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Hartree-Fock statistical approach to atoms and photoabsorption in plasmas

T. Blenski, A. Grimaldi, and F. Perrot
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Hartree-Fock equations for plasma atoms are proposed and used in the superconfiguration method of pho-
toabsorption calculation. They involve statistical sums, taking into account integer shell occupation numbers
and finite temperature effects. These sums are evaluated using electron and hole counting. Their use is also
shown to be relevant to the treatment of orbital relaxation in the final states of optical transitions.
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PACS number~s!: 52.25.2b, 31.15.2p, 78.70.Dm
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In this communication we propose a new statisti
Hartree-Fock approach to atoms in plasmas at finite temp
ture. It is based on the superconfiguration approximation s
cessfully applied in the superconfiguration transition arr
method~STA! @1–5# to interpret transmission spectra of low
density plasmas measured in laboratories@1–16#.

The original STA method@1–5# is applied in conjunction
with the use of parametric potentials calculated by
RELAC code@17# for free ions. In this sense the superco
figurations, as introduced in@1–5#, are not fully self-
consistent.

The finite temperature Hartree-Fock~HF! method pre-
sented here is derived in the framework of the superconfi
ration approximation. The average shell populations and
teraction matrices are given in terms of statistical sums
are averages of the corresponding quantities for config
tions. This allows us to avoid problems stemming from no
integer occupation numbers in other thermal HF theo
~see, for instance, discussion in Ref.@14#!. The statistical
sums appear to be key quantities in all the calculations
quired by the superconfiguration method: energies, mom
of the photoabsorption spectrum . . . .They are also needed i
the relaxation effects described below. The mixed count
~electron or holes!, proposed in this work, is applied to H
equations and to all statistical sums in our superconfigura
code.

The superconfiguration contains configurations that
close in energy, i.e., the differences of configuration energ
within a superconfiguration are less than kT. The interact
of superconfigurations is neglected. A superconfigurationJ
is specified by the set of supershells populations(sPsqs

(C)

5Qs , i.e. the sum of the populations in the shells belong
to s @1#. The superconfiguration of the bound electrons
neutralized by free electrons. The one-electron states
common within each superconfiguration. In thermal equil
rium, assuming that the superconfigurations do not inter
it is sufficient to require that the free energy of each sup
configuration be stationary with respect to its wave fun
tions. The free energy ofJ is calculated using the
configuration-averaged energies of bound electrons and
cludes a Thomas-Fermi~TF! contribution for the free elec
trons. In the Boltzmann factor, following@1#, we use for the
configuration energy (Cb is the bound-electron configura
tion!: E~Cb!5( iqi

~Cb!ai1^E2
^Cb!

1Ebf
~Cb!

&J1F f f
~J! , where
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only the first linear term depends explicitly on the boun
shell populationsqi

(Cb) , the other terms being averaged ov
J. F f f

(J) is the free energy of free electrons. In the origin
STA, it is approximated byF f

(J)5mZf
(J) , wherem is the

average atom~AA ! chemical potential andZf
(J) the number

of free electrons in the superconfiguration.Ebf
(Cb) is the

bound-free interaction energy.E2
(Cb) is the rest of the bound

bound interaction energy quadratic inqi
(Cb) @18,14,19#. Fi-

nally, we find that the bound-electron energy, averaged o
all configurations inJ, may be given a form analogue to th
HF energy:

^E~Cb!&J2F f f
~J!5(

r
a r I r11 /2(

r ,s
a r~as2d r ,s!Wr ,sVr ,s .

~1!

a r5prgr is the averaged population of the bound-shellr of
degeneracygr . I r and Vr ,s are the one- and two-electro
integrals@18,14,19# of J, respectively.a r andWr ,s are given
in terms of the relative statistical sums for electrons:

Asr ,Qsr
,n5Usr ,Qsr

2n~g! /Usr ,Qsr
~g!

or for holes:

Asr ,Qsr
* ,n

* 5Usr ,Qsr
* 2n

* ~g! /Usr ,Qsr
*

* ~g!:

pr52 (
n51

Qsr

~2Xr !
nAsr ,Qsr

,n

5 (
n50

Qsr
*

~2Xr* !nAsr ,Qsr
* ,n

* , ~2a!

Xr5~Xr* !215exp~2bar !, ~2b!

Wr ,s511dsr ,ss
$d r ,s@Sr~gr21! / ~prgr21!21#

1~12d r ,s!Hrs%, ~3!

whereHrs5(Xs2Xr)
21(Xs /ps2Xr /pr)21 and
R4889 © 1997 The American Physical Society
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Srpr5 (
n51

Qsr

~n21!~2Xr !
nAsr ,Qsr

,n

5 (
n50

Qsr
*

~n11!~2Xr* !nAsr ,Qsr ,
* ,n

* . ~4!

s r denotes the supershell to whichr belongs.g denotes the
ensemble of degeneracies of the shells.Us,Q(g) and
Us,Q*
* (g) are statistical sums of electrons and holes, resp

tively. Us,Q(g) was introduced by Bar-Shalomet al. in Ref.
@1# andUs,Q*

* (g) will be defined below. From Ref.@1# one
has

Us,Q~g!5 (
qs ,(qs5Q

sPs

)
sPs

S gsqsDXs
qs.

It can be calculated inQ steps using recurrent relations@1#.
We found that, in the case of supershells having a la
number of bound electrons, it is necessary to replace in
tistical sums, the electron counting by the hole counting. T
number of holes isQ*5Gs2Q, whereGs5(sPsgs is the
total degeneracy of the supershells. We define the statistica
sum of holes as follows:

Us,Q~$gs,Xs ;sPs%!5Us,Q*
* ~$gs ,Xs* ;sPs%!)

rPs
Xr
gr. ~5!

The formal dependence ofUs,Q*
* (g) on g, Q* , andXs* is

the same as in the case of the electron statistical sum.
apply the hole counting in case of supershells such thaQ
.Gs/2. The number of recurrent operations is then lower
hole counting and moreover, this choice guarantees the
merical accuracy in the recurrent relations.

The stationarity condition with the usual assumption
the wave-functions orthonormality leads to the following s
of self-consistent-field~SCF! equations~in atomic units, all
subscripts referring to superconfiguration are omitted
simplicity!:

~K̂m1V~r !1dVm~r !2em!Pm~r !1hm~r !

5 (
kÞm

em,kakd lm ,l k
Pk~r !, ~6a!

wherePm(r )/r is the radial wave function,K̂m the kinetic
energy operator,em appears as the normalization Lagran
multiplier, and the matrixem,k as the orthogonality multipli-
ers. The SCF potential of the superconfiguration is

V~r !5E dr 8@rb~r 8!1r f~r 8!# / ur2r 8u2Z / r . ~6b!

r f(r ) and rb(r )5(sasuPs(r )u2/(4pr 2) are the free and
bound spherical electron densities, respectively. The cor
tion to the potential and the nonhomogeneous term are
c-

e
a-
e

e

n
u-

f
t

r

c-

dVm~r !5(
s

dsm ,ss(k $dm,s~gm21!@gm~Sm2pm!dk,0

2Sm#1~12dm,s!asHmsdk,0%Ys,s
~k!~r !, ~6c!

hm~r !52 (
sÞm

as@dsm ,ss
Hms11#Ps~r !(

k
Ys,m

~k! ~r !, ~6d!

where

Ys,m
~k! ~r !5

gm
2~gm2ds,m! S l m k ls

0 0 0D
2

3E
0

`

dr8
r,
k

r.
k11 Ps~r 8!Pm~r 8!. ~6e!

If there is only one shell in a supershell or if a supershel
closed, the equations reduce to the usual HF equat
@14,18#. If a supershell contains only one electron, the eq
tion for each shell belonging to the supershell is of the
form as if the other shells were unoccupied. If the subdi
sion of superconfigurations is increased, we get in the li
the restricted HF SCF equations of detailed configurat
accounting~DCA!. In this limit, neglecting the free-electro
effects, one gets@14#

am5
d

dam
^Eb

~Cb!
&J5em1~1 /2!Vm,m . ~7!

We use the second identity of Eq.~7! in the general case in
order to specifyam in Eq. ~2b!.

The probability exp(B(J)) of a superconfigurationJ can
be expressed using:

B~J!5 ln~U ~J!!2B2
~J!

5 ln~U ~J!!2b~^E2
~Cb!

1Ebf
~Cb!

&J1F f f
~J!!, ~8!

whereU (J)5)sPJUs,Qs
(g) is the statistical sum ofJ. The

difference of theB(J) in two superconfigurations measure
their relative probability. We illustrate some consequence
the present theory by comparing values ofB(J) obtained
making different assumptions, in the case of three superc
figurations of Germanium at temperatureT568 eV and at
0.05 g/cm3 density@7,3#. The most probable superconfigur
tion, when n53 and n54 shells are grouped togethe
is J05(1s)2(2s)2(2p)6(3s3p3d)7(4s4p4d4 f )2, the
second with different ionic charge is J1
5(1s)2(2s)2(2p)6(3s3p3d)7(4s4p4d4 f )3 and the third
one is J25(1s)2(2s)2(2p)6(3s3p3d)8(4s4p4d4 f )1

~same charge asJ0). The results are presented in Table I.
each thermodynamic model@~a!: superconfiguration neutral
ized byZf

(J)5Z2(sQs free electrons,~b!: free ion and AA
chemical potentialF f

(J)5mZf
(J) in Eq. ~8!#, we compare

DB1,05B(J1)2B(J0) and similarly DB2,0, obtained with
am5em or with am given by Eq.~7!, and usingB2

(J) calcu-
lated with and without temperature. One observes that
neglect of the thermal effects in the superconfiguration av
age of the termB2

(J) , proposed in Ref.@1#, is justified. The
inclusion of the correction (1/2)Vm,m in Eq. ~2b! leads us
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TABLE I. Comparison of relative probabilities~with respect toJ0) in case of superconfigurationsJ1

andJ2 .

Thermodynamic
model

T568 eV inB2
(J) ,

am5em1
1
2Vm,m

T568 eV inB2
(J) ,

am5em

T50 in B2
(J) ,

am5em

DB1,0 ~a! with free electrons
2.485 2.620 2.620

DB2,0 3.225 3.368 3.357
DB1,0 ~b! free ion model

2.968 3.103 3.104

DB2,0 3.222 3.365 3.354
e
also to relatively small differences. The differences betwe
results from the SCF model, taking into account the fre
electrons and the results from the free ion model, are large
the case ofDB1,0. This is due to the fact thatJ0 andJ1

have differentZf
(J) . In the case ofDB2,0, i.e., superconfigu-

FIG. 1. Theoretical and measured@6# transmission spectrum of
germanium. Calculations atT568 eV and 0.05 g/cm3 density.
— orbital relaxation included; - - - without orbital relaxation.
n
e
in

rations of equalZf
(J) , both approaches to thermodynamics

give practically the same results. In that case we observed
also similar agreement of other physical quantities. Espe-
cially the positions of the absorption structures are not al-

FIG. 2. Theoretical and measured@11# transmission spectrum of
niobium. Calculations atT547 eV and 0.017 g/cm3 density.
— orbital relaxation included; - - - without orbital relaxation.
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tered by changes in thermodynamics. The differences on
relative strength of the bound-bound absorption structu
between models~a! and~b! in the case ofDB1,0 are probably
due to the use of the AA chemical potential.

As described above we use wave functions s
consistently calculated in each superconfiguration. In
original STA papers, this use of different sets of orbita
obtained from the RELAC code, is called ‘‘orbital relax
ation’’ @4#. In connection with photoabsorption calculation
we reserve the words ‘‘orbital relaxation’’ for the use
different orbitals in the initial and final superconfiguratio
involved in an optical transition. The HF estimate of t
correction to thea→b transition frequency, due to relax
ation, is

DEC
a→b5DI b1 1

2(
i

~qi
~0!2d i ,a!~2DVb,i2DVi ,i12DI i !

1 1
2(

i j
~qi

~0!2d i ,a!~qj
~0!2d j ,a!DVi , j . ~9!

DI i5I i2I i
0 is the difference between the final and initi

one-electron integrals, andDVi , j is the similar difference for
the two-electron integrals. Theqi

(0) are the shell occupation
in the initial configuration. The correction of Eq.~9! does not
appear in the published formulas@1–5# although these ef-
fects might be modeled in a different manner~for instance by
a global shift in frequency, as in Ref.@11#!. While the unre-
laxed frequency has only linear dependence on the pop
tions, Eq.~9! includes a quadratic term. Such quadratic ter
are present in the expression of the variance of the trans
array, with a product of vectorsDiD j @1,3# instead of the
matrix DVi , j . This does not affect the technique of avera
ec
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-
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-
e
,

,
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ing, so that all the machinery related to the statistical su
needed in the evaluation of the variances can be adapte
the relaxation correction of the frequency. We do not inclu
relaxation corrections in the zero-order and second-or
moments of the transition array.

Figures 1 and 2 present comparison between calcul
and measured transmission spectra in the cases of ge
nium of Ref. @7# and of niobium atT547 eV and at 0.017
g/cm3 density@11#. Relativistic and orbital relaxation effect
in the final superconfiguration, as described above, h
been included in these calculations. The comparison w
theoretical spectra calculated without orbital relaxation
fects in Ge and Nb shows that these effects are importan
the interpretation of experiments, as already noticed@11#.
The SCF HF calculations of final superconfigurations
thus necessary. A more detailed description of the relaxa
correction to the first moment of the photoabsorption cr
section will be given elsewhere.

In conclusion, we propose statistical Hartree-Fock se
consistent equations for partially ionized plasmas in the
proximation of superconfigurations. The theory takes into
count the effects of finite temperature and of integer sh
occupation numbers respecting the Pauli principle. Ex
form of the exchange term is preserved. The theory c
verges to the HF SCF equations for configurations in cas
supershells composed of only one shell. The practical imp
mentation of this theory requires only straightforward mo
fications of existing HF codes and can be easily generali
to HF-Dirac equations. The statistical sums, which are
key quantities in this approach, must be accurately compu
using the mixed counting. The formulas for hole counti
are given in this communication. Application of this theo
to final-state relaxation is shown.
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