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Bloch wave theory of modulational polarization instabilities in birefringent optical fibers
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The modulational instability gain spectra, of an arbitrarily polarized intense pump wave that experiences
periodic nonlinear polarization rotation in a birefringent optical fiber, are derived by Floquet analysis. The
predictions of the linearized analysis are confirmed by numerical simulations of the coupled nonlinear Schro¨-
dinger equations.@S1063-651X~97!01907-7#

PACS number~s!: 42.81.Gs, 42.65.Sf, 42.65.Ky
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I. INTRODUCTION

Over the last ten years, there has been growing rese
activity in nonlinear mode coupling phenomena in optic
fibers and waveguides. The interest in this work was m
vated by the applicative demand of ultrafast all-optical sig
processing devices that may operate in the frequency ra
of tens of GHz and higher, that is beyond the capabilities
electronics. A typical successful example of an application
nonlinear mode coupling effects is given by the nonline
polarization response of optical fibers, which permits
trashort pulse generation through pulse reshaping
equivalent fast saturable absorber action in fiber-based la
Moreover, nonlinear polarization effects also play an imp
tant role in all-optical processing devices, such as, nonlin
optical loop mirrors and in fiber-based transmission syste
Another basic example of a nonlinear device for which
same type of coupled-mode description holds, is given by
nonlinear directional coupler, first proposed by Jensen@1#.

In this work, we intend to analyze the role of nonline
polarization rotation of the pump@2–5# on parametric ampli-
fication or modulational instability~MI ! effects in birefrin-
gent nonlinear media, taking an optical fiber as the m
relevant example. In fact, as we shall see, in the presenc
spatial instabilities for the continuous wave~cw! evolution of
the pump@5–8#, the large nonlinear polarization changes th
occur when the pump wave is close to~but not exactly on! an
unstable eigenmode of polarization may lead to substan
variations to the parametric gain spectra of a frequency
tuned signal. Although MI of intense polarized beams in
refringent fibers is an issue of relevance for several of
above listed applications, earlier analyses of parametric g
were restricted to the simplest cases where no pump po
ization rotation occurs. In fact, the known cases involve
pump beam that is either coupled to a principal birefringe
axis @9–13#, or equally split between these axes in a high
birefringent fiber@14–18#. We show here that Bloch or Flo
quet theorem permits the linear stability analysis of a pu
wave with an arbitrary input polarization state. In fact, t
full pump-power dependence of the modulational instabi
~MI ! gain spectra is derived here. We confirm the results
the linear stability analysis by means of the direct simulat
561063-651X/97/56~1!/1048~11!/$10.00
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of the coupled nonlinear Schro¨dinger equations for the two
polarization components of the field in the fiber@9#. We be-
lieve that the present analysis is important for describing
experimental results@13,19,20# and for assessing the poss
bility of exploiting MI gain in all-optical processing devices
Moreover, the present approach could be easily extende
assess the role of parametric amplification in several dif
ent mode-coupling phenomena.

II. EVOLUTION EQUATIONS

The coupled equations for the two circular polarizati
components of the pump wave read@9,16#
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whereb and Db are the common phase velocity and t
linear birefringence,v andk9 represent the walk-off betwee
the two linear polarization modes and group velocity disp
sion ~this is assumed to be equal for both modes for simp
ity! at the mean wavelengthl0, respectively. WhereasR is
the nonlinearity coefficient. For the purpose of analytical a
numerical analysis, it is convenient to deal with a reduc
number of parameters. Hence, we rewrite Eqs.~1! in terms of
the dimensionless variablesu65(A6 /AP)exp(2ibZ),
whereP5uA1u21uA2u2 is the total input pump power, ob
taining
1048 © 1997 The American Physical Society
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where the Hamiltonian H5*2`
1` dt 2p(uu1u41uu2u4

1suu1u2uu1u2)1( j56uuj u2/22huuj ,tu2/21d Re(iu j* uj ,t)/2
is conserved together with the photon flu
Q5*2`

1`uu1u21uu2u2 dt. In Eqs. ~2! we set
j[2pZ/Zb , where Zb52p/Db is the linear beat
length, t[A2p/Zbuk9uT, h[sgn(k9), d[v/ADbuk9u
5(l0/2pc)ADb/uk9u, andp[RP/(3Db) is a single param-
eter which has the meaning of a normalized total power
the steady state, Eqs.~1! may be solved exactly in terms o
Jacobian elliptic functions@2–5#. Such solutions are consid
ered in detail in Appendix B.

III. BLOCH WAVE ANALYSIS

We analyzed the modulational stability of the rotating s
lution of Eqs.~2! by considering a small additive perturb
tion a6 and linearizing the equations fora6 about the pump.
Details on the derivation of the linearized sideband equati
are given in Appendix A. The linearized equations cont
the formal expression of the periodic solutions for the pu
fields, reported explicitly in Appendix B. The linear stabili
of the resulting system of four perturbation equations for
Stokes (w6) and anti-Stokes (v6) sidebands in each of th
two counterrotating circular polarizations may be derived
applying the Floquet theory~equivalent to Bloch theory in
the context of solid-state physics! of wave propagation in
linear periodic media@21#. We rewrite the linearized side
band equations in the general form

dX~j!

dj
5M ~j!X~j!, ~3!

where X[(w1 ,v1* ,w2 ,v2* ), and M (j) is a j periodic
434 matrix whose spatial periodj[jB is equal to the
nonlinear beat length or period of the stationary pu
evolution from Eqs.~2! ~see Appendix B!. By choosing
the four fundamental or independent initial cond
tions X1(j50)5~1,0,0,0!, X2(j50)5(0,1,0,0),X3(j50)
5(0,0,1,0), andX4(j50)5(0,0,0,1), one readily obtain
from the solution of Eqs.~3! at j5jB the principal solution
matrix S[$X1

t (j5jB),X2
t (j5jB),X3

t (j5jB),X4
t (j5jB)%

~heret denotes the vector or matrix transpose!. By applying
Floquet ~or Bloch! theorem @21#, the eigenvalues
l[ exp(hF1is) of S ~these are also known as Floquet mu
tipliers! such thatulu.1 yield the linear instability of the
pump wave with respect to the growth of sidebands wit
given frequency detuning, say,V. In fact, the scattering ma
trix at an integer number of periods, sayj5njB , is S

n. In
n

-

s
n
p

e
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p

a

the special case where the pump is coupled to a stable
principal axis,ulu5 exp(hF) andG52hF /jB reduces to the
usual MI power gain, wherejB represents the period of sma
polarization oscillations about this axis.

IV. MODULATIONAL GAIN SPECTRA

As we have seen, the Floquet theorem permits us to
merically calculate from the Floquet exponenthF the un-
stable sideband power gain~or growth rate! G[2 lnulu/jB ,
as a function of the sideband detuningV and the dimension-
less pump powerp. The conditionp50.5 corresponds to the
bifurcation of the fast axis eigenmode, whereasp51 corre-
sponds to the cw switching power for a circular pump@19#.
For simplicity, we restrict our attention here to the case
normal group velocity dispersion~i.e., h521), and we
mainly consider the case of a weakly birefringent fiber, th
is, where it is reasonable to neglect the polarization walk-
However, we briefly discuss the effect of varying the pola
ization dispersiond in the most relevant case of a pum
equally split between the two birefringence axes. In t
anomalous dispersion regime, the usual scalar MI has t
cally larger gain values than the polarization instability a
therefore polarization effects are more difficult to obser
Moreover, the numerical solutions indicate that the comp
tion between scalar and perpendicular modulational insta
ties lead to spatiotemporal chaotic behavior for the lig
waves in birefringent fiber@12#.

First of all, it is interesting to compare the~analytical!
modulational gain spectra that are obtained when the pu
wave is oriented exactly on the polarization eigenmodes~i.e.,
either the fast or the slow birefringence axis! of the cw so-
lutions of Eqs.~1!, with the Floquet gain spectra which co
respond to a pump that is initially very close to the sa
eigenmodes. In Fig. 1, the solid curves indicate the MI g
G versus the sideband detuningV with a linearly polarized
pump wave that is oriented either at 1° from the slow@Fig.
1~a!# or the fast @Fig. 1~b!# axis. Here the dimensionles
pump powerp51.2. On the other hand, the dashed curves
Fig. 1 show the conventional MI gainGa that is predicted
with a pump that is coupled exactly on either the slow or
fast axis@9#. This gain reads as

Ga5A~V272!~4p2V262! , ~4!

where the upper~lower! signs stand for a pump aligned wit
the slow~fast! fiber axis.

As can be seen in Fig. 1, in the case of slow axis exc
tion, the parametric gain curve is virtually the same whe
ever the pump is rotated from the axis by a few degre
Whereas Fig. 1~b! reveals that the shape of the MI spectru
with the pump on the cw unstable fast axis may be dee
deformed as soon as the pump wave is slightly misalig
from the axis. In particular, the MI gain with a finite detun
ing from the pump~e.g., forV.1) takes much larger value
than the gain at zero detunings, which corresponds to the
polarization instability effect. In such cases, the noise-see
MI will preferably lead to the growth of sidebands with rel
tively large detunings, with either slow or fast axis excit
tion. The sensitivity of the gain shape to small changes of
input polarization of the pump, when this is aligned with t
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FIG. 1. The solid curves indicate the MI gainG vs sideband detuningV for p51.2 and a linearly polarized pump wave oriented
1° from the~a! slow axis or~b! fast axis. The dashed curve in~b! shows the on-axis gainGa .
is
t i

e
illa

m
th
la

t

he

om

rly
bout
at
ined

ity
ed
the
s in
p
ll
lty

al-
with
ig.
fast axis, is clearly associated with the cw instability of th
eigenmode~which corresponds to an unstable saddle poin
the phase-space representation!. In fact, as shown in Fig.
2~a!, for a pump wave that is initially polarized close to th
slow mode the state of polarization executes small osc
tions about this stable axis. On the other hand, Fig. 2~b!
shows that forp.1, even the slightest misalignment fro
the fast axis leads to large periodic polarization rotations
approach counterrotating circular states. In Fig. 2 we disp
the evolution of the polarization angle@relative to the slow
and fast axis in Fig. 2~a! and Fig. 2~b!, respectively# versus
the ellipticity e[uA1u22uA2u2 over the nonlinear bea
length jB . Here the pump with powerp51 is linearly po-
larized at the input, and it is oriented at 1° from either t
slow @Fig. 2~a!#, or the fast@Fig. 2~b!# fiber axis.

Figure 3 illustrates dependence on input powerp of the
shape of the Floquet gain spectrum with a pump at 1° fr
the fast axis as in Fig. 1. As can be seen in Fig. 3~b!, only in
n

-

at
y

the case withp51 the gain shape of the eigenmode is nea
preserved. Whereas for pump-power values that are a
10% lower or higher than unity, the modulational gain
zero detunings drops to low values and peak gain is obta
at a finite sideband frequency shift@see Fig. 3~a! with
p50.75, Fig. 3~c! with p51.5, and Fig. 3~d! with p52#. For
pump powers lower than the cw polarization instabil
thresholdp50.5, no MI is observed as the pump is polariz
close to the fast axis. We may, therefore, conclude that
large asymmetry between fast and slow axes, which exist
the cw evolutions@6# and in the gain spectra for a pum
exactly aligned with an axis@9#, is not preserved for a sma
misalignment. This explains the inherent practical difficu
in observing the fast axis instability in the experiments@20#.

Clearly, the Floquet analysis may perfectly apply to c
culate the modulational gain spectra that are associated
any periodic evolution of the pump beam. For example, F
4 illustrates the dependence of the sideband gainG on the
FIG. 2. Phase-space representation of pump polarization evolution over the periodjB , for an input linear polarization at angleu51°
from ~a! slow or ~b! fast fiber axis.
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FIG. 3. As in Fig. 1, with a pump at 1° from the fast axis, and~a! p50.75, ~b! p51, ~c! p51.5, and~d! p52.
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input powerp, with a pump at 45° from the birefringenc
axes. This permits to extend to the case of low or interme
ate birefringence, the analysis that was previously carried
only in the high-birefringence limit@14,15#. In Fig. 4 we
show the limit cased50. As it can be seen, in this case M
is present~with a reduced gain! also for relatively low pump
powers: Fig. 4~a! has been obtained forp50.25, and shows
the presence of multiple narrow gain peaks for sideb
shifts slightly larger than unity. On the other hand, Fig
4~b!–4~c! show that forp>0.5 the MI gain curve has a
single peak at progressively larger detunings, similar to
case when the slow axis is excited.

Let us briefly consider now the role of finite polarizatio
dispersiond on the MI spectra with a pump at 45° betwe
the axes. By using the relationshipd5(l0/2pc!A2p/
~ZBuk9u), in the case of a high-birefringence fiber wi
ZB51.25 mm ~as in Ref. @15#, where the group-velocity
walk-off was equal tov51.6 ps/m atl05600 nm! and the
group-velocity dispersionk9565 ps2/km, one obtains the
relatively small valued.0.09. The gain spectra calculate
for the same power values as in Fig. 4 show that lit
changes occur with respect to thed50 case in this range o
values of group-velocity difference~and even for one orde
of magnitude larger walk-off, equivalent to linear be
lengths ten times shorter than the value of the experimen
Ref. @15#!. We may, therefore, conclude that polarization d
persion does not influence polarization instabilties in opti
fibers at operating wavelengths is the visible region of
spectrum.
i-
ut

d
.

e

t
in
-
l
e

On the other hand, for beam propagation close to
zero-dispersion wavelength region, the relative importa
of polarization walk-off increases and, as a result, a sup
position may occur between the modulational gain spe
that originate from different mechanisms of phase matchi
Considering, for example, the case withZB51.25 mm,
l051.55mm, andk950.4 ps2/km, one obtainsd.2.8. Fig-
ure 5 has been obtained in this case: as can be seen
p,1 the main feature of these spectra is the appearance
large number of gain peaks for sideband detuningsV,V l ,
where V l5d corresponds to the low-power limit of th
phase-matching condition of four-wave mixing in a hig
birefringence fiber@15#. Nevertheless, Figs. 5~c! and 5~d!
show that for power valuesp equal or larger than one, th
gain spectral profile of coherent MI is still nearly unchang
with respect to thed50 case.

Another interesting example of application of the Floqu
Bloch analysis is the computation of the gain spectra wh
the pump is circularly polarized. This input condition corr
sponds to the case that was considered in the early ex
ments of polarization instability in birefringent fibers@19#.
Note that this situation directly corresponds to the input
citation of an individual guide when Eqs.~1! describe the
waveguide field coupling in a nonlinear directional coupl
Figure 6 shows that cw gain~i.e., atV50) is observed in
this case as long asp<1.5. Figure 6~a! (p50.75) and Fig.
6~b! (p51.01) show that forp<1 the MI gain profile is
spectrally flat, whereas the cutoff frequency grows larg
with input power. Whereas forp>1.5 @see Fig. 6~c!# the cw
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FIG. 4. As in Fig. 3, with a pump at 45° from fiber axes,d50 and~a! p50.25, ~b! p50.5, ~c! p51, and~d! p52.
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gain starts to drop relative to the peak value at finite det
ings. Finally, Fig. 6~d! shows that forp52 the gain spec-
trum exhibits a single peak at progressively larger values
the frequency shift.

V. NUMERICAL RESULTS

In this section, we compare the predictions of the line
stability analysis with the full numerical solutions of Eq
~2!. In order to simulate either the induced or the sponta
ous MI, we shall consider as initial condition to the simu
tions, the injection along with the pump beam of either a p
of sidebands perturbation@i.e., a65e cos(Vt) where typi-
cally we take e in the range betweene51024 and
e51026# or Gaussian-distributed white noise, respective
For the numerical solution of Eqs.~2! we used the standar
Fourier split-step~or beam propagation! method where peri-
odic boundary conditions are implicitly imposed. We use
typical mesh of 1024 points on a temporal window which
typically four times the period of the unstable modulatio
This ensures that the spectral window includes sev
higher-order sidebands of the injected~or most unstable! per-
turbation ~in the figures reported below, we show only th
central region of the spectral window!. The envelope ampli-
tudes of the linearly polarized components along the s
and fast axes are obtained asux5(u11u2)/A2 and
uy5 i (u22u1)/A2, respectively.

Figure 7 shows the evolution for a distancej53jB of the
slow axis component of the field intensity. The linearly p
-

f

r

-
-
ir

.

a

.
al

w

-

larized pump with powerp51 is oriented at 1° from the
~stable for cw! slow axis of the fiber. The MI is induced b
seeding the pump beam with weak upshifted and dow
shifted sideband pair at frequency given by the optimal~i.e.,
yielding the peak gain! detuningV[Vp.2. As shown in
the first stage of propagation, the pump wave remains po
ized very close to the slow axis@note that the uniform polar-
ization rotation shown in Fig. 2~a! is too small to be seen in
Fig. 7#. However, after about one linear beat length~i.e.,
j52p) a deep temporal modulation develops on both po
izations. At the same distance, a strong temporal modula
also develops over the weak fast axis component~not shown
in Fig. 7!.

The frequency content of this modulation is clearly illu
trated in Fig. 8, that shows the spectral intensity of bo
polarization field components. It is evident that the MI of t
pump leads to nearly complete depolarization of the in
beam through the decay into its sideband modes and t
harmonics. These periodically oscillating sidebands have
deed a strong component along the fast axis.

In Fig. 9 we show the spectral evolution of the polariz
tion components when the seed frequency is chosen ou
the gain bandwidth~e.g.,V51 in this case!. The contrast
with the case of Fig. 8 is clear. In this case, the small
polarization rotation dominates the evolution of the inp
beam, and an extremely weak conversion~notice the differ-
ent vertical scale for the fast mode in Fig. 8 and Fig. 9! is
visible only after three nonlinear beat length.

The nonlinear development of MI for a pump wave p
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FIG. 5. Same as in Fig. 4, withd52.8.
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larized close to the~cw unstable! fast fiber axis is shown in
Fig. 10 for one period ~i.e., nonlinear beat length
j5jB.19) of the evolution. Here we display the evolutio
of the spectral components of the light field in the slow a
fast polarization modes, when the pump beam is oriente
1° from the fast axis, andp51. Again, the MI is induced by
sidebands withV5Vp.1. In this case, the cw instability o
the pump initially leads to its almost complete rotation in
the orthogonal slow mode. Remind that this conversion
curs twice within one period@see Fig. 2~b!#. However, after
the initial conversion is ultimated, when back conversi
from the slow into the fast mode sets in, one observes
onset of parametric scattering into the sideband modes. N
that the polarization sidebands develop at nearly the s
distance in the case of either slow~see Fig. 8! or fast ~see
Fig. 10! mode excitation. These results clearly confirm th
due to parametric conversion or MIs, the asymmetry betw
fast and slow modes which is predicted by the cw analysi
a transient effect which only lasts over about one linear b
lengths~i.e.,j.2p). Beyond this distance, an intense mon
chromatic pump wave decays into a set of sidebands w
periodically rotating states of polarization, nearly irrespe
tive of the choice of the input polarization angle~i.e., close
to either the slow or fast axis!.

In the case of spontaneous~i.e., noise seeded! MI, the
decay of the dynamically evolving cw pump occurs in fav
of the amplification of a range of frequencies that lie with
the gain spectrum. For example, we simulated the spont
ous parametric decay of an intense pump wave with a dim
d
at

-

e
te
e

,
n
is
at
-
th
-

r

e-
n-

sionless powerp51, that was linearly polarized at 1° from
either the slow or fast axis, respectively. With a pump clo
to the slow axis one observes the buildup of side frequen
polarized along the fast axis and peaked around the p
frequency detuningV52, in agreement with the relatively
narrowband parametric gain spectrum@see Fig. 1~a!#. Con-
versely, one obtains that a pump polarized close to the
axis decays through the emission of a broadband spectru
side modes, which corresponds to the complete depolar
tion of the input field.

At low power the parametric decay has a lower gain, a
is expected to occur on a longer scale length, that is a
several spatial periods of polarization rotation of the pum
This is shown in Fig. 11, where we report the evolution
the slow axis intensity, for a pump beam polarized at 2
from the slow axis p50.3 @here the peak gain is
G5G(Vp).0.5#, and injected sidebands atV5Vp51.57.
As shown, in this case the depolarization of the cw be
accompanied by the parametric decay only occurs after
eral cycles of polarization oscillation.

Finally, we also simulated the evolution of a circular
polarized pump beam at the input. In this case the most
teresting behavior occurs around the critical powerp51. At
powers slightly belowp51 a cw pump experiences com
plete polarization rotations, whereas abovep51 the pump
only exhibits relatively small oscillations about the input c
cular polarization@6,7#. Moreover, crossing the critical con
dition p51 leads to halving the spatial periodjB ~e.g., for
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FIG. 6. As in Fig. 3, with a circularly polarized pump wave, and~a! p50.75, ~b! p51.01, ~c! p51.5, and~d! p52.
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p50.99 andp51.01 we obtainjB513.4 andjB56.7, re-
spectively; see also Appendix B!. However, our present re
sults show that the decay of the periodically coupled po
ization modes via MI poses a limitation to the distance
which this cw picture describes accurately the propaga
dynamics. After one or few~depending slightly on the initia
seed! spatial periods of the pump polarization rotation,
injected or spontaneously growing periodic modulati
draws a significant amount of energy from the rotating pu
waves. This modulation rapidly develops into a series
higher-order harmonics which lead to an irregular beating
the field intensity profile. Figure 12 shows the evolution
the spectral intensities in the right-handed and left-han
circular modes, for an initially left-handed pump of pow
p51.01, and white-noise seeding. As shown, the pump be
experiences cw conversion over one complete pe
(j.7), after which the long-range evolution~in the figure,
we show the evolution over the distancej.2jB) is domi-
nated by a strong decay into sideband modes, which in
is responsible for the depolarization of the pump beam
the formally equivalent case of a nonlinear directional co
pler @1#, this phenomenon of parametric scattering into si
bands is expected when cw~or quasi-cw! light is coupled
into an individual guide of a beam with power slightly abo
the switching power of the coupler. A parametric decay
also obtained over comparable distances in the simulat
with pump powers slightly below the critical powerp51
~e.g., withp50.99).

The above simulation results that were obtained with
r-
r
n

p
f
f
f
d

m
d

rn
n
-
-

s
ns

a

circularly polarized pump mode clearly demonstrate the lim
of validity of the purely cw~or dispersionless! description of
polarization instabilities in birefringent nonlinear optical me
dia. In fact, when dispersion~and thus phase matching in
volving other frequency components! is taken into account,
one observes that the cw period doubling phenomenon
the abrupt polarization switching, which are both associa
with the crossing of the cw critical switching powerp51 are

FIG. 7. Evolution of normalized intensity in the slow mode v
distancej and timet. Here the pump is launched with linear po
larization at 1° from slow axis,p51, and the seed frequency de
tuning isV5Vp52.
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physically observable only for relatively short propagati
distances~i.e., about one or two linear beat lengths!. To the
contrary, for longer interaction distances the present anal
reveals that parametric decay or MI leads to a substan
scattering of energy into a series of sidebands of differ
polarizations and frequencies.

VI. CONCLUSIONS

In this work, we extended the theory of modulational p
larization instabilities in birefringent nonlinear fibers to th
case of an arbitrarily polarized pump beam. The nonlin
polarization rotation of the pump is taken into account
means of the available exact solutions in terms of Jacob
elliptic functions. The stability of two pairs of weak side
bands on each birefringence axis was then investigated
means of Floquet-Bloch theorem. The gain spectra have
been computed for different initial pump orientations a
power values. The analysis has revealed that the mod
tional gain spectra that are obtained with a pump beam
ented along the unstable fast axis may strongly distort t
shape when the pump is slightly misaligned from that ax
In particular, the large amplitude periodic rotation of t
pump polarization generally leads to prevailing growth
modulational~i.e., with a relatively large frequency offse

FIG. 8. Evolution of spectral intensity fractions in the slow a
fast modes vs distancej and frequency detuningV, and input at
z50 as in Fig. 7.
is
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la-
i-
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.

f

from the pump! rather than quasi-cw perturbations. Th
points to a fundamental difficulty in the experimental obs
vation of the asymmetry between the two axes which is p
dicted by the cw theory of polarization instability. We co
firmed the validity of the linearized theory predictions b
means of the comparison with the direct solution of t
coupled nonlinear Schro¨dinger equations that describe bea
propagation in the birefringent fiber.

Note that the same technique that we used here also
mits the study of the polarization stability of a weak signal
the presence of a counterpropagating intense pump in
birefringent fiber@22#. Finally, we point out that the spatia
counterpart of the present phenomenon is expected to
rise to the filamentation of periodically coupled polarizati
plane waves~i.e., dynamical transverse MI!.
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FIG. 9. As in Fig. 8 for a seed frequency detuningV51, out-
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APPENDIX A: LINEARIZED EQUATIONS

In this Appendix, we present the derivation of the couple
linearized equations for the four sideband amplitudes in t
two orthogonal circular polarization components of the pum
wave. We express the pump fields at central frequency
terms of modulus and phase asu6[ū6(j)

FIG. 10. As in Fig. 8 for an input pump polarization at 1° from
the fast axis,p51, and a seed frequency detuningV5Vp.1.

FIG. 11. As in Fig. 7, for a pump at 20° degree from slow axi
p50.3 andV5Vp51.57.
d
e
p
in

5uA6u exp$ic6%. The perturbed pump field reads as

u65~ uA6u1a6!exp~ ic6! , ~A1!

where ua6u!uA6u. Let us neglect, at first, the time depe
dence of the fields. Inserting Eq.~A1! into Eqs.~2! yields

2 i
]a1

]j
52a1

]c1

]j
1
a2

2
e2 if12psuA1uuA2u~a21a2* !

12p@~2uA1u21suA2u2!a11uA1u2a1* # ,

2 i
]a2

]j
52a2

]c2

]j
1
a1

2
eif12psuA1uuA2u~a11a1* !

12p@~2uA2u21suA1u2!a21uA2u2a2* # , ~A2!

where the modulusuA6u and phasec6 of the unperturbed
fields obey the following equations obtained from Eqs.~2!:

]uA6u
]j

56
uA7u
2

sinf , ~A3!

]c6

]j
52p~ uA6u21suA7u2!1

uA7u
2uA6u

cosf , ~A4!,

FIG. 12. Spectral intensity in the circular modes, for a le
handed input withp51.01, and white-noise seeding.
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andf[c12c2 is a nonlinear phase shift, which is respo
sible for the power-dependent ellipse rotation of the pu
wave. For silica fibers, that is, fors52, Eq. ~A4! becomes

]c6

]j
53p1p~ uA7u22uA6u2!1

uA1uuA2u
2uA6u2

cosf ,

~A5!

whereas the phase shiftf obeys

]f

]j
5

uA2u22uA1u2

2uA2uuA1u
cosf22p~ uA1u22uA2u2!. ~A6!

The pump wave evolution@i.e., the solution of Eqs.~A3! and
~A4!# can be expressed more easily either by means
Hamiltonian reduction to a one-dimensional oscillator@8#, or
with the help of the Stokes parameters@5,6#. Both methods
permit the representation of the propagation evolution i
properly defined phase space. Here we choose the latte
scription, introducing the dimensionless Stokes parame
si , i51,2,3,

s152uA1uuA2ucosf ,

s252uA1uuA2usinf , ~A7!

s35uA2u22uA1u2 ,

that represent the local state of polarization of the pump
fact, the analytical solution for the evolution of the Stok
vectors5(s1 ,s2 ,s3) is easily written in terms of simple ex
pressions involving Jacobian elliptic functions~see Appen-
dix B!. Equation~A5! is easily reexpressed as

]c6

]j
53p6ps31

s1
2~17s3!

, ~A8!

and, after substitution in Eq.~A2!, yields

2 i
]a1

]j
5Fp~12s3!2

1

2

s1
~12s3!

Ga11p~12s3!a1*

1S s12 is2

2A12s3
2

12pA12s3
2D a212pA12s3

2a2* .

~A9!

The equation fora2 is simply obtained from Eq.~A9! by
changing the sign ofs2 ands3. The time dependence of th
perturbing fieldsa6 is now reintroduced, and we write th
perturbation as the sum of Stokes and anti-Stokes~i.e., fre-
quency down and up shifted by, say,V.0) sidebands with
amplitudes w6 and v6 , respectively: a6[a6(j,T)
5w6(j)exp(iVt)1v6(j)exp(2iVt). The resulting coupled
equations forw1 andv2* read as
p

a

a
de-
rs

n

2 i
]w1

]j
5Fh2 V21p~12s3!2

1

2

s1
~12s3!

Gw1

1p~12s3!v1* 12pA12s3
2 v2*

1S s12 is2

2A12s3
2

12pA12s3
21Vd Dw2 ,

2 i
]v1*

]j
52Fh2 V21p~12s3!2

1

2

s1
~12s3!

Gv1*

2p~12s3!w122pA12s3
2 w2

2S s11 is2

2A12s3
2

12pA12s3
22Vd D v2* .

~A10!

Equations ~A10! are coupled to analogous equations f
w2 and v2* , which are simply obtained by exchanging th
plus and minus subscripts as well as the sign ofs2 ands3 in
Eqs.~A10!. These four equations can be rearranged to yi
Eq. ~3! for the vectorX[(w1 ,v1* ,w2 ,v2* ).

APPENDIX B: EXACT SOLUTIONS
FOR THE PUMP FIELDS

In this appendix, we present the exact solutions for
periodically rotating pump wave in terms of the Stokes p
rameters ~A7!. Equations ~2! with ]/]t[0 immediately
yield the equations for the Stokes parameters

ṡ152ps2s3 , ṡ2522ps1s32s3 , ṡ35s2 , ~B1!

where the dot stands for derivation with respect toj. With a
linearly polarized pump, initially oriented at an angleu with
respect to the slow axis of the birefringent fiber, one obta
@3#

s1~j!5cos~2u!1p sin2~2u!
sn2~ f j;m!

f 2dn2~ f j;m!
,

s2~j!5sin~2u!
cn~ f j;m!

dn2~ f j;m!
, ~B2!

s3~j!52 sin~2u!
sn~ f j;m!

fdn~ f j;m!
,

where

f5@114p214p cos~2u!#1/4 ,

m5
1

2F12
112p cos~2u!

f 2 G . ~B3!

Note thatm is the Jacobian parameter, not the modu
k[Am.

In the case of a circularly polarized pump wave, f
p,1



.
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s1~j!52p sn2~j;m! ,

s2~j!57sn~j;m!dn~j;m! , ~B4!

s3~j!56cn~j;m!,

with m5p2. For p.1

s1~j!52p21sn2~pj;m! ,

s2~j!57p21sn~pj;m!cn~pj;m! , ~B5!

s3~j!56dn~pj;m!,

with m5p22. Finally, for p51

s1~j!52tanh2~j! ,

s2~j!57tanh~j!sech~j! , ~B6!
s3~j!56sech~j!.

For input linearly polarized pumps, the spatial periodjB ~in
real-world units the period becomesZB5jBZb/2p) of the
nonlinear pump polarization rotation read as

jB5
4K~m!

f
, ~B7!

whereK is the complete elliptic integral of the first kind
Whereas with a circular pump, the above expression~B7!
remains valid forp,1, with f51, andm5p2. Above criti-
cal power (p.1), the spatial period becomes

jB5
2K~m!

p
, ~B8!

with m5p22. Clearly, the periodjB→` for p51, and
doubles as the critical valuep51 is crossed.
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