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Spatiotemporal soliton propagation in saturating nonlinear optical media
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The simultaneous balance of nonlinear spatial self-focusing with diffraction and the compensation of dis-
persion with nonlinear temporal self-focusing, in a saturating nonlinear medium, give stable spatiotemporal
solitons, or ‘‘light bullets.’’ An analytical approach for arbitrary saturating nonlinearity is established in order
to investigate the dynamics of such light bullets. This approach is applied to nonlinear materials with negative
fourth-order optical index. The analytically predicted exceptional robustness of light bullets that can be gen-
erated in a large range of parameters is confirmed by numerical simulations.@S1063-651X~97!01207-5#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

Optical solitons may soon become the principal carrier
telecommunication because, as self-confined structures,
propagate long distances without changing shape@1#. Long-
distance information transmission is realized in optical fib
using temporal solitons created by the balance of indu
phase chirp due to dispersion with the nonlinearly induc
self-phase modulation. The binary information once brou
by temporal solitons has to be retreated in all-optical s
tems, where in principle the solitons have to satisfy the
quirement of being self-guided in bulk media@2,3#. There-
fore, there is a growing interest for spatiotemporal solito
characterized by a balance of diffraction and dispersion w
respectively nonlinear spatial and temporal self-focusi
The dynamics of such localized structures is governed b
~311!-dimensional nonlinear Schro¨dinger equation~NSE!
containing one propagation dimension and three ‘‘tra
verse’’ dimensions@3#. The equation treats time and spa
dimensions identically.

The materials used in optical systems are usually of K
type @4#. Consequently, the dynamics of the electromagn
~EM! pulses is described by a NSE with cubic nonlinear
~CNSE!. It is well known that only solutions of~111!-
dimensional CNSE are stable@5#. These exact analytical so
lutions obtained by the inverse-scattering method corresp
to one-dimensional temporal or spatial solitons. Howev
NSE with saturating nonlinearities have in some circu
stances stable soliton solutions even for two or three tra
verse dimensions@6#. Such solitons completely localized i
three space and one time dimensions are called ‘‘light b
lets’’ @3#. The light bullets are of both fundamental and tec
nological interest, since they satisfy the best requirements
digital optical logic @2#. Taking into account that material
currently used in optical systems exhibit weak saturation
fects, there is an increasing interest in those materials
can sustain stable propagation of solitons limiting the grow
561063-651X/97/56~1!/1080~8!/$10.00
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of nonlinear index. The inclusion of the third term in th
power series expansion of the nonlinear optical ind
dn(I ) with respect to intensityI ,

n5n01dn~ I !5n01n2I1n4I
2 ~1!

(n0 is linear index! leads to flattening at higher intensitie
under the condition that the fourth-order index is negati
Recent measurements of organic nonlinear materials s
that such a requirement can be fulfilled, for instance,
polydiacetylenepara-toluene sulfonate~PTS! @7#. This ma-
terial is promising since it should yield solitons at low pow
@8#.

However, for higher dimensional NSE there are no ex
analytical methods to derive nonstationary solutions. One
ten has to rely on computer simulations in order to inve
gate the solutions of such equations.

General dynamical properties of nonstationary solutio
are rather complex, making analytical approximations hig
desirable. To describe the dynamics of localized solutions
NSE, various approximation schemes such as the para
ray theory@9#, the moment theory@10#, and the variational
approach@11#, have been developed.

In the present work we will study the dynamics of th
light bullets in saturating media combining the variation
method with numerical simulations. A general analytical a
proach for every transverse dimension,D51,2,3, and an ar-
bitrary saturating nonlinearity will be given in Sec. II. Th
general approach will be applied to nonlinear materials w
negative fourth-order optical index, in order to study the co
ditions under which the propagation of light bullets is stab
~Sec. III!. Using analytical results as a guide for numeric
simulations, the studies of exact soliton dynamics are car
on in Sec. IV.

II. GENERAL APPROACH BASED
ON THE VARIATIONAL PRINCIPLE

The interaction of a finite amplitude optical pulse with
nonlinear bulk medium gives rise to a slowly varying optic
1080 © 1997 The American Physical Society
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56 1081SPATIOTEMPORAL SOLITON PROPAGATION IN SATURATING . . .
field envelopeE corresponding to a quasi-monochroma
electric field with carrying frequencyv. The equation for
pulse propagation along thez axis is

2ikS ]E
]z

1
1

vg

]E
]t D1D'E2k

d2k

dv2

]2E
]t2

12k2
dn~ uEu2!

n0
E50,

~2!

wherevg is the group velocity of the pulse,k5n0v/c is the
wave vector, andD'5(]2/]x21]2/]y2) is the two-
dimensional~2D! Laplacian describing beam diffraction. I
what follows we assume that the optical medium exhibits
anomalous group velocity dispersiond2k/dv2,0.

Introducing a ‘‘moving’’ coordinatet5t2z/vg , and
making a self-evident renormalization of the variables, E
~2! can be rewritten in dimensionless form as

i
]E

]z
1

]2E

]t2
1D'E1 f ~ uEu2!E50, ~3!

whereE is the slowly varying amplitude of the electric fiel
E properly redefined corresponding to the nonlinearity un
consideration. The functionf (u) is generally complex val-
ued and it obeys the requirementf (u)uuu→050. Equation
~3! describes spatial and temporal self-focusing of elec
magnetic pulse propagating under the combined effect
diffraction and dispersion.

Let us look for a ‘‘spherical’’ symmetric distribution o
the fields. Notice that the comoving coordinate (t) can be
treated on an equal footing as a spatial coordinate. In te
of the radial variabler5(x21y21t2)1/2, Eq. ~3! can be re-
written as

i
]E

]z
1

1

r D21

]

]r S r D21
]E

]r D1 f ~ uEu2!E50, ~4!

where the transverse dimensionD can be 1, 2, or 3.
The Lagrangian density corresponding to Eq.~4! is

L52r D21U]E]r U
2

1
i

2
r D21SE* ]E

]z
2E

]E*

]z D
1r D21F~ uEu2!, ~5!

where the asterisk denotes complex conjugate and

F~u!5E
0

u

f ~u8!du8. ~6!

An appropriate variation of Lagrangian,dL/dE*50, yields
Eq. ~4! as the Euler-Lagrange equation.

It is easy to prove by direct computation@or using Noet-
her’s theorem for the Lagrangian~5!# that Eq.~4! conserves
the following integrals of motion: the ‘‘photon number’’

N5E
0

`

drr D21uEu2, ~7!

and the Hamiltonian

H5E
0

`

drr D21FU]E]r U
2

2F~ uEu2!G . ~8!
n

.

r

-
of

s

As we mentioned in the Introduction, to describe analy
cally the dynamics of localized solutions of Eq.~4! two
methods seem to be appropriate: the moment theory and
variational approach. The moment theory is based on
integrals of motion@Eqs.~7! and~8!# and on the equation fo
the mean square radius of the beam~i.e., on the so-called
‘‘virial theorem’’ @6#!.

In this paper we use the variational approach that, be
equivalent to the moment method, gives a better and sim
treatment of the problem. In the optimization procedure,
first variation of the corresponding functional must vanish
a set of suitably chosen trial functions. As trial functions, w
will use Gaussian shaped pulses. Such a choice greatly
plifies computations. Thus, we assume that the evolution
the pulse can be characterized by the trial function

E5A~z!expF2
r 2

2a~z!2
1 ir 2b~z!1 if~z!G , ~9!

with amplitudeA, beam ‘‘radius’’ a, wave front curvature
b, and phasef as unknown functions of propagation coo
dinatez, which will be furthermore used in order to make th
variational functional an extremum. The Lagrangian can
expressed in terms of these parameters of the trial funct

L52r D11uEu2S 1a4 14b2D2uEu2r D11
db

dz
2uEu2r D21

df

dz

1r D21F~ uEu2!. ~10!

To make the time dependent problem tractable, an avera
over radial coordinate is helpful. Such an averaging yield

^L&5E
0

`

drL52S 1a4 14b21
db

dzDA2aD12D22
df

dz
A2aD

1aDK~A2!, ~11!

with

K~u!5
4

G@D/2#
E
0

`

dppD21F~ue2p2!, ~12!

whereG is Gamma function.
The set of Euler-Lagrange equations can be derived un

the condition that the variation with respect to each of u
known functions should be zero,d^L&/dQ50, where
Q5(A2,a,b,f).

After some algebra, we get the following set of ordina
differential equations:

A2aD5A0
2a0

D , ~13!

d2a

dz2
5

4

a3
2
2

aFK8~A2!2
K~A2!

A2 G , ~14!

df

dz
52

D

a2
1
1

4F ~D12!K8~A2!2D
K~A2!

A2 G , ~15!

b5
1

4a

da

dz
, ~16!
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1082 56V. SKARKA, V. I. BEREZHIANI, AND R. MIKLASZEWSKI
to be solved for the four functionsA, a, b, andf. HereA0
anda0 are, respectively, the initial amplitude and the init
‘‘radius’’ of the EM beam atz50.

Equation~13! is simply a statement of the fact that durin
the EM pulse evolution its ‘‘energy,’’N5A2aD is con-
served. Using Eq.~13!, the integration of Eq.~14! gives

1

2S dadzD
2

1V~a!5H5V~a0!, ~17!

where

V~a!5
2

a2
2

2aD

Da0
DA0

2KSA0
2a0

D

aD D ~18!

plays the role of an effective potential for the evolution
the radiusa. We have assumed that the initial beam ha
plane front~or zero curvature! @da/dzuz50505b(0)#. No-
tice that the constants of integrationN andH normalized by
the factorG@D/2#/2 actually represent, respectively, ‘‘photo
number’’N and HamiltonianH obtained from Eqs.~7!, ~8!,
and ~9!. In what follows,N denotes the beam energy an
H the Hamiltonian.

Using the analogy with a particle in a potential well, w
can acquire a deeper physical understanding of light be
dynamics. Choosing the initial beam radiusa0 equal to the
equilibrium radiusae , a stationary solution of Eq.~14! is
obtained if ]V/]aua5ae

50. Note that2]V/]a is equal to
the right-hand side of Eq.~14!. The equilibrium radius of the
beam is readily found to be

ae
252FK8~A0

2!2
K~A0

2!

A0
2 G21

. ~19!

The stability of the equilibrium solutiona05ae can be
checked by studying the behavior of small amplitude dist
bances around this equilibrium. Linearizing Eq.~14! around
the equilibrium solution (a5ae1da, ae@da) we get

d2

dz2
da1V2da50, ~20!

where

V25
]2V

]a2 U
a5a0

5
1

a0
2F412D

a0
2 2DA0

2K9~A0
2!G . ~21!

If V2 is positive, the equilibrium solution is stable. Th
conditionV2.0 can also be written asdNe /dA0.0 where
Ne is the energy of the pulse corresponding to the equi
rium. Notice that this condition is equivalent to the we
known stability criterion of Vakhitov and Kolokolov derive
using the moment theory@6#.

In deriving the system of equations~13!–~21! we did not
use an explicit form for the functionsf (uAu2); thus the es-
tablished formalism can be applied to the NSE with an a
trary nonlinear term.

For the saturating nonlinearityV(a)ua→0→`, which
means that the beam radius is bounded from below. Co
quently, the so-called collapse does not occur. The bea
either trapped and forms an oscillating waveguide or d
a

m

-

-

i-

e-
is
-

fracts monotonically. For the oscillating beam radius the
are two distinct modes of behavior~see, for instance, Fig. 4!.
~i! When a0.ae , the slope of the potential is positive
]V/]aua5ae

.0 and the beam radius initially contracts un
it reaches the smallest value given by the turning po
a2(,ae). ~ii ! If a0,ae the slope is negative
]V/]aua5ae

,0, and the beam radius initially increases. Fu
ther evolution depends on the value of constant Hamilton
H @see Eq.~17!#. If H,0, the beam never diffracts an
enters the self-trapped regime. This agrees with the gen
criterion in the moment approach established by Zakha
et al. @12#, that if the HamiltonianH is negative there is no
diffraction since the maximum value of the field intensity h
a z-independent lower bounduEumax

2 .uHu/N.

III. SATURATING NONLINEARITY WITH NEGATIVE
FOURTH-ORDER OPTICAL INDEX

In nonlinear optics several types of saturating nonlinea
ties are discussed@11#. As we mentioned in the Introduction
a large nonresonant nonlinearity has been found in poly
acetylenepara-toluene sulfonate@7#.

In the subsequent analysis we will consider a nonlin
term of the following form:

f ~ uEu2!5uEu22uEu4. ~22!

This kind of nonlinearity, but assuming thatuEu2!1, has
been considered in several previous publications@12,13#. For
PTS the second term in the right-hand side of Eq.~22! can be
of the same order as the first one@8#.

In order to study the conditions under which solitons c
propagate in such a material, we will apply the establish
general formalism to the saturating nonlinearity given by E
~22!. For the functionK @see Eq.~12!# one gets

K~A2!5aA42bA6, ~23!

wherea52(2D/2) andb5233(2D/221). The equilibrium ra-
dius of the beam, obtained from Eq.~19!,

ae
25

2

aA0
222bA0

4 , ~24!

is plotted in the (a0
2 ,A0

2) plane~see curvee in Figs. 1 and 2!.

FIG. 1. Equilibrium curvee ~solid line! and zero Hamiltonian
curveh ~dashed line! for the 2D case.
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56 1083SPATIOTEMPORAL SOLITON PROPAGATION IN SATURATING . . .
In the region that lies above this curve the beam radius
cillates with initial focusing.

The equilibrium solution is stable (V2.0), i.e., it is a
soliton, if the condition

A0
2.

a

4b

D22

D21
~25!

is satisfied. For 1D and 2D cases the equilibrium solution
stable for arbitrary beam amplitude, since the inequality~25!
is always satisfied. For 3D case, the solution is stable on
A0.(a/8b)1/2('0.58). Thus the small amplitud
(A0,0.58) equilibrium solutions are unstable.

As mentioned above, if the Hamiltonian is negati
(H,0) then the beam always forms an oscillating wav
guide. From Eqs.~17! and~18!, one obtains the beam radiu
corresponding to the zero Hamiltonian

aH
2 5

D

aA0
22bA0

4 , ~26!

which is plotted as curveh in Figs. 1 and 2. It can be see
that if a0

2.aH
2 , for givenA0

2 , thenH,0.
In 1D and 2D cases the inequalityae.aH always holds.

Analyses of Eq.~18! shows that in 1D and 2D cases, th
beam always diffracts monotonously ifa0,aH ~i.e., if
H.0). Notice that for the 1D case the plot has the sa
structure as in the 2D case, so the 1D case is omitted f
Fig. 1.

The particularity of the 3D case is thatae.aH only if the
initial amplitude is sufficiently big,A0

2.(a/4b). The self-
trapping of the beam is, however, possible even for a p
tive Hamiltonian. Indeed, ifA0

2,a/4b then ae,aH and,
consequently, the equilibrium solution corresponding to
soliton appears in the range ofH.0 also. In what follows
we consider only the 3D case.

In order to get better insight into the dynamical behav
of the pulse, we plot in Fig. 3 the conserved energyN as a
function of the squared amplitude of the pulseA2. The solid
line corresponds to the equilibrium and the dashed one to
zero Hamiltonian. The light bullet is trapped in an oscillati
waveguide provided its energyN is bigger than the critica
value given byNc535.3. Note that the equilibrium is stable

FIG. 2. Equilibrium curvee ~solid line!, zero Hamiltonian curve
h ~dashed line!, and trapping curvet ~dotted line! for the 3D case.
s-
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-
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dN/dA2.0 if A2.0.34. Thus for every givenN.Nc we
have two equilibria, however, only the stable one plays t
role of an attractor for each of the points initially located i
the regions~I! and ~II !. This can be easily seen from Fig. 4
analyzing the shape of potentialV as a function of radiusa
and energyN,

V~a,N!5
2

a2
2
2aN

3a3
1
2bN2

3a6
~27!

obtained from Eqs.~13!, ~17!, and~18!.
The front lines~Fig. 4! correspond to the sections with

constant energyN smaller than the critical oneNc and the
beam diffracts monotonously.

In the supercritical case,N.Nc , the potential has two
extrema, minimum and maximum. Therefore, depending
H5V(a0 ,N) the beam will be either trapped or will diffract.
The beam with initial radius corresponding to the point lyin
on the potential curve somewhere below the maximum w
be always trapped, creating a light bullet with oscillatin
radius. Starting from the negative slope of the potential, t
beam will first diffract ~region II in Fig. 3!; being on the
positive slope, it will first focus~region I!. Only if the initial

FIG. 3. EnergyN as a function ofA2 for the 3D case. Equilib-
rium curve e ~solid line! together with the numerically obtained
equilibrium linen ~dotted line!, curveh, and trapping curvet ~both
dashed!. I: focusing region, II: defocusing region; and III: diffrac-
tion region.

FIG. 4. Diffraction for subcritical energiesN,Nc and self-
guiding in the supercritical case.
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1084 56V. SKARKA, V. I. BEREZHIANI, AND R. MIKLASZEWSKI
conditions are chosen to be on the stable part of curvee, the
light bullet will have a constant~equilibrium! radius, since it
is already on the bottom of the potential well. However,
the initial radius is so small that it corresponds to a poten
larger than its extremum~maximum!, the beam can diffrac
forever. ForN5Nc the potential curve is broken at the poi
where minimum and maximum coincide, which correspon
to the touching point between stable and unstable equ
rium on curvee of Fig. 3.

The trapping linet in Figs. 2 and 3 asymptotically ap
proaches curveh of the zero Hamiltonian for large ampli
tude. Above the trapping line~regions I and II in Fig. 3! the
light bullets can be created even for a positive Hamiltoni
Below this line~region III! monotonic diffraction occurs.

Dynamics of pulsating light bullets clearly follows from
Figs. 3 and 4. Using the variational method it can be p
dicted that for a constant energyN ~the horizontal line in Fig.
3! all beams initially in regionI , or equivalently on the posi
tive slope, will form light bullets pulsating around its equ
librium radius with initial focusing until the turning point in
region II, which can be exactly computed knowing initi
conditions. For initial points in region III, the beam wi
always diffract even though it crosses the equilibrium lin
For instance, being initially on the right of the trapping lin
in Fig. 3, the diffracting beam amplitude will decrease fro
its maximum value, crossing region II, overshooting t
stable equilibrium as well as the unstable one.

In the preceding analysis, we applied a variational
proach involving a Gaussian trial function. It is also possi
to use trial functions of different kinds, for instance the sup
Gaussian one, which may fit the equilibrium profile bet
than the Gaussian. However, the approach we are using
nonsteady propagation provides in a good approximation
plicit analytical expressions for beam evolution. The ma
conclusion that follows from the present analyses is the
istence of the stable equilibrium, which plays the role of
attractor, providedN.Nc . For a given energyN, the beam
will be self-trapped in a wide range of parameters: not o
in the domain of the negative Hamiltonian but also in a p
of the region whereH.0. Such a self-trapped beam gene
ates a light bullet that will pulsate near the stable equi
rium.

IV. NUMERICAL SIMULATION OF THE LIGHT
BULLET BEHAVIOR

The main limitation of various approaches, such as
paraxial, momentum, or variational approaches, is that t
are valid only in the aberrationless approximation; i.e., th
are unable to account for structural changes in the be
shape. It is also obvious that in the case of big satura
nonlinearities the fundamental, i.e., ground state, soliton p
file can be quite different from the Gaussian one. Such
pects of the beam dynamics are better delineated by num
cal simulations, although the guidelines for simulation a
still provided by approximative analytical approaches.

In this section we present the results of numerical sim
lations of Eq.~4! for initially Gaussian-shaped beam in th
3D case. The obtained simulation data can be qualitativ
understood and interpreted, using the analytical results o
previous section.
l
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The numerical simulations giveNc534.04 for the beam
trapping critical energy. This is the minimum of the dotted
line n in Fig. 3, which corresponds to the exact numerica
solution of Eq.~4! for the ground state soliton. Such a soliton
with maximal amplitudeAm is stable if Am

2 .0.41. These
results agree with those of Ref.@2#. For a large amplitude
soliton, the results of the variational approach~based on the
Gaussian trial function! deviate markedly from exact numeri-
cal solutions.

Numerical simulations show that if an initial profile of the
beam is close to the stable equilibrium one~the exact nu-
merical solution!, the beam quickly attains the profile of
ground state soliton and propagates for a long distance with
out distortion of its shape. Even if the initial beam is in a
domain of parameters corresponding to the profile quite fa
from the equilibrium one, this beam will, however, either
focus or defocus to the ground state equilibrium exhibiting
damped oscillations around it. The pulsations are dampe
due to the appearance of the radiation spectrum. This
shown in Figs. 5–8, where the field intensity (I5uEu2) dis-
tribution is plotted versus radiusr and the propagating coor-
dinate z, for the initially Gaussian shaped beam
uE(r ,0)u5A0exp@2r2/2a0

2#. In all these cases the parameters
of the beam~i.e., A0 and a0) are chosen to give the same
energyN5A0

2a0
3550 ~the horizontal line in Fig. 3!. Al-

though the initial amplitudes of the beam~pointsB, C, and
D in Fig. 3! are quite different from the amplitude of the
corresponding equilibrium soliton, in all these cases ligh
bullets appear, exhibiting damped pulsations near the equ
librium. Starting from the initial pointB ~in domain I of Fig.
3!, the amplitude first increases in Fig. 5, which correspond
to an initial focusing as predicted analytically. Then the equi-
librium amplitude is a bit overshot in order to be reached
immediately after. Other tested initial pointsC andD belong
to the domain II with initial defocusing. Accordingly, a sud-
den decrease of amplitude in Figs. 6 and 7 is followed by a
damped pulsation until stable equilibrium is reached. Eithe
the initial focusing or defocusing before reaching the equi
librium can be better seen in Fig. 9, where the field
uE(0,z)u is drawn for different initial pointsB, C, andD.

Initial conditions B and C correspond to the negative
Hamiltonian. This is in agreement with Zakharov’s criterion
@12# that the beam cannot undergo permanent diffraction cor
responding to boundless decreasing of field intensity. Thi

FIG. 5. Generation of a stable light bullet with initial focusing
for energyN550 and initial intensityA0

250.4.
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56 1085SPATIOTEMPORAL SOLITON PROPAGATION IN SATURATING . . .
means that, provided the filamentation does not occur,
beam will be trapped, creating oscillating field structu
Note that the possibility of collapse is excluded for saturat
nonlinearities, since the beam is bounded from below as
tablished in Sec. II.

A peculiarity of the 3D case is that the beam enters in
self-trapped regime even whenH.0. This fact is clearly
demonstrated in the previous section using the variatio
approach and it is also considered numerically in Fig. 7.

The simulations show that forN550 the large amplitude
beam enters in the self-trapped regime providedA0

2<1.9 ~see
Fig. 8!. This amplitude, separating the self-trapping dom
from the diffracting one, is bigger than predicted by t
variational approach, because of its inability to take into
count the structural changes of beam shape. IfA0

2.1.9, the
beam will diffract completely.

It can be concluded that the numerical simulations c
firm exceptional robustness of light bullets, which can
generated in a large range of parameters, even far from s
equilibrium, as predicted by our analytical approach.

V. DISCUSSION AND CONCLUSIONS

The results obtained in previous sections may be app
to the materials exhibiting saturating nonlinearity with neg

FIG. 6. Light-bullet generation. Initial defocusing for energ
N550 and initial intensityA0

251.

FIG. 7. Generation of a light bullet with initial defocusing in th
case of positive Hamiltonian for energyN550 and initial intensity
A0
251.2.
e
.
g
s-

e

al

n

-

-
e
ble

d
-

tive fourth-order optical index, like PTS for instance. Usin
laser wavelengthl51.6 mm, the measured values of se
ond and fourth-order optical index for PTS are, respective
n252.231023 cm2/GW and n4520.831023 cm4/GW2

@7#. This material is promising since it has the largest no
resonant nonlinearities. Therefore, due to low power requ
ment, PTS can be a good candidate for all-optical switch
and may be used in telecommunications@8#. Recently it was
shown experimentally that solitons with two transverse s
tial dimensions can be generated in bulk PTS at 1.6mm
@14#. However, the temporal confinement related to the
ration of pulses has not been investigated. Such a confi
ment involves anomalous group velocity dispersion. Unf
tunately the PTS exhibits the normal group veloc
dispersion, as majority of transparent materials@15#. Using
an appropriate technique~for instance, grating! the frequency
distribution in the pulse may be inverted creating an effect
anomalous dispersion necessary for light-bullet propaga
@2#. However, this inversion will alter Eq.~2!. Nevertheless,
in order to give some rough estimations of light-bullet si
and required energy we will use the value for optical indic
of a hypothetical inverted PTS supposing that the correcti
to the equations due to this inversion are small. The ano

FIG. 8. Formation of a light bullet out of regions predicted b
the analytical approach. Initial intensity isA0

251.9 forN550.

FIG. 9. Evolution of the pick amplitude of beamsuE(0,z)u as a
function of the propagation distancez, for three different initial
intensities (B, C, andD).
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lous group velocity dispersion is assumed to beD5
7310226 s2/cm @2#. Although this value may be far from th
real one, it will not greatly affect the rough estimations
light bullets parameters, used with the purpose to illustr
quantitatively light bullets generation.

Equations~1! and ~2! are converted in dimensionless E
~3! with nonlinearity ~22! using the following normaliza-
tions: t/T, z/Z, r' /R, and I /I 0, where T5(lD/
4pn2I 0)

1/253.43 fs, R5l/(8p2n0n2I 0)
1/250.48 mm and

Z5l/(2pn2I 0)533.7 mm. I 0 is the intensity of EM field
for which the nonlinear refraction index becomes ze
I 05n2 /un4u52.75 GW/cm2. The value used for the linea
index isn051.88 @8#. The pulse energy is given by the e
pressionW5@(p)3/2/4#I 0R

2TN, whereN is dimensionless
energy@see Eq.~13!#. Therefore, the numerically obtaine
critical self-trapping energyNc534.04 corresponds in di
mensional units toWc51.35 pJ. Above this critical energy
is possible to create light bullets with intensityI satisfying
the condition 0.41I 0,I,0.91I 0, i.e., 1.38 GW/cm2,I,2.5
GW/cm2 ~see Fig. 3!. The spatial transverse radiusr and
temporal widthtL corresponding to the longitudinal size o
such a light bullet near the critical energy are, respectiv
rc52 mm andtLc515 fs, thus they are close to the diffra
tion and dispersion limits and consequently difficult to re
ize experimentally. Notice the interdependence of spatial
dius and temporal widthr/R5tL /T5a. Therefore, in order
to realize in practice the light bullets the beam energy ha
be several times larger than the critical one. However,
lowing requirements for producing all-optical logical sy
tems, it is highly desirable to generate light bullets w
small input laser intensities. The demonstrated robustnes
light bullets allows us to choose the initial intensity mu
lower than the equilibrium one~region I in Fig. 3!. For in-
stance, for a pulse with energyW56 pJ corresponding to
dimensionless energyN5150, the minimum value of dimen
sionless initial intensity isA0

250.01~see Fig. 10!. This input
intensity corresponds in real units toI inp528 MW/cm2 for
r imp511.86mm and tL imp584.5 fs. Further evolution, fol-
lowing our analytical and numerical predictions, will be t
ward the stable equilibrium around which the light bullet w
exhibit damped pulsations~see Fig. 10 and especially Fig. 1
where the dumping is more obvious!. Notice that although
the initial beam radius is larger than the critical one (rc) the

FIG. 10. Formation of pulsating light bullet forN5150 and for
initial intensityA0

250.01.
f
te

,

y,

-
a-

to
l-

of

beam breaking~filamentation! does not occur. Correspond
ing equilibrium intensity, radius, and temporal width are, r
spectively,I e52.36 GW/cm2, re52.8 mm, andtLe520 fs.
In practice the energy can be much higher, allowing ev
lower input intensity. Notice that nearly coinciding nume
cal and analytical equilibrium curves in Fig. 3 approach
ymptotically the same minimum intensity value. Therefo
the hypothetical inverted PTS or some similar new mate
satisfying the low power requirement may potentially
used as the medium for all-optical logic devices.

We would like to emphasize that the results obtained
this paper can be applied not only to some hypothetical
verted PTS but also to many other media such as gas
plasma, as well as semiconductor plasma. In unmagnet
plasmas the group velocity dispersion is anomalous. In g
eous plasmas saturating nonlinearities frequently appear
to the plasma density variation induced by high frequen
pressure as well as due to the relativistic electron mass va
tion in the strong EM field@11#. In narrow gap semiconduc
tors nonparabolicity of the electronic conduction band
duces the nonlinearity related to conduction electrons@16#.
Combined effects of this nonlinearity and the nonlinear
caused by two-photon generation of nonequilibrium free c
riers, provided that the duration of light pulses exceeds th
lifetime, give rise to the examined nonlinearity correspon
ing to Eq.~22! @17#.

We demonstrated using the variational approach un
which conditions the light beam is self-guided, generat
light bullets in ~311! dimensions. The main result obtaine
using the established analytical formalism is to elucidate
mechanism of how the light bullets, as completely localiz
structures, appear even if parameters of the initial beam
far from equilibrium. As a consequence, the choice of p
rameters for which the stable spatiotemporal solitons are
ated and persist is relatively large; i.e., it is not restricted t
domain near the equilibrium solution. Therefore, the lig
bullets are robust objects. The numerical simulations
only confirm predictions of the analytical approach but a
demonstrate even stronger robustness of bullets that can
pear in a considerably enlarged range of parameters.

FIG. 11. Dynamics of the pick amplitude of beamsuE(0,z)u for
N5150 andA0

250.01.
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light-bullet generation is numerically demonstrated even
some initial amplitudes lying out of domains I and II in Fi
3, due to the simultaneous creation of radiation spectr
~see Fig. 8!. Thus, only one part of the beam is self-guid
.

e-

p.
r

m

since the superfluous residue is radiated out. Due to t
complete localization, robustness, and low energy, light b
lets appear to be the best candidate for carrying the infor
tion that has to be treated in all-optical logic circuits.
.
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