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We introduce a self-affine asperity mod&8lAM) for the seismicity that mimics the fault friction by means
of two fractional Brownian profiles that slide one over the other. An earthquake occurs when there is an
overlap of the two profiles representing the two fault faces and its energy is assumed proportional to the
overlap surface. The SAM exhibits the Gutenberg-Richter law with an expgheelated to the roughness
index of the profiles. Apart from being analytically treatable, the model exhibits a nontrivial clustering in the
spatiotemporal distribution of epicenters that strongly resembles the experimentally observed one. A general-
ized and more realistic version of the model exhibits the Omori scaling for the distribution of the aftershocks.
The SAM lies in a different perspective with respect to usual models for seismicity. In this case, in fact, the
critical behavior is not self-organized but stems from the fractal geometry of the faults, which, in its turn, is
supposed to arise as a consequence of geological processes on very long time scales with respect to the seismic
dynamics. Our approach is distinguished by the explicit introduction of the fault geometry as an active element
of this complex phenomenologfS1063-651X97)04605-9

PACS numbd(s): 05.45+b, 91.30.Px

I. INTRODUCTION P(E)~E7'671, (1)

Recently, theoretical models have acquired an increasing
relevance in the study of seismicity. Their aim is to fill the with an exponent8 of the order of unity whose eventual
gap between experimental knowledge and theoretical conuniversality is a matter of debate.
prehension of the phenomenon. The Omori law{ 2] for the time correlations of aftershocks

One of the most serious problems which geologists havéi.e., seismic events which happen as a consequence of a
to face is the lack of complete catalogues extended over longpain earthquakeis another example of scaling behavior in
time periods. This makes it difficult to improve general com-the seismic phenomenology and one of the most difficult to
prehension about earthquakes. By studying theoretical modeproduce in simplified models.
els, one then tries to focus on some particular ingredients, !N the Iast decades _there has been increasing evidence for
which are supposed to be essentials, and then tries to undéhe space-time clusteriri@] of the earthquake epicenters. In
stand as much as possible of the seismic behavior. In thiarticular, there is experimental evidence suggesting that the
way one can compare the specific predictions of the mode@pmenter distribution is self-similar both in space and in
with those obtained from the real catalogues. tim . . .

Though the dynamics of earthquakes is very complex Unfortunately, the 'complexny of modeling the motion of

. . . a fault system, even in rather well controlled situations such

there are some simple basic components which have to be

taken int ti d thauak ted as the San Andreas fault in California, is a highly difficult
aken into account in a mo de) earthquakes are generated i,y and the correct theoretical framework at the very origin
by a very slow discontinuous driving of a faul) the oc-

oo ) , of scaling laws is still controversial. It is thus important to
currence of earthquakes is intermittent, i.e., they occur ag,ake the simplest possible models that are able to exhibit the
abrupt rupture events when the fault can no longer sustaigain qualitative features of the fault dynamics. Their physi-
the stress; an(t) there are two separate time scales involvedgg| relevance stems from the specific predictions orrétad
in the process; one is related to the stress accumulation whilgsismic activity which might be verified from experimental
the other, which is orders of magnitude smaller, is associategata.
to the duration of the abrupt releases of stress. One of the first attempts in this direction is due to Burr-
Many forms of scaling invariance appear in seismic pheidge and Knopoff4], who introduced a stick-slip model of
nomena. The most impressive feature is the celebratedbupled oscillators to mimic the interaction of two fault sur-
Gutenberg-Richter laWl] for the magnitude distribution of faces. In practice, one considers blocks on a rough support
earthquakes. It states that the probabilR(E)dE that an  connected to one another by springs. They are also con-
earthquake releases energy in the intefEBE+dE] scales  nected by other springs to a driver which moves at a very
according to a power law low constant speed. The blocks stick until the spring force
overwhelms the static friction and then one or more blocks
slide, releasing an “earthquake” energy proportional to the
*Deceased. sum of the displacements. In the frame of the inferior plate,
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if X; denotes the position of thieh block, the equations of It is worthwhile to recall in this framework the model
motion are proposed by Olami, Feder, and Christendd]. Their
. model maps the two-dimensional version of the Burridge-
MiXi =Ke,i(Xi+17X) —Kei—1(Xi—Xi_1) Knopoff spring-block model in a cellular automaton and it
—kp (X —vt)+ Fi(%), ) gives a good prediction of the Gutenberg-Richter law with a

nonuniversal value of th@ exponent, which varies with the
WhereFi(j(i) represents the friction force which depends onlevel of nonconservation of the model and could account for
the block velocityx; . In the original model the friction force, the g variances observed in nature.
zero for zero velocity, increases progressively as the velocity In order to go beyond the limitations of these models, we
increases up to a certain maximum value. This model exhibhave recently proposed an alternative approdcy where
its the Gutenberg-Richter law for the distribution of the en-the critical behavior is not self-organized but stems from the
ergy released during an earthquake and it allows for the pregractal geometry of the faulfd2—14. In this perspective the
ence of aftershocks. Up to now the original model offaults are supposed to be formed as a consequence of geo-
Burridge and Knopoff remains the only one able to explainjogical processes on very long time scales with respect to the
the presence of aftershocks withad hocmodifications. seismic dynamics. Looking at the system on the time scale of

A numerical integration of the Newton equations for ahyman records the fault structure can be considered assigned
one-dimensional chain with a large number of homogeneougq just slightly modified by earthquakes.

blocks has been performed by Carlson and Laf§ErTheir

model differs from that of Burridge and Knopoff in the form asperity mode(SAM) [11], which mimics the fault dynam-
of the friction force which is supposed to be identical for all ics by means of the slipping of two rough and rigid Brown-

the blocks, neglecting the |nhomo.g('ane|t|es of the crust, .It haﬁan profiles one over the other. In this scheme an earth-quake
been shown that the model exhibits the Gutenberg-Rlchtecr)CCUfS when there is an intersection between the two profiles
law [1] (see alsq[6] for the connection with the chaotic P '

behavior of the system The energy released is proportional to the overlap interval.

More recently it has been suggested that the qualitativghis model', .apart from bei.ng analytically treatable, exhibits
aspects of earth-quakéand of Burridge and Knopoff mod- SOM€ specific features WhICh follow from the fractal geom-
el9 could be captured by the so-called sandpile models€try of the fault. In particular, it reproduces the Gutenberg-
which are the paradigm of a large class of models showing.l'f'cmer law with an exponeng which is nonuniversal since
Se|f_organized Cr|t|Ca||ty(SOQ [7] The Concept of self- It dependS on the roughneSS of the fault prOflleS. It predICtS
organized criticality has been invoked by Bak, Tang, andhe presence of a local stress accumulation before a large
Wiesenfeld[7] to describe the tendency of dynamically Seismic event. Moreover, it allows one to analyze and inves-
driven systems to evolve spontaneously towards a criticdigate the complex phenomenology of the space-time cluster-
stationary state with no characteristic time or length scaleing of epicenters. The model exhibits, in fact, a long-range
An example of this behavior is provided by sandpile modelscorrelation of the events which corresponds to a self-similar
sand is added grain by grain in a pile ordadimensional distribution of the spatial and temporal epicenter sets. In this
lattice until unstable san@oo large local slope of the pile scheme it is also possible to include the analysis of the origin
slides off. In this way the pile reaches a steady state wheref aftershocks and show that, in a natural generalization of
additional sand grains fall off the pile by avalanche eventsthe model, they follow the celebrated Omori law.

This steady state is critical since avalanches of any size are In this paper we describe in detail the SAM. The analyti-
observed. According to this picture of self-organized critical-cal results are, step by step, tested numerically and, when-
ity, during its whole evolution the Earth would have reachedever possible, via comparison with experimental data.

a marginally stable state in which any small perturbation The outline of the paper is the following. In Sec. Il we
could give rise to relaxation processes, earthquakes in thistroduce the model and we recall some properties of frac-
case, that can be small or cover the entire system. In this wayonal Brownian profiles. Section Il is devoted to the discus-
the earthquakes would be the equivalents of avalanches faion of the Gutenberg-Richter law. We show that the SAM
sandpile models. The main ingredient in this picture wouldfollows this scaling with an exponen that we relate ana-

be the interplay between the slow dynamics, represented Hytically to the roughness of the Brownian profile. This al-
the stress accumulation, and the fast dynamics of eartHews us to draw some conclusions on the nonuniversality of
quakes. The latter would modify the Earth’s crust which, inthe exponent3. In Sec. IV we discuss the problem of the
its turn, can give rise to earthquakes and so on, with a feeddistribution of epicenters from both the spatial and the tem-
back mechanism that would be at the origin of the self-poral points of view. The SAM exhibits a nontrivial cluster-
organization. ing of epicenters which reproduces the experimental results

There exists a whole generation of SOC models proposednd can be analytically explained by exploiting the proper-
to explain the scale-invariant properties of earthqu@Bed.  ties of the fractional Brownian profiles. The problem of the
These types of models suggest, however, that there is nmower spectrum of the temporal sequence of earthquakes is
stress accumulation before a big earthquake and the expalso discussed. Section V is dedicated to the introduction of
nent of the Gutenberg-Richter law is expectadth the ex- a more realistic version of the SAM. This version, which
ception[10] that we mention hereafteto be universal. In takes into account the local rearrangement of the Earth’s
addition the space-time distribution of the epicenters has norust as a consequence of the earthquakes, exhibits a non-
clear relation with the experiments where nontrivial cluster-trivial scaling in the distribution of the aftershocks, accord-
ing is present. ing to Omori’'s law. Finally in Sec. VI we draw conclusions.

In particular, we have introduced the so-called self-affine
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The paper is completed by two appendices on the statistics of 7
the fractional Brownian profiles. o

Il. THE MODEL \ M g 1

Many authors pointed out that natural rock surfaces can NI A
be represented by fractional Brownian surfaces over a wide ""**‘”"f‘?"‘(‘\; "f
scale rang¢12,13 and that also the topographic traces of the . .f*‘ M‘, |
fault surfaces exhibit scale invarianfks]. There is not, up &"m,%!f" '
to now, an exhaustive explanation of the formation of fractal ki
faults but a lot of studies have been carried out in order to
extract geometrical information about the fauli$,17,13. FIG. 1. Fault planes realized by two Brownian profiles put in
This kind of studies is made difficult by the practical impos- contact at one point.
sibility of obtaining accurate information about faults which
are not on the Earth’s surface. Also on the Earth’s surface iabout the relation between the roughness of the tdudtnd
is difficult to identify the fault profile and often what appears the scaling exponent of the Gutenberg-Richter law as well as
at a certain scale as a single fault is actually composed adn the spatiotemporal distribution of epicenters.
several segments of faults. Nevertheless, there exists a rea- Note how this model represents an alternative approach
sonable agreement to assume that faults can be regardedwith respect to the SOC models. In this case, in fact, one
fractals and, in particular, as statistically self-affine supposes the interplay between the fault structure and the
profiles Fy(t), and then profiles whose height scales asseismic events to be lacking. The latter is supposed not to
|[Fu(t+7)—Fu(t)|~7H. Ind=2, such a profileF4(t) can  modify substantially the fault geometry. In this sense one is
be generated by fractional Brownian motiGfBM) with ex-  in a sort of limit of infinite rigidity of the Burridge-Knopoff
ponentH, the Hurst exponent, and th=3 by the standard models.

generalization given by Brownian relief$8,19. The expo- Operatively, the SAM is defined by the following dy-
nent O<H=<1 controls the roughness of the fault where thenamical rules.
standard Brownian profile correspondsHe-1/2, and a dif- (i) We consider two profiles, sa§' (n) andS’(n), with

ferentiable curve corresponds k=1. Just to give an ex- n=1,...L, on parallel supports of length at infinite dis-
ample, let us recall how it is possible to generate a Browniartance. The initial condition is obtained by putting them in
profile. In the one-dimensional case one can gendrasn-  contact at the point where the height difference is minimal so
dom variablegRV) {X;,...,X } according to the following that(see Fig. 1

algorithm:
S'(n)=S"(n)+ max {S'(j)—S'(j)}, n=1,..L.
1 with probability p=% jeflo L}
X;={ 0 with probability p=1% (i_i) '_I'he successive eV(_)Iution is obtained by drifting a
profile in a parallel way with respect to the other one, at a
—1 with probability p=3. constant speed, so thatS'(n;t)=S"(n—uvt).

(iii) At each time steq, one controls whether there are

On a one-dimensional lattice &f sites one can thus define a new contact points between the profiles, i.e., whether
stochastic function S'(n;t)—S"(n)<0 for somex value. An intersection repre-
sents a single seismic event and starts with the collision of
two asperitiesof the profiles. The energy released is assumed
to be proportional to the breaking area of the asperities, i.e.,
the extension of the hypersurfaces, in general of dimension
where S, is an arbitrary integer number. Equati¢®) de- (d—1), involved in the collision of the asperities during an
fines, in the limitn—«, a self-affine profile of fractal dimen- earthquake. In the cask=2 the energy released is given by
sion D=1.5. More generally, the fractal dimension of the the sum of the lengths of the two segments indicated with
profile is well known to beD=d—H. For further details A andB in Fig. 2.
refer to Appendix A. (iv) We do not allow the development of new earth-

The explicit introduction of the fault geometry in a model quakes in a region where a seismic event is already taking
for seismicity was already been supposed by Huang and Tur-
cotte[14]. They introduced a static model where the average

S(n)zsoJrz,l X; Vns<L, (3)

of all the seismic events contributing to the Gutenberg- T
Richter law is taken over many uncorrelated realizations of N

1 1 i 1 P N N o B ya 4
one single fractal profile. The purpose of this paper is to R N /JAL\,\‘( AN

introduce a dynamical model, called the self-affine asperity
model, that describes the seismic activity considering two
profiles sliding one over the other instead of only one as in  FIG. 2. Sketch for the definition of the energy released during
[14]. Such a model has the advantage of exhibiting strongn earthquake. It is assumed proportional to the breaking[trea
spatial and temporal correlations also between far away seigd— 1)-dimensional seté and B] between the two asperitieg
mic events, and allows us to infer some specific predictions<A+B.
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place, i.e., with reference to Fig. 2, we do not take into ac-a crash. Thus this is a perspective which is opposite to that of
count the earthquakes which eventually take place in regionthe SOC models, since the earthquake dynamics has no ef-
A andB of the two profiles, untilA andB have a nonzero fect on the structure of the profile. Realistic situations could
overlap. well correspond to intermediate cases, of course.

Rule (iii) is a consequence of the proportionality between It is possible to introduce a more realistic breaking
the energy released during an earthquake and its seismic maoechanism where there is also a modification of the asperity
mentumM, which, according to standard geophysical defi-form after an earthquake. We will discuss this possibility in
nitions, can be written as Sec. V and we will show there how it is possible, in this
framework, to reproduce Omori’s law.

It is worthwhile to stress that the SAM exhibits a strong
nonlocality since a collision at a point at the timet can
trigger, at a later time, a subsequent event also very far away.
where u is the rigidity modulus of the medium under con- One of the main advantages of the SAM consists in the pos-
sideration S is the displacement of the fault during the earth-sibility of deriving various analytic results using the proper-
quake, andA is the rupture area. If we considgr as a ties of Brownian profiles.
constant along the fault one has

Mo= JA,U,S dA 4

Ill. THE GUTENBERG-RICHTER LAW

Mo= A 1 f S dA=uAS. (5) AND THE NONUNIVERSALITY
A Ja OF THE S8 EXPONENT

M, is then proportional to the average displacement of a In 1956, Gutenberg and Richt¢t| noticed the depen-
fault during an earthquake. The bigger the pressure exertédgnce of earthquake frequency on their magnitude: the
on the asperity, the bigger will be the displacement of thedreater the magnitude, the smaller the frequency. The rela-
fault. A measure of the pressure necessary to break an aspé2n between the frequency and the magnitude of earth-
ity is given by its dimension. One then supposes that théluakes is
average displacement is proportional to the dimension of the
asperity broken during an earthquake. The form(f, logigN(M>m)=a—bm, (6)
which is an approximation valid for wavelengths greater than
the source dimension, would predict a behavMr~I®  \hereN(M>m) is the number of earthquakes with a mag-
whereas with our assumption we ha\/b\’lz Neverth6|ess, nitude greater tham while a andb are two empirica| pa-
we have to take into account that the breakings never exceggdmeters. Thé value is generally in the range G®<1.4
the crust thickness and, by analyzing the big earthquakegepending on the Earth's region considered and the stress
one deduces that the vertical dimension is practically conteve| of the region itself.
stant. One can then assurve~1%, which agrees with our  Relation (6) is the most important statistical representa-
hypothesis in the realistic casie=3. It is obviously possible  tion of seismicity and the understanding of the underlying
to consider more SOphiSticatEd schemes and the work alor}gechanisms is of fundamental importance for the compre-
these lines is still in progress. hension and forecasting of earthquakes. Several studies have
With these rules, the motion of the two profiles simulatesheen made to understand the origin of the universality of the
the slipping of the two walls of a single fault. The points of Gutenberg-Richter relation but, despite the simplicity of this
collision are the points of the fault where the morphologyrelation, there is no understanding of the underlying mecha-
prevents the free slip: these are the points where there is &flsms. Theb value might depend on three factofd) the
accumulation of stress and, consequently, a raise of pressugeometrical properties of the faul) the physical properties
When the local pressure exceeds a certain threshold, a breal the medium, and3) the stress level of the seismic region.
ing takes place, an earthquake, which allows relaxation ofn this section we show that, in the framework of the SAM,
the stress to relax and redistribution of the energy, preyiouslme b value is essentially determined by the fault geometry
accumulated, all around. We assumed that the region bemd in particular by its fractal dimension. The magnitude
tween the two sliding profiles of the fault is empty or filled \ s not the only indicator of the earthquake strength; an-
by a granular medium, consistent with the observation thagther quantity used to describe the earthquake intensity is the
the fault gauge is a zone of fractured rocks. According to th&ejsmic momenM, that we have defined in Eg4). From
paper by Herrmann, Mantica, and Besf0], one could  gimensional analysis it is obvious that the eneEgyeleased
think of this granular medium as being composed of rolleryy an earthquake is proportional to its moment. There is an

bearings between the two surfaces. The existence of a larggnpirical relation between the seismic momémt energy
region between the two rough surfaces could then be relateghg the magnitude:

to the so-calledeismic gapnamely, an extended area where
two tectonic plates can creep on each other without produc-
ing either earthquakes or the amount of heat expected from
usual friction forces. This zone slides and has no influence )
on the dynamics due to its relatively lower viscosity. whereE is the released energy. From E¢6) and (7) we
For the sake of simplicity, in this version of the SAM, €asily obtain the energy distribution for earthquakes:

there is no real breaking of the profiles as a consequence of

an earthquake and the profiles maintain their structures after P(E)~E A1, (8)

log;cE=cM+d, (7)
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E (number of sites involved) From the preceding equation we can compute the mean ex-
tension of the hyperareas:
FIG. 3. Number of earthquakes releasing an en&gs E for Ld-1
roughness indesd = 3. <a>L~J a Bda~L(d-L2-8) (10)
0

whereP(E) is the probability of an earthquake releasing an . .
energyE and 8=bic. By comparing Eqs(9) and (10), one gets the relation be-

In order to describe the seismic phenomenology a modéiVeen 'ghe exponeng of the Gutenberg-_Rlchter law id
for the fault slip has to verify Eq(8): we thus will study the dimensions ar_ld the Hurst ex!oonent which accounts for the
energy distribution for the model defined in the precedingfrac'[al properties of the faults:
section(SAM). H

The numerical simulations provide clear evidence that our B=1— ——. (12)
model exhibits the Gutenberg-Richter 148), see Fig. 3. As d—1
we have defined in the preceding section, the energy released i i
during an earthquake is essentially given by the length of thd the three-dimensional case one has
superposition between the fluctuations of the two self-affine H
profiles. Remembering that the difference between two self- B=1-—, (12)
affine profiles is a self-affine profile itself, we can consider 2
only the profile given by the difference between the upper | N
profile and the lower profile: the energy distribution will be With B<[3,1]. _
simply the length distribution of the segment obtained by [N order to check E¢(11) we have performed a numerical
intersecting the difference profile with a straight line. experiment ind=2. Figure 4 reports the results of the

If we consider a fractal ensemble having a dimengibn value, as afu_nctlon of the Hurst exponent, which are in good
—d—H embedded in a@-dimensional Euclidean space, the @greement with the expected relatigr-2—H. The depen-
intersection between the ensemble and a hyperplane of dilence ofg value on the roughness of the faults could then

mensiond— 1 will be an ensemble of dimension hy5]: account for the nonuniversality of th@ value which would
reflect the variability of the fractal dimension of the fault
D=(d—H)+(d—1)—d=d—H-1 profiles around the world. In this perspective one could also

try to relate theB value to the age of a given fault profile. By
Therefore the average extension of the hyperareas given bsupposmg that the effect of the fault slipping and of the

. ) : é’arthquakes is a smoothing of the profiles, i.e., an increase of
the intersection between a self-affine hypersurface and a h)p—| one could guess that the older the fault profile, the

perplane will be smaller theg value.

(@) ~ARdL, ©)
IV. SPACE-TIME DISTRIBUTIONS OF EPICENTERS
where the subscripk indicates that we are considering a Let us now try to analyze the problem of the space-
portion of the hyperplane of extensig~L%" . By virtue temporal clustering of the earthquake epicenters. Many au-
of the self-affine nature of the considered ensemble, the hythors[3,21,27 pointed out that the epicenter tends to cover a
perareas distribution will be fractal set with a fractal dimension which is a highly irregu-
lar function of space and time. One of the most interesting
d(a)~a A1 features is represented by the evidence that the spatial distri-
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bution of the epicenters along a linear seismogenetic struc- A

ture seems to exhibit self-similar properties. Results of the

same kind have been reported for single “transform” faults.

This could lead to the conclusion that the nonhomogeneity of ,
0

the spatial distribution of the epicenters is due to some pe-
culiar phenomenon occurring also in a single linear fault and . \ N

just partly to the fractal distribution of the faults. W 7
Similar properties are exhibited by the temporal distribu- Dinin A
tion of events with a nonhomogenous structure, made of pe- v \
riods of quiescence and bursts of activity. Along the same
region there could be subregions with nonhomogeneous and =
also very different behaviors.
Thanks to the simple dynamics of the SAM it is possible G, 5. Scheme illustrating the region of heights, i ,had in
to study, whether analytically or numerically, the compleXwhich the occurrence of collisions between asperities is possible.
space-time distribution of the epicenters. Operatively then is a function of the lengtt. of the profiles and indicates their
space location of an epicenter is defined in correspondencgerage distance.
with the first point of contact of the two colliding asperities
belonging to the two profiles. number of points of the inferior profileN(h,L), with a
As far as spatial distribution of earthquakes is concernedheighth between the minimum value,,, of the upper fault
our simulations provide good evidence of a spatial clusteringrace, and the maximum value,,., of the lower one, as
of epicenters on a set with fractal dimension smaller than 1shown in Fig. 5:
In particular, we obtained a value of the fractal dimension
dep in the ranged,~0.8—0.9 forH varying in the interval maL)

[0.3,0.7 and for different lengths of the system betwden Ng(L)~ Jh ) N(h,L)dh, (15
=1000 and 50 000. min
By numerical analysis of the model the valuesigfseem
to decrease with increasing and seem to remain nearly

constant with respect to variations of the system dimensions _ ap?
and of H. These results are not immediately explicable; if N(h,L)~ L exp(—3h*/anL), (16)

thg fault prqfiles_ could §Iip for an infinite time, in fact, gach where 3j/4 is a constant dependent on the variance of the
point of the inferior profile could be, theoretically, an epicen- ariables{x;} used to generate the profile. By inserting Eq
ter because it, sooner or later, would be hit by an asperity o 16) into Eq' (15) one has ' |

the superior fault profile. In this way we would have that

whereN(h,L), for big values ofh, can be written as

lim;_,.dep=lim_ _..dep=1, and the set of epicenters thus be- h 3h?2
. . e . max
comes a compact set. This intuitive idea turns out to be cor- Ng(L)~ \/Ef exp( — —)dh. (17
rect since the observed noninteger fractal dimension is a non- Pmin 4l
trivial finite-size effect. It is possible to show analytically, ] . .
for H=0.5, that the fractal dimensiafy{(L) of the epicenter ~ Let us find an estimate of tHey, andhpe, values in the
set in a fault of linear sizé is limit L—oc and consider the two faults to be Brownian pro-
files (H=3) with lengthL.
v InInL In our case the variablefX;}{Y;} which compose the
defL)=1~ L for large L. (13 profiles are random variables with zero mean and variance

o?=% So the variables {X;}=3/2(X;} and {Y;}

We will sketch here the main lines of the proof, referring the=y3/2{Y;} will be random variables with zero mean and
reader for further details to Appendix A. unitary variance. To these variables we can apply the so-
First of all it is worthwhile to remember that, according to called iterated logarithm theoreLT) [23]. It states that,
the definition of the SAM, in order to obtain an infinite evo- for a partial sumSk=E:‘:1Wi of identically distributed ran-
lution of the system we necessarily need two fault profilesdom variables{w;} with (w;)=0 and varianceo?=(w?)

with a lengthL, which tends to infinity. One has first to =1, it holds that
create the two profiles separately and then to put them in

contact. This is because the average distance between the S,
two profiles tends to increase hs-«. P| Iim sup———==1|=1, (18
In full generality, with reference to Fig. 5, called ke V2k In Ink

(_SSS,r(]j)))}, Soon'e élzs(’nf)rzmséaczin?sﬂ?q);22%1?;?& (sje)t— whereP(A=a) is the pro?ability for the variabIA_to have
ting, without loss of generalitys), = S;=0, the I(valuea. For theH=3 cafe we can also writ&§;(k)
=Z{_1X and Sg,dk)=ho+Z{_,Y;, where{X;} and{Y;}
(S'(n)—S'(n))=ho. (14)  are uniformly distributed variables with zero mean, standard
deviationa?=3, andhy=max;(Z,_,X—Y)).
The idea we want to use is that the number of epicenters By using the ILT with profiles built with the normalized
Ng, for sufficiently large systems, will be proportional to the variablesX; andY; one obtains
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2 where 7* is the mean value of?(L)/#(L). This implies
lim sup {S'(n)}=— VL InInL, that, according to what we had forewarned, lim.dey=1,

L= ne[lL] V3 (19 and thus that the fractal nature of the spatial distribution of
epicenters is due to the fault finite size. The asymptotic value
i i , 2 dep=1 is reached very slowly at increasihgand it cannot
Ll'nl inf {S"(n)}=- 3 VL InInL. be detected except by means of huge simulations. We have
—e nellt] checked the validity of Eq27) for profiles with a linear size
One has also L varying in the range ¥6-1C°. Work is in progress to
extend our results to the case of a generic roughness index
inf {S'(n)}=hy+ inf {S'(n)}. (20) H.
ne[1L] ne[1;L] Let us now discuss the temporal correlations of earth-

quakes and, in particular, the problem of thé hbise. A
system is said to exhibit L/hoise when its power spectrum
scales as

By defining the stochastic variabl¢g;=X;—Y;} it will be,
by definition,

ho= sup [Z Zi]. (21

1
nefiL]li=1 S(f)Nf—a, (29)

The variablegZ;} have zero mean and varianeé=%. So
we can apply the ILT to the variablé&=(v3/2)Z; by get-  With @ smaller than 2. The interest inflhoise lies in its
ting ubiquity in nature. 1f/ noise has been detected in systems as
7 diverse as resistors, the hourglass and the flow of rivers or of
242 cars in a traffic system. Even though much work has been
hozf VinnL. (22)  devoted to this topic it is still lacking a general theory that
explains the widespread occurrence df dbise.
By comparing Eqs(19), (20), and (22) one easily gets the The fapt that thg power spectrum is conr]ecte_d to the au-
expressions foh,;. andh, .. tocorrelation function by the_ Wiener and Khintchin theorem
leads some authors to the idea that the presence of the 1/

2 noise indicates the presence of self-similarity in the distribu-
hyin=—= (vV2—1)yL In InL, tion of correlation times.
V3 23) The autocorrelation function is usually defined as
2 E(t+1to)E(t
hmax:ﬁ VL InInL, C(t)= <(<T'f))>go_)>_l' (29)
0

and, inserting these expressions in Etj7) and making a \yhereE(t) in our case represents the energy released by an
change of variables, earthquake which occurred at tinteand the averages are
taken over the distribution of timeg. If the energy presents

Nmn 2 S .
NE(L)NLJ e U2rdt=LI(L), (240 a power-law distribution with an exponent greater thad,
(V2-1)VCTn InC as in our case, the averagg(t)) will depend on its maxi-

mum value and then on the system dimension. We would
have, in this way, a nonconsistent procedure to calculate the
autocorrelation function. In order to overcome this difficulty
one can use an alternative definition of the autocorrelation
function which is independent of the scale of the system. If
we define it as

wherel (L) is an integral which tends to zero in the limit
L—. We are interested in how this integral goes to zero.

The “average theorem” for continuous function states
that it will be possible to find &=(L)y2InInL, with
v(L)e]v2—1,1, in such a way that

Ne(L)~Le U27A¢~ (25) C(t) =(E(t+1o)E(to)) (30)

(InL)VZ(L)/”,
it is possible to show24] that the power spectrurg(f) is
linked to the Fourier transformation @f(t), (|E¢|?), by the
relation

where At is the integration interval ang(L) is the limit
value of y(L) and we have neglected all the terms diverging
slower than the logarithm.

Using the mass-length definition of fractal dimension, )
(|Efl®=S(f)+1N, (31)
dep=lim InNg(L)/InL, (26)

L— whereN represents the dimension of the system. We have

. . also
we obtain the relation

dor=1— 7" '”m'EL+o('” ::L'”L) 27 S(0=3 (EAlw(i-[2 32
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= FIG. 7. Scheme illustrating the mechanism for the breaking of
w the asperities in the generalized SAM. When there is a collision
107 between two asperities the weaker is broken. The shadowed region
defines the broken area and the new profile after the collision.
. rence of the main shock. They are ruled by the following
10 empiric relation[2]:
N(t)~ ——, 35
10_5 L ( ) (t+c)a ( )
10
f (frequency) whereN(t) indicates the number of earthquakes which oc-

curred at time after the main shoclg is a constant, and
FIG. 6. Power spectrurgsolid line) for the temporal sequence of is an exponent whose value ranges in the inteftd-1.4.
earthquakes in the SAM. It shows & Behavior with an exponent For long enough times one usually supposés>c and the

a=1.2 corresponding to the slope of the dashed line. functional form of N(t) given by a pure power laviN(t)
~t" 9
where the functiotW(f) takes into account the finite dimen- In this section we improve the model in order to include
sion of the system and tends to the delta func®) for an  the rearrangement of the Earth’s crust as a consequence of
infinite system. IfN is big enough, one has the occurrence of an earthquake. With this modification it is
possible to describe the local phenomenology of seismicity
S(f)=(|E{|?) (33 and, in particular, to reproduce Omori’s law.

The model is modified by considering the asperity break-
and one can study the power spectrum by simply analyzingng in the collisions. When two asperities collide a fracturing

the Fourier transform of the autocorrelation functi@®). process starts in the smallest aspelitiyat one with the
In our numerical simulation we have studied this functionsmallest section at the level of the epiceptdthe fracture
and the results, shown in Fig. 6, gave propagates inside the fault until it again crosses the fault
profile. At this point the fracture stops and the resulting con-
S(f)y~f~¢, (34)  figuration represents the new fault profile in the region in-

volved in the earthquake. The magnitude of the earthquake is

with a=1.2. This means that our model exhibit§ hoise, assumed to be proportional to the linear extension of the
i.e., there is no maximum autocorrelation time and a seismifracture.
event may be influenced by another one very distant in time. In Fig. 7 is shown an example of a fracturing process
during an earthquake. The shadowed region is removed from
the fault profile. The statistical properties of the fracture are
supposed to be identical to those of the entire fault profile.

Up to now we have studied a version of the SAM corre-This means that one has to consider a self-affine profile with
sponding to the limit of infinite rigidity of the faults. The the same Hurst exponent of the original fault.
fault profiles are not modified by the seismic activity and one In our simulations, we considered, for the sake of simplic-
studies the statistics of earthquakes in the hypothesis thiy, the case of a Brownian profile witH=0.5. Let us note
there is a complete time-scale separation between the seisniftat an earthquake at a certain point can trigger several other
activity and the rearrangement of the Earth’s crust. The latteearthquakes, with smaller magnitude, which occur in the
would develop in very long times with respect to the scale ofsame region or in a very close region. In order to investigate
human records and this would justify the assumption. the statistics of the aftershocks we identified all the aftersho-

We have shown how this model exhibits a good interpre-<cls occurring after a certain main shock in the rupture region.
tation of the seismic phenomenology in a global senseA main shock is defined as an earthquake above a certain
Gutenberg-Richter law, epicenter clustering. What is lackingnagnitude(in our simulations an earthquake involving at
is the description of what happens locally, i.e., as a consdeast 100 sitgs Starting from this event one counts, as a
guence of a single event, from both the temporal and théunction of the time elapsed from the main shock, the num-
spatial points of view. In particular, it is not possible to ob- ber of earthquakes, with a magnitude smaller than that of the
tain in such a scheme Omori’'s law for the distribution of main shock, occurring in the same region. One stops the
aftershocks. These events are related to the situation in tr@unting when an earthquake with a magnitude greater than
neighborhood of the main shock epicenter after the occurer equal to the main shock occurs.

V. THE GENERALIZED SAM
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o= ——. (39

Relation (37) is obtained by supposing that the area of the
broken asperities scales with its linear extensioas A,
~|1*H py a standard variable change. Work in this direction
is still in progress and we plan to report on it in futygs].

It is obviously possible to consider more realistic gener-
alizations of the breaking mechanism, in which the applica-
tion of the pressure at a certain point causes the breaking in
a different point, mimicking, in this way, the effect of the
stress redistribution in the medium. This situation is, in its
turn, a simplification with respect to the ideal case in which
one has to calculate, at each time step, the new stress field in
the whole medium as a consequence of the changed pressure
conditions.

N({<T)

10

VI. CONCLUSIONS AND PERSPECTIVES

T In summary, we have proposed a model of earthquakes
where the critical behavior is generated by a preexistent frac-
FIG. 8. Cumulative distribution for the aftershocke(t<T) is  tal geometry of the fault. The statistics of earthquakes is thus
the number of aftershocks, events causally connected to the maielated to the roughness of the fault via the scaling relation
shock, which occurred up to the tinfe elapsed from the main (2) between critical indices. This result suggests that the
shock time. younger the fault system, the larger thesxponent is, since
one expects that the roughness of a fault decreases in geo-
We have studied the behavior of the cumulative diStI’ibU-IogicaJ times. Note that in this case, the exponbrij; non-
tion of aftershocks, i.e., the numbét,,{t<T) of earth-  uyniversal. Another major result is that the fractal distribution
quakes occurring befor€ time steps after the main shock. of the epicenters could be a finite-size effect very difficult to
By averaging over many realizatiofwsf the order of 18) we  detect from data analysis. In our case our results provide a
have obtained the curve reported in Fig. 8 that exhibits thgossible explanation for the highly irregular and nonrandom
Omori scaling law(35). For values ot large enough one has distribution of epicenters that is observed experimentally.
the power law Last but not least, the accumulation of pressure is at the very
ma origin of large seismic events in the SAM. The presence of
Neun(t<T)~T"7, (36) such an effect could be tested also in real situations, e.g., by
: _ . piezoelectric measurements.
with the exponenwwv=0.37. The numerical value of the ex- Moreover, we introduced a generalization of the SAM

ponenta is not in good agreement with real values. How-  .° . . i
ever, we have just considered the case of a one—dimension\élvlhICh mcludes the effect of the brgakmg of the asperities in
ntact during an earthquake. This makes the model much

profile embedded in a two-dimensional space and the mOd(%:Inoore realistic and allows for the interplay between earth-
considers only one isolated fault, thus neglecting the effects play

. . . . .~ qQuakes and structural properties of the faults. This version of

of interaction among different faults. It would be interesting o L e
P the model exhibits a nontrivial distribution of aftershocks

to study what happens considering the case of a t\No\-NhiCh follows Omori's law
dimensional surface too. '

This generalized SAM recalls the work of Herrmann,
Mantica, and Bessi§20] on the space-filling bearing. The ACKNOWLEDGMENTS
analogy lies in the fact that one could think of the interspace

bet the two fault ol filed b | i It is a pleasure to thank V. De Rubeis and P. Tosi with
etween the two fault planes as filed by a granuiar mediun, ., part of this work has been carried out. We thank E.

which is also composed by the broken asperities of the faul I~ : ;
The link is made closer by the fact that in our case the dist—cagIIOtI and G. Mantica for useful suggestions.

tribution of areas of the asperities broken follows a power
law APPENDIX A: STATISTICS

OF FRACTIONAL BROWNIAN MOTIONS
P(Aasp) NA;S(E)’ (37)

with an exponen® which could be related analytically to the
roughness exponent by the relation

In this appendix we review the main properties of the
so-called fractional Brownian motions, which represent a
generalization of the Brownian motidi5,26,21.

A FBM Fy(t) is defined as a monodrome function of one
z—d” variable t, such that its incremenAF(At)=F,(t+At)

2— H(d—_l (38  —Fy(t) has a Gaussian distribution with variance

1

°="1+hH

which ind=2 takes the value o?=(AF§(At))~At?H, (A1)
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where the brackets indicate the average over many realizavhereD is the fractal dimension of the intersection set, the
tions of F(t). The parameteH is the so-called Hurst ex- zero set. In our case one hBgs=d—1 andD,=d—-H and
ponent and takes values between 0 and 1. The main propehen

ties of those functions can be summarized as follo@s:

they are stationary, i.e., the average square increment de- Do=d—1-H. (A8)
pends only on the increment of the argumeérgnd all the ] o ] )
values of this argument are statistically equivalégy;they ~ 1he set of zeros of a Brownian profile th=2 with a generic
are continuous functions but nowhere differentiable; ¢8)d  vale of the Hurst exponeri is then a set of points whose
they are self-affine curves, i.e., if the time scale is rescaleffactal dimension iDo=1-H.

by a factorr, the corresponding incremetdF (t) is res-

caled by a factor: APPENDIX B: CALCULATION OF NUMBER
) , OF POINTS IN A BROWNIAN PROFILE
(AFG(rAt))~r2H(AFG(AL)). (A2) AT A CERTAIN HEIGHT h

The FBM are self-affine curves which present a box- Inthis appendix we calculate the number of points that, in
covering dimension equal @r=d—H. Let us consider, for a Brownian profile, lie at a certain height From the gen-
the sake of simplicity, the casd=2 and suppose that eral properties of the Brownian profile one knows thah if
Fy(t) is defined in a time intervalt=1 with a vertical =0, this number is proportional tgL whereL is the length
extensionAF(t)=1. If one rescales the time by a factor of the profile. Moreover, as a consequence of the spatial
<1, then, by virtue of the self-affinityF,;(t) will be res- homogeneity of the random walk one has
caled by a factor". Thus in order to cover a section of
curve extending in the intervalt=r one needsAF, /At P(Sy+m=0/$,=0)=P(Sy:m=h[Sy=h),  (BI)
=rH"~1 poxes of linear dimensionand for the entire profile
one will needr™~/r boxes. So recalling the definition of
box-covering dimension

where P(alb) is the conditional probability that, given a
certain evenb, the evenia occurs. The number of points at
the heighth will be proportional toyL —t wheret is the first

~InN(r) passage time at the height The first passage time distribu-
DF=r||mo i (A3)  tion for a heighth is known[23] to be
2
one has |h| h
fh(t)= exp — =7|. (B2)
InrH—2 2mt? 2
DH:!T:) In1/r =2-H. (A4) One then has that the number of points at the hdigist
In the generatl-dimensional case one can define the Brown- _ j" ro—
ian hypersurface as a function a&=d—1 variablesX;, i N(h) 0 L-thy(Ddt (B3)

=1,...,n such that
Equation(B3) is a very complicated expression and we limit
(AFZ(Ar))~Ar?, (A5)  ourselves to considering what happens just in the range
= /L. For the average theorem there will exist a vattie

, 2_ Ay2 2
with Arc=AX7+---+AX;. such that

The box-covering fractal dimension is then defined as
— __t* *
De=n+1-H=d—H. (A6) N()~ VL= a(t)L. (B4)

Here is a last word about the intersection of a FBM with e are i*nterested in the case lof- JL and we can then
a line parallel to the temporal axi§ractal dimensionD,)  SUPPOSE&™~7L. One obtains
and lying in the same plane of the Brownian profilectal h2
dimensionD,). In this case, by using the law of additivity of N(h)~+L exp{ - ) (B5)
the codimension, 27l

Dy=D;+D,—d, (A7)  that we used in Sec. IV.
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