PHYSICAL REVIEW E VOLUME 56, NUMBER 1 JULY 1997

Controlling spatiotemporal chaos in coupled nonlinear oscillators
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A method for controlling spatiotemporal chaos in coupled ordinary differential equations is presented. It is
based on two ideas: stabilization of unstable periodic patterns embedded in spatiotemporal chaos, and pertur-
bation of dynamical variables only at regular time intervf&1063-651X97)13306-3

PACS numbegs): 05.45+b, 64.60.Cn

Many nonlinear systems such as current-biased series goonents of the state vector are reset to new values were also
rays of Josephson junctioh], dynamic arrays of nonlinear investigated recently. For example, systems driven by noise
electrical circuits[2], discrete reaction-diffusion equations were considered in Reff17] with important consequences in
[3], and networks of neurons and cardiac pacemaker celllonte Carlo applications. Recently, this type of driven sys-
[4], to mention only a few, are modeled by an array of dif-tem was applied successfully to synchronize chidd19
fusively coupled oscillators or, in other words, coupled ordi-and spatiotemporal cha$20].
nary differential equationSCODE’s). The most typical type Generally speaking, control always means to influence the
of behavior encountered in large interconnections of chaoti§ystem in such a way that it performs in a desired way. Our
oscillators is spatiotemporal chaos, where the observed dygontrol strategy is based on the application of controllers
namics exhibits chaotic properties both in time and spacedispersed periodically in space with periBd Each of them
However, in many applications, it is advantageous to avoidoerturbs the value of a single-state variable of the oscillator
chaos. In this paper we propose a method for controllingdr ODE where it is connected with. For simplicity we as-
spatiotemporal chaotic dynamics in CODE's. sume that the perturbations areperiodic in time. The mo-

Since the seminal paper by Ott, Grebogi, and Yorketivation for such a control is twofoldi) to reduce the num-
(OGY) [5], there has been wide activity in the area of chaoer of controlling points, andii) to make possible the
control across many discipling6]. Control of spatiotempo- control throughtime-discontinuousnonitoring and influenc-
ral chaos in coupled map lattic¢EML’s) and systems de- ing of the controlled state variables. Therefore, we consider a
scribed with partial differential equatiof®DE’s) has been class of systems where only control of state variables is pos-
considered recently7—11]. In Refs.[7,8] it was shown that sible, and not control of system parameters. The type of con-
the complex spatiotemporal behavior in CML'’s can be elimi-trol we used in this paper can be implemented experimen-
nated in favor of a coherent state in which all elements ardally as described in Ref21].
synchronized to a prescribed periodic orbit using the OGY Let us consider a one-dimensional arrayNotiffusively
method[5] and a linear feedback approagt2,13. By in- coupled oscillators with periodic boundary conditions
jecting negative feedback at a certairspace point, Hu and

He [9] successfully stabilized unstable steady states and con- u;=f(u)+D(u;;;—2u;+u;_1)+Go(t), 1)
trolled chaos in a one-dimensional nonlinear drift-wave

equation driven by a sinusoidal wave. [Ih0], control of a  where u;, i=1,... N, are n-dimensional vectors,
class of spatialy extended systems was achieved via the stB=diagd,,d,, ... d,), and G=diag@,,9>, - . .,0,) are

bilization of an active source of traveling waves. Lu, Yu, andconstant diagonal matrices, ant) is ann-dimensional in-
Harrison[11] successfully demonstrated control of unstableput signal representing the influence of the controllers to the
roll patterns in a transversely extended three-level laser, usSODE'’s. In the following we assume that only one element
ing a time- and space-dependent feedback approach. of the matrixG is equal to 1, and all others are zero. In other
Recently [14], the taming of spatiotemporal chaos in words, only one variable, say the variable, of the state
CODE's was achieved by random variations of a single pavector of each oscillator can be monitored and/or controlled.
rameter along the array. However, as stressed by Strogalzt s(t) be a solution for a single oscillatéclearly it is also
[15], no one knows what complex periodic pattern will arisea solution of the coupled oscillators without drivinthat
after disorder is introduced. The approach we propose in thishould be stabilizedthe control godl The input signal
Brief Report is based on two idea8) stabilization of un-  v(t) has the following form:
stable periodic patterns embedded in spatiotemporal chaos,
and (i) perturbation of dynamical variabléaot the system v(t)=gr(s(t),upA;p, 2
parametersonly at regular time intervals. To control chaos
by stabilizing periodic orbits is a crucial idea of the OGY wheregr is a function describing the control lagee be-
method, and it has been successfully applied in various reddw), andT is a parameter playing the role of a period. The
systemg 16]. On the other hand, systems which are drivenlast term in Eq.(2) is a modification of the Kronecker sym-
only at discrete time intervals in such a way that some combol and denotes
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1 for imodP=0 51 1

AiP=10 for imodP+0. 41
The controllers are located periodically in space with perioc 31
P (since we consider periodic boundary conditions, we alsc
assume thal/P is an integer. The functiong; can be de-
scribed as followqd22]: the CODE(1) oscillates unforced 1 -
and free from the controlling signa(t), except for the equi-

distant timesn T, when they variables of theN/P oscillators .
are simultaneously forced to new values, that is, (@)

21 N

yi(nT)=s,(nT), i=P,2P,... N 12
wheres,(t) is they projection of the control goai(t) at 1B LAY
timesnT. Thus we say that the COD@) is controlled by 1E+0 |
the sequencgs,(nT)}. Our control strategy relies on the

following. o HEL
Theorem Consider the dynamical system S g2 |
u=f(u), @ v

1E-4

and its solutiors(t). Decompose the state vector of this sys-
tem into two partsv andv, and the vector field into f,, and 1E-5 |
fy, respectively. Assume that the system

1E-6

16 24 32 40 48 56 64

v=fy(s(1),0) (b) t

is asymptotically stable when continuously driven fyt). FIG. 1. Control of spatiotemporal chaos when the control goal is
Then systent3) can be controlled with the sequence of im- g coherent chaotic phasé,=ds=0, d,=2, N=51, T=0.01, and
pulses{s,(nT)}; that is, the solution of Eq(3) approaches p=3. The control is switched on at=32. (a) Gray-scaled
the goals(t) as time goes to infinity, provided that the sam- x—coordinates of the arra§l) as a function of the time¢ and the
pling periodT is sufficiently small[23,24]. spatial coordinatd. (b) Control errore,(t) and synchronization
We stress here that the erra(t)=|lu(t)—s(t)| ap- erroreg(t) vs time.
proaches zeronly if (t) is anexact solutiorof Eqg. (3). If,
for example, the control goal is an unstable periodic orbitturbulent phase is replaced by the coherent chaotic phase. In
which is only approximately known, theg(t) is only close the simulation we have used;=d;=0, d,=2 [26],
to zero and never reaches it. N=51, P=3, and T=0.01. Figure 1a) depicts the spa-
Therefore, the better one knows the unstable periodic ortiotemporal evolution of array1). This figure shows the
bits, the closer the errog(t) goes to zero. We emphasize gray-scaled values of the coordinates as a function of the
that this effect is not caused by the sampling of the unstablémet and the spatial coordinate The control is switched on
periodic orbit, and it is a common phenomenon in all similaratt=32, as denoted by a dash-dotted line in Fidp) 1Figure
control methods. An example is the linear control feedbacKl(b) shows the control error and the synchronization error

methodU=f(u)+k[s(t)—u] , Whereg(t) is an unstable pe-

riodic orbit. e()=[u(t)—st)ll, iefl,... N}, 4
In CODE'’s in general, the following type&hasep of
behavior are possiblg25]: (i) Coherent (synchronized) e(t)=[u(t)—u;(v)ll, i,je{d,...N}, i#j (5

phase all oscillators synchronizdii) Ordered phasegroups
of oscillators are clustered, and in each group a cohererés functions of time, where(t) is averaged over all cells,
phase appearsiii ) Turbulent phaseeach oscillator operates while e4(t) is averaged over all pairs of distinct cells. Since
in a chaotic regime, and all oscillators are completely desynboth errors approach zero, one can conclude that the control
chronized. of the coherent phase in the array is successfully achieved.
Now we show how the turbulent phase in CODE’s can beWe have also calculated numerically that fiy>1.15 the
eliminated in favor of coherent and/or ordered phases. Faarray is asymptotically stable when control is applied. There-
the numerical simulations presented in this paper, we use thfere, the theorem provides additional evidence that the con-
Lorenz system, but similar results have been obtained witlrol in this case is successful.
other dynamical systems. In the following, the values of the In the second numerical experimem{t) is a periodic
parameters in the Lorenz system are fixed&rte 10, r=23,  orbit embedded in the chaotic attractor of a single Lorenz
andb=1. We also consider only-drive throughout the pa- oscillator. In other words, the control goal for CODE’s is a
per, that isg,=0, g,=1, andg;=0. coherent periodic phase. The unstable periodic orbit in the
In the first simulation, the control goal is a chaotic orbit of single Lorenz system is recovered using the technique pro-
a single Lorenz oscillator. As a result of the control, theposed in Ref[27], and its sampled valuesvith sampling
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FIG. 3. Gray-scalek—coordinates of the arrafl) as a func-
””” Eolf) tion of the timet and the spatial coordinaie d,=d;=0, d,;=6,
N=100, T=0.01, andP=1. The control goal is a pattern. The
control is switched on at=32.

used;=6,d,=d;=0,N=100,P=1, andT=0.01. The evo-

lution of the uncontrolled array is chaotic with Lyapunov
MWE ;o 560 2 os dimension equal td, =69.3. The other parameter values
Ve s SARNT are as above. The results are shown in Fig. 3. Figuae 3

1B+ !

1E+0 |

es(t),ec(t)

IE-1 | SEHERIERIERIERS: shows the spatiotemporal evolution of the array. It is clearly
UNVRVHTHTETED visible that after the control is switched on, the ordered phase

(pattern is achieved almost immediately. The dependence of

1E-2 the control and the synchronization errors on the time is

16 2 32 40 a8 56 64 ” 80 similar to that in Fig. 2b), and is not shown here. In this
(b) : 4 case, these errors do not tend to z@jadue to the coupling
between the adjacent cells which are controlled by different
FIG. 2. Control of spatiotemporal chaos when the control goal i 'Sperlodlc orbits, andii) due to the effect we described in the
a coherent periodic phas#,=d;=0, d,=2,N=51,T=0.01, and discussion after the theorem.
P=3. The control is switched on at=32. (3 Gray-scaled How general is the method for controlling spatiotemporal
x—coordinates of the arragl) as a function of the timé and the chaos in CODE's? We performed numerical experiments
spatial coordirjate'. (b) Control errore.(t) and synchronization with different arra)./S of coupled cells. In all cases we ob-
errore(t) vs time. served similar results: it is possible to control coherent
eriodT) are stored in a controllg28]. The result is shown and/or ordered phases in CODE's via manipulating single
i?w Fia. 2. The parameter values are fhe same as in the revY-a”abIeS of spatially separated elements and/or cells of the
ous %imlljlationp Therefore, in this case the controlled ;rragrray at discrete times only. A more detailed analysis of the
bove results will be presented in an extended version of this
(1) is also asymptotically stable. However, after the Contro'work We stress herepthat the method can also be used when
is switched on, the errors.(t) andeg(t) defined by Eqgs(4) '

. the underlying dynamics is not known. This is based on the
apd (5 start Qe_creasmg, b.Ut they never approach {9 €8  fact that the method can be viewed as a way to control the
Fig. 2(b)]. This is a numerical artefact already explained in

the discussion following the theorem. The fact that the concurrent state of the system with its prerecorded history. It
does not require any analytical knowledge of the system dy-
trolled array is asymptotically stable suggests that a func-
namics, and can be simply implemented in experiments by a
tional relation between the control signal and the coordinates Surely analog technique.
of the array exists. This is similar to the phenomenon ofPUrey 9 q
generalized synchronizatid29].

We turn now to controlling ordered phades patterngin This work was supported by a binational German-
CODE's. In this case the control goal is the following pat- Macedonian projediNo. MAK-004-96 and by the Deutsche
tern: 00111100011110011100, where zeros and ones dendterschungsgemeinschafGrant No. PA 643/1-L P.J. ac-
groups of five oscillators each, operating in a periodic regimé&nowledges the support of the ICTP Associate Program,
with two different periodic orbit$30]. In this simulation we ICTP, Trieste, Italy.
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