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From zero-dimension cavities to free-energy functionals for hard disks and hard spheres
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We present aystematic approacto derive fundamental-measure theory free-energy functionals for hard
disks and hard spheres, entirely from the exact free energy in the zero-dimensional limit of a narrow cavity
which cannot hold more than one molecule. The functionals are within the generic class that includes the
previous successful versions, but have the remarkable property to yielkek#ne functionalfor quasi-one-
dimensional density distributionfS1063-651X97)50505-§

PACS numbds): 61.20.Gy, 64.10th, 68.45-v

Model systems of hard disks and hard spheres, in two andased on thaltimatedimensional crossover: the free energy
three dimensions, play central roles in the microscopidn narrow cavity, which cannot contain more than one mol-
theory of liquids[1]. In the last two decades there have beerecule. With an average occupatiod<1, in the grand-
important advanceg2] in the development of density- canonical ensemble, it has an excess Helmholtz free energy
functional approximations for the exce@wer the ideal gas  ®P=9[p]=@,(N) =N+ (1—N)In(1—N) which is indepen-
Helmbholtz free energy®[p]=(F —Fiq)/(kgT), for an inho-  dent of the detailed structure of the cav[§]. This exact
mogeneous density distributiomqy(r). These functionals result provides aero-dimensionakquation of state which
have been used to study interfaces and capillary systems, astiould be reproduced from the density functional in any di-
to understand the crystallization of a fluid as a strong selfmension®(P)[ p] for any density distributiom(r) restricted
sustained inhomogeneity2—4]. The model functionals to be such that it cannot have nonzero values at two points if
®[p] are usually constrained by previous approximations fotthey are separated by more thaR.2The correct 0D limit
the equation of state and the direct correlation function obehavior of the functional, which is important for adequate
uniform bulk systems. The choice of the nonlocal depen-description of the fluid-solid transitiof®], is presently used
dence of® on the density(r) is simplified by the geometri- to fully derive FMT functionals which yield thexact func-
cal character of the interactions and there are two maitional for quasi-1D density distributions.
groups of theories(1) those based on thgair-excluded vol- We consider first a density distributiop(r)=N&(r),
ume(a sphere with radius equal to twice the molecular radiusvith N<1, which corresponds to the limit of a narrow
R) [2,4,5, and (2) those based on the molecular volume spherical cavity in any dimensioR. The exact OD excess
itself and other fundamental geometric measures ofrttie  free energy is recoverd®], by an integration by parts, from
vidual molecules. The later, under the generic name othe following density functional:
fundamental-measure theori@aMT) [6—9], were proven to
be superior for the description of the dimensional crossover,
namely, the description of bulk systems of reduced dimen- ¢§D>=f drgol(r](r))f dR.ip(r+R)Wp(Ry), (1)
sion as strongly inhomogeneous density distributions in a
larger dimensiof9]. FMT functionals are able to detect con-
figurations of close-packe-dimensional hard spheres, and Where R, is fixed to be on a shell of radiuR by,
can address the phase diagram of hard spheres in confinéth(|R1|)=s5 8(R—|R|), normalized by the “molecular
geometries[6,9]. However, correct dimensional crossover surface area’s;=2, s,=27R, s;=47R2. The function
can be achieved only by a functional that contains singulari¢.(7)=de.(n)/dn=—In(1—7) is evaluated at the local
ties, and these affect its behavior. The FMT functionals bepacking fraction(at dimensiorD)
have nicely, and give reliable results for a large class of
p(r), but in view of their approximate nature their singulari-
ties may cause unphysical divergences for certain extreme 7](r)=f dr'p(r')®(R—|r—r’]), 2
density distributions. These, however, also serve to advance
the theory since the elimination of the divergences is o ) i
achieved by a finer tuning of the functional form. Indeed,With the usual Heaviside step functi@(x). In one dimen-
recent regularizations of the FMT in the zero-dimensionaision, " provides theexactfunctional[10], and it recovers
(0D) limit of a cavity that cannot hold more than one mol- the exact value ofp,(N) for any other OD distribution like
ecule have opened frontiers in the study of crystallizatiofwo & functions, p(r)=N;8(r—rq)+Ny8(r—r;) with
[9]. N=N;+N,<1 andry,=|r;—r,/<2R. In higher dimen-

In this Rapid Communication we presensygstematic ap- sions these kind of 0D density distributions, which would
proachto build up regular FMT functionals, within a generic represent an elongated cavity like in Figa)l are not well
class that includes the previous versions. The approach iepresented b;b(lD), which gives
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wherer.=r=r’ and o5 = @,(7(r *U(R?—r’'?)?) and u

is a unit vector normal tor’. The density functional
dP =@+ d? has been built to recover the exact 0D
limit for a single molecule in a class of 0D cavities, yet leads
to remarkable results for the excess free energy of general
density distributions. We have checked tHat?)[p] gives

the exact OD value for arbitrary combinations rof5 func-
tions when there is a region with common overlap, where
7(r) is equal to the total cavity occupatidti=2=N;, as in

Fig. 1(b). If we apply ®?)[p] to a strictly one-dimensional
density distributionp(x,y)=p1(x) (y), we recover the ex-
act density functionafor hard rodg/10]. Applied to a ho-
mogeneous density distribution, this gives the excess free

FIG. 1. Sketch of the OD systems used in the text. The full line€N€rgy per m0|eCUI®(2)/_N: ‘P1(77>+ n¢2(7) which corre-
shows the available space for the molecular center, which has tw8PONds to thecaled particleequation of state for hard disks
(a) or three(b) and(c) narrow subcavities, joined by much narrower [11]. However, ®®)[p] cannot reproduce the 0D limit in
channels. The relative volume of the subcavities sets the occupatiatavities like Fig. 1c), with a density distribution made of
ratios N;/N;, the channels giving a negligible contribution. The three & functions, separated by less thaR ®ut without a
total occupationNgl will be set by the chemical potential of a region of tr|p|e Over|ap Where](r) is equa| to the total oc-
reservoir joined to the cavities by channels that are also negligibleﬁupaﬂOn N. Within the FMT framework these areldst

The dashed lines show the extent of the molecules at the center %lses ”

each subcavity within the physical cavity wéhaded ling which
is drawn only in caséa).

2
DP[p]=0o(N)— £p(r 1) ‘P°(N)‘i§1 eo(N)|. (3

The deviation from the exact OD limit is thus found to be a

universal function ofN; and N, multiplied by a function
&p(r). For two and three dimensions, we have

2 [ r
gz(r)zgsm 2R/’ §3(r)=ﬁ- (4)

which cannot be described througfr). The failure

in the description of these cases has to be related to the
difference between the exact and the scaled-particle equa-
tions of state. These “lost cases” disappear, however, not
only in the strict 1D limit but also in quasi-1D systems, when
the molecules are restricted to a channel of width less than
V3R, for which ®@=®{?+ ®{?) is likely to be the exact
density functional.

The FMT approximation for hard disks, previously pro-
posed by one uf7], in terms of scalar and vector weighted
densities, take®3(R;,R,)=7(R?>~R;-R,). This func-
tional form is similar to the exact kernel for,<R, which
gives P,(R;,R,)=27(R?>—R;-R,)+0O(rj,). The trunca-

We now search for a second contribution to the density function at the first term changes by a factor of 2 the contribution

tional, a term®{P)[p] that corrects this defect id{®)[p]

of ®{?) to the bulk equation of state, and the former approxi-

and makes up the exact valgg(N). It has to vanish with a  mation is recovered as a truncated and renormalized expan-

single § function or when the twaS functions inp(r) are

sion. We also note that the 2D analog[8f, namely, a FMT

separated by more than a molecular diameter, and within th@inctional for hard disks in terms of only scalar weighted
FMT scheme we expect it to include the nonlocal depenyensities which is completely equivalent to thaf B, can be

dence throughy(r) andwp(r). This is obtained by

2
oPp1= [ areanL [ dRptr+R)
i=1

XWp(R))Pp(R1,Ry). 5

The dependence dd; andN, in Eq. (3) dictatesthe func-
tional form of ¢,(7)=d*¢(7)/dn*=(1—75) L. The ker-
nel Pp(R;,R,) couples the integrals ové&; andR,, and it
is determinedby the geometrical factoép(rq,) in Eq. (4),
W|th I’12= | Rl_ R2| .

For hard disks D=2) we find Py(R{,R5)
=47R?x(1—x?)Y%sin"Y(x), with x=r 1,/(2R). The integra-

derived by another approa¢h?2] that utilizes the 0D limit as

a “generating function” for the FMT functional and imposes
the scaled-particle bulk equation of state. A deeper under-
standing of the interconnection between these methods is
desirable.

Considering now 3D hard spheres we find that the kernel
in Eq. (5) isP3(R;,R,)=47R(R>—R;-R,), which gives
rise to exactlythe same second term(zz)[p] in the func-
tional as in the previous versions of the FMT for hard
sphereg6,9]. The density functiongld®{*)+ ® ] is known
[9] to yield the exact free energy and pair direct correlations
in the uniform 1D limit. We find, however, that in fact it
yields theexact1D functionalin the general 1D limit, i.e., it

tion overr in Eq.(5) may be carried out over the intersection has an exact dimensional crossover to 1D, and it is probably

of the two circular shellsw,(R;) and w,(R;) to give a
useful simpler form:

sin"X(r'/R
®;2>=fdr’+)f drp(r)p(r-)(e; +¢7),

exact for quasi-1D systems, restricted to tubes of diameter
less thany3R. However [ ®{+ &) fails to reproduce the
exact OD limit in cases like Fig. (b, with
p(r)==;—1aN;8(r—r;) which were well described in two
dimensions. The result for these cases is now
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D p]+ D[ p1= 0o(N) = £(F 12,7 23,7 31) where we integraté, over all the triangles with one vertex at
the origin, excluding the lost case’ which havgg“:l but
do not appear in Eq(7). This integral is /4)°=0.6168,
‘PO(N)_{% ¢o(Ni+N;) which gives a rather poor equation of state for hard spheres.
However, if we extend the integration to include the FMT
4 2 (N-)} ©) “lost caseg’ the term in the brackets becomes 1, and we
%13 Pl s recover from Eq.(9) the Percus-Yevick compressibility
equation of stat¢l] (which in three dimensions is identical
where{ij} runs over the pairs 12, 23, and 31. The functionto scaled particlg as in the previous FMT functionals. No-
¢ is defined in geometrical ternj43] and takes values be- tice that this extension is incompatible with the FMT form
tween 0 and 1, for any triangle with the three sides(7), so that the scaled-particle equation of state cannot be
r12, Fp3, andry, less than R. Again we search for an achieved within a FMT functional based entirely on the 0D
extra term,d>(33)[p], in the density functional that makes up !imit. The expansion8) suggests the approximation of using
the exact valuep,(N) for cavities like Fig. 1b), and van- N EQ. (7) the kernel
ishes in cavities like Fig. (&), which were already well de-
scribed by[® P+ ®$]. The correct dependence with re- Q%¥P(R;,R,,R3)=1272[R;- (R,XR3)1%,  (10)
spect toN; is given by

X

in which the prefactor was renormalized to be consistent

I p]= f dros(n(n) I1 f dRip(r+R;) with the scaled-particle equation of state. This approximation
=13 for <I>(33)[p] will be free of divergences, it vanishes for any
X W3(R)Q(R;,R,,R3). (7) linear density distribution, and it may be expressed in terms

of tensor weighted densiti¢9]. Use of the kerng(10) in Eq.
with @3(7)=>es(7)/dn=(1—75) 2. Previous versions (7)is the equivalent for hard spheres of the previous approxi-
of the FMT functiona[6—9] have this structure but the geo- mation for hard disk$6].
metrical dependence, in the kerm@(R;,R,,Rs), was set The functional form of ¢u(7)=d"es(7)/dn* in
(implicitly [6] or empirically[8]) to recover the equation of <I>(kD)[p] is related in a systematic way to the&s-function
state and the correlations in the bulk fluid, as given by thelistributions. For hard spheres there is no need to go beyond
Percus-Yevick approximation. In a recent versi®@ the k=36 functions because no new geometrical elements ap-
structure of this kernel was changed to avoid divergences ipear. There would be no intersections of, e.g., four spherical
the OD limit, but the regularization was only partial, and surfaces, and the free energy would still be the sum of sur-
43(33) would still diverge in cavities like Figs.(d) and ib).  face, line, and dot contributions, with the same basic struc-
We may now obtainQ(R;,R,,R;) from the function ture as in the case witk=36 functions. Likewise, for hard
{(r 12,7 23,731, with ri;=|R;— R§|’ to recover the exact OD. disks there is no need to go beydkrd 2 §functions. Our 0D
This gives a fully regularized{® , although the geometrical analysis is capable to recapture the scaled-particle dimen-
definition of ¢ is cumbersomésee[13]). For small values of ~sional analysis[6] [which leads to the same functions

the arguments we may expaddvith a leading term @k(7)] directly from the general FMT functional formd),
(5), and (7) for ®{P[p] and without any reference to the
{(r12,723,13)=(4mR%) "Ry (RyXRy)|[+---.  (8)  bulk thermodynamics. They=1 singularity, which played

an important rolglas “ideal liquid”) in the original devel-

The truncation at this first term keeps the exact cancellatiogpment of the FMT[6], is now shown to emanate from the
of any divergence which may arise at the overlap of twocorresponding singularity in the 0D limit. The influence of
spherical shellswhen R;=R;), and it cancels out for any the FMT 0D “lost case$ grows with the dimension: they do
linear density distributiorfbecauseR;, R, andR; are co-  not exist in one dimension, they do not interfere with the
planaj, as required to recover the exact form of scaled particle equation of state in two dimensi¢hey do
[P+ ®P)] for those cases. The 0D cavities represented imot change the contribution af,), but they are very impor-
Fig. 1(c), in which 5(r) never takes the valud==N;, have tant for the contribution of5 in three dimensions. This is in
{=1.Asin 2D, these arelost cases’for the FMT, because accordance with the decreasing accuracy of the Percus-
there is no triple intersection of the spherical shells in Eqg.Yevick approximation with increasing dimensiof]. We
(7), andCDge‘) vanishes. also note that for parallel hard squares and cubes, the FMT

The free-energy density functional for hard spheredunctionals are generated from the OD limit in a more com-
q)(3):(p(l3)+q)(23)+cp(33) has been built, within the FMT, plete way{14] than for disks and spheres. Our aim to use the

from the properties of a single molecule in a 0D cavity, but itOD limit as the guide to build fully regularized FMT density
also provides an approximation for the bulk equation offunctionals has proven to be successful for hard disks with

state, through the excess free energy per molecule in a bufxact results for most OD cavities. For hard Spheres our effort

system, which is has exposed the intrinsic limits of the FMT, but it also sug-
gests useful approximations like using in K@) the kernel
DOIN= () +37¢:(7)+ 3 7%03(7n) (10). In summary, we have presented interesting FMT free
energy functionals for hard disks and hard spheres, which are
% f dr f dr {(r1z,r23.731) 9 oxact for a singles-function cavity, and thus appropriate to
12 B (4nR¥HZ | describe solids. They reduce to the exfgtctional in the
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quasi-1D limit, and yield the scaled-particle bulk equation of This work was supported by the DirecnidGeneral de
state. They are not exact in certain 0D cavities, but in view ofinvestigacim Cientfica y Tecnica (Spain under Grant No.
the behavior of well-studied previous functionfis-9] they = PB94-005-C02-02. We thank J. A. Cuesta, R. Evans, A.
should be quite accurate in most cases. The present study a@bnzalez, and J. A. White for communicating their results
the related approximations open the subject for future workbefore publication.
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