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Hartree-Fock statistical approach to atoms and photoabsorption in plasmas

T. Blenski, A. Grimaldi, and F. Perrot
Centre d’Etudes de Limeil-Valenton, 94195 Villeneuve-St.-Georges Cedex, France
(Received 16 August 1996

Hartree-Fock equations for plasma atoms are proposed and used in the superconfiguration method of pho-
toabsorption calculation. They involve statistical sums, taking into account integer shell occupation numbers
and finite temperature effects. These sums are evaluated using electron and hole counting. Their use is also
shown to be relevant to the treatment of orbital relaxation in the final states of optical transitions.
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PACS numbegps): 52.25-b, 31.15-p, 78.70.Dm

In this communication we propose a new statisticalonly the first linear term depends explicitly on the bound-
Hartree-Fock approach to atoms in plasmas at finite temperghell populationmi(cb) , the other terms being averaged over
ture. Itis based on the superconfiguration approximation sucz (%) js the free energy of free electrons. In the original
cessfully applied in the superconfiguration transition array o ; (B)_,,7(5) ;
method(STA) [1-5] to interpret transmission spectra of low- STA, itis apprOX|mated. O 'u-zf ’ \gvar;ere,u 'S the

average atontAA) chemical potential and;=’ the number

density plasmas measured in laboratofies16|. . ) . (Cy)
The original STA method1—5] is applied in conjunction of free electrons in the sup(glr);:onflguratloﬁbf is the

with the use of parametric potentials calculated by thebound-free interaction energlf,™ is the rest of the bound-

RELAC code[17] for free ions. In this sense the supercon-bound interaction energy quadratic qﬁcb) [18,14,19. Fi-

figurations, as introduced ii1-5], are not fully self- nally, we find that the bound-electron energy, averaged over

consistent. all configurations irE, may be given a form analogue to the
The finite temperature Hartree-Fo¢klF) method pre- HF energy:

sented here is derived in the framework of the superconfigu-

ration approximation. The average shell populations and in- =)

teraction matrices are given in terms of statistical sums that<E(Cb)>5_ Fii )_2 arlet 1/2;:{, ar(as= dr g WrsVrs-

are averages of the corresponding quantities for configura- (1)

tions. This allows us to avoid problems stemming from non-

integer occupation numbers in other thermal HF theoriesy,=p,g, is the averaged population of the bound-shetif

(see, for instance, discussion in RE14]). The statistical degeneracyy,. |, and V, ¢ are the one- and two-electron

sums appear to be key quantities in all the calculations reintegrals[18,14,19 of Z, respectively«, andW, ¢ are given

quired by the superconfiguration method: energies, momenis terms of the relative statistical sums for electrons:

of the photoabsorption speciru . . . They are also needed in

the relaxation effects described below. The mixed counting As @, n=Us q, -n(9)/U; o (9)

(electron or holes proposed in this work, is applied to HF ' ' '

equations and to all statistical sums in our superconfiguratimar for holes:

code.
The superconfiguration contains configurations that are * * * ]
close in energy, i.e., the differences of configuration energies Aor Q% .n~ Uar,Qz _n(g)/UUr Q% (9):
within a superconfiguration are less than kT. The interaction r r r
of superconfigurations is neglected. A superconfiguraBon Q,
is specified by the set of supershelpopulationss . ,q{") 0,=— E (=X)"A
=Q,, i.e. the sum of the populations in the shells belonging =] o Qopn
to o [1]. The superconfiguration of the bound electrons is .
neutralized by free electrons. The one-electron states are ,
common within each superconfiguration. In thermal equilib- = (—X:‘)”AZ Q* (2a)
rium, assuming that the superconfigurations do not interact, n=0 rer
it is sufficient to require that the free energy of each super-
configuration be stationary with respect to its wave func- Xr=(XZ‘)‘1=exp(—,8a,), (2b)

tions. The free energy ofE is calculated using the

configuration-averaged energies of bound electrons and in- W, =1+5, {5 {S(9,~1)/(p,g,—1)—1]
cludes a Thomas-FerntTF) contribution for the free elec- " T S{ he ' =

trons. In the Boltzmann factor, followind.], we use for the +(1-6; Hist, ©)
configuration energy @, is the bound-electron configura-

tion): E(Cb)zziqfcb)aiJr(E(zcb)JrEi)cfb))EJrF(ffE), where  whereH,¢=(Xs—X,;) " }(Xs/ps— X, /p,;)—1 and
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Qo,
SP=3 (1=1(~X)"A, o » Ne(N=2 05,.5,2% {0 s(Im= DIn(Sn—Prm) S
o —Sml+ (1= 8moaHmdiol YU, (60)
_ _w*\NA*
_HZO (n+1)(—X}) AUr,erv’n. (4

ho(r)== 2, ad 8, o Hmst 1PN Yi(r), (60

s#m

o, denotes the supershell to whichbelongs.g denotes the

ensemble of degeneracies of the shells, o(g) and where
UZ’Q*(g) are statistical sums of electrons and holes, respec- g | Ko 1.\2
tively. U, o(g) was introduced by Bar-Shalost al. in Ref. Yo ()= 2—m ( " s)
[1] and U;Q*(g) will be defined below. From Refl] one (Om=m) 10 0 0
has - r
xfo dr’Fk;—1 Ps(r")Pn(r’). (69
Os
U"’Q(g):qs,zqu:Q Sl;lg (qs) xgs_ If there is only one shell in a supershell or if a supershell is
seq closed, the equations reduce to the usual HF equations

[14,18. If a supershell contains only one electron, the equa-
It can be calculated i steps using recurrent relatiofs].  tion for each shell belonging to the supershell is of the HF
We found that, in the case of supershells having a |argé0rm as if the other shells were unoccupied. If the subdivi-
number of bound electrons, it is necessary to replace in stgion of superconfigurations is increased, we get in the limit
tistical sums, the electron counting by the hole counting. Théhe restricted HF SCF equations of detailed configuration
number of holes iQ*=G,—Q, whereG,=3,_,0 is the accounting(DCA). In this limit, neglecting the free-electron
total degeneracy of the supershellWe define the statistical €ffects, one getgl4]
sum of holes as follows:

am= W(ELCb)>E:6m+(1/2)Vm,m- (7)
m
Uy o({gs Xsise o) =U7 5u ({95, X5 sse ah) [T X (5) o , _
reo We use the second identity of E() in the general case in
order to specifyay, in Eq. (2b).
The formal dependence M;Q*(g) ong, Q*, andXf is The probability expB®) of a superconfiguratio® can

the same as in the case of the electron statistical sum. e expressed using:
apply the hole counting in case of supershells such ¢hat =) =) =)
>G,/2. The number of recurrent operations is then lower in B'~'=In(U*=") =By~
hole counting and moreover, this choice guarantees the nu-
merical accuracy in the recurrent relations.

The stationarity condition with the usual assumption of = . -
the wave—function)é orthonormality leads to the foIIovSing setWhereU(H):Hoeigov%(g) is the statistical sum dE. The
of self-consistent-fieldSCP equations(in atomic units, all  difference of theB() in two superconfigurations measures
subscripts referring to superconfiguration are omitted foitheir relative probability. We illustrate some consequences of
simplicity): the present theory by comparing values Bf*) obtained

making different assumptions, in the case of three supercon-
figurations of Germanium at temperatufe=68 eV and at
0.05 g/cni density[7,3]. The most probable superconfigura-
tion, when n=3 and n=4 shells are grouped together,
=k§m €mkakdi 1, Pi(r), (6a s =,=(1s)2(25)%(2p)8(3s3p3d)7(4s4p4daf)2,  the
second with  different ionic charge is E;

. =(15)?(2s)%(2p)®(3s3p3d)’(4s4p4d4f)® and the third
where P(r)/r is the radial wave functioniKy, the kinetic  one  is =,=(1s)%(2s)%(2p)®(3s3p3d)8(4s4padaf)?
energy operatore,, appears as the normalization Lagrange(same charge &3 ,). The results are presented in Table I. In
multiplier, and the matrixr,  as the orthogonality multipli-  each thermodynamic modga): superconfiguration neutral-
ers. The SCF potential of the superconfiguration is ized byzgi)zz_ngj free electrons(b): free ion and AA
chemical potentialF{=)=47{=) in Eq. (8)], we compare
AB, ;=BEV—B(E0 and similarly AB,,, obtained with
anm= €y, or with a,,, given by Eq.(7), and usingB(ZE) calcu-
lated with and without temperature. One observes that the
ps(r) and pp(r)=.adP(r)|?/(47r?) are the free and neglect of the thermal effects in the superconfiguration aver-
bound spherical electron densities, respectively. The corre@ge of the termBS=), proposed in Ref(1], is justified. The
tion to the potential and the nonhomogeneous term are  inclusion of the correction (1/8),, in Eq. (2b) leads us

C

=In(U®) - BUESY + EfS?) =+ FiF), 8)

(K V(1) + 8Vin(F) = €m) Prn(1) + i (1)

V(r)=fdr’[pb(r')+pf(f')]/|f—f'|—Z/f- (6b)
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TABLE I. Comparison of relative probabilitiegvith respect to=) in case of superconfiguratiors,

andZ,.

Thermodynamic T=68 eV inB{™, T=68 eV inB{™, T=0in B,

model am=é€mn+ 3Vmm am= €m am=€m
AB . 2.4 2.62 2.62
ABlO (a) with free electrons 3 222 3 263 3 25(7)
2'0 . . .

AB,, _ 2.968 3.103 3.104

b) free ion model
ABy (b) 3.222 3.365 3.354

also to relatively small differences. The differences betweenations of equalZ%E), both approaches to thermodynamics

results from the SCF model, taking into account the freggive practically the same results. In that case we observed
electrons and the results from the free ion model, are large ialso similar agreement of other physical quantities. Espe-

the case ofAB,,. This is due to the fact thaE, and =,
have differenTZ§”). In the case oAB, , i.e., superconfigu-
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FIG. 1. Theoretical and measurfg] transmission spectrum of
germanium. Calculations a&f=68 eV and 0.05 g/cidensity.
— orbital relaxation included,; - - - without orbital relaxation.
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FIG. 2. Theoretical and measurgtl] transmission spectrum of
niobium. Calculations afT=47 eV and 0.017 g/cfhdensity.
— orbital relaxation included; - - - without orbital relaxation.
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tered by changes in thermodynamics. The differences on thiag, so that all the machinery related to the statistical sums
relative strength of the bound-bound absorption structureseeded in the evaluation of the variances can be adapted to
between modelsa) and(b) in the case oAB, o are probably the relaxation correction of the frequency. We do not include
due to the use of the AA chemical potential. relaxation corrections in the zero-order and second-order
As described above we use wave functions selffmoments of the transition array.
consistently calculated in each superconfiguration. In the Figures 1 and 2 present comparison between calculated
original STA papers, this use of different sets of orbitals,and measured transmission spectra in the cases of germa-
obtained from the RELAC code, is called “orbital relax- nium of Ref.[7] and of niobium aff =47 eV and at 0.017
ation” [4]. In connection with photoabsorption calculations, g/cn density[11]. Relativistic and orbital relaxation effects
we reserve the words “orbital relaxation” for the use of in the final superconfiguration, as described above, have
different orbitals in the initial and final superconfigurations been included in these calculations. The comparison with
involved in an optical transition. The HF estimate of thetheoretical spectra calculated without orbital relaxation ef-
correction to thea— g transition frequency, due to relax- fects in Ge and Nb shows that these effects are important in
ation, is the interpretation of experiments, as already notiged.
The SCF HF calculations of final superconfigurations are
a—p_ 1 0)_ o AV _ thus necessary. A more detailed description of the relaxation
ABc =Alg+ 22 (07 91.a) (2AVp — AV 2411 correction to the first moment of the photoabsorption cross
section will be given elsewhere.
1 0)_ o 0 _ o - In conclusion, we propose statistical Hartree-Fock self-
* 2%: (07~ 61,2)(47 = 5 ) AV © consistent equations for partially ionized plasmas in the ap-
proximation of superconfigurations. The theory takes into ac-
Al;=1;=17 is the difference between the final and initial count the effects of finite temperature and of integer shell
one-electron integrals, anklV; ; is the similar difference for occupation numbers respecting the Pauli principle. Exact
the two-electron integrals. Théo) are the shell occupations form of the exchange term is preserved. The theory con-
in the initial configuration. The correction of E(Q) does not  verges to the HF SCF equations for configurations in case of
appear in the published formulgs-5|] although these ef- supershells composed of only one shell. The practical imple-
fects might be modeled in a different manigfar instance by mentation of this theory requires only straightforward modi-
a global shift in frequency, as in RdfL1]). While the unre- fications of existing HF codes and can be easily generalized
laxed frequency has only linear dependence on the populde HF-Dirac equations. The statistical sums, which are the
tions, Eq.(9) includes a quadratic term. Such quadratic termskey quantities in this approach, must be accurately computed
are present in the expression of the variance of the transitionsing the mixed counting. The formulas for hole counting
array, with a product of vector®;D; [1,3] instead of the are given in this communication. Application of this theory
matrix AV; ;. This does not affect the technique of averag-to final-state relaxation is shown.
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