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Spatiotemporal soliton propagation in saturating nonlinear optical media
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The simultaneous balance of nonlinear spatial self-focusing with diffraction and the compensation of dis-
persion with nonlinear temporal self-focusing, in a saturating nonlinear medium, give stable spatiotemporal
solitons, or “light bullets.” An analytical approach for arbitrary saturating nonlinearity is established in order
to investigate the dynamics of such light bullets. This approach is applied to nonlinear materials with negative
fourth-order optical index. The analytically predicted exceptional robustness of light bullets that can be gen-
erated in a large range of parameters is confirmed by numerical simuldi8#@#63-651X97)01207-3

PACS numbdrs): 42.65.Tg

[. INTRODUCTION of nonlinear index. The inclusion of the third term in the
power series expansion of the nonlinear optical index,
Optical solitons may soon become the principal carrier indn(l) with respect to intensity,

telecommunicatiqn because_, as self—con_fined structures, they n=ng+ n(l)=ng+n,l +n,l? 1)

propagate long distances without changing sHdpelLong-

distance information transmission is realized in optical fiber{N is linear index leads to flattening at higher intensities,

using temporal solitons created by the balance of inducefinder the condition that the fourth-order index is negative.

phase chirp due to dispersion with the nonlinearly induced?ecent measurements of organic nonlinear materials show

self-phase modulation. The binary information once broughthat such a requirement can be fulfilled, for instance, for
by temporal solitons has to be retreated in all-optical sysPelydiacetylenepara-toluene sulfonatéPTS [7]. This ma-

tems, where in principle the solitons have to satisfy the re:[enal is promising since it should yield solitons at low power

quirement of being self-guided in bulk media,3]. There- [8].

fore, there is a growing interest for spatiotemporal solitons However, for higher dimensional NSE there are no exact
' 9 9 P p analytical methods to derive nonstationary solutions. One of-

charact_enzed by a balance (.)f diffraction and dispersion W'tr}en has to rely on computer simulations in order to investi-
respectlvely_ nonlinear spat_lal and temporgl :self—focusmggate the solutions of such equations.
The dynamics of such localized structures is governed by & General dynamical properties of nonstationary solutions
(3+1)-dimensional nonlinear Schdinger equation(NSE)  4re rather complex, making analytical approximations highly
containing one propagation dimension and three “transyesirable. To describe the dynamics of localized solutions of
verse” dimensiong3]. The equation treats time and spaceNSE, various approximation schemes such as the paraxial
dimensions identically. ray theory[9], the moment theory10], and the variational
The materials used in optical systems are usually of Kerapproach11], have been developed.
type[4]. Consequently, the dynamics of the electromagnetic In the present work we will study the dynamics of the
(EM) pulses is described by a NSE with cubic nonlinearitylight bullets in saturating media combining the variational
(CNSB. It is well known that only solutions of1+1)-  method with numerical simulations. A general analytical ap-
dimensional CNSE are stabB]. These exact analytical so- proach for every transverse dimensi@1,2,3, and an ar-
lutions obtained by the inverse-scattering method corresponlditrary saturating nonlinearity will be given in Sec. Il. This
to one-dimensional temporal or spatial solitons. Howevergeneral approach will be applied to nonlinear materials with
NSE with saturating nonlinearities have in some circum-negative fourth-order optical index, in order to study the con-
stances stable soliton solutions even for two or three tranglitions under which the propagation of light bullets is stable
verse dimensiongs]. Such solitons completely localized in (S€c. Il). Using analytical results as a guide for numerical
three space and one time dimensions are called “light bu|_5|m_ulat|ons, the studies of exact soliton dynamics are carried
lets” [3]. The light bullets are of both fundamental and tech-O" In Sec. IV.
nplpglcal |'nterest,l since they sa_tlsfy the best reqwremerjts for Il. GENERAL APPROACH BASED
digital optical I(_)g|c[2_]. Taking into account that mate_rlals ON THE VARIATIONAL PRINCIPLE
currently used in optical systems exhibit weak saturation ef-
fects, there is an increasing interest in those materials that The interaction of a finite amplitude optical pulse with a
can sustain stable propagation of solitons limiting the growttmonlinear bulk medium gives rise to a slowly varying optical
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field envelopeé corresponding to a quasi-monochromatic ~As we mentioned in the Introduction, to describe analyti-
electric field with carrying frequencw. The equation for cally the dynamics of localized solutions of E() two

pulse propagation along tieaxis is methods seem to be appropriate: the moment theory and the
variational approach. The moment theory is based on the
[eE 1 9E d%k %€ , On(|€%) integrals of motiorEgs.(7) and(8)] and on the equation for
2ik 5+ v_gﬁ "'Alg_kd_wiﬁf"'z" n—og: 0. the mean square radius of the bedire., on the so-called

2 “virial theorem” [6]).

In this paper we use the variational approach that, being
whereu, is the group velocity of the pulsé&=nyw/c is the  equivalent to the moment method, gives a better and simpler
wave vector, andA, =(d%/dx*+3*/dy?) is the two- treatment of the problem. In the optimization procedure, the
dimensional(2D) Laplacian describing beam diffraction. In first variation of the corresponding functional must vanish on
what follows we assume that the optical medium exhibits ary set of suitably chosen trial functions. As trial functions, we
anomalous group velocity dispersioik/dw?<0. will use Gaussian shaped pulses. Such a choice greatly sim-

Introducing a “moving” coordinater=t—2z/vy, and plifies computations. Thus, we assume that the evolution of
making a self-evident renormalization of the variables, Eqthe pulse can be characterized by the trial function
(2) can be rewritten in dimensionless form as

r2
2 E=A it tig()], O
o+ A (EPE=O @3 (Z)exl{ ZEA R

with amplitude A, beam “radius” a, wave front curvature
whereE is the slowly varying amplitude of the electric field  ang phasep as unknown functions of propagation coor-
€ properly redefined corresponding to the nonlinearity undegjinatez, which will be furthermore used in order to make the
consideration. The functiof(u) is generally complex val-  yariational functional an extremum. The Lagrangian can be

ued and it obeys the requiremefu)ul, .o=0. Equation  expressed in terms of these parameters of the trial function,

(3) describes spatial and temporal self-focusing of electro-

magnetic pulse propagating under the combined effects of 1 db d

diffraction and dispersion. L=—rP*YE]? §+4b2) —|E|2rD*1E—|E|2rD*1d—(:
Let us look for a “spherical” symmetric distribution of

the fields. Notice that the comoving coordinate can be +rPF(|E)?). (10)

treated on an equal footing as a spatial coordinate. In terms

of the radial variable = (x>+y?+ 72)¥2, Eq. (3) can be re- To make the time dependent problem tractable, an averaging

written as over radial coordinate is helpful. Such an averaging yields
JE 1 9 JE fx 1 ., 9B} o i dé ., o
— —| P 1= E= L)y=| drL=—|—5+4b*+ —|A“a"""D—2——A“a
Iaz+rD‘1ar(r | +FE»E=0, @ L= o 4z iz
where the transverse dimensibncan be 1, 2, or 3. +aPK(A?), (13)
The Lagrangian density corresponding to E4). is ith
Wi
IE|? i JE _JE*
L=—r""5r +zf“(E*E‘E az) < 4 [CopeP-true 1
(U)—m , app (ue™?), (12
+rP71R(|E)?), (5)
] ) wherel" is Gamma function.
where the asterisk denotes complex conjugate and The set of Euler-Lagrange equations can be derived under
" the condition that the variation with respect to each of un-
F(U)ZJ f(u')du’. (6)  known functions should be zero§(L)/6Q=0, where
0 Q=(A%a,b,¢).

) o ] ) After some algebra, we get the following set of ordinary
An appropriate variation of Lagrangiadl./5E* =0, yields jitferential equations:

Eq. (4) as the Euler-Lagrange equation.

It is easy to prove by direct computatigar using Noet- AZaP=AZaD (13)
her's theorem for the Lagrangidb)] that Eqg.(4) conserves
the following integrals of motion: the “photon number” da 4 2 K(A?)
—— = KA~ —5 } (14)
o dzZ a® a A
sz drr®7YE|?, (7)
0 d¢ A2)

—_— - +_
dz a?' 4

1 K
D+2)K'(A?)—D———|, 15
and the Hamiltonian ( JKHAY A } 19

2 1 da

—F(IEIZ)] €) b=—— (16)

® JE
H=J drrP-1
0 4a dz’

ar
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to be solved for the four function&, a, b, and ¢. Here A,
anda, are, respectively, the initial amplitude and the initial
“radius” of the EM beam atz=0.

Equation(13) is simply a statement of the fact that during
the EM pulse evolution its “energy,N=A?aP is con-
served. Using Eq(13), the integration of Eq(14) gives

1/da)® V(a)=H=V 1
gzl T (a)=H=V(ay), (17)
where
v 2a®  [A%ad 18
(a)= 2 paonfl o (18
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FIG. 1. Equilibrium curvee (solid line) and zero Hamiltonian

plays the role of an effective potential for the evolution of curveh (dashed lingfor the 2D case.
the radiusa. We have assumed that the initial beam has a

plane front(or zero curvature[da/dZ,-,=0=Db(0)]. No-
tice that the constants of integratibhandH normalized by
the factorl'[ D/2]/2 actually represent, respectively, “photon
number” N and Hamiltoniarf{ obtained from Eqs(7), (8),
and (9). In what follows, N denotes the beam energy and
H the Hamiltonian.

fracts monotonically. For the oscillating beam radius there
are two distinct modes of behavitsee, for instance, Fig)4

(i) When ag>a., the slope of the potential is positive,
aV/&a|a:ae>0 and the beam radius initially contracts until

it reaches the smallest value given by the turning point
a_(<ag). (i) If apg<a, the slope is negative,

Using the analogy with a particle in a potential well, we dVldala=, <0, and the beam radius initially increases. Fur-
can acquire a deeper physical understanding of light beagher eyolution depends on the value of constant Hamiltonian

dynamics. Choosing the initial beam radiag equal to the
equilibrium radiusa,., a stationary solution of Eq.14) is
obtained ifaV/aa|a:ae:O. Note that—dV/da is equal to
the right-hand side of Eq14). The equilibrium radius of the
beam is readily found to be

K(AY| ™

" "

§=2{K'<Aé>—

The stability of the equilibrium solutiomy,=a, can be

checked by studying the behavior of small amplitude distur-

bances around this equilibrium. Linearizing E#4) around
the equilibrium solution §=a.+ da, a.>da) we get

2

2 =
d_225a+Q 6a=0, (20)
where
, PV 1[4+2D o 2
=Z|  ~a 2 ~DAK'(AY|. (@)
a=a, 0 0

If Q2 is positive, the equilibrium solution is stable. The
condition2?>0 can also be written a$N./dA,>0 where

H [see Eq.(17)]. If H<O, the beam never diffracts and
enters the self-trapped regime. This agrees with the general
criterion in the moment approach established by Zakharov
et al. [12], that if the Hamiltoniarf{ is negative there is no
diffraction since the maximum value of the field intensity has
a z-independent lower bound|2_.>|H|/N.

Ill. SATURATING NONLINEARITY WITH NEGATIVE
FOURTH-ORDER OPTICAL INDEX

In nonlinear optics several types of saturating nonlineari-
ties are discussgd 1]. As we mentioned in the Introduction
a large nonresonant nonlinearity has been found in polydi-
acetylenepara-toluene sulfonat¢7].

In the subsequent analysis we will consider a nonlinear
term of the following form:

f([EI*)=E[*~|E|". (22

This kind of nonlinearity, but assuming thid|?<1, has
been considered in several previous publicatidrgs13. For
PTS the second term in the right-hand side of 2§) can be
of the same order as the first of&.

In order to study the conditions under which solitons can
propagate in such a material, we will apply the established

N is the energy of the pulse corresponding to the equilibgenera| formalism to the saturating nonlinearity given by Eq.

rium. Notice that this condition is equivalent to the well-
known stability criterion of Vakhitov and Kolokolov derived
using the moment theonb].

In deriving the system of equatioi($3)—(21) we did not
use an explicit form for the function&(|A|?); thus the es-

(22). For the functiorK [see Eq(12)] one gets
K(A?)=aA*— BAS, (23

wherea= 2" and g=2x3(-P2=1) The equilibrium ra-

tablished formalism can be applied to the NSE with an arbi-dius of the beam, obtained from E{.9),

trary nonlinear term.
For the saturating nonlinearity/(a)|,_o—%, which

means that the beam radius is bounded from below. Conse-

qguently, the so-called collapse does not occur. The beam

either trapped and forms an oscillating waveguide or dif-

5 2

BT AT 2BAY @9
is
is plotted in the &3,A2) plane(see curvee in Figs. 1 and 2
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FIG. 2. Equilibrium curvee (solid line), zero Hamiltonian curve
h (dashed ling and trapping curve (dotted ling for the 3D case.
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FIG. 3. EnergyN as a function ofA? for the 3D case. Equilib-
rium curve e (solid line) together with the numerically obtained
equilibrium linen (dotted ling, curveh, and trapping curve (both
dashedl I: focusing region, II: defocusing region; and llI: diffrac-
tion region.

In the region that lies above this curve the beam radius os-

cillates with initial focusing.
The equilibrium solution is stable(?>0), i.e., it is a
soliton, if the condition

) a D-2

AO>E m (25)

is satisfied. For 1D and 2D cases the equilibrium solution is

stable for arbitrary beam amplitude, since the inequélify

is always satisfied. For 3D case, the solution is stable only if

Ay>(al8B)Y¥(~0.58). Thus the small
(Ap<<0.58) equilibrium solutions are unstable.
As mentioned above, if the Hamiltonian is negative

amplitude

(H<O0) then the beam always forms an oscillating wave-

guide. From Eqgs(17) and(18), one obtains the beam radius
corresponding to the zero Hamiltonian

D
2 _
R Ay 20
which is plotted as curvé in Figs. 1 and 2. It can be seen
that if a3>aZ , for given A2, thenH<O.

In 1D and 2D cases the inequali&>a,, always holds.
Analyses of Eq.(18) shows that in 1D and 2D cases, the
beam always diffracts monotonously #d,<ay (i.e., if
H>0). Notice that for the 1D case the plot has the same
structure as in the 2D case, so the 1D case is omitted fror
Fig. 1.

The particularity of the 3D case is thaf>ay only if the
initial amplitude is sufficiently bigA§>(a/4,8). The self-
trapping of the beam is, however, possible even for a posi
tive Hamiltonian. Indeed, ifA§<a/4ﬂ then a.<ay and,
consequently, the equilibrium solution corresponding to the
soliton appears in the range bf>0 also. In what follows
we consider only the 3D case.

In order to get better insight into the dynamical behavior
of the pulse, we plot in Fig. 3 the conserved enekyps a
function of the squared amplitude of the pulsg The solid
line corresponds to the equilibrium and the dashed one to th
zero Hamiltonian. The light bullet is trapped in an oscillating
waveguide provided its energy is bigger than the critical

dN/dA2>0 if A2>0.34. Thus for every givelN>N_ we
have two equilibria, however, only the stable one plays the
role of an attractor for each of the points initially located in
the regiongl) and(ll). This can be easily seen from Fig. 4,
analyzing the shape of potentidlas a function of radiua

and energyN,

2

2aN  2BN?
V(a,N)= ;—

3a3 3a6 (27)
obtained from Eqs(13), (17), and(18).

The front lines(Fig. 4) correspond to the sections with
constant energiN smaller than the critical ondl. and the
beam diffracts monotonously.

In the supercritical casedN>N,, the potential has two
extrema, minimum and maximum. Therefore, depending on
H=V(ay,N) the beam will be either trapped or will diffract.
The beam with initial radius corresponding to the point lying
on the potential curve somewhere below the maximum will
be always trapped, creating a light bullet with oscillating
radius. Starting from the negative slope of the potential, the
beam will first diffract (region Il in Fig. 3; being on the
positive slope, it will first focugregion ). Only if the initial

FIG. 4. Diffraction for subcritical energieBl<N. and self-

value given byN.=35.3. Note that the equilibrium is stable, guiding in the supercritical case.
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conditions are chosen to be on the stable part of cantbe
light bullet will have a constan(equilibrium) radius, since it
is already on the bottom of the potential well. However, if
the initial radius is so small that it corresponds to a potentia 9.
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to the touching point between stable and unstable equilib
rium on curvee of Fig. 3.
The trapping linet in Figs. 2 and 3 asymptotically ap-

proaches curvér of the zero Hamiltonian for large ampli- -5
tude. Above the trapping lingegions | and Il in Fig. Bthe ==
light bullets can be created even for a positive Hamiltonian =

Below this line(region Ill) monotonic diffraction occurs.
Dynamics of pulsating light bullets clearly follows from  F|G. 5. Generation of a stable light bullet with initial focusing
Figs. 3 and 4. Using the variational method it can be prefor energyN=50 and initial intensityA2=0.4.
dicted that for a constant enerfjly(the horizontal line in Fig.
3) all beams initially in regior, or equivalently on the posi- The numerical simulations givh,=34.04 for the beam
tive slope, will form light bullets pulsating around its equi- trapping critical energy. This is the minimum of the dotted
librium radius with initial focusing until the turning point in line n in Fig. 3, which corresponds to the exact numerical
region 1l, which can be exactly computed knowing initial solution of Eq.(4) for the ground state soliton. Such a soliton
conditions. For initial points in region lll, the beam will with maximal amplitudeA,, is stable ifAﬁ]>0.41. These
always diffract even though it crosses the equilibrium line.results agree with those of RdR]. For a large amplitude
For instance, being initially on the right of the trapping line soliton, the results of the variational approdblased on the
in Fig. 3, the diffracting beam amplitude will decrease from Gaussian trial functiondeviate markedly from exact numeri-
its maximum value, crossing region I, overshooting thecal solutions.
stable equilibrium as well as the unstable one. Numerical simulations show that if an initial profile of the
In the preceding analysis, we applied a variational apbeam is close to the stable equilibrium oftee exact nu-
proach involving a Gaussian trial function. It is also possiblemerical solutiof, the beam quickly attains the profile of
to use trial functions of different kinds, for instance the superground state soliton and propagates for a long distance with-
Gaussian one, which may fit the equilibrium profile betterout distortion of its shape. Even if the initial beam is in a
than the Gaussian. However, the approach we are using falomain of parameters corresponding to the profile quite far
nonsteady propagation provides in a good approximation exrom the equilibrium one, this beam will, however, either
plicit analytical expressions for beam evolution. The mainfocus or defocus to the ground state equilibrium exhibiting
conclusion that follows from the present analyses is the exdamped oscillations around it. The pulsations are damped
istence of the stable equilibrium, which plays the role of andue to the appearance of the radiation spectrum. This is
attractor, provided>N,.. For a given energ, the beam shown in Figs. 5-8, where the field intensity=|E|?) dis-
will be self-trapped in a wide range of parameters: not onlytribution is plotted versus radiusand the propagating coor-
in the domain of the negative Hamiltonian but also in a partdinate z, for the initially Gaussian shaped beam
of the region whered>0. Such a self-trapped beam gener- |E(r,0)| = Agexd —r%/2a3]. In all these cases the parameters
ates a light bullet that will pulsate near the stable equilib-of the beam(i e., A; andag) are chosen to give the same
rium. energy N=A2a3=50 (the horizontal line in Fig. B Al-
though the initial amplitudes of the beafpoints B, C, and
D in Fig. 3 are quite different from the amplitude of the
corresponding equilibrium soliton, in all these cases light
bullets appear, exhibiting damped pulsations near the equi-
The main limitation of various approaches, such as thdibrium. Starting from the initial poinB (in domain | of Fig.
paraxial, momentum, or variational approaches, is that the®), the amplitude first increases in Fig. 5, which corresponds
are valid only in the aberrationless approximation; i.e., theyto an initial focusing as predicted analytically. Then the equi-
are unable to account for structural changes in the beardibrium amplitude is a bit overshot in order to be reached
shape. It is also obvious that in the case of big saturatingmmediately after. Other tested initial poir@sandD belong
nonlinearities the fundamental, i.e., ground state, soliton proto the domain Il with initial defocusing. Accordingly, a sud-
file can be quite different from the Gaussian one. Such asden decrease of amplitude in Figs. 6 and 7 is followed by a
pects of the beam dynamics are better delineated by numeritamped pulsation until stable equilibrium is reached. Either
cal simulations, although the guidelines for simulation arethe initial focusing or defocusing before reaching the equi-
still provided by approximative analytical approaches. librium can be better seen in Fig. 9, where the field
In this section we present the results of numerical simu{E(0,z)| is drawn for different initial points, C, andD.
lations of Eq.(4) for initially Gaussian-shaped beam in the |Initial conditions B and C correspond to the negative
3D case. The obtained simulation data can be qualitativelydamiltonian. This is in agreement with Zakharov’s criterion
understood and interpreted, using the analytical results of thigl 2] that the beam cannot undergo permanent diffraction cor-
previous section. responding to boundless decreasing of field intensity. This

IV. NUMERICAL SIMULATION OF THE LIGHT
BULLET BEHAVIOR
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FIG. 6. Light-bullet _ger;eration. Initial defocusing for energy kG, 8. Formation of a light bullet out of regions predicted by
N=50 and initial intensityAg=1. the analytical approach. Initial intensity A= 1.9 for N=>50.

means that, provided the filamentation does not occur, th Lo ; : .
beam will be trapped, creating oscillating field structure.E’See;coxgce?ég;;p:tllc%l er]g]exfhlékﬁnz;s?u:g:jI:‘/Ztliggec.)fuss:ar(]:%]

Note that the possibility of collapse is excluded for saturating o X
nonlinearities, since the beam is bounded from below as eso-nﬂ and fou_rtsh-ordzer optical mdgx for PTS %e’ re45pect2|vely,
tablished in Sec. II. n,=2.2x10"° cm“/GW and nyg=—-0.8Xx10"° cm®*/GW

A pecullaty f e 30 case s hat e beam eners n nd L 1 T POTI S0t e e iges
self-trapped regime even whe{>0. This fact is clearly i ' P q

demonstrated in the previous section using the variationaaTnedntr’nE:Tﬁecﬁget:jeir‘;’l t%?:c%r%aggIr?ig;?icfﬁ%r};alg_eipetﬁ?l ﬁv\\ll\;';c:mg
approach and it is also considered numerically in Fig. 7. y ; . ; y
The simulations show that foi=50 the large amplitude shown experimentally that solitons with two transverse spa-

. . . tial dimensions can be generated in bulk PTS at 41®
beam enters in the self-trapped regime prowAéetl.Q(see [14]. However, the temporal confinement related to the du-

Fig. 8. This amplitude, separating the self-trapping dornainration of pulses has not been investigated. Such a confine-

I/rgrri?at;[gr?ald;ﬁracungh ol?e, IS b'ggﬁr _thag_l_?retdltt:tid .bBt/ thement involves anomalous group velocity dispersion. Unfor-
pproach, because ot Its inabiiity (2) ake InoaC'tunately the PTS exhibits the normal group velocity
count the structural changes of beam shapéglt1.9, the  gisnersion, as majority of transparent materfdls]. Using
beam will diffract completely. _ _ _ an appropriate techniquéor instance, gratingthe frequency
It can be concluded that the numerical simulations conyistripytion in the pulse may be inverted creating an effective

firm exceptional robustness of light bullets, which can be,nomaious dispersion necessary for light-bullet propagation

generated in a large range of parameters, even far from staylg) However, this inversion will alter Eq2). Nevertheless,
equilibrium, as predicted by our analytical approach. in order to give some rough estimations of light-bullet size
and required energy we will use the value for optical indices
V. DISCUSSION AND CONCLUSIONS of a hypothetical inverted PTS supposing that the corrections

) ) ) ) . to the equations due to this inversion are small. The anoma-
The results obtained in previous sections may be applied

to the materials exhibiting saturating nonlinearity with nega-

|E(Q.2)]
1.2
|
1_2\ i
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FIG. 7. Generation of a light bullet with initial defocusing in the FIG. 9. Evolution of the pick amplitude of beart&(0,2)| as a
case of positive Hamiltonian for ener@y="50 and initial intensity ~ function of the propagation distance for three different initial
Ad=1.2. intensities B, C, andD).
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FIG. 10. Formation of pulsating light bullet fé&d =150 and for

initial intensity A3=0.01.

FIG. 11. Dynamics of the pick amplitude of beah&0,z)| for
lous group velocity dispersion is assumed to De= N=150 andA2=0.01.
7% 10 26s?/cm[2]. Although this value may be far from the
real one, it will not greatly affect the rough estimations of
light bullets parameters, used with the purpose to illustrat
quantitatively light bullets generation. ing equilibrium intensity, radius, and temporal width are, re-

Equations(1) and(2) are converted in dimensionless Eq. spectlvgly,l =2.36 GWi/cnf, p.=2.8 pem, andt, o= 20 fs.

(3) with nonlinearity (22) using the following normaliza- [N practice the energy can be much higher, allowing even
tions: t/T, z/Z, r, /R, and I/l,, where T=(\D/ lower inputintensity. Notice that nearly coinciding numeri-
41n,l 0)Y?=3.43 fs, R=\/(87?ngn,l)¥?=0.48 um and cal and analytical equilibrium curves in Fig. 3 approach as-
Z=\/(2mn,l4)=33.7 um. |, is the intensity of EM field ymptotically the same minimum intensity value. Therefore,
for which the nonlinear refraction index becomes zerothe hypothetical inverted PTS or some similar new material
lo=n,/|ny=2.75 GWi/cnt. The value used for the linear satisfying the low power requirement may potentially be
index isny=1.88[8]. The pulse energy is given by the ex- used as the medium for all-optical logic devices.
pressionW=[ (7)%%4]1,R*TN, whereN is dimensionless We would like to emphasize that the results obtained in
energy[see Eq.(13)]. Therefore, the numerically obtained this paper can be applied not only to some hypothetical in-
critical self-trapping energyN.=34.04 corresponds in di- verted PTS but also to many other media such as gaseous
mensional units t&V,=1.35 pJ. Above this critical energy it plasma, as well as semiconductor plasma. In unmagnetized
is possible to create light bullets with intensitysatisfying  plasmas the group velocity dispersion is anomalous. In gas-
the condition 0.4l,<I<0.91, i.e., 1.38 GW/cni<I<25  eous plasmas saturating nonlinearities frequently appear due
GW/cm? (see Fig. 3. The spatial transverse radigsand (o the plasma density variation induced by high frequency
temporal widtht, corresponding to the longitudinal size of pressure as well as due to the relativistic electron mass varia-
such a light bullet near the critical energy are, respectivelytion in the strong EM field11]. In narrow gap semiconduc-
pc=2 uwm andt =15 fs, thus they are close to the diffrac- tors nonparabolicity of the electronic conduction band in-
tion and dispersion limits and consequently difficult to real-duces the nonlinearity related to conduction electridé.
ize experimentally. Notice the interdependence of spatial racombined effects of this nonlinearity and the nonlinearity
dius and temporal widtp/R=t, /T=a. Therefore, in order caused by two-photon generation of nonequilibrium free car-
to realize in practice the light bullets the beam energy has teiers, provided that the duration of light pulses exceeds their
be several times larger than the critical one. However, foldifetime, give rise to the examined nonlinearity correspond-
lowing requirements for producing all-optical logical sys- ing to Eq.(22) [17].
tems, it is highly desirable to generate light bullets with We demonstrated using the variational approach under
small input laser intensities. The demonstrated robustness gfhich conditions the light beam is self-guided, generating
light bullets allows us to choose the initial intensity much light bullets in(3+1) dimensions. The main result obtained
lower than the equilibrium onéegion | in Fig. 3. For in-  using the established analytical formalism is to elucidate the
stance, for a pulse with energyy=6 pJ corresponding to mechanism of how the light bullets, as completely localized
dimensionless enerdy= 150, the minimum value of dimen-  structures, appear even if parameters of the initial beam are
sionless initial intensity i®\3=0.01(see Fig. 10 This input  far from equilibrium. As a consequence, the choice of pa-
intensity corresponds in real units tg,=28 MW/cm? for ~ rameters for which the stable spatiotemporal solitons are cre-
pimp=11.86 um andt ,,=84.5 fs. Further evolution, fol- ated and persist is relatively large; i.e., it is not restricted to a
lowing our analytical and numerical predictions, will be to- domain near the equilibrium solution. Therefore, the light
ward the stable equilibrium around which the light bullet will bullets are robust objects. The numerical simulations not
exhibit damped pulsatior{see Fig. 10 and especially Fig. 11 only confirm predictions of the analytical approach but also
where the dumping is more obvigud\otice that although demonstrate even stronger robustness of bullets that can ap-
the initial beam radius is larger than the critical opg)(the  pear in a considerably enlarged range of parameters. The

@eam breakindfilamentation does not occur. Correspond-
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light-bullet generation is numerically demonstrated even forsince the superfluous residue is radiated out. Due to their
some initial amplitudes lying out of domains | and Il in Fig. complete localization, robustness, and low energy, light bul-
3, due to the simultaneous creation of radiation spectruntets appear to be the best candidate for carrying the informa-

(see Fig. 8 Thus, only one part of the beam is self-guidedtion that has to be treated in all-optical logic circuits.

[1] H. A. Haus and W. S. Wong, Rev. Mod. Ph¥8, 423(1996.

[2] R. McLeod, K. Wagner, and S. Blair, Phys. Rev.58 3254
(1995.

[3] Y. Silberberg, Opt. Lettl5, 1282(1990; K. Hayata and M.
Koshiba,ibid. 17, 841(1992; N. Akhmediev and J. M. Soto-
Crespo, Phys. Rev. A7, 1358(1993; D. E. Edmundson and
R. H. Enns,ibid. 51, 2491(1995.

[4] A. C. Newell and J. V. MoloneyNonlinear Optics(Addison-
Wesley, New York, 1992

[5] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Bi%,.118
(1979 [Sov. Phys. JETR4, 62 (1972)].

[6] N. G. Vakhitov and A. A. Kolokolov, Izv. Vyssh. Uchebn.
Zaved. Radiofiz.16, 1020 (1973 [Sov. Radiophys9, 262
(2973]; J. Juul Rasmussen and K. Rypdal, Phys. 38r481
(1986.

[7] B. L. Lawrenceet al, Phys. Rev. Lett73, 597 (1994; B. L.
Lawrence et al, Electron. Lett. 30, 447 (1994; B. L.
Lawrence.et al., Appl. Phys. Lett64, 2773(1994.

[8] E. M. Wright, B. L. Lawrence, W. Torruellas, and G. Stege-

man, Opt. Lett20, 2481(1995.
[9] S. A. Akhmanov, A. P. Sukharukov, and R. V. Khokhlov, Usp.
Fiz. Nauk93, 19 (1967 [Sov. Phys. Uspl0, 609 (1968].

[10] J. F. Lam, B. Lippman, and F. Tappert, Phys. Flugds 1176
(21977.

[11] D. Anderson and M. Bonnedal, Phys. Fluigg 105 (1979;
D. Anderson, Phys. Rev. &7, 3135(1983; M. Karlsson,ibid.
46, 2726 (1992; V. |. Berezhiani and S. M. Mahajan, Phys.
Rev. E52, 1968(1995.

[12] V. E. Zakharov, V. V. Sobolev, and V. C. Synakh, Zh. Eksp.
Teor. Fiz.60, 136 (1971 [Sov. Phys. JETRB3, 77 (1971)].

[13] J. H. Marburger, Prog. Quantum Electreh.35 (1979; V. E.
Zakharov and V. C. Synakh, Zh. Eksp. Teor. Fé8, 940
(1975 [Sov. Phys. JETRL, 465 (1976)].

[14] W. Torruellas, B. L. Lawrence, and G. Stegeman, Electron.
Lett. 32, 2092(1996.

[15] G. G. Lutheret al, Opt. Lett.19, 862(1994); L. Bergeet al,

J. Opt. Soc. Am. BL3, 1879(1996.

[16] V. I. Berezhiani and S. M. Mahajan, Phys. Rev. L&8, 1840
(19949.

[17] A. A. Borshch, M. Brodin, and V. Volkov,International
Handbook: Laser Science and Technolo@yarwood Aca-
demic Publishers, Chur, 1980V.1. Berezhiani and V. Skarka
(unpublished



