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Multidimensional inverse lattice problem and a uniformly sampled arithmetic Fourier transform

Chen Nan-xian, Chen Zhao-dou, and Wei Yu-chuan
China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100080, China
and Institute of Applied Physics, Beijing University of Science and Technology, Beijing 100083% China
(Received 3 January 1996; revised manuscript received 30 May) 1996

The present work develops a unified and concise solution for inverse lattice problems. Also, a uniformly
sampled arithmetic Fourier transform is presented in this work which uses Ramanujan’s sum rule.
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In the present time of facing the rapid spread of largeber of thenth set of lattice points. For examplbg(1)=1
scale digital computation and parallel information processcorresponds to the nearest neighbor distance. The inverse
ing, it is expected that numerous facilities in number theorylattice problem is to determind(x) from the fitting curve
could be of increasing importance in science and technologye(x), which can be obtained from trab initio calculation.

This paper develops two useful formulas. The first is a uni-The trick here is to extend the serieb{n)} to { b(n)} to
versalmultidimensionaMobius inversion formula for wide achieve multiplicative closeness. Thus, for amyand n,
applications to inverse lattice problems in condensed mattahere existk such that

physics. The second is an application of tRamanujan’s

sumto parallel signal processing. b(k)=b(m)b(n). (€©))

In other words, o(n)} can always be replaced by a multi-
plicative semigroup b(n)}. Therefore, Eq(2) is equivalent
to the following:

. MO BIUS INVERSION
FOR MULTIDIMENSIONAL LATTICES

The classical Mbius inversion formuld1,2] has been 1=
given wide attention in the last decade for its successful ap- E(x)= 52 r(n)®(b(n)x), 4
plications to inverse problems in the physical scierie<]. n=1
However, a more demanding question is whether it will be;

n which
feasible to extend the trick to problems that are not simply

one dimensional. On the face of things that might seem a ro(bgl[b(n)]), if b(n)e{by(n)},
mere formality, but it takes only a little effort to find prob- r(n)= 0 it b b (5)
lems essentially tied up with the multiple connectedness of ' if b(n) e {bo(n)}-

all but one-dimensional spacgs].

This section provides a unified solution to multidimen-
sional inverse lattice problems with all different kinds of
lattice structures based on a generalized Dirichlet inverse. *

For convenience and clarity, the concise and unified solution <I>(x)22 [(n)E(b(n)x), (6)
is developed and illustrated through the inversive cohesion n=1

problem. In general, the cohesive eneEfk) for each atom
in a multidimensional crystal lattice can be expressed as
sum of interatomic pair potentiafb (x) such that

The lattice point shell is called vertural whe(n)=0.
Then the solution to Eq4) is given by

in which the inversion coefficient or the generalized il
ﬂmctionl(n) is given by

b(k)
71 —
rib (_b(n)” O1- )
This indicates that(n) andr(n) are the modified Dirichlet
inverse of each other, which is a generalization of common
Dirichlet inverse in number theory. The following proves
that Eq.(6) is the solution to Eq(4), as well as to Eq(2).

1
E(x)= Er;o *R), @ b<n>§|;'><k> '(n)

where x is the nearest neighbor distand®,is the lattice
vector. For convenience, the absolute valud&rafan be ex-
pressed aby(n)x such that

o

1 o
E(x)== ro(n)®(bg(n)x), 2
(0=352, ro(m®(bo(n)x) 2 23 HmE®MY
n=
wherebg(n) in a monotonically increasing series represents o b(k)
the distance between the origin on which the reference atom => [ > n)r[bl(—”}d)(b(k)x)
is located and thath set of lattice points;o(n) is the num- K=1 | br)o(k) (n)

*Mailing address. = Sa® (k)= (B(1)X)=P(x).

1063-651X/97/561)/5(4)/$10.00 55 R5 © 1997 The American Physical Society



R6

CHEN NAN-XIAN, CHEN ZHAO-DOU, AND WEI YU-CHUAN 55

TABLE I. The generalized Mbius functionl (n) for a fcc structure.

n 1 2 3 4 5 6 7 8 9 10
[b(n)]? 1 2 3 4 5 6 7 8 9 10
r(n) 12 6 24 12 24 8 48 6 36 24
I(n) 1/12 —1/24 —-1/6 —-1/6 —-1/6 1/9 —-1/3 1/32 1/12 0
n 11 12 13 14 15 16 17 18 19

[b(n)]? 11 12 13 14 15 16 17 18 19

r(n) 24 24 72 0 48 12 48 30 72

I(n) —-1/6 772 —-1/2 1/3 —1/64 —-1/3 —17/72 -1/2

In the case wherb(n)]? are not integers, the least common

B. Example: bcc structure

multiple of all the denominators can be used in the recursive The binding energy per atom in a bcc lattice can be ex-

procedure. The solution in Eq&) and(7) can be applied to

pressed as

any lattice structure of interest in condensed matter physics

or statistical physics including fct,1,, L1,, Diamond, bcc,

hcp, DG;, and Fibonacci structure. Several examples are

provided as follows.

A. Example: fcc structure
The binding energy can be expressed as

E(xy:%“;S D[2(12+ )2+ KdX]

K1#0

+53 ON2L- 3P (- P
1),

=n21 ro(n)® (bo(n)x), ®)

in which the distribution fo(n)} adding a small fraction of

terms is simply equal to {n}. The latter is closed under

multiplication. Thus, letb(n)={ Vn}, Egs. (6) and(7) can

be applied directly to obtain the solution. Note that in this

case we have

_n'

b(k)) k

b(mn)=b(m)b(n), b‘l(m =

Here, the condition of sum ovéa(n)|b(k) in Eq. (7) can be
simplified ton|k, or

k
%( I(n)r(ﬁ)=5k1.

The left-hand side of Eq.10) is just the common Dirichlet
product ofl (n) andr(n). Therefore,

9

|(1):W=1—2,
1(1)r(2) X6 1
=== ="z

The inversion coefficient or the Mbius functionl(n) for a

fcc structure are listed in Table I. It is noted that the values of

inversion coefficient$(n) are no longer 1;-1, and 0 as for
the usual Mbius function.

1
E(x)=5

[®(V3{i%+]?+k%}x)
2(1,mmM%(0,0,0

+O(VH(i— 12+ (- 12+ (k= 23x)]

oo

52, P(bn)x),

(10

with the distributionby(n) andry(n) as seen in Table Il.

We use {y(n)} as a generatorto produce a series
{b(n)} with weights {r(n)}-{b(n)} as a multiplicative
semigroup, which is closed under multiplication. Now the
solution is given in Table IlI.

1 3 9
‘D(X):Z[gE(X)—ﬁE(\Ex)*’ T3E(%)

AN

Thus the effective pair potentials can be easily evaluated
based on the cohesive energy cuB{g), which can be cal-
culated using thab initio data for real or virtual structures
[8—11]. This method is also available for improving the em-
bedded atom methoEAM) potentials[12]. Obviously, the
solutions to inverse lattice problems are useful for all types
of multidimensional problems in physical science. Note that
the technique can be replaced by the method based on alge-
braic rings of integers for two-dimensional inverse lattice
problems[13], then the inversion coefficient takes values
only of 1, -1, 0.

In conclusion, Egs(6) and(7) have provided a resolution
to Maddox’s challengé¢7].

27
512

II. RAMANUJAN’'S SUM AND UNIFORM SAMPLING
FOURIER EXPANSION

Ramanujan’s sunt(m,n) is defined as

>

he[On—1]
(h,n)=1

C(m,n): eZﬂ'ihm/n, (11)
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TABLE Il. The coefficientsby(n) andry(n) of a bec structure. TABLE Ill. Inversion function of a bce structure.

bo(n)2 1 4/3 83 113 4 16/3 19/3 20/3 8 9 n 1 2 3 4 5 6 7 8 9 10
() 8 6 12 24 8 6 24 24 32 12 [bMm}? 1 3 ¥ 92 § ¥ T L 4 &

r(n) 8 6 0 0 2 0 0 24 8 0
bo(n)2 32/3 35/3 12 40/3 43/3 44/3 16 1(n) i1 3 9 27z 3 8 9 3 1 243
ro(n) 12 48 30 24 24 24 8 8 32 128 512 16 2048 32 8 8 8192

. N

whereh runs only over values less thanand prime ton. 1 N\~ 27s
Also, there is an interesting theorem on Ramanujan’s sum an_ﬁs:1 Sh N (16)

[1,2] . The theorem states that

Taking the real part of Eq(16), we get Eq.(14) immedi-

PR ez’”hm’”Zd‘%n) du(n/d), (12)  ately. The last step of Eq15) is equivalent to
(h,n)=1
whered runs over the common divisors af andn. Equa- 1 % (2aisiN)(mnh _ 5 _ 1, m=n
tion (13) implies that the Ramanujun’s su@(m,n) is al- Nhe[l,N/n) & € om0, m#n.
ways an integer. Maddox was interested in the application of (n,N/n)=1
this strange formula. 17

Now let us introduce a uniform sampling arithmetic Fou-
rier transform(USAFT). The simplest theorem of USAFT In fact, in the case ain=n, there exists only onk such that

states that if (h+1)n=N, thus £ exp{%(h+1)n} =1. In all other
cases, the contribution fromm's andn’s to the sum vanishes
f(x)= ; a,coanX, (13y  because
niN
10 1, N|m
then _2 g2msi(M/N)| ™ (18
N Ns=1 0, N/M.
1 N\ (2ms
an=NE Cls,—|f T . (14)
s=1 n The corresponding coefficient for odd component is

This theorem indicates that the coefficients of USAFT are

simply equal to Ramanujan’s sum, which sum can be evalu- _ kN N N\ /2 N
ated by addition and subtraction of some integers, which is — (-1 > _ _ 7S _
; _ b,(N) Cls— 5g72, 7| f for n|—,
suitable for parallel processing. N & 2 n N 4
Proof. Let (19
?(x)=$ a,e"™, wherek andq satisfy
niN
then n=29%2k+1), q,k=0,12.3,... . (20
1 N\~(27s The proof is similar as before. In conclusion, a practical ex-
N21 C(s, ﬁ) f(T) planation of Ramanujan’s sum is discovered.
P
N
_ 1 > eith(S/N/n)'f'<2ﬂs) A. Example for N=4
[\ =} he{Lhm) .
N/m)=1 1
Lo a C(14 C(24 C(34 C44)\ [ (z27)
:iz 2 e—27rh(s/N/n); amezqrims/N a, 1] C(1,2) C(2,2 C(3,2 C(4,2 f(%z,n.)
Ns=1 feliam miN a;| 4| CLD CR2D CEBY CAD || t32m)
N by C(04 C(1,49 C(24 C(39 4
22 a 1 > o(2misIN)(m+nh) f(32m)
ml CNpefThm $1 f(2m)
(h,N/n)=1 o -2 0 2 4
1| -1 -1 1| fG2m
= ; amSmn=an (19 =— : (21)
i 4 e A Rt 2]
-2 0

2
or f(32m)
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B. Example for N=8

f(32m)
f(32m)

a, C(1,8C(2,8/C(3,8C(4,8/C(5,8C(6,8C(7,9C(8.,9) .
a, C(1,4C(2,4C(3,4C(4,4C(5,4C(6,4C(7,4C(8,4) f(g2m)
a, 1| C(1,2C(2,2C(3,2C(4,2C(5,2C(6,2C(7,2C(8,2 f(§2w)
ag | 8| C(L,)C(2,)C(3,)C(4,)C(5,1C(6,1C(7,1C(8,1) t(S2m)
b, C(7,8C(0,8/C(1,8C(2,8C(3,8C(4,8C(5,8C(6,9) A
b, C(0,4C(1,4C(2,4C(3,4C(4,4C(5,4C(6,4C(7,4) (527)
f(§2m)
f(§2m)

f(32m)

f(32m)

0 0 0 -4 0 O© 4 .

-2 0 2 0 -2 f(g2m)

1/ -1 1 -1 1 -1 1 -1 1 f(g2m)

"8 1 1 1 1 t(S2m) -

4 0 o0 4 0 A

0 -2 o 0o -2 o | f&™

f(§2m)

f(§2m)

Note that in the above equation a nonsquard@natrix is  inverse problems has become popular, the discovery of num-
used. ber theory's applications such as USAFT might be of in-

creasing importance.
IIl. CONCLUSION
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