0.9193 in diluted models is largely an open of&4], due to the
27 4.6042 0.9227 complex structure of the saddle-point equations involved,
30 4.6036 0.9256 and we shall not attempt here to pursue them in this direc-

tion.

, . In the following, we shall rather show that RS theory still
completely determined at the transition. We have seen thahoyides a consistent and very precise analysis of the behav-
in 2-SAT, the fraction of Boolean variables whose valuesiy, of the randomK-SAT problem below its threshold. This
cannot fluctuate in the different ground states, that is, theequires the inspection of the ground state entropy in the
heights of the Dirac peaks &f(x) in x==x1, progressively region whereR(z) = 8(z). Using the method exposed above,

increases from zero whea crosses its critical value. For we have compute@gs to the eighth order inv and found
larger K=3, there abruptly appears a finite fraction of the y,4¢

variables that are entirely constrained by the clauses’ fulfill-
ment condition at the threshold. We can compute this critical _ _ _ 2
fraction f using the RS theory. From E@36), we simply Ses(@)= In2-0.1335313& ~ 0.00093730474a

obtain f=1-r,. The p=1 solution therefore gives —0.00011458425°%—0.000016252451a*
f=0.656. Increasing, the fraction of fixed variables at the 6 s 7 6
threshold converge t6=0.94; see Table |. Such a value is —2.4481877 10°a°—3.9910735 10" «a
guantitatively consistent with the expected typical entropy —6.5447303 10%a’—1.167915 108 o8
(Sgs=0.03 ata=4.60) which may be easily converted into
an upper bound for the fraction of fixed variables by the -, (48)

0.5 ' ' ; T N in which, again, we have reported only a few sufficient digits

of the (exactly known coefficients. The entropy curve is
displayed Fig. 7 in the rangesOa<«a(3). By computing
the zero entropy pointsa) given by the/th order entropy
expansion, one finds a convergent succession of values to-
ward a(3)=4.75 (within 1% of precision, definitely out-
side the range of validity € a< ay(3|p—=)=4.60 of the
expansion(48). Notice thatag|, - 1(3)=5.1909 corresponds
to the annealed theory. A similar calculation for the cases
K=4,5,6 yields qualitatively similar results, which show an
even quicker convergence towards a zero entropy point such
that @ (K)<ag(K) (see Sec. VI for the analysis of the
large K limit where both values coincide

Therefore,Sgg is always positive belover(3|p— ). In
contradistinction with theg=1 RS solution5], the largep
RS solution cannot be ruled out by a simple inspection of
their corresponding entropy. A more important consequence
of the previous calculation of the entropy is that, at the
thresholdea, the RS entropy is still nonzero. The crucial
rw; T3 5 53 51 5 5 s point is now to understand whether such a value of the en-

N tropy is exact up tax. or whether RSB effects have come

FIG. 6. Order parameters (i=0, ... p—1) corresponding to into play. T_his is_sue may be clarified by resc_)rting to exhaus—
the different RS solutionp=1 (dashed ling p=5 (dashed-dotted tive numerical simulation. As reported 8], simulations in
lines), andp= 10 (continuous lines for K=3 vsa=M/N. Within ~ the rangeN=12, ... ,28lead to the conclusion that not only
each group ofp=1,5,10 curves, the upper one represergs is the entropy indeed finite at the transition but also our
whereas the others represent(i=1 ... p—1), in top-down or- analytical solution appears exact updg. In particular the
der. 1/N extrapolation of the entropy value at=4.17 shows a




M/N

FIG. 7. RS entropy(continuous ling for K=3 vs a=M/N

compared with the results of exhaustive numerical simulations for
N=16,20,24 and averaged over 15 000,7500,2500 samples, respec- P(x)==

tively (see also Ref{4]). Errors bars are within 10% and not re-
ported explicitly.

STATISTICAL MECHANICS OF THE RANDOMK- . ..

1367

Q(A)=6(A—1)+ %5’(A— 1)+ ;

1 11 K—-1
X | =+ —J de(x)x2> S"(A=1)+---.
471)

(51)

Under the changes of

= (1—tanky)P(tanty) and

1 111 ) K-1
Z+Zf_lde(x)x ) .

Egs.(50) and(51) simplify into the celebrated heat equation

variables G(y,a)

V(a)=aK (52

9*G(y,V)
ay?

aG(y,V) _,

EY; (53

whose normalized solution isG(y,V)=exp(y¥2V)/
Vv2mV. Turning back toP(x), we find

1 p[_ 11X
v (1—x2) 0 8V(a@) "\ T-x
(K>1), (59

remarkable agreement between the numerical trend and the

RS predictionSgg(«;)=0.1 (see the inset of the figure in

[5]). RSB corrections to the RS theory seem thus to be abfhe
sent belowa,, which leads us to conjecture that the RSBV (a)=aK/4%"1,

transition could occur at. exactly. In this sense the situa-

whereV(«) is given by the self-consistency equati(sp).
latter may be easily estimated for largK:
Therefore, when a<a (K)=2XIn2,
V(«) is vanishingly small, that i®(x) — 6(x), proving that

tion would be partially similar to the binary network case the replicas become uncoupled in the laigdimit [3]. In

[32]: the RS entropy would be exact up 4@ (though with-

addition, it can be checked that the zero entropy peytK)

out vanishing that would also coincide with the symmetry reaches the threshold,(K) from above. Another way of
breaking point. To end with, let us mention that the existencéooking at the entropy is provided by E@6): it is a simple
of an exponential number of solutions just below the threshcheck of the fact thaty (K )?(9°Sgs?a?)|,,—o—0 for large

old has been demonstratg¥]. The rigorous lower bound of
Sgs IS Spin=0.014 (for 3-SAT), which is compatible with
our result.

VIIl. THE ASYMPTOTIC CASE OF LARGE K

In the largeK limit, the saddle-point equations lead to a
closed form for the probability distributioR(x). In fact, in
terms of the quantity

K-1

QA= [ TT doPox) A=A y), (49

the differential equatiori20) reads

IP(X) o JQ(A)\1
o =—KP(x)+Kf_di<Q(A)+a e )5
1% an(—
x| 77 b+ 2 p ),
(50

where7(x) has been defined in Sec. lll. FEe1 , we may
expandQ(A) as

K. We may then conclude that the annealed approximation
becomes exact whaf>1. As said aboveK may be under-
stood as the connectivity of our model and, in the asymptotic
regimeK>1, RS theory includes only Gaussian interactions
as in long-range spin-glass mod¢&2]. In Fig. 8 we report
some instances of the probability distribution, calculated for
different values ofK and «. Notice that since the critical
point coincides, in this larg& limit, with the zero entropy
point (which is far below the point where the RS energy
becomes positive—see abgythe probability distribution of
the Boolean magnetization is far from being concentrated in
+1.

IX. ALTERNATIVE DERIVATION
OF THE SELF-CONSISTENCY EQUATION FOR R(2)

In this section, we discuss an alternative heuristic deriva-
tion of the self-consistency equati¢B80) for R(z) without
resorting to replicas. As a result of this approach, we shall
unveil the physical meaning of thB(z) functional order
parameter and interpret the replica symmetry assumption in
probabilistic terms. The method we adopt is known as the
cavity approachl,25] and here we need to transpose it to the
zero temperature case. For the sake of simplicity, we shall
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argument. Ifx, appeargin averaggin less than one clause,
that is if 0<z,<1, it cannot be present in another clause and
L WN=Log(2) 2°K ] we must havez, =z,. Conversely, ifz,>1, X, is more fro-
zen thanx,; and z, saturates its upper bound equal to 1.
Notice that this result may be made rigorous by working at
finite temperatur¢25]. To complete the probabilistic analy-

2

a

o K=18 sis of this second contributiofi,(z;) to T(z,), we have to
take into account the three other possible clauses involving
X, andXx,, and collect the corresponding contributions. We
15 b 1 find
T1(z1)=2a eizaf dz, T(zp) {36(z;—min(1.2,))
0 K=16 0
+38(zy+min(1,2,)) + 8(21)} (57
st (1) By iterating the above reasoning, we consider a logical

formula such thak,; belongs exactly tg clauses. The prob-
ability of such an event obeys the Poisson law
) (2a)’e” “/j!. Almost surely, the variableg; X3, ... X1
oTs o eeseds 8 .28 05 08 appearing in thes¢ clauses are different from each other.
Moreover, in the larg®\ limit, any pair of variable,, and
FIG. 8. Probability distribution$(x) as functions of the mag- X, (2<m,n<j+1) are always at a large “distance” from
netizationx, calculated fora= 2K In 2 (critical threshold in theK one another, where the relative distance is defined as the
>1 limit) and fork =10,12,14,16,18. minimal number of logical linkgclauses joining X, to X,
see Ref[25]. As a consequence, the joint probability distri-
ution ofz,,z3, . .. ;z; ;4 factorizes and due to the statistical
independence of the choices of the clauses, we have

focus on the 2-SAT case, extensions to higher instances
K-SAT being straightforward.

To each Boolean variable and for a given logical for-
OC‘j+1

mula, we associate a quantity defined as follows. We call (2)]
z; the difference between the number of unsatisfied clauses Ti(z)= — e—Z‘Yf H dz,T(z))
L whenx;=0 (false and whenx;=1 (true), averaged over ) 0 /=2
the set of all optimalfor K-SAT or MAX-K-SAT) Boolean j 1
assignments, that is ground state configurations. % Z E il 2
m=0 a;<---<ap Zm(rl ..... om=*1
z=L(x;=0)—L(x;=1). (55 .
Next, we consider the set of al's and defineT(z) as their X6 21—/21 a/min(l,za/)) : (58)

probability distribution after having averaged over all pos-

sible logical formulas. The calculation df(z) proceeds ac- \yhere thea,’s run between 2 angl+ 1. (IV) Summing the

cording to the following four steps. previous expressions for all values jofwe recover Eq(30)
Let us consider a given Boolean variable, say (1) For | i R(2)=T(2).

uncorrelated r@dom CNF expressions, the probability that ¢ ~ourse  the self-consistency equation Riz) is cor-
neitherle nor x, appears in the logical formula is simply rect provided that replica symmetry is valid, whiléz) is
(1—-2IN)"=e""". In such a casex; can be indifferently  defined independently of any replica calculation. Therefore
chosen to be either true or false, and=0. Therefore, we the equality between the two quantities cannot hold in gen-

obtain a first contribution, eral and is due to the assumption on the absence of correla-
Cow tions between differere, we have made abovéd,25]. This
To(z)=€ “*8(zy), (56) is the probabilistic meaning of replica symmetry.

to T(z,). (Il) With probability 2« e~ 2%, x, will belong to a

single clause, e.gx;\/X,. The latter is unsatisfied if and
only if x4 is false andx, is true. Thereforez,=0 if x, is In this paper, we have presented the replica symmetric
allowed to be falsdthe clause is satisfied independently ontheory of the randoniK-SAT problem. We have shown that

X1), i.e., if Z,=<0. In order to see what happens in the aver-the natural quantity emerging from the analytical study is the
age case, let us consider the case wherés true in the distribution of the average values of the Boolean variables,
majority of optimal Boolean assignments. At first sighf, indicating to what extent the latter is determined by the con-
would appear as a strictly positive integer since it coincidestraints imposed by the clauses. The knowledge of this prob-
with a difference of integer numbefd 0,11, leading to  ability distribution requires the resolution of a functional

z,=1. However, as we consider averaged differences, theaddle-point equation, for which we have presented an itera-
z; may well be rational numbe{&6]. Such a counterintuitive tive sequence of improved solutions. The most surprising
behavior can be easily understood with the following simpleresult we have derived is the fact that the entropy is finite

X. CONCLUSION AND PERSPECTIVES
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just below the transition, i.e., that the latter is characterizegqual to 2. To any sequencfa,,a,, ... ,a,}, We associate
by an abrupt disappearance of all exponentially numerougn n-component vector such thatr°=—1 if b belongs to
solutions due to the emergence of contradictory loops. the sequence and’=1 otherwise. From definitiofAl), we

Some numerical simulations we have performed forgptain
K=2 as well as in th&K =3 case are in remarkable quanti-
tative agreement with our RS calculations of the entropy
jump at the threshold5]. Both the known results on the o noq
stability of 2-SAT-like models and the numerical simulations M(zo) =[] =1+ 02+ 22— o27). (A2)
hint at the correctness of the RS theory up to the critical ratio a=12
of clauses per Boolean variable.

If this were true, the physical picture of the space of so
lutions would not necessarily be simple. Replica symmetr)}J g .
can indeed hide a nontrivial structure of the solutions, as ha¥a"ables is found to be
been shown for long range spin glas$88] models and in
the (closer toK-SAT) case of neural networkg34]. This -1
issue is probably of crucial importance to understand the (M|=(=2) (A3)
performances of local search algorithms. o ) )

As for the values of the critical thresholds themselves, RN is different from zero. We may invei and find

gives the correct prediction,=1 for K=2 but fails in es-

As a consequencéy equals thenth power(for tensor prod-
ct) of a two-by-two matrix. The Jacobian of the change of

timating the criticale, for K=3. The study of thghard /2
instanceK = 3 of theK-SAT problem requires to break rep- ()=~ 1+ 2

. - . 0')_ n

lica symmetry. As a consequence, their direct study will not 2 p=1 a;<ay<...<ay,

be easy and will require nontrivial analytical efforts.
Another route that one can follow to reach a better under-

standing of theK>2 case consists in starting from the rela-

tively well understood 2-SAT case and modifying it to get

closer to the 3-SAT problem. Such a perturbative approach [et us now turn to the replica symmetric ansatz structure.

can be implemented by considering a mixed model, whictFrom definition(14) and identity(A4), we obtain

one may refer to as (2¢€)-SAT model €<[0,1]), com-

posed of (+ €)M clauses of length three ardl clauses of

length two(thus interpolating smoothly between the Polyno-

mial 2-SAT and the NP-complete 3-SAT model&nalytical C(i)=2n

investigations suggest that the threshold can be computed

exactly up toe= €;=0.413. Fore<¢,, one finds a continu-

ous SAT/un-SAT transit?on at(e)=1/(1—€). The model ;here 4=n—-="_,0% and the replica symmetric overlaps
shares the same physical features as t,h,e random 2-S p are calculated from the magnetizations distribution
model. Fore>¢, , the SAT/un-SAT transition becomes a [10,11]

discontinuous(with respect to the order parameteiRSB

transition similar to the 3-SAT model. Preliminary numerical

results suggest that the above model can be of interest for 1
Qp_ j

X Q23182 -- - A2pgiglz. .. O-a2p> . (A4)

n/2

143 QX otet.om),
p=1 ap<ap<---<ay
(A5)

exploring the connection between the nature of the RS to dx P(x) x?P. (AB)
RSB phase transition and the onset of exponential regimes in

izﬁtr;:r[lsg]lgonthms running on samples generated near Crlt]I:o establish the relationship between g )’s and the dis-

tribution P(x), we have to expand the sum over replicas
taking place in(A5) onto the powers of the magnetization

-1
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(AT)
APPENDIX A: RELATIONSHIPS BETWEEN ) o
ORDER PARAMETERS The matrixH(™ can be computed by first finding the gener-
_ S ating function offH(™]~* and then inverting the latter. We
Identity (9) implicitly implies that one can make a change finally find
of variables from overlap€ to the generating function.

Let us callM the linear operator: 1 9P

Hg:'r)zm W_p( \/1—y2)”(arctanh y)2r
M({al,a2, e ,azp};&):(faltfaz' . 'O'an. (Al) yZO(AB)

For simplicity, we seQ{® =1 and all overlaps with an odd Using the above expression and inserting &) into (A5),
number of replicas are null. The dimension/ef is therefore  one recovers identity16) in the limit n—0.
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