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Statistical mechanics of the randomK-satisfiability model
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The randomK-satisfiability problem, consisting in verifying the existence of an assignment ofN Boolean
variables that satisfy a set ofM5aN random logical clauses containingK variables each, is studied using the
replica symmetric framework of diluted disordered systems. We present an exact iterative scheme for the
replica symmetric functional order parameter together for the different cases of interestK52, K>3, and
K@1. The calculation of the number of solutions, which allowed us@Phys. Rev. Lett.76, 3881 ~1996!# to
predict a first order jump at the threshold where the Boolean expressions become unsatisfiable with probability
one, is thoroughly displayed. In the caseK52, the~rigorously known! critical value (a51) of the number of
clauses per Boolean variable is recovered while forK>3 we show that the system exhibits a replica symmetry
breaking transition. The annealed approximation is proven to be exact for largeK. @S1063-651X~97!10106-4#

PACS number~s!: 05.20.2y, 64.60.2i, 87.10.1e
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I. INTRODUCTION

The emergent collective behaviors observed in a var
of models of statistical mechanics and in particular in fru
trated disordered systems have been recognized to pl
relevant role in apparently distant fields such as theoret
computer science, discrete mathematics, and complex
tems theory@1–5#. Computationally hard problems, chara
terized~in worst cases! by exponential running time scalin
of their algorithms or memory requirements, the so-cal
NP-complete problems@6#, are known to be in one-to-on
correspondence with the ground state properties of s
glass-like models~see Ref.@1# and references therein!. As a
consequence, tools and concepts of statistical physics
shed some new light onto the notion of the typical compl
ity of NP-complete problems and have led to the definit
of new search algorithms such as the simulated annea
algorithm, based on the introduction of an artificial tempe
ture and some cooling procedures@7#.

Very recently, other techniques inspired from statisti
mechanics, namely, finite size scaling analysis, have b
applied @8# also to the study of universal behavior in th
computational cost~running time! of some classes of algo
rithms in the course of searching for solutions of rand
realizations of the prototype of NP-complete problems,
satisfiability ~SAT! problem we shall discuss.

More generally, phase transition concepts are starting
play a relevant role in theoretical computer science@4#,
where the analysis of general search methods applied to
ous classes of hard computational problems, characterize
a large number of relevant variables and generated accor
to some probability distributions, is of crucial importance
building a theory for the typical-case complexity. NP
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l’Université de Paris–Sud.
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complete decision problems that are computationally hard
the worst case appear not to be really so in the typical c
except in critical regions of their parameter space~with a
polynomial-exponential pattern! where almost all instance
of the problems become computationally hard to solve.
from criticality, the problems are either underconstrained
overconstrained and both the stochastic and system
search procedures are capable of finding solutions in poly
mial times.

One of the major theoretical open questions in this c
text would be how typical-case complexity theory of com
puter science and spin-glass transitions, the so-called rep
symmetry breaking transition@1#, are related. In turn, com
puter science is a source of highly nontrivial models conta
ing all the paradigms necessary for a deeper understandin
the physical properties of disordered frustrated systems
particular diluted models for which the theoretical fram
work is still to be completed@9–14#.

Among the known NP-complete problems, the SAT pro
lem is at the same time the root problem of complex
theory@6# and a prototype model for phase transition in ra
dom combinatorial structures@3,15#. SAT was the first prob-
lem proved to be NP-complete by Cook in 1971@16# and
opened the way for the identification of a vast family of oth
NP-complete problems for which a polynomial reduction
SAT became available@6#. In particular theK-satisfiability
(K-SAT! problem, a version of SAT we shall discuss
great detail in the following, besides playing a central role
NP-completeness proving procedures@6#, is a widespread
test for the evaluation of the performance of combinato
search algorithms, due to the typical intractability of rando
samples generated near criticality.

In a recent work@5#, we have shown that the methods
statistical mechanics of random systems allow one to co
pute some algorithmically relevant quantities such as
typical entropy of the problem, i.e., the typical number of
solutions, and to clarify the nature of the threshold behav
The scope of this paper is twofold. On the one hand, we
at giving a thorough discussion of the analytical derivation
the above results, mainly the calculation of the entropy ju

a
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1358 56RÉMI MONASSON AND RICCARDO ZECCHINA
at the transition. On the other hand, we expose in detail
replica symmetric theory of theK-SAT problem both by
showing how to go beyond the simplest solution propose
our previous work@5# and by clarifying the connections wit
known results in statistical mechanics of diluted models.

This paper is organized as follows. Section II is devo
to the presentation of theK-SAT problem and of the known
exact results. Section III contains an outline of the statist
mechanics approach whereas the replica symmetric solu
are exposed in Sec. IV. In the successive sections, from
VIII, the outcomes of the analytical calculations are expos
in detail for the different values ofK of interest. In Sec. IX,
we show how to rederive some of the previous results us
a simple probabilistic approach. Finally, in Sec. X, some n
perspectives opened by the introduction of a model that
terpolates smoothly between 2-SAT and 3-SAT are brie
discussed.

II. THE K-SAT PROBLEM AND A BRIEF SURVEY
OF KNOWN RESULTS

Given a set ofN Boolean variables$xi50,1% i 51, . . . ,N , we
first randomly chooseK among theN possible indicesi and
then, for each of them, choose a literalzi that is the corre-
spondingxi or its negationx̄ i with equal probabilities of
one-half. A clauseC is the logicalOR of the K previously
chosen literals, that is,C will be true~or satisfied! if and only
if at least one literal is true. Next, we repeat this process
obtain M independently chosen clauses$Cl % l 51, . . . ,M and
ask for all of them to be true at the same time; i.e., we ta
the logicalAND of the M clauses thus obtaining a Boolea
expression in the so-called conjunctive normal form~CNF!.
The resultingK-CNF formulaF may be written as

F5 `
l 51

M

Cl 5 `
l 51

M

~ ~
i 51

K

zi
~ l !!, ~1!

where` and~ stand for the logicalAND andOR operations,
respectively.

A logical assignment of the$xi% ’s satisfying all clauses
that is, evaluatingF to be true, is called a solution of th
K-satisfiability problem. If no such assignment exists,F is
said to be unsatisfiable.

When the number of clauses becomes of the same o
as the number of variables (M5aN) and in the large-N
limit—indeed the case of interest also in the fields of co
puter science and artificial intelligence@15,17#—the K-SAT
problem exhibits a striking threshold phenomenon. Num
cal experiments have shown that the probability of findin
correct Boolean assignment falls abruptly from one down
zero whena crosses a critical valueac(K) of the number of
clauses per variable. Aboveac(K), all clauses cannot be
satisfied any longer and one gets interested in minimizing
number of unsatisfiable clauses, which is the optimizat
version ofK-SAT also referred to as MAX-K-SAT. More-
over, nearac(K), heuristic search algorithms get stuck
nonoptimal solutions and a slowdown effect is observed~in-
tractability concentration!. On the contrary, far from critical-
ity heuristic processes are typically rather efficient@8#.
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Very schematically, the known results onK-SAT that
have been obtained in the framework of complexity theo
may be summarized as follows.

~1! For K52, 2-SAT belongs to the classP of polyno-
mial problems@18#. P is defined as the set of computation
problems whose best solving algorithms have running tim
increasing polynomially with the number of relevant va
ables@6#. For a.ac , MAX-2-SAT is NP-complete@6#: NP-
complete problems are the hardest nondeterministic poly
mial problems, whose solutions may be found by t
exhaustive inspection of a decision tree of logical de
growing in a polynomial way with the number of releva
variables; it is generally thought that the running times
their best solving algorithms scale exponentially with t
number of relevant variables@6#. The mapping of 2-SAT on
directed graph theory@19# allows one to derive rigorously
the threshold valueac51 and an explicit 2-SAT polynomia
algorithm working fora,ac has been developed@18#.

~2! For K>3, bothK-SAT and MAX-K-SAT belong to
the NP-complete class. Only upper and lower bounds
ac(K) are known from a rigorous point of view@17,20,21#.
Finite size scaling techniques have, recently, allowed on
find precise numerical values ofac for K53,4,5,6@3#.

~3! For K@1, clauses become decoupled and
asymptotic expressionac.2K ln 2 can be easily found. It is
not yet known whether this scaling law is correct or not fro
a rigorous point of view.

For brevity, we do not discuss here the results concern
the algorithmic approaches toK-SAT and MAX-K-SAT
@18,22,23#. We just mention that MAX-K-SAT belongs to
the subclass of NP-complete problems that allows for a po
nomial approximation scheme for quasioptimal solutio
@22#. A recent numerical study of the critical behavior in th
computational cost of satisfiability testing can be found
@8#.

For a5M /N.0, K-SAT can be cast in the framework o
statistical mechanics of random diluted systems by the id
tification of an energy-cost functionE(K,a) equal to the
number of violated clauses@5,15#. The study of its ground
state allows one to address the optimization version of
K-SAT problem as well as to characterize the space of s
tions by its typical entropy, i.e., the degeneracy of the grou
state. The vanishing condition on the ground state energy
a givenK corresponds to the existence of a solution to
K-SAT problem and thus identifies a critical valueac(K) of
a below which random formulas are satisfiable with pro
ability one. Fora.ac(K), the ground state energy becom
nonzero and gives information on the maximum number
satisfiable clauses, i.e., on the MAX-K-SAT problem. Previ-
ous works on the statistical mechanics of combinatorial
timization problems—such as traveling salesman, graph
titioning, or matching problems@1,24,10,9#—focused mainly
on the comparison between the typical cost of optimal c
figurations and the algorithmic results. The issues arising
K-SAT are of a different nature, and the key quantity to
discussed@20# is rather the typical number of existing solu
tions, i.e., the ground state typical entropySK(a).

A crucial rigorous result on which the whole statistic
mechanics approach is founded concerns the self-avera
taking place in MAX-K-SAT. For anyK, independently of
the particular but randomly chosen sample ofM clauses, the
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56 1359STATISTICAL MECHANICS OF THE RANDOMK- . . .
minimal fraction of violated clauses is narrowly peak
around its mean value whenN→` at fixeda @23#.

III. STATISTICAL MECHANICS OF THE K-SAT
AND MAX- K-SAT COST FUNCTION

As discussed above, we map the random SAT prob
onto a diluted spin energy-cost function through the int
duction of spin variables,Si51 if the Boolean variablexi is
true, Si521 if xi is false. The clauses’ structure is take
into account by anM3N quenched random matrixD where
D l ,i521 ~11! if clauseCl contains x̄ i (xi), 0 otherwise.
Then the function

E@D,S#5 (
l 51

M

dF(
i 51

N

D l ,i Si ;2KG , ~2!

whered@ i ; j # denotes the Kronecker symbol, turns out to
equal to the number of violated clauses in that the quan
( i 51

N D l ,i Si equals2K if and only if all Boolean variables
in the l th clause take the values opposite to the desired o
i.e., if the clause itself is false. The above expression can
be written in a way that is manifestly reminiscent of sp
glass models~and more precisely neural networks with a
extended Hebbian rule@2#!,

E@D,S#5
a

2K N1 (
R51

K

~21!R (
i 1, i 2,•••, i R

3Ji 1 ,i 2 , . . . ,i R
Si 1

Si 2
. . . Si R

, ~3!

where the couplings are defined by

Ji 1 ,i 2 , . . . ,i R
5

1

2K (
l 51

M

D l ,i 1
D l ,i 2

•••D l ,i R
. ~4!

In view of the above formulation and of the current know
edge on long-range spin glasses, we may already ex
qualitatively different behaviors forK52 ~similar to
Sherrington-Kirkpatrick model! andK>3 ~closer to the so-
calledp spins or Potts models! @1#. We shall see in the fol-
lowing that analytical calculations support this intuitive fee
ing.

Finally, to ensure that the number of Boolean variables
any clause is exactly equal toK, we impose onD the fol-
lowing constraints:

(
i 51

N

D l ,i
2 5K, ;l 51, . . . , M . ~5!

The ground state~GS! properties of the cost function~2!
will reflect those ofK-SAT (EGS50) and MAX-K-SAT
(EGS.0). In Eq. ~2!, one may interpretK as the number of
‘‘neighbors’’ to which each spin is coupled inside a claus
To study the ground state properties for the cost function~2!,
we follow the replica approach in the framework of dilute
models, which is indeed much more complicated than tha
long-range fully connected disordered models. As we s
see below, replica theory must be formulated in a functio
form involving not only interactions between pairs of rep
cas but all multireplicas overlaps. To be more precise,
m
-
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shall use below an order parameter formulation, inspired
@12,13#, which results much more conveniently than usu
overlaps.

To compute the ground state energy, we first introduc
fictitious temperature 1/b to regularize all mathematical ex
pressions and sendb→` at the end of the calculation. Not
that the introduction of a finite temperature also greatly he
one to understand the physical properties of the model.
proceed by computing the model ‘‘free-energy’’ density
inverse temperatureb, averaged over the clauses’ distrib
tion

F~b!52
1

bN
lnZ@D#, ~6!

whereZ@D# is the partition function:

Z@D#5(
$Si %

exp~2bE@D,S# !. ~7!

As already mentioned, the energy~2! is self-averaging and
can therefore be obtained from the above free energy.
overline denotes the average over the random clauses’
trices satisfying the constraint~5! and is performed using the
replica trick lnZ5limn→0(Zn21)/n, starting from integer
values ofn. The typical properties of the ground state, i.
the internal energy and the entropy, will then be recovered
the b→` limit.

Once averaged over the clauses choices, thenth integer
moment of the partition function depends on the spins o
through the multioverlaps

Qa1 ,a2 , . . . ,a2r5
1

N (
i 51

N

Si
a1Si

a2
•••Si

a2r , ~8!

involving an even number of replicas. To avoid the introdu
tion of conjugated Lagrange parameters, we introduce al
the lines of@12,13# the generating function

c~sW !5
1

2nS 11(
r 51

n/2

(
a1,•••,a2r

Qa1 ,a2 , . . . ,a2rsa1sa2
•••sa2r D ,

~9!

wheresW 5(s1,s2, . . . ,sn) spans the space of all 2n vectors
with n binary componentssa561. The use of this order
parameter leads to simpler algebraic calculations than
usual procedure involving the overlaps~8! and their
Lagrange multipliers. Its physical interpretation is straig
forward: c(sW ) equals the fraction of sitesi ~among all pos-
sible N Boolean variables! such thatSi

a5sa, ;a51, . . . ,n.

Therefore, allc(sW )’s range from zero to one and the glob
normalization condition implies that

(
sW

c~sW !51. ~10!

In addition, the vanishing condition on overlaps with an o
number of replica indices reads

c~sW !5c~2sW !, ;sW . ~11!
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1360 56RÉMI MONASSON AND RICCARDO ZECCHINA
The averaged integer moments of the partition funct
are then given by the following formula:

Z@D#n5E
0

1

)
sW

dc~sW ! eN F[ $c%,K,a,b] , ~12!

where the integration measure is restricted toc(sW )’s fulfill-
ing constraints~10!, ~11! and

F@$c%,K,a,b#

52(
sW

c~sW !ln c~sW !1a lnF (
sW 1 , . . . ,sW K

c~sW 1!•••c~sW K!

3 )
a51

n S 11~e2b21! )
l 51

K

d@s l
a ;1# D G . ~13!

We may interpret the above free-energy functional as
free energy of a system with 2n interacting levels. While the
first term inF simply accounts for the statistical entropy, th
second term represents the interactions between the leve
an effective ‘‘temperature’’ 1/a.

In the largeN,M limit ~with fixed a5M /N), the partition
function ~12! may be evaluated by taking the saddle po
over all order parametersc. Since the functionF is invariant
under permutation of replicas, a possible natural saddle p
can be sought within the so-called replica symmetric~RS!
ansatz@10,9,12,13#:

c~s1,s2, . . . ,sn!5CS (
a51

n

d@sa;21# D , ~14!

which preserves permutation invariance. Constraints~10!
and ~11! now read

(
j 50

n S n
j DC~ j !51, C~n2 j !5C~ j ! ~0< j <n!.

~15!

We obtainn11 saddle-point equations for allC( j )’s by
differentiating Eq.~13! with respect to the order parameter
In then→0 limit, we are therefore provided with an infinit
of order parametersC( j ) for any real numberj . To reach a
simple final expression of the order parameters, we n
adopt the functional formalism proposed in@10,11#. Let us
call P(x) the ~even! probability distribution of the Boolean
magnetizationsx5^S&, averaged over the disorderD. We
show in the Appendix that

C~ j !5E
21

1

dx P~x! S 12x

11xD j

~16!

in the limit n→0. The advantage of the above formulation
that P(x) has a clear significance, directly comparable
numerical simulations. We shall come back on this po
below.

After some algebra, we find the self-consistent equat
for the magnetizations distributionP(x) taking into account
saddle-point conditions for allC( j )’s,
n

e

at

t

int

.

w

t

n

P~x!5
1

12x2E
2`

`

du cosFu

2
lnS 11x

12xD G
3expF2aK1aKE

21

1

)
l 51

K21

dxl

3P~xl !cosS u

2
ln A~K21!D G , ~17!

with

A~K21![A~K21!~$xl %,b!511~e2b21! )
l 51

K21 S 11xl

2 D .

~18!

The corresponding replica symmetric free energy reads

2bF~b!5 ln 21a~12K !E
21

1

)
l 51

K

dxl P~xl !ln A~K !

1
aK

2 E
21

1

)
l 51

K21

dxl P~xl !ln A~K21!

2
1

2E21

1

dxP~x!ln~12x2!. ~19!

Note that in Eq.~19! A(K) is given by a formula similar to
Eq. ~18!, where the upper bound of the product is replac
by K. To conclude, let us remark that Eq.~17! can in turn be
transformed into an integrodifferential equation

]P~x!

]a
52KP~x!1KE

21

1

)
l 51

K21

dxl

3FP~x1!1a~K21!
]P~x1!

]a GP~x2!•••P~xK21!

3
1

2F]h~x!

]x
P„h~x!…1

]h~2x!

]x
P„h~2x!…G , ~20!

where h(x)5@(x11)A(K21)1x21#/@(11x)A(K21)11
2x# and for which the boundary condition is given by th
solution of Eq.~17! in a50:

P~x!ua505d~x!. ~21!

IV. A TOY MODEL: THE K51 CASE

The K51 case can be solved either by a direct combi
torial method or within our statistical mechanics approa
Though this particular case does not present any critical
havior, its study will turn out to be useful in understandin
the K.1 models in which we are interested. Moreover, t
K51 toy model allows one to check the correctness of
statistical mechanics results.

In this case, a sample ofM clauses is completely de
scribed by giving directly the numberst i and f i of clauses
imposing that a certain Boolean variableSi must be true or
false, respectively. Therefore the partition function cor
sponding to a given sample reads
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Z@$t, f %#5)
i 51

N

~e2bt i1e2b f i !, ~22!

and the average over the disorder gives

1

N
lnZ@$t, f %#5

1

N (
$t i , f i %

M !

P i 51
N ~ t i ! f i ! !

ln Z@$t, f %#

5 ln 22
ab

2
1 (

l 52`

`

e2aI l~a!lnFcoshS b l

2 D G ,
~23!

whereI l denotes thel th modified Bessel function. The zer
temperature limit gives the ground state energy

EGS~a!5
a

2
@12e2aI 0~a!2e2aI 1~a!# ~24!

and the ground state entropy

SGS~a!5e2aI 0~a! ln 2. ~25!

One may notice that for anya.0, the ground-state energy
positive. Therefore, the clauses are never satisfiable al
gether and the overall function~1! is false with probability
one. Nonetheless, the entropy is finite, implying an expon
tial degeneracy of the ground state describing the minim
number NEGS(a) of unsatisfiable clauses. Such a dege
eracy is due to the presence of a finite fraction of variab
e2aI 0(a), which are subject to equal opposite constrai
t i5 f i , and whose corresponding spins may be chosen u
down indifferently without changing the energy.

The above results are indeed recovered in our appro
showing that the RS ansatz is exact for allb and a when
K51. Equation~17! can be explicitly solved at any temper
ture 1/b and the solution reads

P~x!5 (
l 52`

`

e2aI l ~a!dFx2tanhS bl

2 D G , ~26!

which, in the limit of physical interestb→`, becomes

P~x!5e2aI 0~a!d~x!1 1
2 @12e2aI 0~a!#

3@d~x21!1d~x11!#. ~27!

The finite value of the ground state entropy may be ascri
to the existence of unfrozen spins whose fractional numbe
simply the weight of thed function in x50. At the same
time, it appears that the nonzero value of the ground s
energy is due to the presence of completely frozen spin
magnetizationsx561. This is an important feature of th
problem, which remains valid for anyK, as we shall see in
the following. In Fig. 1 we report the plots of the abov
energy and entropy at zero temperature.

V. REPLICA SYMMETRIC SOLUTIONS FOR ALL K

A relevant general mechanism for the comprehension
the overcoming critical behavior inK-SAT is the accumula-
tion of Boolean magnetizationŝ S&56@12O(e2uzub)#
o-

n-
m
-
s
s
or

h,

d
is

te
of

f

@z5O(1)#, in the limit of zero temperature and fo
a→ac . The emergence of Dirac peaks inx561 signals
that a freezing process has just occurred and that a fur
increase ofa beyondac would cause the appearance of u
satisfiable clauses. This scenario—which can be verified
inspection of Eq.~26! for K51—is true also forK.1. In
fact, by computing the fraction of violated clauses throug

E52
1

N

]

]b
ln Z@D#, ~28!

at temperature 1/b, one sees that the ground state ene
depends only upon the magnetizations of ord
6@12O(e2uzub)#, if any, and that such contributions can b
described by the introduction of the rescaled function

R~z!5 lim
b→`

H PF tanhS bz

2 D G ]

]z
tanhS bz

2 D J , ~29!

whose meaning will be clarified in Sec. IX. From Eq.~17!,
R(z) fulfills the saddle-point equation

R~z!5E
2`

` du

2p
cos~uz!expF2

aK

2K21 1aKE
0

`

)
l 51

K21

dzl

3R~zl !cos@u min~1,z1 , . . . ,zK21!#G . ~30!

The corresponding ground state energy reads@see Eqs.~19!
and ~29!#

FIG. 1. Ground state cost~bold line!, or fraction of violated
clauses, and entropy~thin line! vs a5M /N for K51.
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EGS~a!5a~12K !E
0

`

)
l 51

K

dzl R~zl !min~1,z1 , . . . ,zK!

1
aK

2 E
0

`

)
l 51

K21

dzl R~zl !min~1,z1 , . . . ,zK21!

2E
0

`

dzR~z!z. ~31!

It is easy to see that the saddle-point equation~30! is in
fact a self-consistent identity forR(z) in the range z
P@0,1# only. Outside this interval, Eq.~30! is merely a defi-
nition of the functional order parameterR. This remark will
be useful in the following.

To start with,R(z)5d(z) is obviously a solution of~30!
for all values ofa andK, giving a zero ground state energ
since no spins are frozen with magnetizations61. Let us
assume thatR(z) includes another Dirac peak in 0,z0<1.
Then, inserting this distribution in the exponential term
the right-hand side~rhs! of Eq. ~30!, we find thatR(z) on the
left-hand side~lhs! necessarily includes all Dirac peaks ce
tered inkz0, wherek50,61,62,63, . . . .Next, we proceed
iteratively by inserting again the whole series in the rhs
Eq. ~30!. For large enoughk, kz0 is larger than one and th
exponentiated term includes a cosu contribution, which
causes the presence of Dirac distributions centered in
~positive and negative! integers. Therefore, as soon asR(z)
is different from d(z), it contains an infinite set of Dirac
functions peaked around all integer numbers. Clearly,
simplest self-consistent solution to Eq.~30! will be obtained
for z051 since the process described above closes after
iteration. This solution reads@5#

R~z!5 (
l 52`

`

e2g1I l ~g1!d~z2l !, ~32!

whereg1 depends onK anda and fulfills the implicit equa-
tion

g15aKF12e2g1I 0~g1!

2 GK21

. ~33!
f

all

e

ne

The physical meaning ofg1 may be understood by looking a
the definition of the rescaled function order parameter~29!.
Turning back to the magnetization distribution, we inde
find in the zero temperature limit

P~x!5e2g1I 0~g1!Pr~x!1 1
2 @12e2g1I 0~g1!#

3@d~x21!1d~x11!#, ~34!

where Pr(x) is a regular ~i.e., without Dirac peaks in
x561) magnetization distribution normalized to unity. Th
above identity is a straightforward extension of the expr
sion ~27! @when K51, g15a from Eq. ~33! and
Pr(x)5d(x)# to any value ofK. Inserting Eq.~32! in Eq.
~31! gives the value of the cost energy

EGS~a!5
g1

2K
@12e2g1I 0~g1!2Ke2g1I 1~g1!#. ~35!

It is therefore clear that, in the RS context, the SAT to u
SAT transition corresponds to the emergence of peaks
tered in x561 with finite weights, that is to a transition
from g150 to g1.0. This simplest solution centered o
integer numbers, similar to previous findings@10,11,25#, was
presented in Ref.@5#.

In addition to Eq.~32!, there exist other RS solutions t
the saddle-point equations@26#. For instance, if we choose
z05 1

2 , the insertion process ends up after two iterations a
generates Dirac peaks centered in all integer and half-inte
numbers. More generally, for any integerp>1, we may de-
fine the solution to Eq.~30!,

R~z!5 (
l 52`

`

r l dS z2
l

p D , ~36!

having exactlyp peaks in the interval@0,1#, whose centers
are zl 5l p, l 50, . . . ,p21. The coefficientsr l of these
distributions are self-consistently found through

r l 5E
0

2p du

2p
cos~ l u!expS (

j 51

p

g j@cos~ j u!21# D ~37!

for all l 50, . . . ,p21, where
g j5aKF S 1

2
2

r 0

2
2 (

l 51

j 21

r l D K21

2S 1

2
2

r 0

2
2 (

l 51

j

r l D K21G , ; j 51, . . . ,p21,

~38!

gp5aKS 1

2
2

r 0

2
2 (

l 51

p21

r l D K21

.

The corresponding energy reads, from Eqs.~36! and ~31!,

EGS5
a~12K !

p F S 12r 0

2 D K

1 (
j 51

p21 S 12r 0

2
2(

l 51

j

r l D KG1
aK

2p F S 12r 0

2 D K21

1 (
j 51

p21 S 12r 0

2
2(

l 51

j

r l D K21G
2(

j 51

p
j

p
g j S r 0

2
1

r j

2
1(

l 51

j 21

r l D . ~39!
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Note that the last term of Eq.~39! includes the coefficien
r p , which may be computed using identity~37!. It is easy to
check that the first nontrivial solution~32! corresponds to
p51. Though there might be continuous solutions to E
~30!, we believe they can be reasonably approximated by
largep solutions we have presented here@26#. In the follow-
ing sections, we shall therefore analyze which are the ph
cal implications of the above solutions in the different ca
of interest,K52, K>3, andK@1.

VI. THE K52 CASE

The caseK52 is the first relevant instance ofK-SAT.
Graph theory has allowed one@19# to show that for
a5ac(2)51 the problem undergoes a satisfiability tran
tion that can be also viewed as aP–NP-complete transition
from 2-SAT to MAX-2-SAT.

Let us first consider the simplestp51 RS solution@5#.
Self-consistency equation~33! leads to the solutiong150
for any a. However, fora.1 one finds another solutio
g1(a).0, which maximizes the free energy~andEGS) and
therefore must be chosen~this is a well-known peculiar as
pect of the replicas formalism@1#!. When approaching the
threshold from above, we indeed find

EGS~aup51!5
4

27
~a21!31O„~a21!4

…

.0.1481 ~a21!3. ~40!

As expected, thep51 RS theory predictsEGS50 for a<1
and EGS.0 when a.1, giving back the rigorous resu
ac(2)51: for a.1 the fraction of violated clauses becom
finite and the corresponding CNF formulas turn out to
false with probability one. The transition taking place atac
is of second order with respect to the order parameterg1 and
is accompanied by the progressive appearance of two D
peaks for P(x) in x561 with equal amplitudes
@12e2g1I 0(g1)#/2.

It is straightforward to verify that RS solutions wit
p>2 are not present belowa51. However, above the
threshold, one has to check whether their ground state en
is larger than that of thep51 solution, that is, if they can be
relevant for MAX-K-SAT. Forp52, resolution of Eqs.~37!
and ~38! close to ac(2) leads to ~discarding the choice
r 150, which amounts to thep51 solution!

r 0512
812A2

7
~a21!1O„~a21!2

…,

r 15
32A2

7
~a21!1O„~a21!2

… ~41!

for the coefficients of the Dirac peaks inz50 and z5 1
2,

respectively. Inserting these expansions into the energy~39!,
one finds

EGS~aup52!5
914A2

98
~a21!31O„~a21!4

…

.0.1496 ~a21!3, ~42!
.
e

i-
s

-

e

ac

gy

which is slightly larger than thep51 result~40!. Numerical
calculations for higher values ofp>3 confirm that the en-
ergy increases very slowly withp. We have found that for
largep’s the ground state energy is almost stationary, so t
the p510 solution can be considered as a very fair appro
mation of the optimalp→` RS solution. The coefficients
r l of the distributions present in the order parameterR(z)
~36! are displayed in Fig. 2 for different values ofa and in
the casesp51, p55, andp510.

The ground state energy predicted by thep510 RS solu-
tion is compared to numerical exhaustive simulations carr
out for small sized systems in Fig 3. Fora.ac51, the
theoretical estimate ofEGS seems to slightly deviate from th
numerical findings, which signals the occurrence of a rep
symmetry breaking~RSB! transition at the threshold. This i
in agreement with a stability calculation performed on t
Viana-Bray model@29# around the critical pointa51 @13#.
Note that the Viana-Bray energy is, up to the~irrelevant at
zero temperature! random field in Eq.~3!, equivalent to the
2-SAT cost function. We may therefore expect that the res
derived in@13# applies to our case. If it were so, there wou
be an instability of the replica symmetric saddle point at
threshold due to repliconlike fluctuations, breaking repl
symmetry aboveac . The situation would be reminiscent o
the case of neural networks with continuous weights, wh
RS theory is able to localize the storage capacity but not a
to predict the minimal fraction of errors beyond the transiti
@2,28#. The 1/N extrapolation of the simulations resultin
from finite systems toN→` is shown in Fig. 4 for the par-
ticular choicea53. Data seem in favor of RSB but on
cannot exclude that 1/N2 effects could make both numeric
and theory coincide. However, one should notice that
a@1, the exact asymptotic scaling of the ground state

FIG. 2. Order parametersr i ( i 50, . . . ,p21) corresponding to
the different RS solutionsp51 ~dashed line!, p55 ~dashed-dotted
lines!, and p510 ~continuous lines!, for K52 and a5M /NP
@1,3#. The upper curve within each group representr 0 whereas the
overlapping ones in the lower part of the figure representr i for
i 51 . . . ,p21 (p55,10).
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1364 56RÉMI MONASSON AND RICCARDO ZECCHINA
ergy EGS.a/4 @23# is compatible with the RS prediction.
From the above discussion, it is reasonable to concl

that RS theory is exact in the region 0<a<1. As already
mentioned, the key quantity to study in this range is
typical number of solutions to the problem, i.e., the typic
ground state entropySGS(a) given by Eq. ~19! in the
b→` limit. Notice that a simpler expression of the groun
state entropy, more precisely of its derivative, may be
tained by differentiating~19! with respect toa and using the
saddle-point equation~20!. The result reads

]SGS

]a
~a!5E

21

1

)
l 51

K

dxl P~xl !lnF12 )
l 51

K S 11xl

2 D G ,

~43!

and is valid for anya and K. Using the initial value
SGSua505 ln 2 and the above equation~43!, one can in prin-
ciple compute the ground state entropy for any value ofa.
However, due to the difficulty in finding a solution of th
integral equation~17!, it turns out to be convenient to de
velop a systematic expansion of the entropy in the param
a. We now briefly present the procedure to be employed
a generic value ofK.

Inserting P(x)ua505d(x) into formula ~43!, we obtain
the slope of the entropy at the origin:

]SGS

]a U
a50

5 lnS 12
1

2KD , ~44!

FIG. 3. RS ground state entropy~decreasing curve, left scale!
and RS ground state cost~increasing overlapping curves compute
for p51, . . .,10, right scale! vs a5M /N for K52. At a5ac51
the ground state cost becomes positive, signaling a second o
SAT/un-SAT transition~at the same point the RS solution becom
unstable!. The value of the entropy at the critical ratio is 0.38. T
dashed lines interpolate the numerical data of exhaustive sim
tions on systems of sizeN516,20,24 and averaged ove
15 000,7500,2500 samples, respectively. Errors bars are w
10% for the entropy and even smaller for the energy and thus
reported explicitly.
e

e
l

-

ter
r

which coincides with the annealed result@3,20#. Then, we
use Eq.~20! to compute the first derivative of the magne
zations distribution ina50,

]P~x!

]a U
a50

52aKd~x!1
aK

2
dS x1

1

2K21D
1

aK

2
dS x2

1

2K21D . ~45!

Now, we differentiate Eq.~43! with respect toa and inject
the above result, which is needed to obtain the second
rivative of the ground state entropy ata50,

]2SGS

]a2 U
a50

52K2 lnS 12
1

2KD1
K2

2
lnS 12

1

2K21D
1

K2

2
lnS 12

2K2121

2K21~2K21! D , ~46!

which is negative as required since the entropy is expecte
be a concave function ofa. The whole procedure, consistin
in successive differentiations of Eqs.~20! and ~43! can then
be iterated to compute symbolically all the derivatives
P(x) andSGS(a) with respect toa in a50.

In theK52 case, we have calculated the power expans
of SGS(a) up to the seventh order ina ~which shows an
uncertainty less than 1% with respect to the sixth order T
lor expansion on the rangeaP@0;1#). The result reads

er

la-

in
ot

FIG. 4. 1/N extrapolation of the minimal fraction of violated
clauses~i.e., ground state cost! for a53 and N518,20,22,24,26
averaged over 20 000,15 000,10 000,7500, and 5000 samples
spectively. The extrapolated value appears to be different from
value 0.14472 toward which the RS solutions with increasingp
rapidly converge. This is in agreement with the expected instab
of the RS solutions fora.ac .
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SGS~a!5 ln 220.28768207a20.01242252a2

20.0048241588a320.0023958362a4

20.0013119155a520.00081617226a6

20.00053068034a72•••, ~47!

in which, for simplicity, we have reported only a few signifi
cant digits of the coefficients. The latter are computed sy
bolically and have the form of a logarithm of rational num
ber. At the transition we findSGS(ac).0.38, which is indeed
very high as compared toSGS(0)5 ln 2. A plot of the en-
tropy versusa is shown Fig. 3. For completeness, we stre
that the ground state entropy and the logarithm of the nu
ber of solutions, which coincide belowac , have different
meanings~and values! above the threshold. In this region
the latter equals2` since all solutions have disappear
while the former quantity reflects the degeneracy of the lo
est state~with strictly positive energy! and is continuous a
the transition as shown by simulations.

Since, fora.ac , sets ofSi ’s no longer exist such tha
the energy~2! remains nonzero, the vanishing of the exp
nentially large number of solutions that were present be
the threshold is surprisingly abrupt. We then conclude t
the transition itself is due to the appearance, with probab
one, of contradictory logical loops in all the solutions and n
to a progressive disappearance of the number of these
tions down to zero. This perfectly agrees with the grap
theoretical derivation of the criticala, which is indeed based
on a probabilistic calculation of appearance of contradict
cycles in oriented random graphs representing Boolean
mulas.

VII. THE K>3 CASE

The K53 case is the first NP-complete instance
K-SAT. The resolution of the RS equations leads to a s
nario different from the previousK52 case. We shall se
below that RS theory does not allow one to derive the va
of the thresholdac(3).4.2, which was estimated by mean
of finite size scaling techniques@3#. This is due to the fact
that the calculation ofac(3) requires the introduction o
RSB, leading to very complicated equations we have not
succeeded in solving. However, it is a remarkable fact th
in the relevant region for 3-SAT, i.e., fora ranging from
zero up toac(3), theground state entropy computed usin
RS theory seems to be exact.

Let us start with thep51 RS solution~32!. Solving Eq.
~33! leads to the following scenario~see Fig. 5!. For
a,am(3).4.667, there exists the solutiong150 only. At
am(3), a nonzero solutiong1(a)Þ0 discontinuously ap-
pears. The corresponding ground state energy is negativ
the rangeam(3)<a,as(3)55.181, meaning that the new
solution is metastable and thatEGS50 up to as(3). For
a.as(3) the g1(a)Þ0 solution becomes thermodynam
cally stable@31#.

From the above scheme one is tempted to conclude
as(3) corresponds to the desired thresholdac(3). However,
this prediction is wrong since the experimental val
ac(3).4.2 is lower than botham(3) andas(3). Thefailure
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of the abovep51 RS prediction is also confirmed by th
large K limit. One finds am(K);K2K/(16p) and
as(K);K2K/(4p), which are larger than the exac
asymptotic valueac(K);2K ln 2. It is worth noticing that
~similarly to theK52 case! though the scaling ofac(K) for
largeK is wrong within thep51 RS ansatz, the asymptoti
value for largea ~and anyK) of the ground state energy fo
MAX- K-SAT is correctly predicted:EGS(a);a/2K @23#.

We now turn to improved RS solutions by looking
larger values ofp. Whenp52, the previous transition sce
nario remains qualitatively unaltered, but the precise val
of the spinodal and the threshold points are quantitativ
modified. One finds~see Fig. 5! that am(3up52).4.45
while as(3up52).4.82. The ground state energy curve
similar to thep51 curve but is shifted to the left. Thoug
still incorrect, thep52 prediction is thus closer to the rea
threshold value. For larger integersp, we have found that
am(3up) andas(3up) still decrease but quickly converge t
the values 4.428 and 4.60, respectively~we observed a
power law convergence by considering values ofp up to
30, see Table I!. In Fig. 6, we have plotted the values of th
coefficients r l (l 50, . . . ,p21) entering Eq. ~36! for
p51, p55, and p510. The departure of the coefficien
curves forp55 from the p510 curves displayingr 0, r 2,
r 4, r 6, and r 8 is clearly visible as soon as the remainin
coefficients of thep510 solution, namely,r 1, r 3, r 5, r 7, and
r 9, which are implicitly set to zero in thep55 solution,
acquire a non-negligible value.

The first order jump of the order parametersg j ’s has a
precise meaning in terms of the fraction of Boolean variab

FIG. 5. RS ground state energy forK53 ~continuous lines!
computed forp51, . . . ,10~lines corresponding to larger values o
p would not be distinguishable! and compared with the results o
numerical simulations on systems of sizeN516,20,24 and aver-
aged over 15 000,7500,2500 samples, respectively~error bars are of
the order of the size of the dots!. The RS ground state energ
becomes positive~for p..1) at as.4.60 whereas the value a
which the unstable solution appears isam.4.428. Both values are
greater than the numerical estimate of the critical ratio (4.2). Sc
of the dashed line is to help the eye in following the expected,
unknown, RSB behavior of the ground state energy.
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1366 56RÉMI MONASSON AND RICCARDO ZECCHINA
completely determined at the transition. We have seen t
in 2-SAT, the fraction of Boolean variables whose valu
cannot fluctuate in the different ground states, that is,
heights of the Dirac peaks ofP(x) in x561, progressively
increases from zero whena crosses its critical value. Fo
larger K>3, there abruptly appears a finite fraction of t
variables that are entirely constrained by the clauses’ ful
ment condition at the threshold. We can compute this crit
fraction f using the RS theory. From Eq.~36!, we simply
obtain f 512r 0. The p51 solution therefore gives
f .0.656. Increasingp, the fraction of fixed variables at th
threshold converge tof .0.94; see Table I. Such a value
quantitatively consistent with the expected typical entro
(SGS.0.03 ata54.60) which may be easily converted in
an upper bound for the fraction of fixed variables by t

TABLE I. p dependence of the RS critical ratioas
RS and of the

fraction f of fixed variables.

p as
RS f

1 5.1812 0.6561
3 4.7271 0.7889
6 4.6451 0.8497
9 4.6240 0.8765
12 4.6153 0.8920
15 4.6107 0.9022
18 4.6080 0.9095
21 4.6063 0.9150
24 4.6051 0.9193
27 4.6042 0.9227
30 4.6036 0.9256

FIG. 6. Order parametersr i ( i 50, . . . ,p21) corresponding to
the different RS solutionsp51 ~dashed line!, p55 ~dashed-dotted
lines!, andp510 ~continuous lines!, for K53 vsa5M /N. Within
each group ofp51,5,10 curves, the upper one representsr 0

whereas the others representr i ( i 51 . . . ,p21), in top-down or-
der.
at,
s
e

l-
l

y

relationSGS<(12 f )ln 2, leading tof ,0.96. Moreover, nu-
merical investigations confirm that a quite large fraction
the Boolean variables have the same value~either always
true or false! in all satisfying logical assignments at th
thresholdac.4.2 @27#.

Therefore, we may conclude from the above analysis t
RS theory is unable to correctly predict the value of t
transition threshold but provides us with a sensible qual
tive pattern of the SAT/un-SAT transition. When crossi
the latter, a first order replica symmetry breaking transit
presumably takes place. The calculation of the thresh
value would require the introduction of a replica symme
broken ansatz to replace Eq.~14!. However, the issue of RSB
in diluted models is largely an open one@14#, due to the
complex structure of the saddle-point equations involv
and we shall not attempt here to pursue them in this dir
tion.

In the following, we shall rather show that RS theory st
provides a consistent and very precise analysis of the be
ior of the randomK-SAT problem below its threshold. Thi
requires the inspection of the ground state entropy in
region whereR(z)5d(z). Using the method exposed abov
we have computedSGS to the eighth order ina and found
that

SGS~a!5 ln 220.13353139a20.00093730474a2

20.00011458425a320.000016252451a4

22.4481877 1026a523.9910735 1027 a6

26.5447303 1028a721.167915 1028 a8

2•••, ~48!

in which, again, we have reported only a few sufficient dig
of the ~exactly known! coefficients. The entropy curve i
displayed Fig. 7 in the range 0<a<ac(3). By computing
the zero entropy points (a0) given by thel th order entropy
expansion, one finds a convergent succession of values
ward a0(3)54.75 ~within 1% of precision!, definitely out-
side the range of validity 0<a<as(3up→`).4.60 of the
expansion~48!. Notice thata0u l 51(3)55.1909 corresponds
to the annealed theory. A similar calculation for the cas
K54,5,6 yields qualitatively similar results, which show a
even quicker convergence towards a zero entropy point s
that ac(K),a0(K) ~see Sec. VIII for the analysis of th
largeK limit where both values coincide!.

Therefore,SGS is always positive belowas(3up→`). In
contradistinction with thep51 RS solution@5#, the largep
RS solution cannot be ruled out by a simple inspection
their corresponding entropy. A more important conseque
of the previous calculation of the entropy is that, at t
thresholdac , the RS entropy is still nonzero. The cruci
point is now to understand whether such a value of the
tropy is exact up toac or whether RSB effects have com
into play. This issue may be clarified by resorting to exha
tive numerical simulation. As reported in@5#, simulations in
the rangeN512, . . . ,28lead to the conclusion that not onl
is the entropy indeed finite at the transition but also o
analytical solution appears exact up toac . In particular the
1/N extrapolation of the entropy value ata54.17 shows a
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remarkable agreement between the numerical trend and
RS predictionSGS(ac).0.1 ~see the inset of the figure i
@5#!. RSB corrections to the RS theory seem thus to be
sent belowac , which leads us to conjecture that the RS
transition could occur atac exactly. In this sense the situa
tion would be partially similar to the binary network ca
@32#: the RS entropy would be exact up toac ~though with-
out vanishing! that would also coincide with the symmetr
breaking point. To end with, let us mention that the existe
of an exponential number of solutions just below the thre
old has been demonstrated@27#. The rigorous lower bound o
SGS is Smin.0.014 ~for 3-SAT!, which is compatible with
our result.

VIII. THE ASYMPTOTIC CASE OF LARGE K

In the largeK limit, the saddle-point equations lead to
closed form for the probability distributionP(x). In fact, in
terms of the quantity

Q~A!5E
21

1

)
l 51

K21

dxl P~xl !d~A2A~K21!!, ~49!

the differential equation~20! reads

]P~x!

]a
52KP~x!1KE

2`

`

dAS Q~A!1a
]Q~A!

]a D1

2

3F]h~x!

]x
P„h~x!…1

]h~2x!

]x
P„h~2x!…G ,

~50!

whereh(x) has been defined in Sec. III. ForK@1 , we may
expandQ(A) as

FIG. 7. RS entropy~continuous line! for K53 vs a5M /N
compared with the results of exhaustive numerical simulations
N516,20,24 and averaged over 15 000,7500,2500 samples, re
tively ~see also Ref.@4#!. Errors bars are within 10% and not re
ported explicitly.
he

b-

e
-

Q~A!.d~A21!1
1

2K21 d8~A21!1
1

2

3S 1

4
1

1

4E21

1

dxP~x!x2D K21

d9~A21!1•••.

~51!

Under the changes of variables G(y,a)
5(12tanh2y)P(tanhy) and

V~a!5aKS 1

4
1

1

4E21

1

dxP~x!x2D K21

, ~52!

Eqs.~50! and~51! simplify into the celebrated heat equatio

]G~y,V!

]V
52

]2G~y,V!

]y2 ~53!

whose normalized solution isG(y,V)5exp(2y2/2V)/
A2pV. Turning back toP(x), we find

P~x!.
1

A2pV~a!~12x2!
expF2

1

8V~a!
ln2S 11x

12xD G
~K@1!, ~54!

whereV(a) is given by the self-consistency equation~52!.
The latter may be easily estimated for largeK:
V(a).aK/4K21. Therefore, when a,ac(K).2K ln 2,
V(a) is vanishingly small, that isP(x)→d(x), proving that
the replicas become uncoupled in the largeK limit @3#. In
addition, it can be checked that the zero entropy pointa0(K)
reaches the thresholdac(K) from above. Another way of
looking at the entropy is provided by Eq.~46!: it is a simple
check of the fact thatac(K)2(]2SGS]a2)ua50→0 for large
K. We may then conclude that the annealed approxima
becomes exact whenK@1. As said above,K may be under-
stood as the connectivity of our model and, in the asympto
regimeK@1, RS theory includes only Gaussian interactio
as in long-range spin-glass models@32#. In Fig. 8 we report
some instances of the probability distribution, calculated
different values ofK and a. Notice that since the critica
point coincides, in this largeK limit, with the zero entropy
point ~which is far below the point where the RS ener
becomes positive—see above!, the probability distribution of
the Boolean magnetization is far from being concentrated
61.

IX. ALTERNATIVE DERIVATION
OF THE SELF-CONSISTENCY EQUATION FOR R„z…

In this section, we discuss an alternative heuristic deri
tion of the self-consistency equation~30! for R(z) without
resorting to replicas. As a result of this approach, we sh
unveil the physical meaning of theR(z) functional order
parameter and interpret the replica symmetry assumptio
probabilistic terms. The method we adopt is known as
cavity approach@1,25# and here we need to transpose it to t
zero temperature case. For the sake of simplicity, we s
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focus on the 2-SAT case, extensions to higher instance
K-SAT being straightforward.

To each Boolean variablexi and for a given logical for-
mula, we associate a quantityzi defined as follows. We cal
zi the difference between the number of unsatisfied clau
L whenxi50 ~false! and whenxi51 ~true!, averaged over
the set of all optimal~for K-SAT or MAX-K-SAT! Boolean
assignments, that is ground state configurations.

zi5L~xi50!2L~xi51!. ~55!

Next, we consider the set of allzi ’s and defineT(z) as their
probability distribution after having averaged over all po
sible logical formulas. The calculation ofT(z) proceeds ac-
cording to the following four steps.

Let us consider a given Boolean variable, sayx1. ~I! For
uncorrelated random CNF expressions, the probability
neitherx1 nor x̄ 1 appears in the logical formula is simpl
(122/N)M.e22a. In such a case,x1 can be indifferently
chosen to be either true or false, andz150. Therefore, we
obtain a first contribution,

T0~z1!5e22ad~z1!, ~56!

to T(z1). ~II ! With probability 2a e22a, x1 will belong to a
single clause, e.g.,x1~ x̄ 2. The latter is unsatisfied if and
only if x1 is false andx2 is true. Therefore,z150 if x2 is
allowed to be false~the clause is satisfied independently
x1), i.e., if z2<0. In order to see what happens in the av
age case, let us consider the case wherex2 is true in the
majority of optimal Boolean assignments. At first sight,z2
would appear as a strictly positive integer since it coincid
with a difference of integer numbers@10,11#, leading to
z151. However, as we consider averaged differences,
zj may well be rational numbers@26#. Such a counterintuitive
behavior can be easily understood with the following sim

FIG. 8. Probability distributionsP(x) as functions of the mag
netizationx, calculated fora52K ln 2 ~critical threshold in theK
@1 limit! and forK510,12,14,16,18.
of

es
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at

-

s

e

e

argument. Ifx2 appears~in average! in less than one clause
that is if 0,z2,1, it cannot be present in another clause a
we must havez15z2. Conversely, ifz2.1, x2 is more fro-
zen thanx1 and z1 saturates its upper bound equal to
Notice that this result may be made rigorous by working
finite temperature@25#. To complete the probabilistic analy
sis of this second contributionT1(z1) to T(z1), we have to
take into account the three other possible clauses involv
x1 and x2, and collect the corresponding contributions. W
find

T1~z1!52a e22aE
0

`

dz2 T~z2! $ 1
2 d„z12min~1,z2!…

1 1
2 d„z11min~1,z2!…1d~z1!%. ~57!

~III ! By iterating the above reasoning, we consider a logi
formula such thatx1 belongs exactly toj clauses. The prob-
ability of such an event obeys the Poisson la
(2a) je2a/ j !. Almost surely, the variablesx2 ,x3 , . . . ,xj 11
appearing in thesej clauses are different from each othe
Moreover, in the largeN limit, any pair of variablesxm and
xn (2<m,n< j 11) are always at a large ‘‘distance’’ from
one another, where the relative distance is defined as
minimal number of logical links~clauses! joining xm to xn ;
see Ref.@25#. As a consequence, the joint probability dist
bution ofz2 ,z3 , . . . ,zj 11 factorizes and due to the statistic
independence of the choices of the clauses, we have

Tj~z1!5
~2a! j

j !
e22aE

0

`

)
l 52

j 11

dzl T~zl !

3 (
m50

j

(
a1,•••,am

1

2m (
s1 , . . . ,sm561

3dS z12 (
l 51

m

s l min~1,zal
!D , ~58!

where theal ’s run between 2 andj 11. ~IV ! Summing the
previous expressions for all values ofj , we recover Eq.~30!
with R(z)5T(z).

Of course, the self-consistency equation forR(z) is cor-
rect provided that replica symmetry is valid, whileT(z) is
defined independently of any replica calculation. Theref
the equality between the two quantities cannot hold in g
eral and is due to the assumption on the absence of cor
tions between differentzl we have made above@1,25#. This
is the probabilistic meaning of replica symmetry.

X. CONCLUSION AND PERSPECTIVES

In this paper, we have presented the replica symme
theory of the randomK-SAT problem. We have shown tha
the natural quantity emerging from the analytical study is
distribution of the average values of the Boolean variab
indicating to what extent the latter is determined by the c
straints imposed by the clauses. The knowledge of this pr
ability distribution requires the resolution of a function
saddle-point equation, for which we have presented an it
tive sequence of improved solutions. The most surpris
result we have derived is the fact that the entropy is fin
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just below the transition, i.e., that the latter is characteri
by an abrupt disappearance of all exponentially numer
solutions due to the emergence of contradictory loops.

Some numerical simulations we have performed
K52 as well as in theK53 case are in remarkable quan
tative agreement with our RS calculations of the entro
jump at the threshold@5#. Both the known results on th
stability of 2-SAT-like models and the numerical simulatio
hint at the correctness of the RS theory up to the critical ra
of clauses per Boolean variable.

If this were true, the physical picture of the space of s
lutions would not necessarily be simple. Replica symme
can indeed hide a nontrivial structure of the solutions, as
been shown for long range spin glasses@33# models and in
the ~closer toK-SAT! case of neural networks@34#. This
issue is probably of crucial importance to understand
performances of local search algorithms.

As for the values of the critical thresholds themselves,
gives the correct predictionac51 for K52 but fails in es-
timating the criticalac for K>3. The study of the~hard!
instancesK>3 of theK-SAT problem requires to break rep
lica symmetry. As a consequence, their direct study will
be easy and will require nontrivial analytical efforts.

Another route that one can follow to reach a better und
standing of theK.2 case consists in starting from the rel
tively well understood 2-SAT case and modifying it to g
closer to the 3-SAT problem. Such a perturbative appro
can be implemented by considering a mixed model, wh
one may refer to as (21e)-SAT model (eP@0,1#), com-
posed of (12e)M clauses of length three andeM clauses of
length two~thus interpolating smoothly between the Polyn
mial 2-SAT and the NP-complete 3-SAT models!. Analytical
investigations suggest that the threshold can be comp
exactly up toe5e050.413. Fore<e0, one finds a continu-
ous SAT/un-SAT transition atac(e)51/(12e). The model
shares the same physical features as the random 2-
model. Fore.e0 , the SAT/un-SAT transition becomes
discontinuous~with respect to the order parameters! RSB
transition similar to the 3-SAT model. Preliminary numeric
results suggest that the above model can be of interes
exploring the connection between the nature of the RS
RSB phase transition and the onset of exponential regime
search algorithms running on samples generated near
cality @30#.
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APPENDIX A: RELATIONSHIPS BETWEEN
ORDER PARAMETERS

Identity ~9! implicitly implies that one can make a chang
of variables from overlapsQ to the generating functionc.
Let us callM the linear operator:

M~$a1 ,a2 , . . . ,a2p%;sW !5sa1sa2
•••san. ~A1!

For simplicity, we setQ$0” %51 and all overlaps with an odd
number of replicas are null. The dimension ofM is therefore
d
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equal to 2n. To any sequence$a1 ,a2 , . . . ,an%, we associate
an n-component vectortW such thattb521 if b belongs to
the sequence andtb51 otherwise. From definition~A1!, we
obtain

M~tW ;sW !5 )
a51

n
1

2
~11sa1ta2sata!. ~A2!

As a consequence,M equals thenth power~for tensor prod-
uct! of a two-by-two matrix. The Jacobian of the change
variables is found to be

uMu5~22!n2n21
~A3!

and is different from zero. We may invertM and find

c~sW !5
1

2nS 11 (
p51

n/2

(
a1,a2, . . . ,a2p

3Qa1 ,a2 , . . . ,a2psa1sa2
•••sa2pD . ~A4!

Let us now turn to the replica symmetric ansatz structu
From definition~14! and identity~A4!, we obtain

C~ j !5
1

2nS 11 (
p51

n/2

Qp (
a1,a2,•••,a2p

sa1sa2
•••sa2pD ,

~A5!

where 2j 5n2(a51
n sa and the replica symmetric overlap

Qp are calculated from the magnetizations distributi
@10,11#

Qp5E
21

1

dx P~x! x2p. ~A6!

To establish the relationship between theC( j )’s and the dis-
tribution P(x), we have to expand the sum over replic
taking place in~A5! onto the powers of thesW magnetization

(
a1,a2,•••,a2p

sa1sa2
•••sa2p5(

r 50

p

Hp,r
~n! S (

a51

n

saD 2r

.

~A7!

The matrixH (n) can be computed by first finding the gene
ating function of@H (n)#21 and then inverting the latter. We
finally find

Hp,r
~n!5

1

~2p!! ~2r !!

]2p

]y2p ~A12y2!n~arctanh y!2rU
y50

.

~A8!

Using the above expression and inserting Eq.~A6! into ~A5!,
one recovers identity~16! in the limit n→0.
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