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From zero-dimension cavities to free-energy functionals for hard disks and hard spheres
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We present asystematic approachto derive fundamental-measure theory free-energy functionals for hard
disks and hard spheres, entirely from the exact free energy in the zero-dimensional limit of a narrow cavity
which cannot hold more than one molecule. The functionals are within the generic class that includes the
previous successful versions, but have the remarkable property to yield theexact functionalfor quasi-one-
dimensional density distributions.@S1063-651X~97!50505-8#

PACS number~s!: 61.20.Gy, 64.10.1h, 68.45.2v
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Model systems of hard disks and hard spheres, in two
three dimensions, play central roles in the microsco
theory of liquids@1#. In the last two decades there have be
important advances@2# in the development of density
functional approximations for the excess~over the ideal gas!
Helmholtz free energy,F@r#5(F2Fid)/(kBT), for an inho-
mogeneous density distribution,r(r ). These functionals
have been used to study interfaces and capillary systems
to understand the crystallization of a fluid as a strong s
sustained inhomogeneity@2–4#. The model functionals
F@r# are usually constrained by previous approximations
the equation of state and the direct correlation function
uniform bulk systems. The choice of the nonlocal dep
dence ofF on the densityr(r ) is simplified by the geometri-
cal character of the interactions and there are two m
groups of theories:~1! those based on thepair-excluded vol-
ume~a sphere with radius equal to twice the molecular rad
R) @2,4,5#, and ~2! those based on the molecular volum
itself and other fundamental geometric measures of theindi-
vidual molecules. The later, under the generic name
fundamental-measure theories~FMT! @6–9#, were proven to
be superior for the description of the dimensional crosso
namely, the description of bulk systems of reduced dim
sion as strongly inhomogeneous density distributions i
larger dimension@9#. FMT functionals are able to detect con
figurations of close-packedD-dimensional hard spheres, an
can address the phase diagram of hard spheres in con
geometries@6,9#. However, correct dimensional crossov
can be achieved only by a functional that contains singul
ties, and these affect its behavior. The FMT functionals
have nicely, and give reliable results for a large class
r(r ), but in view of their approximate nature their singula
ties may cause unphysical divergences for certain extr
density distributions. These, however, also serve to adva
the theory since the elimination of the divergences
achieved by a finer tuning of the functional form. Indee
recent regularizations of the FMT in the zero-dimensio
~0D! limit of a cavity that cannot hold more than one mo
ecule have opened frontiers in the study of crystallizat
@9#.

In this Rapid Communication we present asystematic ap-
proachto build up regular FMT functionals, within a gener
class that includes the previous versions. The approac
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based on theultimatedimensional crossover: the free ener
in narrow cavity, which cannot contain more than one m
ecule. With an average occupationN<1, in the grand-
canonical ensemble, it has an excess Helmholtz free en
F (D50)@r#5wo(N)5N1(12N)ln(12N) which is indepen-
dent of the detailed structure of the cavity@9#. This exact
result provides azero-dimensionalequation of state which
should be reproduced from the density functional in any
mensionF (D)@r# for any density distributionr(r ) restricted
to be such that it cannot have nonzero values at two poin
they are separated by more than 2R. The correct 0D limit
behavior of the functional, which is important for adequa
description of the fluid-solid transition@9#, is presently used
to fully derive FMT functionals which yield theexact func-
tional for quasi-1D density distributions.

We consider first a density distributionr(r )5Nd(r ),
with N<1, which corresponds to the limit of a narro
spherical cavity in any dimensionD. The exact 0D excess
free energy is recovered@9#, by an integration by parts, from
the following density functional:

F1
~D !5E drw1„h~r !…E dR1r~r1R1!wD~R1!, ~1!

where R1 is fixed to be on a shell of radiusR by,
wD(uR1u)5sD

21d(R2uR1u), normalized by the ‘‘molecular
surface area’’s152, s252pR, s354pR2. The function
w1(h)[]wo(h)/]h52 ln(12h) is evaluated at the loca
packing fraction~at dimensionD)

h~r !5E dr 8r~r 8!Q~R2ur2r 8u!, ~2!

with the usual Heaviside step functionQ(x). In one dimen-
sion,F1

(1) provides theexactfunctional@10#, and it recovers
the exact value ofwo(N) for any other 0D distribution like
two d functions, r(r )5N1d(r2r1)1N2d(r2r2) with
N5N11N2<1 and r 125ur12r2u<2R. In higher dimen-
sions these kind of 0D density distributions, which wou
represent an elongated cavity like in Fig. 1~a!, are not well
represented byF1

(D) , which gives
R4873 © 1997 The American Physical Society
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F1
~D !@r#5wo~N!2jD~r 12!Fwo~N!2(

i51

2

wo~Ni !G . ~3!

The deviation from the exact 0D limit is thus found to be
universal function ofN1 and N2 multiplied by a function
jD(r ). For two and three dimensions, we have

j2~r !5
2

p
sin21S r

2RD , j3~r !5
r

2R
. ~4!

We now search for a second contribution to the density fu
tional, a termF2

(D)@r# that corrects this defect inF1
(D)@r#

and makes up the exact valuewo(N). It has to vanish with a
singled function or when the twod functions inr(r ) are
separated by more than a molecular diameter, and within
FMT scheme we expect it to include the nonlocal dep
dence throughh(r ) andwD(r ). This is obtained by

F2
~D !@r#5E drw2„h~r !…)

i51

2 E dRir~r1Ri !

3wD~Ri !PD~R1 ,R2!. ~5!

The dependence onN1 andN2 in Eq. ~3! dictatesthe func-
tional form of w2(h)5]2wo(h)/]h25(12h)21. The ker-
nel PD(R1 ,R2) couples the integrals overR1 andR2, and it
is determinedby the geometrical factorjD(r 12) in Eq. ~4!,
with r 125uR12R2u.

For hard disks (D52) we find P2(R1 ,R2)
54pR2x(12x2)1/2sin21(x), with x5r 12/(2R). The integra-
tion overr in Eq. ~5! may be carried out over the intersectio
of the two circular shells,w2(R1) and w2(R2) to give a
useful simpler form:

F2
~2!5E dr 8

sin21~r 8/R!

p E drr~r1!r~r2!~w2
11w2

2!,

FIG. 1. Sketch of the 0D systems used in the text. The full l
shows the available space for the molecular center, which has
~a! or three~b! and~c! narrow subcavities, joined by much narrow
channels. The relative volume of the subcavities sets the occup
ratios Ni /Nj , the channels giving a negligible contribution. Th
total occupationN<1 will be set by the chemical potential of
reservoir joined to the cavities by channels that are also neglig
The dashed lines show the extent of the molecules at the cent
each subcavity within the physical cavity wall~shaded line!, which
is drawn only in case~a!.
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where r65r6r 8 andw2
65w2„h(r6û(R22r 82)1/2)… and û

is a unit vector normal tor 8. The density functional
F (2)5F1

(2)1F2
(2) has been built to recover the exact 0

limit for a single molecule in a class of 0D cavities, yet lea
to remarkable results for the excess free energy of gen
density distributions. We have checked thatF (2)@r# gives
the exact 0D value for arbitrary combinations ofmd func-
tions when there is a region with common overlap, whe
h(r ) is equal to the total cavity occupationN5(Ni , as in
Fig. 1~b!. If we applyF (2)@r# to a strictly one-dimensiona
density distributionr(x,y)5r1(x)d(y), we recover the ex-
act density functionalfor hard rods@10#. Applied to a ho-
mogeneous density distribution, this gives the excess
energy per moleculeF (2)/N5w1(h)1hw2(h) which corre-
sponds to thescaled particleequation of state for hard disk
@11#. However,F (2)@r# cannot reproduce the 0D limit in
cavities like Fig. 1~c!, with a density distribution made o
threed functions, separated by less than 2R but without a
region of triple overlap whereh(r ) is equal to the total oc-
cupationN. Within the FMT framework these are ‘‘lost
cases,’’which cannot be described throughh(r ). The failure
in the description of these cases has to be related to
difference between the exact and the scaled-particle e
tions of state. These ‘‘lost cases’’ disappear, however,
only in the strict 1D limit but also in quasi-1D systems, wh
the molecules are restricted to a channel of width less t
A3R, for which F (2)5F1

(2)1F2
(2) is likely to be the exact

density functional.
The FMT approximation for hard disks, previously pr

posed by one us@7#, in terms of scalar and vector weighte
densities, takesP2

appr(R1 ,R2)5p(R22R1•R2). This func-
tional form is similar to the exact kernel forr 12!R, which
gives P2(R1 ,R2)52p(R22R1•R2)1O(r 12

4 ). The trunca-
tion at the first term changes by a factor of 2 the contribut
of F2

(2) to the bulk equation of state, and the former appro
mation is recovered as a truncated and renormalized ex
sion. We also note that the 2D analog of@8#, namely, a FMT
functional for hard disks in terms of only scalar weight
densities which is completely equivalent to that of@7#, can be
derived by another approach@12# that utilizes the 0D limit as
a ‘‘generating function’’ for the FMT functional and impose
the scaled-particle bulk equation of state. A deeper und
standing of the interconnection between these method
desirable.

Considering now 3D hard spheres we find that the ker
in Eq. ~5! isP3(R1 ,R2)54pR(R22R1•R2), which gives
rise to exactly the same second termF2

(2)@r# in the func-
tional as in the previous versions of the FMT for ha
spheres@6,9#. The density functional@F1

(3)1F2
(3)# is known

@9# to yield the exact free energy and pair direct correlatio
in the uniform 1D limit. We find, however, that in fact i
yields theexact1D functional in the general 1D limit, i.e., it
has an exact dimensional crossover to 1D, and it is proba
exact for quasi-1D systems, restricted to tubes of diam
less thanA3R. However,@F1

(3)1F2
(3)# fails to reproduce the

exact 0D limit in cases like Fig. 1~b!, with
r(r )5( i51,3Nid(r2r i) which were well described in two
dimensions. The result for these cases is now
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F1
~3!@r#1F2

~3!@r#5wo~N!2z~r 12,r 23,r 31!

3Fwo~N!2(
$ i j %

wo~Ni1Nj !

1 (
i51,3

wo~Ni !G , ~6!

where$ i j % runs over the pairs 12, 23, and 31. The functi
z is defined in geometrical terms@13# and takes values be
tween 0 and 1, for any triangle with the three sid
r 12, r 23, and r 31, less than 2R. Again we search for an
extra term,F3

(3)@r#, in the density functional that makes u
the exact valuewo(N) for cavities like Fig. 1~b!, and van-
ishes in cavities like Fig. 1~a!, which were already well de
scribed by@F1

(3)1F2
(3)#. The correct dependence with re

spect toNi is given by

F3
~3!@r#5E drw3„h~r !… )

i51,3
E dRir~r1Ri !

3w3~Ri !Q~R1 ,R2 ,R3!. ~7!

with w3(h)5]3wo(h)/]h35(12h)22. Previous versions
of the FMT functional@6–9# have this structure but the geo
metrical dependence, in the kernelQ(R1 ,R2 ,R3), was set
~implicitly @6# or empirically @8#! to recover the equation o
state and the correlations in the bulk fluid, as given by
Percus-Yevick approximation. In a recent version@9# the
structure of this kernel was changed to avoid divergence
the 0D limit, but the regularization was only partial, an
F3

(3) would still diverge in cavities like Figs. 1~a! and 1~b!.
We may now obtainQ(R1 ,R2 ,R3) from the function
z(r 12,r 23,r 31), with r i j5uRi2Rj u, to recover the exact 0D
This gives a fully regularizedF3

(3) , although the geometrica
definition ofz is cumbersome~see@13#!. For small values of
the arguments we may expandz with a leading term

z~r 12,r 23,r 31!5~4pR3!21uR1•~R23R3!u1•••. ~8!

The truncation at this first term keeps the exact cancella
of any divergence which may arise at the overlap of t
spherical shells~whenRi5Rj ), and it cancels out for any
linear density distribution~becauseR1 , R2, andR3 are co-
planar!, as required to recover the exact form
@F1

(3)1F2
(3)# for those cases. The 0D cavities represented

Fig. 1~c!, in whichh(r ) never takes the valueN5(Ni , have
z51. As in 2D, these are ‘‘lost cases’’for the FMT, because
there is no triple intersection of the spherical shells in E
~7!, andF3

(3) vanishes.
The free-energy density functional for hard sphe

F (3)5F1
(3)1F2

(3)1F3
(3) has been built, within the FMT

from the properties of a single molecule in a 0D cavity, bu
also provides an approximation for the bulk equation
state, through the excess free energy per molecule in a
system, which is

F~3!/N5w1~h!13hw2~h!1 3
2h2w3~h!

3F E dr12E dr23
z~r 12,r 23,r 31!

~4pR3!2 G , ~9!
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where we integratez, over all the triangles with one vertex a
the origin, excluding the ‘‘lost cases’’ which have z51 but
do not appear in Eq.~7!. This integral is (p/4)2.0.6168,
which gives a rather poor equation of state for hard sphe
However, if we extend the integration to include the FM
‘‘ lost cases,’’ the term in the brackets becomes 1, and w
recover from Eq. ~9! the Percus-Yevick compressibilit
equation of state@1# ~which in three dimensions is identica
to scaled particle!, as in the previous FMT functionals. No
tice that this extension is incompatible with the FMT for
~7!, so that the scaled-particle equation of state cannot
achieved within a FMT functional based entirely on the 0
limit. The expansion~8! suggests the approximation of usin
in Eq. ~7! the kernel

Qappr~R1 ,R2 ,R3!512p2@R1•~R23R3!#
2, ~10!

in which the prefactor was renormalized to be consist
with the scaled-particle equation of state. This approximat
for F3

(3)@r# will be free of divergences, it vanishes for an
linear density distribution, and it may be expressed in ter
of tensor weighted densities@9#. Use of the kernel~10! in Eq.
~7! is the equivalent for hard spheres of the previous appro
mation for hard disks@6#.

The functional form of wk(h)5]kwo(h)/]hk in
Fk

(D)@r# is related in a systematic way to thekd-function
distributions. For hard spheres there is no need to go bey
k53d functions because no new geometrical elements
pear. There would be no intersections of, e.g., four spher
surfaces, and the free energy would still be the sum of s
face, line, and dot contributions, with the same basic str
ture as in the case withk53d functions. Likewise, for hard
disks there is no need to go beyondk52 d functions. Our 0D
analysis is capable to recapture the scaled-particle dim
sional analysis@6# @which leads to the same function
wk(h)] directly from the general FMT functional forms~1!,
~5!, and ~7! for Fk

(D)@r# and without any reference to th
bulk thermodynamics. Theh51 singularity, which played
an important role~as ‘‘ideal liquid’’! in the original devel-
opment of the FMT@6#, is now shown to emanate from th
corresponding singularity in the 0D limit. The influence
the FMT 0D ‘‘lost cases’’ grows with the dimension: they do
not exist in one dimension, they do not interfere with t
scaled particle equation of state in two dimensions~they do
not change the contribution ofw2), but they are very impor-
tant for the contribution ofw3 in three dimensions. This is in
accordance with the decreasing accuracy of the Per
Yevick approximation with increasing dimensions@6#. We
also note that for parallel hard squares and cubes, the F
functionals are generated from the 0D limit in a more co
plete way@14# than for disks and spheres. Our aim to use
0D limit as the guide to build fully regularized FMT densit
functionals has proven to be successful for hard disks w
exact results for most 0D cavities. For hard spheres our ef
has exposed the intrinsic limits of the FMT, but it also su
gests useful approximations like using in Eq.~7! the kernel
~10!. In summary, we have presented interesting FMT f
energy functionals for hard disks and hard spheres, which
exact for a singled-function cavity, and thus appropriate t
describe solids. They reduce to the exactfunctional in the
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quasi-1D limit, and yield the scaled-particle bulk equation
state. They are not exact in certain 0D cavities, but in view
the behavior of well-studied previous functionals@6–9# they
should be quite accurate in most cases. The present stud
the related approximations open the subject for future wo
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